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Abstract

Linear filtering methods are well known and have been successfully applied to
many engineering problems. However, they become unpractical when the param-
eter space is very large. The recently proposed assumption of system separability
allows the development of computationally efficient alternatives to classical fil-
tering methods in this scenario. In this work, we show that system separability
calls for multilinear system representation and filtering. Based on this parallel,
the proposed filtering framework consists of a multilinear extension of the clas-
sical Wiener-Hopf (WH) filter that exploits the separability property to solve
the supervised multilinear filtering problem. System identification and antenna
beamforming computer simulations were conducted to assess the performance
of the proposed method. Our numerical results show our approach has smaller
computational complexity and that it provides better estimation accuracy than
the classical WH filter, which ignores the multilinear system structure.

Keywords: Multilinear filtering, tensors, system identification, antenna array.
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Resumo

Métodos de filtragem linear estão bem estabelecidos e têm sido aplicados
em diversos problemas de engenharia. Entretanto, eles tornam-se impraticáveis
quando o espaço de parâmetros é grande. A recente hipótese de separabilidade
de sistema permite o desenvolvimento de métodos computacionalmente eficientes
neste cenário. Neste trabalho, nós mostramos que a separabilidade de um sis-
tema leva à sua representação multilinear. Em vista disso, o método de filtragem
proposto consiste em uma extensão multilinear do filtro de Wiener-Hopf (WH)
clássico, que explora a separabilidade para resolver o problema de filtragem mul-
tilinear supervisionada. Simulações computacionais de identificação de sistemas e
formatação de feixes de antenas foram realizadas para a avaliação do desempenho
do método proposto. Nosso resultados numéricos mostram que nossa abordagem
possui menor complexidade computacional e que ela fornece melhor acurácia de
estimação que o filtro de WH clássico, que ignora a estrutura multilinear do sis-
tema.

Palavras-chave: Filtragem multilinear, tensores, identificação de sistemas, ar-
ranjo de antenas.
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Chapter 1

Introduction

The filtering problem consists of designing a set of parameters which extract
information from a set of noisy data [1]. A filter can be mathematically repre-
sented by a function that transforms an input signal into an output signal. A
filter is classified with respect to the mathematical properties of its model: lin-
ear or non-linear, instantaneous (memoryless) or dynamic (with memory), time
variant or invariant, among others [2]. The statistical approach to the filtering
problem consists of designing a filter that minimizes the error between its output
signal and a given desired signal. In system identification problems, for instance,
a filter is employed to model an unknown system. In this context, both devices
are fed by the same input signal, and the output signal produced by the unknown
system is regarded as the desired signal. The unknown system model parame-
ters can be identified by minimizing the mean square error between the filter
output and the desired signal [1]. This process is said to be supervised because
the error minimization depends on the availability of a desired signal, also called
reference signal. There are basically two types of supervised filtering techniques:
optimal methods, such as the Wiener-Hopf (WH) solution, which computes the
filter coefficients after observing all available data and using known statistics,
and adaptive filtering algorithms, such as the Least Mean Square (LMS) algo-
rithm, which update the filter coefficients as new data samples are available. The
WH filter and the LMS algorithm are widely employed in practical problems and
hereafter they will be referred to as classical filtering methods.

Although these methods are straightforward to implement and provide suffi-
ciently accurate solutions, they present serious drawbacks in some scenarios. For
instance, Big Data problems demands low-complexity filtering techniques capa-
ble of dealing with very large datasets [3]. In this context, optimum methods
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need to cope with large covariance matrices, whereas adaptive filters face slow
convergence rate [4]. Furthermore, these methods are not adapted to process mul-
tidimensional signals, whose information is defined in multiple signal domains.
Instead of employing different filters to process different information domains,
classical filtering methods usually make use of a unique filter to jointly process
all information domains, resulting in a large filtering problem. By contrast, tak-
ing the multidimensionality into account allows the use of filters with smaller
dimensions, reducing the overall computational complexity of the filtering. An-
other important drawback of classical filtering methods is that their performance
strongly depends on the power spectrum of the input signal. It is known that the
condition number of the input signal covariance matrix determines the numerical
stability of the WH filter and the convergence rate of LMS-based algorithms [1].
It is defined as the ratio between the largest and smallest eigenvalues (eigenvalue
spread) of the input signal covariance matrix. Larger eigenvalue spread char-
acterizes singular covariance matrices, resulting in unstable WH solutions and
slow LMS convergence. Nonlinear system models, such as Volterra systems, are
known to present large eigenvalue spreading, which decreases the convergence
rate of adaptive filtering methods [5].

Many ideas have been proposed for increasing the numerical stability and
the convergence rate of classical filtering methods. Variable step size factors [4],
transform domain implementations [6], multistage nested Wiener filtering [7, 8],
affine projection algorithms [9], and Newton-based solutions [10] are among the
most popular approaches to increasing the convergence speed of adaptive filter-
ing algorithms. Another idea consists of exploiting a priori information on the
system impulse response and signals. For instance, the proportionate normal-
ized least mean square (PNLMS) algorithm was proposed in [11] to increase the
convergence speed by exploiting the impulse response sparsity. However, its per-
formance severely deteriorates in large-scale scenarios and it is not adapted to
multidimensional problems. System separability is another a priori information
that has been used for many years to reduce the implementation costs of large
filters. A system is said to be separable when it can be expressed as a “product” of
subsystems. This “product” can either be a convolution or a Kronecker product
depending on the application. In image processing, separable filters are usually
expressed in terms of convolutions, whereas Kronecker products are used in other
contexts such as telecommunications. Efficient design methods for separable bi-
dimensional filters were proposed several years ago [12, 13]. More recently, large
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multidimensional filters were approximated as convolution separable systems in
[14, 15]. A tensor LMS (TLMS) algorithm was proposed in [16] to identify a
separable finite impulse response (FIR) filter with large parameter space. This
method provides an important increase of convergence rate, which is due to the
division of the large identification task into smaller ones. In some applications,
each separable factor is associated with a signal domain, and, in this case, filter-
ing methods that exploit separability can be also regarded as multidimensional
filtering methods. System separability can be found in many practical problems
such as nonlinear systems modeling [17], compressed sensing [18], and array sig-
nal processing [19].

Tensor filtering, also called multiway filtering [20], has been widely used to
process multidimensional signals. It consists of using a multidimensional (tensor)
filter to process the multiple signal domains. In the last few years, it has been
shown that tensor methods provides some advantages over vector and matrix
methods: parameter reduction [21], lower approximation error [16], and faster
convergence [16]. In the following, we briefly review some of these works:

– Tensor filtering methods based on a generalized signal subspace approach
were reviewed in [20] and applied to color image denoising problem. Com-
putational results showed that the tensor generalization provided less noisy
estimates than the matrix method.

– In [22], a generalization of the WH filter based on a generalized signal
subspace approach was proposed and applied to denoising problem as well.

– A low-rank space-time adaptive processing (STAP) tensor filter was pro-
posed in [23] to jointly process a space-time-polarization tensor. Such pro-
cessing presented superior performance compared to vector methods.

– Tensor filtering was also used in the multilinear regression method proposed
in [24] to predict clinical risk of Alzheimer’s disease and heart failure. The
multilinear regression problem was formulated as a multilinear optimiza-
tion problem that was solved using a Block Coordinate Descent method,
providing the state-of-art prediction performance.

– We have proposed a tridimensional batch filtering method in [25] inspired
by [26], where a rank-constrained spatiotemporal matrix filter for Code Di-
vision Multiple Access (CDMA) systems was computed using an alternat-
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ing optimization approach. The performance of the proposed batch filtering
method was assessed in signal denoising problems.

– In [27, 28], a multilinear least-squares method based on alternating min-
imization was proposed to decompose multidimensional filters into a cas-
cade of subfilters. Such decomposition would decrease the computational
cost of multidimensional filtering problems. The proposed decomposition
technique provided more robustness to initialization than other alternating
minimization based methods. The considered multidimensional filters were
separable in the sense of the convolution product.

– Learning methods for separable multidimensional image filters based on the
parallel factors (PARAFAC) tensor decomposition were proposed in [15].
These methods were employed to approximate a bank of 2D image filters as
a sum of rank-1 tensors. This approximation provided parameter reduction
and lower approximation errors compared to competing methods.

As most adaptive methods, the performance of the TLMS algorithm depends
on a step size factor. This algorithm demands a small step size factor to attain
lower error levels, which drastically reduces its convergence rate. This problem is
more pronounced when the filter parameter space is large. In view of this problem,
we questioned ourselves whether an alternating optimization method using batch
filtering (WH filtering) instead of stochastic gradient descent (LMS) would de-
crease the overall computational costs. Although this proposed approach, named
Tensor Wiener-Hopf (TWH) algorithm, would still be subject to convergence
issues, the WH filters would provide fast iterations towards the optimal solu-
tion. Since this approach divides a large-scale optimization problem into simpler
subproblems, it should demand less computational cost than classical filtering
methods as well. It is known that system separability provides a reduction of
computational costs and approximation errors, but to what extent does it pro-
vide these gains? Higher separability order leads to smaller separable factors,
which can be accurately estimated using less computational resources. Therefore
we expect the parameter estimation accuracy to increase and the computational
complexity to decrease with the system separability order up to a certain degree.

To answer these questions, we have conducted system identification and
beamforming computer simulations. In the system identification problem, we
have considered the parameter identification of a separable FIR filter, whereas,
in the beamforming problem, we have proposed a multilinear model for trans-
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lation invariant arrays that calls for tensor beamforming. We have observed in
our simulations that TWH provides inferior computational complexity than its
classical counterpart and that system separability provides advantages up to a
certain separability order. We have also managed to show that every separable
FIR system can be factorized in terms of sparse subsystems. In conclusion, the
main contributions of this thesis are:

– The TWH algorithm, which provides state-of-art parameter estimation ac-
curacy with small computational costs in large-scale separable filtering
problems;

– The Extended Subsystem Theorem, which decomposes any separable FIR
system into a cascade of sparse subsystems;

– Insights on the gains provided by separable filtering methods;

– The proposed separable multilinear sensor array model;

1.1 Scientific Output

Two papers were produced from the results obtained in this thesis:

– L. N. Ribeiro, A. L. F. de Almeida and J. C. M. Mota, "Identification of
Separable Systems Using Trilinear Filtering" published in the 2015 IEEE
6th International Workshop on Computational Advances in Multi-Sensor
Adaptive Processing (IEEE CAMSAP 2015) proceedings;

– L. N. Ribeiro, A. L. F. de Almeida and J. C. M. Mota, "Tensor Beam-
forming for Multilinear Translation Invariant Arrays" to appear in the 41st
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP 2016);
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1.2 Thesis organization

This thesis is structured as follows:

– The multilinear filtering methods used in this thesis are introduced in Chap-
ter 2;

– Results from the supervised system identification experiments are presented
in Chapter 3;

– A tensor beamformer based on the proposed multilinear filtering method
and results from computational simulations are presented in Chapter 4;

– Chapter 5 summarizes our conclusions and lists some research perspectives
on tensor filtering;

– The classical linear filtering methods are reviewed in Appendix A;

– The separability of exponential transversal filters is discussed in Appendix
B;

– The papers mentioned in Section 1.1 are attached in Appendices C and D;
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Chapter 2

Supervised Filtering Methods

This chapter is devoted to the presentation of the multilinear supervised filter-
ing methods proposed in this thesis. First, the supervised linear filtering problem
is stated and the classical filtering methods are presented. Afterwards, the mul-
tilinear filtering problem is introduced in Section 2.2. We propose the SepWH
method, which is based on the factorization of rank-1 multilinear filters. Next
we propose the TWH algorithm, which solves the multilinear filtering problem
using an alternating optimization approach. Finally, we present the TLMS algo-
rithm, which can be regarded as the stochastic gradient descent counterpart of
the TWH algorithm.

2.1 Supervised Linear Filtering

Figure 2.1: Supervised linear filtering model.

The supervised linear filtering problem consists of processing an input signal
x(n) using a linear filter to produce an estimate y(n) of a desired signal d(n) [1].
The linear filter is designed to minimize the estimation error e(n) := d(n)− y(n)

according to some statistic criterion. In this work, we assume that x(n) is a wide
sense stationary (WSS) discrete-time signal and that the linear filter is a Nth
order tapped delay line. This filter produces an output signal y(n), which is given
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by the convolution sum

y(n) =
N−1∑

k=0

w∗kx(n− k) = wHx(n), (2.1)

where
w := [w0, w1, . . . , wN−1]T ∈ CN

and
x(n) := [x(n), x(n− 1), . . . , x(n−N + 1)]T ∈ CN

denote the filter coefficients vector and the input signal regression vector, respec-
tively. The supervised linear filtering problem is illustrated in Figure 2.1.

The mean square error (MSE) is an attractive optimization criterion due to
its mathematical tractability. Since the input signal x(n) is assumed to be WSS,
it can be shown that the MSE curve is convex and has a unique global minimum
[1]. In this context, we seek to minimize the MSE between y(n) and d(n), i.e. we
aim at solving the following optimization problem:

min
w

E
[∣∣d(n)−wHx(n)

∣∣2
]
, (2.2)

where E [·] denotes the statistical expectation operator.
Let the objective function be defined as Jw := E

[∣∣d(n)−wHx(n)
∣∣2
]
. TheWH

filter (Section A.1) provides the minimum mean square error (MMSE) solution
to (2.2) by solving the ∇Jw = ∂Jw

∂wH = 0 for w. On the other hand, the LMS
algorithm (Section A.2) solves (2.2) by using the stochastic gradient descent
method. The Normalized Least Mean Square (NLMS) algorithm, reviewed in
Section A.3, is a modified LMS which employs a variable step size factor. The
reader is referred to Appendix A for more information on these classical filtering
methods.

2.2 Supervised Multilinear Filtering

In the last Section, we have considered the linear filtering problem, in which
a FIR filter was regarded as a linear operator. We will show in this Section that
it can be also regarded as a multilinear operator under the hypothesis that the
filter coefficients are separable. This hypothesis leads to the multilinear filter-
ing problem, which will be introduced in the following. Before introducing this

8



problem, multilinear (tensor) algebra prerequisites will be presented for conve-
nience. Subsequently multilinear extensions of the linear filtering methods will
be introduced.

2.2.1 Tensor Prerequisites

An Nth order tensor is essentially an element of a tensor product between N
vector spaces [29]. Any Nth order tensor can be represented by a multidimen-
sional coordinates array whenever the basis of the vector spaces Vn are set for
n = 1, . . . , N . Hereafter the term “tensor” will refer to its multidimensional ar-
ray representation, denoted by uppercase calligraphic letters, e.g. X ∈ C×N

n=1 In ,
where In := dim(Vn) for n = 1, . . . , N . The scalar tensor element indexed by
(i1, i2, . . . , iN) is denoted by [X ]i1i2...iN := xi1i2...iN , where in ∈ {1, . . . , In} for
n = 1, . . . , N . Note that scalars can be regarded as 0th order tensors, vectors
as 1st order tensors, and matrices as 2nd order tensors. Other tensor definitions
and operators will be defined next.

Definition 1 (Tensorization). Let Θ : C
∏N

n=1 In → C×N
n=1 In denote the tensoriza-

tion operator, which transforms a vector v ∈ C
∏N

n=1 In into a tensor Θ(v) ∈
C×N

n=1 In whose components are defined as

[Θ(v)]i1i2...iN := [v]j , j := i1 +
N∑

n=2

(in − 1)
n−1∏

v=1

Iv. (2.3)

For example, let N = 3, I1 = 2, I2 = 3, I3 = 4, and v ∈ CI1I2I3 . The
tensorization of v is Θ(v) ∈ CI1×I2×I3 and its elements are given by

[Θ(v)]i1i2i3 := [v]j, j := i1 + (i2 − 1)I1 + (i3 − 1)I1I2

for i1 ∈ {1, 2}, i2 ∈ {1, 2, 3}, and i3 ∈ {1, 2, 3, 4}.

Definition 2 (Vectorization). Let vec : C×N
n=1 In → C

∏N
n=1 In denote the vector-

ization operator, which transforms a tensor X ∈ C×N
n=1 In into a vector vec(X ) ∈

C
∏N

n=1 In whose components are defined as

[vec(X )]j := [X ]i1i2...iN , j := i1 +
N∑

n=2

(in − 1)
n−1∏

v=1

Iv. (2.4)

Definition 3 (Tensor fiber [30]). The n-mode tensor fiber of an N th order tensor
X ∈ C×N

n=1 In is defined as the vector formed by fixing every index but the inth.

9



For instance, consider a third-order tensor U ∈ CI1×I2×I3 . Its 1-, 2-, and 3-
mode fibers are given by

u·i2i3 ∈ CI1 ,

ui1·i3 ∈ CI2 ,

ui1i2· ∈ CI3 ,

where “·” denotes the varying index. Note that the vec(·) operator can be seen
as the concatenation of the 1-mode fibers along the first dimension of a vector.

Definition 4 (Tensor unfolding [30]). The n-mode unfolding of an N th order
tensor X ∈ C×N

n=1 In is a matrix X(n) ∈ CIn×I1I2...In−1In+1...IN whose entries are
defined as

[X(n)]inj := [X ]i1...iN , j := 1 +
N∑

u=1
u6=n

(iu − 1)
u−1∏

v=1
v 6=n

Iv.

For instance, the unfoldings of U ∈ CI1×I2×I3 are

U(1) ∈ CI1×I2I3 ,

U(2) ∈ CI2×I1I3 ,

U(3) ∈ CI3×I1I2 .

Note that the n-mode matrix unfolding can be seen as the concatenation of the
n-mode fibers along the matrix columns.

Definition 5 (Tensor concatenation [31]). The concatenation of T tensors Ut ∈
C×N

n=1 In , t = 1, . . . , T, along the (M + 1)th dimension is denoted by

U = U1 tM+1 U2 tM+1 . . . tM+1 UT ∈ CI1×I2×...×IM×T ,

where [U ]i1i2...iM t = [Ut]i1i2...iM .

Definition 6 (Outer product). Consider an N th order tensor U ∈ C×N
n=1 In and

an M th order tensor V ∈ C×M
m=1 Jm. The elements of the outer product T =

U ◦ V ∈ CI1×...×IN×J1×...×JM are defined as

[T ]i1...iN j1...jM := ui1...iNvj1...jM , (2.5)

where “◦” denotes the outer product, and T is a (N +M)th order tensor.

10



Definition 7 (Rank-1 tensor [30]). Any N th order rank-1 tensor T ∈ C×N
n=1 In

can be written as
T := t1 ◦ t2 ◦ . . . ◦ tN , (2.6)

where tn ∈ CIn for n = 1, . . . , N .

Definition 8 (Tensor rank). Tensor rank is defined as the minimum number of
rank-1 components that exactly decomposes additively a tensor.

Definition 9 (Inner product [32]). Consider the tensors U ∈ C×N
n=1 In and V ∈

C×N
n=1 In with same dimensions. The inner product 〈U ,V〉 is defined as

〈U ,V〉 :=

I1∑

i1=1

I2∑

i2=1

. . .

IN∑

iN=1

ui1i2...iNv
∗
i1i2...iN

, (2.7)

where (·)∗ denotes complex conjugation.

Definition 10. The Frobenius norm of an N th order tensor X ∈ C×N
n=1 In is

defined as

‖X‖F :=

√√√√
I1∑

i1=1

I2∑

i2=1

. . .

IN∑

iN=1

|xi1i2...iN |2. (2.8)

The Frobenius norm (2.8) can be expressed in terms of an inner product
‖X‖F =

√
〈X ,X〉.

Definition 11 (n-mode product [30]). The elements of the n-mode product be-
tween an N th order tensor X ∈ C×N

n=1 In and a matrix U ∈ CJ×In is defined as

[X ×n U]i1...in−1jin+1...iN
:=

In∑

in=1

xi1i2...iNujin , j ∈ 1, . . . , J, (2.9)

where “×n” denotes the n-mode product operator.

Definition 12. The elements of the {1, . . . , N}-mode product between an N th
order tensor X ∈ C×N

n=1 In and a sequence of (Jn × In)-dimensional matrices
{U(n)}Nn=1, denoted by Y = X ×1 U

(1) . . .×N U(N) ∈ C×N
n=1 Jn, are defined as

[Y ]j1...jN :=

I1∑

i1=1

. . .

IN∑

iN=1

xi1...iNuj1i1 . . . ujN iN . (2.10)

It can be shown that Y(n), the n-mode unfolding of Y , is given by [30]

Y(n) = U(n)X(n)U
⊗nT

, (2.11)
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where X(n) denotes the n-mode unfolding of X , “⊗” the Kronecker product, and

U⊗n := U(N) ⊗ . . .⊗U(n+1) ⊗U(n−1) ⊗ . . .⊗U(1) (2.12)

the Kronecker product of the matrices {U(j)}Nj=1
j 6=n

in the decreasing order.

Definition 13 (Multilinear operator [29]). An operator f that maps C1×. . .×CN

onto C is said to be multilinear if f(v1, . . . ,vN) is linear with respect to every
input vn for n = 1, . . . , N .

Definition 14 (Kronecker product). The elements of the Kronecker product
v =

⊗1
n=N vn ∈ C

∏N
n=1 In are given by

[v]j =
N∏

n=1

[vn]in , (2.13)

where vn ∈ CIn for n = 1, . . . , N , and j := i1 +
∑N

n=2(in − 1)
∏n−1

v=1 Iv.

Proposition 1. It follows that vec(T ) =
⊗1

n=N tn ∈ C
∏N

n=1 In, where T = t1 ◦
t2 ◦ . . . ◦ tN ∈ C×N

n=1 is a rank-1 tensor.

Proof. Let us substitute T = t1 ◦ t2 ◦ . . . ◦ tN into (2.4):

[vec(T )]j = [t1 ◦ t2 ◦ . . . ◦ tN ]i1i2...iN

=
N∏

n=1

[tn]in .

From Definition 2, we have that j = i1 +
∑N

n=2(in − 1)
∏n−1

v=1 Iv. Therefore,
vec(T ) = tN ⊗ tN−1 ⊗ . . .⊗ t1 holds according to Definition 14.

For example, let a = [a1, a2]T ∈ R2 and b = [b1, b2, b3]T ∈ R3. The Kronecker
product between these vectors is given by

a⊗ b = [a1b1, a1b2, a1b3, a2b1, a2b2, a2b3]T .

The outer product between b and a, and its vectorization can be written as

b ◦ a =



b1

b2

b3



[
a1, a2

]
=



a1b1 a2b1

a1b2 a2b2

a1b3 a2b3




3×2

12



and vec(b ◦ a) = [a1b1, a1b2, a1b3, a2b1, a2b2, a2b3]T, respectively.

Proposition 2. The inner product between an N th order tensor U ∈ C×N
n=1 In

and a rank-1 N th order tensor V = v1 ◦ v2 ◦ . . . ◦ vN ∈ C×N
n=1 In is given by

y(v1, . . . ,vN) := 〈U ,V〉 = U ×1 v
H
1 ×2 v

H
2 . . .×N vH

N ∈ C, (2.14)

where (·)H denotes the Hermitian operator.

Proof. From the definitions of the rank-1 tensor (2.6) and inner product (2.7), it
follows that

y(v1, . . . ,vN) = 〈U ,V〉
= 〈U , [v1 ◦ v2 . . . ◦ vN ]〉

=

I1∑

i1=1

I2∑

i2=1

. . .

IN∑

iN=1

ui1i2...iN [v1 ◦ v2 . . . ◦ vN ]∗i1i2...iN

=

I1∑

i1=1

I2∑

i2=1

. . .

IN∑

iN=1

ui1i2...iN [v1]∗i1 [v2]∗i2 . . . [vN ]∗iN . (2.15)

Equation (2.15) is recognized as a {1, . . . , N}-mode product (2.10), which is equal
to (2.14).

Proposition 3. The inner product y(v1, . . . ,vN) = U ×1 v
H
1 ×2 v

H
2 . . .×N vH

N is
a multilinear operator.

Proof. Substituting equation (2.11) into y(v1, . . . ,vN) gives:

y(v1, . . . ,vN) = vH
nxn n = 1, . . . , N, (2.16)

where xn = U(n) [v⊗n]
∗. Note that y(v1, . . . ,vN) is linear with respect to the

components of vn for n = 1, . . . , N , completing the proof.

Proposition 4. Let

X := [X (1) tM+1 . . . tM+1 X (K)] ∈ CN1×...×NM×K

denote the concatenation of K tensors with same dimensions along the (M + 1)th
dimension. The {1, . . . ,m−1,m+1, . . . , N}-mode product between X and {wH

j }Mj=1,j 6=m
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for m = 1, . . . ,M is given by

U(m) = X ×1 w
H
1 . . .×m−1 w

H
m−1 ×m+1 w

H
m+1 . . .×M wH

M (2.17)

=
[
u(1)
m , . . . ,u(K)

m

]
∈ CNm×K ,

where u
(k)
m := X

(k)
(m)w

⊗m ∈ CNm , m ∈ {1, . . . ,M}.

Proof. The elements of (2.17) are given by:

[
U(m)

]
nm,k

=

N1∑

n1=1

. . .

Nm−1∑

nm−1=1

Nm+1∑

nm+1=1

. . .

NM∑

nM=1

[X ]n1...nMk[w1]∗n1
. . . [wm−1]∗nm−1

[wm+1]∗nm+1
. . . [wM ]∗nM

(2.18)

for nm = 1, . . . , Nm and k = 1, . . . , K. From Definition 5, it follows that [X ]n1n2...nMk =

[X (k)]n1n2...nM
and that the elements of (2.18) become:

[
U(m)

]
nm,k

=

N1∑

n1=1

. . .

Nm−1∑

nm−1=1

Nm+1∑

nm+1=1

. . .

NM∑

nM=1

[X (k)]n1...nM
[w1]∗n1

. . . [wm−1]∗nm−1
[wm+1]∗nm+1

. . . [wM ]∗nM
,

From the equation above, we notice that the kth column of U(m) is given by the
{1, . . . ,m− 1,m+ 1, . . . ,M}-mode product u(k)

m := X
(k)
(m)w

⊗m.

2.2.2 Problem Formulation

Now let us introduce the multilinear generalization of the supervised linear
filtering problem presented in the last Section. For simplicity’s sake, we consider
rank-1 separable systems. Consider an Mth order separable FIR system whose
coefficients vector is given by

h =
1⊗

m=M

hm ∈ CN , (2.19)
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where hm ∈ CNm denotes its mth order subsystem for m = 1, . . . ,M . An input
signal x(n) feeds the unknown system, producing

d̃(n) = hHx(n)

=
N∑

k=1

[h]∗k[x(n)]k

=

N1∑

k1=1

N2∑

k2=1

. . .

NM∑

kM=1

[h1]∗k1 [h2]∗k2 . . . [hM ]∗kM [x(n)]k′ , (2.20)

where k′ := k1 +
∑M

m=2(km − 1)
∏m−1

v=1 Nv. A separable FIR filter

w =
1⊗

m=M

wm ∈ CN , (2.21)

where wm ∈ CNm is employed to identify h. This filter is fed by x(n) as well,
yielding an output signal

y(n) =

N1∑

k1=1

N2∑

k2=1

. . .

NM∑

kM=1

[w1]∗k1 [w2]∗k2 . . . [wM ]∗kM [x(n)]k′ . (2.22)

From Proposition 1, h and w are vectorizations of the Mth order rank-1 tensors
H = h1◦. . .◦hM andW = w1◦. . .◦wM , respectively. The input regression vector
can be regarded as the vectorization of X (n) := Θ[x(n)] ∈ C×M

m=1Nm . According
to Proposition 2, equations (2.20) and (2.22) become

d(n) = X (n)×1 h
H
1 . . .×M hH

M

and
y(n) = X (n)×1 w

H
1 . . .×M wH

M ,

respectively. These filtering operations are multilinear with respect to each sub-
system (filter) as shown in Proposition 3. In view of this, equations (2.20) and
(2.22) are hereafter referred to as multilinear filtering.

Definition 15 (Multilinear filtering). Consider anM th order input tensor X (n) ∈
C×M

m=1Nm and a rank-1 tensor filterW = w1◦w2◦. . .◦wM with same dimensions.
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This filter produces a complex valued output signal

y(n) = 〈X (n),W〉
= X (n)×1 w

H
1 ×2 w

H
2 . . .×M wH

M . (2.23)

The supervised multilinear filtering approach to system identification consists
of approximating a distorted desired signal d(n) = d̃(n) + b(n) using a rank-1
tensor filter W , where b(n) is a zero mean and unit variance additive white
Gaussian measurement noise component uncorrelated to d̃(n) and x(n). The
supervised multilinear filtering can be expressed as the following optimization
problem:

min
w1,...,wM

E
[∣∣d(n)−X (n)×1 w

H
1 . . .×M wH

M

∣∣2
]
. (2.24)

The multilinear system identification model is illustrated in Figure 2.2. Note that
when M = 1 (not separable case), the supervised multilinear filtering problem
reduces to its linear counterpart.

Figure 2.2: Supervised multilinear system identification model.

We have remarked a link between Kronecker products and cascade filters,
and we will show that Kronecker factorization leads to a system factorization
in terms of sparse subsystems, which we refer to as extended subsystems. We
propose in the following the Extended Subsystem Factorization Theorem:

Theorem 1 (Extended Subsystem Factorization). AnyM th order separable FIR
system whose coefficients vector decomposes into h =

⊗1
m=M hm can be expressed

as
h = h̃1 ∗ h̃2 ∗ . . . ∗ h̃M , (2.25)

where “∗” denotes discrete-time convolution, h̃m ∈ C(Nm−1)Ψm+1 denotes the mth
order extended subsystem, and Ψm =

∏m−1
v=1 Nv. The coefficients of the extended
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subsystems are given by

[h̃m]nm =





[hm](nm−1)/Ψm , if (nm − 1) mod Ψm = 0

0 , otherwise
, (2.26)

for nm = 1, . . . , Nm.

Proof. From Definition 14, it follows that the (n + 1)th element of h can be
written as:

[h]n+1 = [h1]n1+1[h2]n2+1 . . . [hM ]nM+1, (2.27)

where n = n1 +
∑M

m=2 nm
∏m−1

v=1 Nv for nm ∈ {0, . . . , Nm− 1} and m = 1, . . . ,M .
Let us study the separability effect on the Z-transform of h, which is denoted by
H(z):

H(z) =
N−1∑

n=0

[h]n+1z
−n

=

N1−1∑

n1=0

N2−1∑

n2=0

. . .

NM−1∑

nm=0

[h1]n1+1[h2]n2+1 . . . [hM ]nM+1z
−(n1+

∑M
m=2 nm

∏m−1
v=1 Nv)

=

(
N1−1∑

n1=0

[h1]n1+1z
−n1

)(
N2−1∑

n2=0

[h2]n2+1z
−n2N1

)
. . .

(
NM−1∑

nM=0

[hM ]nM+1z
−nM

∏M−1
v=1 Nv

)

= H̃1(z)H̃2(z) . . . H̃M(z). (2.28)

The term H̃m(z) denotes the Z-transform of the mth extended subfilter. It can
be expressed as:

H̃m(z) = [hm]1 + [hm]2z
−Ψm + [hm]3z

−2Ψm + . . .+ [hm]Nmz
−(Nm−1)Ψm . (2.29)

Note that the elements of H̃m(z) are nonzero when the exponent of z is a multiple
of Ψm. In view of this, the inverse Z-transform of (2.29) is given by:

[h̃m]nm =





[hm](nm−1)/Ψm , if (nm − 1) mod Ψm = 0

0 , otherwise
, (2.30)

for nm = 1, . . . , Nm. Considering (2.30), the inverse Z-transform of (2.28) is given
by h = h̃1 ∗ h̃2 ∗ . . . ∗ h̃M .

To illustrate this result, let us consider the following example. Let h = h1 ⊗
h2 ⊗ h3 ∈ CI1I2I3 , h1 ∈ CI1 , h2 ∈ CI2 , and h3 ∈ CI3 , where I1 = 2, I2 = 3,
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and I3 = 4. According to Theorem 1, h can be convolutionaly decomposed into
h = h̃1 ∗ h̃2 ∗ h̃3, where

h̃1 =
[
h

(1)
1 h

(1)
2

]T
1×2

,

h̃2 =
[
h

(2)
1 0 h

(2)
2 0 h

(2)
3

]T
1×5

,

h̃3 =
[
h

(3)
1 0 0 0 0 0 h

(3)
2 0 0 0 0 0 h

(3)
3 0 0 0 0 0 h

(3)
4

]T
1×19

.

and h(m)
n := [hm]n. This factorization is depicted in Figure 2.3. We notice that the

extended subsystems h̃m are oversampled/sparse versions of their correspondent
subfilter hm.

Figure 2.3: Extended subsystem factorization example.

In the next Section, we will introduce a method for estimating the extended
subfilters using WH filters.

2.2.3 Separable Wiener-Hopf Algorithm

The Separable Wiener-Hopf (SepWH) algorithm consists of dividing the mul-
tilinear filtering problem (2.24) into M independent linear subproblems. This
division is carried out by factorizing the unknown FIR system h in terms of its
extended subsystems h̃m and individually identifying them using w̃m, the WH fil-
ter presented in Appendix A. Afterwards, the system identification is completed
by computing w = w̃1 ∗ . . . ∗ w̃M . Since the solution of a linear subproblem does
not depend on the other solutions, they are said to be independent.

The linear subproblem corresponding to the mth extended subfilter is given
by

min
w̃m

E
[∣∣d(n)− w̃H

mx̃m(n)
∣∣2
]
, m ∈ {1, . . . ,M}, (2.31)

where it is supposed that x̃m(n) := x(n) ∗ h̃6=m, the prefiltered regression vector,
is observable, and h̃6=m := ∗Mk=1

k 6=m
h̃k. Notice that h̃6=m ∗ h̃m = h ∀m ∈ {1, . . . ,M}

due to the convolution commutative property. The filtering operation (2.31) is
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illustrated in Figure 2.4. The SepWH has a computational complexity given by
O
[
((NM − 1)ΨM + 1)3] since it inverts a [(NM − 1)ΨM + 1× (NM − 1)ΨM + 1]-

dimensional autocorrelation matrix.

Figure 2.4: Separable Wiener-Hopf algorithm structure.

Let us illustrate the SepWH algorithm structure by using an example. Con-
sider a third-order separable FIR system whose coefficients vector is given by
h = h3 ⊗ h2 ⊗ h1 ∈ CI1I2I3 , where h1 ∈ CI1 , h2 ∈ CI2 , h3 ∈ CI3 , I1 = 2, I2 = 3,
and I3 = 4. The estimation of w̃1, w̃2, and w̃3 is illustrated in Figures 2.5. The
SepWH algorithm is summarized in Algorithm 1.

Algorithm 1 Separable Wiener-Hopf algorithm
1: procedure SepWH(x(n), h1, . . . ,hM)
2: h← h1 ∗ h2 ∗ . . . ∗ hM
3: Calculate h̃m using Eq. (2.26) for m = 1, . . . ,M
4: for m = 1, . . . ,M do
5: for t = 0, . . . , T − 1 do
6: h̃6=m ← ∗Mk=1

k 6=m
h̃k

7: x̃m(n− t)← x(n− t) ∗ h6=m
8: d(n− t)← hHx̃(n) + b(n− t)
9: Rx̃ ← (1/T )x(n− t)x(n− t)H

10: pdx̃ ← (1/T )d∗(n− t)x(n− t)
11: w̃m ← R−1

x̃ pdx̃
12: end for
13: end for
14: w← w̃1 ∗ w̃2 ∗ . . . w̃M

15: end procedure

2.2.4 Tensor Wiener-Hopf Algorithm

Standard optimization methods do not guarantee global convergence when
minimizing (2.24) due to its nonconvexity with respect to all the variables. The
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Figure 2.5: Identification of each extended subsystem of h using the SepWH
algorithm.
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alternating optimization approach [26, 33] has demonstrated to solve the global
nonlinear problem in terms of M smaller linear problems. It consists of updating
the mth mode subfilter each time by solving (2.24) for wm, while {wj}Mj=1,j 6=m
remain fixed, m = 1, . . . ,M , conditioned on the previous updates of the other
subfilters. In this sense, (2.24) can be divided inM interdependent linear subprob-
lems using the m-mode unfolding equation (2.11). This allows us to represent the
multilinear filtering (2.23) in terms of M different but equivalent linear filtering:

y(n) = wH
1 X(1)(n) (wM ⊗wM−1 ⊗ . . .⊗w2)∗ = wH

1 u1(n),

= wH
2 X(2)(n) (wM ⊗wM−1 ⊗ . . .⊗w1)∗ = wH

2 u2(n),

... =
...

= wH
MX(M)(n) (wM−1 ⊗wM−2 ⊗ . . .⊗w1)∗ = wH

MuM(n),

where
um(n) = X(m)(n)w⊗m ∈ CNm , m ∈ {1, . . . ,M}. (2.32)

Substituting the equations above in (2.24) gives

min
wm

E
[∣∣d(n)−wH

mum(n)
∣∣2
]
, m ∈ {1, . . . ,M}. (2.33)

The solution of (2.33) is given by the Wiener-Hopf filter (A.3):

wm
opt = R−1

m pm, m ∈ {1, . . . ,M}, (2.34)

where

Rm := E
[
um(n)um(n)H

]

= E
[
X(m)(n)w⊗m w⊗m

H
X(m)(n)H

]
(2.35)

and

pm := E [um(n)d∗(n)]

= E
[
X(m)(n)w⊗md∗(n)

]
(2.36)

for m = 1, . . . ,M . The term w⊗m in Rm and pm indicates that eqs. (2.34) are in-
terdependent in the sense that the computation of wm

opt depends on {wj}Mj=1,j 6=m,
motivating the alternating optimization approach.
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We propose the TWH algorithm, which is based on the alternating least
squares (ALS) method to estimate wm

opt by data averaging in the time interval
T . Let

X = [X (n) tM+1 . . . tM+1 X (n− T + 1)] ∈ CN1×...×NM×T

denote the concatenation of T time snapshots of X (n) along the (M + 1)th
dimension. Let U(m) ∈ CNm×T denote the {1, . . . ,m − 1,m + 1, . . . , N}-mode
product between X and {wH

j }Mj=1,j 6=m for m = 1, . . . ,M :

U(m) = X ×1 w
H
1 . . .×m−1 w

H
m−1 ×m+1 w

H
m+1 . . .×M wH

M . (2.37)

From Proposition 4, it follows that U(m) = [um(n), . . . ,um(n− T + 1)]. There-
fore the sample estimates of Rm and pm are given by:

R̂m =
1

T
U(m)U(m)H , (2.38)

p̂m =
1

T
U(m)d∗, (2.39)

where d = [d(n), d(n− 1), . . . , d(n− T + 1)]T ∈ CT . Now the mth order sub-
filter updating rule (2.34) becomes ŵm

opt = R̂−1
m p̂m. At the end of the subfilter

estimation stage, the global filter is computed as ŵ =
⊗1

m=M ŵm. The subfilters
are estimated in an alternate fashion until convergence, which is attained when
the relative system mismatch, defined as ‖h − ŵ‖2

2/‖h‖2
2, between two consec-

utive iterations is smaller than a threshold ε. This procedure is summarized in
Algorithm 2.

The TWH algorithm has a computational complexity of O
(∑M

m=1N
3
m

)
. Such

an alternating minimization procedure has a monotonic convergence [34]. It is
worth mentioning that an analytical convergence analysis of this algorithm is a
challenging research topic which is under investigation.

2.2.5 Tensor LMS Algorithm [16]

As in the linear filtering scenario, the optimization problems (2.24) can be
solved using a stochastic gradient approach. The gradient of the instantaneous
objective function Jwm(n) = E

[∣∣d(n)−wH
mum(n)

∣∣2
]
corresponding to the mth

filtering mode is given by

∇̂Jwm(n) = −um(n)um(n)Hwm + um(n)d∗(n). (2.40)
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Algorithm 2 Tensor Wiener-Hopf algorithm
procedure TWH(X , s, ε)

k ← 1
Initialize e(k), wm(k), m = 1, . . . ,M .
repeat

for m = 1, . . . ,M do
Calculate U(m)(k) using Equation (2.37)
R̂m ← (1/T )U(m)U(m)H

p̂m ← (1/T )U(m)s∗

ŵm(k + 1)← R̂−1
m p̂m

end for
k ← k + 1
y(k)← X ×1 ŵ1(k)H . . .×M ŵM(k)H

e(k) = ‖s− y(k)‖2
2/T

until |e(k)− e(k − 1)| < ε
end procedure

In [16], M. Rupp and S. Schwarz proposed the Tensor Least Mean Square (TLMS)
update rule for the mth order filter using a variable step size µ(n):

wm(n+ 1) = wm(n)− µ(n)∇̂Jwm(n)

= wm(n)− µ(n)
[
−um(n)um(n)Hwm + um(n)d∗(n)

]

= wm(n) + µ(n)um(n)
[
wH
mum(n)− d(n)

]∗

= wm(n) + µ(n)um(n)e∗m(n). (2.41)

The authors indicated that TLMS converges for M = 2 if

0 < µ(n) <
2

‖u1(n)‖2
2 + ‖u2(n)‖2

2

. (2.42)

In this work, we have used µ(n) = µ̃∑M
m=1 ‖um(n)‖22

for some values of µ̃ such that
TLMS attained convergence. This algorithm could be named “Tensor Normalized
Least Square” due to the step size normalization w.r.t. um(n),m = 1, . . . ,M , but
we preferred to keep the original acronym. Each TLMS iteration, which consists
of updating all M subfilters, has computational complexity O

(∑M
m=1Nm

)
. An-

alytical study of convergence of the TLMS algorithm remains an open research
problem. TLMS is summarized in Algorithm 3. In line 11, γ ∈ R+ is a constant
chosen to avoid divergence when ‖um(n− k)‖2

2 becomes negligible.
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Algorithm 3 Tensor Least Mean Square algorithm [16]

1: procedure TLMS(x(n) ∈ CN , d(n) ∈ CT , µ̃ ∈ R+)
2: k ← 1
3: Initialize wm(k) for m = 1, . . . ,M .
4: for k = 0, . . . , T − 1 do
5: X (n− k)← Θ(x(n− k))
6: e(k)← d(n− k)−X (n− k)×1 w1(k)H ×w2(k)H . . .×M wM(k)H

7: for m = 1, . . . ,M do
8: Calculate um(n− k) using Eq. (2.32)
9: end for

10: for m = 1, . . . ,M do
11: w(k + 1)← w(k) + µ̃

γ+‖um(n−k)‖22
um(n− k)e∗(k)

12: end for
13: end for
14: end procedure

Method Computational complexity
SepWH O

[
((NM − 1)ΨM + 1)3]

TWH O(
∑M

m=1N
3
m)

TLMS [16] O(
∑M

m=1Nm)

Table 2.1: Computational complexity of the SepWH, TWH, and TLMS algo-
rithms.

It is not straightforward to compute the exact amount of FLOPS demanded
by the methods discussed in this chapter due to the matrix inversions, however
their computational complexity is listed in Table 2.1. In the next chapters, we will
show the results and analysis of the numerical experiments on the applications
to system identification and antenna beamforming using the methods presented
in this chapter.
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Chapter 3

Supervised Identification of
Multilinear Systems

In this chapter, computer simulations were conducted to assess the perfor-
mance of the proposed filtering methods in the system identification context.
The system model is described in Section 3.1, the obtained results are shown in
Section 3.2, next they are discussed in Section 3.3.

3.1 System Model

Figure 3.1: Supervised system identification model.

System identification is the process of estimating the model of a system by
analyzing the relationship between the input and output signals. System iden-
tification techniques can be used to model, design, and predict the behavior of
dynamical systems [35]. When designing complex dynamical systems, it is im-
portant to predict and simulate their behavior under diverse scenarios to predict
failures. Modeling and estimating the dynamic characteristics of system compo-
nents is a necessary stage prior to the system simulation and can be achieved
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using system identification techniques.
Consider an unknown system modeled by an Nth order real FIR system

whose coefficients vector h ∈ RN is Mth order separable, i.e.

h = hM ⊗ hM−1 ⊗ . . .⊗ h1, (3.1)

where hm ∈ RNm is the coefficients vector corresponding to the mth order sub-
system for m = 1, . . . ,M , and

∏M
m=1Nm = N . An Nth order real FIR filter

whose coefficients vector w = wM ⊗wM−1⊗ . . .⊗w1 isMth order separable was
placed parallel to the unknown system to identify its model, as illustrated in Fig-
ure 3.1. Both systems were excited by a zero mean and unit variance signal x(n).
The unknown system produced a distorted desired signal d(n) = d̃(n) + b(n),
where d̃(n) := hTx(n), x(n) := [x(n), x(n − 1), . . . , x(n − N + 1)]T, and b(n)

denotes a zero mean and unit variance additive white Gaussian measurement
noise component uncorrelated with d̃(n) and x(n).

3.2 Numerical Results

Monte Carlo (MC) simulations of R = 100 independent realizations were con-
ducted to calculate the figures of merit of the NLMS, WH, SepWH, TLMS, and
TWH methods. Tensors operations were computed using the Tensorlab toolbox
[36]. Each figure of merit was expressed as a function of the input sample size
K, the filter length N , and the SNR, which is defined as

SNR :=
E
[
|d̃(n)|2

]

E [|b(n)|2]
.

In this chapter, the mean relative system mismatch

ρ :=
1

R

R∑

r=1

‖h(r) −w(r)‖2
2

‖h(r)‖2
2

,

and the number of floating-points operations per second (FLOPS) demanded to
attain convergence were chosen as figures of merit. The former allows to assess the
system identification accuracy, whereas the latter provides the algorithm overall
computational cost. The superscript (·)(r) denotes the rth MC run. The number
of FLOPS demanded by each algorithm was calculated using the Lightspeed
toolbox [37].
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The coefficients of all (sub)filters were randomly initialized in all iterative
algorithms. The step size of the LMS-based algorithms was set to µ = 10−2. The
autocorrelation matrix and the cross-correlation vector of the WH filter were es-
timated directly from data. Convergence in TWH was attained when the relative
system mismatch difference between two consecutive ALS steps was smaller than
ε = 10−3. To check convergence, TLMS compares the relative system mismatch
at the current iteration with that of 2000 past iterations. This is because the
TLMS mean system mismatch difference in a few consecutive iterations may be
too small due to slow convergence with a small step size factor.

In the first simulation scenario, the coefficients vector of the unknown system
(3.1) was 3rd order separable (M = 3). Its subsystems h1 ∈ RN1 , h2 ∈ RN2 ,
and h3 ∈ RN3 were randomly generated accordingly to a zero mean Gaussian
distribution with identity covariance matrix and null mean vector. The influence
of the input sample size K, the filter length N , and the SNR on the methods
performance was assessed in three simulations where one parameter varied while
the others remained fixed. In Figures 3.2, 3.3, and 3.4, the figures of merit are
depicted as functions of K, N , and SNR, respectively.

Another simulation was conducted to analyze the effect of the step size fac-
tor on the TLMS performance and to compare it to the TWH algorithm. The
obtained learning curves for a step size µ ∈ {10−1, 10−2, 10−3} are depicted in
Figure 3.6 and the corresponding results are shown at Table 3.3.

In the second simulation scenario, the influence of the separability order M
on the TWH method performance was studied. In order to consistently compare
this influence, it was necessary to consider a system whose coefficients vector h
was equivalently separable across different separability orders, i.e.

h =
1⊗

m=M

hm =
1⊗

j=J

hj, ∀M,J ∈ Z+. (3.2)

Exponential systems fulfills the condition (3.2) and were considered in this sce-
nario. More specifically, the coefficients of h were defined as

[h]n := exp

[−0.1(n− 1)

N

]
forn = 1, . . . , N (3.3)

The reader is referred to Appendix B for more information on the exponential
system separability.

The figures of merit were computed as functions of the sample size K, and
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SNR forM = 2, 3, . . . , 6 and plotted in Figures 3.7, and 3.10, respectively. When
analyzing the effect of the system length, it was necessary to assure that the
system length remained constant across different values of M , i.e.

∏M
m=1 Nm =∏J

j=1 Nj, ∀M,J ∈ Z+. In view of this, two sets of subsystem dimensions were
considered. In the first set (Table 3.1), the subsystem dimensions were chosen
to be similar, whereas, in the second set (Table 3.2), there was a subfilter with
a larger dimension. TWH performance is plotted as a function of the system
length N in Figures 3.9 and 3.8 for dimensions sets at Table 3.1 and Table 3.2,
respectively.

N
M 2 3 4 5 6

128 8× 16 8× 4× 4 4× 4× 4× 2 2× 2× 2× 4× 4 2× 2× 2× 2× 2× 4
256 16× 16 8× 8× 4 4× 4× 4× 4 2× 2× 4× 4× 4 2× 2× 2× 2× 4× 4
512 16× 32 8× 8× 8 8× 4× 4× 4 2× 4× 4× 4× 4 2× 2× 2× 4× 4× 4
1024 32× 32 8× 8× 16 8× 8× 4× 4 2× 4× 4× 4× 8 2× 2× 2× 4× 4× 8

Table 3.1: Similar subsystem dimensions.

N
M 2 3 4 5 6

200 20× 20 2× 10× 20 2× 2× 10× 10 2× 2× 2× 5× 10 2× 2× 2× 2× 5× 5
600 20× 30 2× 10× 30 2× 2× 10× 15 2× 2× 2× 5× 15 2× 2× 2× 3× 5× 5
800 20× 40 2× 10× 40 2× 2× 10× 20 2× 2× 2× 5× 20 2× 2× 2× 4× 5× 5
1000 20× 50 2× 10× 50 2× 2× 10× 25 2× 2× 2× 5× 25 2× 2× 2× 5× 5× 5

Table 3.2: Different subsystem dimensions.

Method Number of FLOPS ρ [dB]
TLMS (µ = 10−1) 4.82× 107 −49
TLMS (µ = 10−2) 1.53× 108 −59
TLMS (µ = 10−3) 1.88× 109 −70

WH 4.01× 1011 −60
TWH 4.30× 108 −75

Table 3.3: Number of FLOPS and mean relative system mismatch (ρ) for the
simulation depicted in Figure 3.6.
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Figure 3.2: Filtering methods performance as a function of the sample size for
N = 1000 and SNR = 10 dB. The step size of the adaptive filtering methods was
set to µ = 10−2.
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Figure 3.3: Filtering methods performance as a function of the filter length for
K = 35.000 samples and SNR = 10 dB. The step size of the adaptive filtering
methods was set to µ = 10−2.
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Figure 3.4: Filtering methods performance as a function of the SNR for K =
35.000 samples and N = 1000. The step size of the adaptive filtering methods
was set to µ = 10−2.
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Figure 3.5: MSE performance for µ = 10−2, K = 35.000 samples, N = 1000, and
SNR = 30 dB.
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Figure 3.6: TLMS learning curves compared to the performance of the WH filter
and TWH algorithm for K = 3× 105, N = 1000, and SNR=10 dB.
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Figure 3.7: TWH performance for varying separability orders and sample size,
N = 1024 and SNR = 10 dB.
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Figure 3.8: TWH performance for varying separability orders and filter lengths
according to the dimensions at Table 3.1, K = 35.000 samples and SNR = 10 dB.
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Figure 3.9: TWH performance for varying separability orders and filter lengths
according to the dimensions at Table 3.2, K = 35.000 samples and SNR = 10 dB.
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Figure 3.10: TWH performance for varying separability orders and SNR, K =
35.000 samples and N = 1024.
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3.3 Discussion

The NLMS algorithm performed poorly in estimating the parameters of the
unknown systems, as depicted in Figures 3.2a, 3.4a, and 3.3a. Since the parameter
space was very large, much more iterations would be necessary to attain conver-
gence. The effect of the filter length N on NLMS performance is clear on Figure
3.3a. Smaller systems demanded less iterations, allowing the NLMS algorithm
to achieve mismatch levels as low as −17 dB. Although this algorithm provides
the worst parameter estimation accuracy, it has a small overall computational
complexity.

Although the SepWH method exploited the system separability, it did not
present any advantages with respect to the WH filter. As can be seen in Figures
3.2, 3.3, and 3.4, this method offered the same parameter estimation accuracy
and computational complexity as its classic counterpart. In fact, the optimiza-
tion stages in this method consists of independent least-squares subproblems,
which do not incorporate the multilinear interdependence on their solution as
TLMS and TWH do. Furthermore, the oversampling of the extended subsystems
augmented their dimension, increasing the overall computational complexity and
counterpoising the separability exploitation.

The TLMS algorithm provided better estimation accuracy than the methods
discussed above in specific situations. As can be seen in Figure 3.2a, it started
to be more accurate than the WH filter after the sample size was greater than
20.000. Since the alternating optimization approach employed by TLMS properly
exploited the subfilter interdependency, it provided better accuracy than the WH
filter. Figures 3.2b, 3.4b, and 3.3b showed that its computational complexity was
similar to that of NLMS. The results shown in Figure 3.6 and Table 3.3 show
that, to attain a system mismatch as low as −70 dB, it is necessary to use small
step size factors. This restriction consequently demands a massive number of
FLOPS from TLMS, whereas TWH requires less FLOPS to provide an even
more accurate parameter estimation.

Our proposed solution, the TWH algorithm, provided the most accurate esti-
mates with the lowest overall computational costs. Alike TLMS, the alternating
optimization approach properly exploited system separability, providing very ac-
curate estimates. However, since each ALS step computes multiple MMSE filter
updates, our method moved faster towards the optimum solution. TWH usu-
ally converged within 5 ALS steps.Figure 3.2a shows that TWH had already
attained −60 dB for K = 5000 samples, while TLMS was still at −20dB, since
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it demanded more samples to achieve convergence. In Figure 3.3a, the TWH
algorithm provided the best accuracy for all filter lengths.

In a first moment, it is surprising to see that any method performed better
than the WH filter, which provides the MMSE estimate. However, it is important
to stress that the results presented in Figures 3.2, 3.3, and 3.4 did not compare
the MSE, but mean relative system mismatch. In fact, both linear and multilinear
filtering methods are bounded by the MMSE, as observed in Figure 3.5. While
2nd order separable systems have a lower-bound on relative system mismatch
estimation, as shown in [16], today there are similar no theoretical bounds for
higher-order systems for the best of our knowledge.

It is interesting to remark that although TWH is a batch-based filtering
method, it has an overall computational cost similar to that of adaptive filtering
methods, as shown in Figures 3.2b, 3.3b, and 3.4b. The computational complex-
ity of a TWH iteration is indeed superior than that of TLMS, as it can be seen
in Table 2.1. However, TWH converges fastly, yielding a reduced overall com-
putational complexity, whereas TLMS demands a large of amount of FLOPS to
attain convergence in such large-scale scenarios.

The simulation in the second scenario showed that the separability order has
an important influence on the multilinear filtering methods performance. Higher
separability order leads to better accuracy and lower computational costs, as can
be seen in Figures 3.7, 3.8, 3.9, and 3.10. Since the subfilters length decreases
with M , the computational cost associated with the estimation of each subfilter
is lower. Consequently, the overall computational cost reduces withM . Addition-
ally, these figures show that there is a limit on the accuracy gain. Therefore, the
system separability order offers an estimation accuracy / computational cost.

The results concerning the subfilter dimensions indicates that it determines
the accuracy gain and the computational costs of multilinear filtering methods.
When the system was partitioned into subsystems with similar dimensions, the
performance depicted in Figure 3.8 was observed. By contrast, systems decom-
posed into subsystems whose dimensions differed from those of the other sub-
systems presented the performance described in Figure 3.9. We have observed
that similar partitioning offered a −2dB gain for M = 3, 4, 5 with respect to the
other partitioning, as can be seen in Figure 3.9. Furthermore, similar partitioning
presented lower computational costs in the same M interval.

We assumed in the conducted experiments that the unknown system impulse
response was separable. In practice, however, there are systems that cannot be
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represented as such. In this case, the proposed tensor filtering methods would fail
to identify the unknown parameters. To address this problem, low-rank tensor
models such as PARAFAC [14] could be used to approximate the non-separable
system impulse as a finite sum of separable terms, allowing us to employ the
proposed methods.
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Chapter 4

Beamforming for Multilinear
Antenna Arrays

In this chapter, we present the results obtained from computer simulations
conducted to assess the performance of the TWH algorithm. The proposed sys-
tem model was first introduced in [38], and it is described in Section 4.1. The
obtained results from the simulations are shown in Section 4.2, next they are
discussed in Section 4.3.

4.1 System Model

An antenna array consists of multiple sensors placed in different locations
but physically connected that are used to process the impinging signals using a
spatial filter. This filter is a beamformer when it is employed to enhance a signal
of interest (SOI) arriving from a certain direction while attenuating any possible
interfering signal [39].

Let us consider a translation invariant array of N isotropic antennas located
at p̃n ∈ R3×1 for n = 1, . . . , N . It is formed by N1 reference sensors located at p(1)

n1

for n1 = 1, . . . , N1. The n1th reference sensor is translatedM−1 times by means
of the translation vectors p(2)

n2 , . . . ,p
(M)
nM , yielding the following decomposition for

the nth global sensor location vector [40]

p̃n = p(1)
n1

+ p(2)
n2

+ . . .+ p(M)
nM

, (4.1)

where n = n1 +
∑M

µ=2(nµ − 1)
∏µ−1

v=1 Nv, nµ ∈ {1, . . . , Nµ}. Figure 4.1 illustrates
an example of a translation invariant array.
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Figure 4.1: A 4×2×2 volumetric array decomposed into three equivalent forms.
Reference subarrays are indexed by m = 1, whereas m > 1 refers to translation.

Now consider that R narrowband source signals with complex amplitudes
sr(k) impinge on the global array from directions

dr = [sin θr cosφr, sin θr sinφr, cos θr]
T,

where θr and φr denote the elevation and azimuth angles, respectively, for r =

1, . . . , R. The sources are assumed to be in the far-field and uncorrelated. It is
also assumed that there are no reflection components. The received signals at
instant k can be written as:

x(k) =
R∑

r=1

a(dr)sr(k) + b(k) ∈ CN×1, (4.2)

where

a(dr) =




e
ω
c
p̃T
1dr

...
e

ω
c
p̃T
Ndr


 =




e
ω
c
p
(1)T

1 dr . . . e
ω
c
p
(M)T

1 dr

...

e
ω
c
p
(1)T

N1
dr . . . e

ω
c
p
(M)T

NM
dr


 (4.3)

is the array steering separable vector, b(k) ∈ CN×1 is the additive zero-mean
complex white Gaussian noise vector with covariance matrix equal to σ2I, ω
is the wave frequency, and c the velocity of propagation in the medium. Here
we assume that the array interelement spacing d is smaller than λ/2, where
λ := 2πc/ω denotes the wavelength. Equation (4.3) can be expressed as

a(dr) = a(M)(dr)⊗ . . .⊗ a(1)(dr) ∈ C
∏M

m=1Nm , (4.4)

where a(m)(dr) =

[
e

ω
c
p
(m)T

1 dr , . . . , e
ω
c
p
(m)T

Nm
dr

]T
∈ CNm×1 denotes the subarray
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vector associated with the mth order translation vector p(m)
nm , nm ∈ {1, . . . , Nm}.

Indeed, (4.4) is a vectorization of a rank-1 array steering tensor defined as

A(dr) = a(1)(dr) ◦ . . . ◦ a(M)(dr) ∈ C×M
m=1Nm . (4.5)

In view of this, the received signals (4.2) can be expressed as a linear combination
of R rank-1 tensors:

X (k) =
R∑

r=1

A(dr)sr(k) + B(k), (4.6)

where B(k) = Θ(b(k)) ∈ C×M
m=1Nm is the tensorized form of the noise vector

b(k). A rank-1 tensor filter W ∈ C×M
m=1Nm is proposed to perform beamforming

exploiting the multilinear separable array structure [38].

4.2 Numerical Results

Computer experiments were conducted in order to assess the SOI estimation
performance and the computational complexity of the tensor beamformer. In
this context, R = 3 QPSK signals with unitary variance, carrying K symbols
and arriving from the directions displayed at Table 4.1 were considered. The
signal corresponding to r = 1 was set as SOI.

Source Azimuth [rad] Elevation [rad]
r = 1 (SOI) π/3 −π/4

r = 2 π/6 π/3
r = 3 π/4 −π/6

Table 4.1: Direction of arrival of the QPSK sources.

The classical WH filter (A.3) was used as benchmark method. The autocor-
relation matrix and the cross-correlation vector of the WH filter were estimated
directly from data. The convergence threshold of TWH was set to ε = 10−3.
The mean performance indices were calculated by averaging the results obtained
in J = 100 MC realizations. The SOI estimation performance was evaluated in
terms of the MSE measure, defined as

MSE =
1

J

J∑

j=1

1

K
‖s(j) − ŝ(j)‖2

2,
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where
s = [sSOI(k), sSOI(k − 1), . . . , sSOI(k −K + 1)]T ∈ CK

and ŝ(j) ∈ CK is the decided symbols vector whose kth entry is the symbol de-
cided from the statistic 〈X (k),W〉. As in the previous chapter, the number of
FLOPS demanded by each method was computed using the Lightspeed MAT-
LAB toolbox [37], and the Tensorlab toolbox [36] was used to implement the
tensor operations of the multilinear methods.

Three simulation scenarios were considered. In the first scenario, the perfor-
mance indices were calculated by varying the sample size K, as illustrated in
Figure 4.3. In this case, the global array consisted of N = 128 sensors. In the
second scenario, the performance indices were calculated by varying the number
N of sensors of the global array for K = 5000 samples, as depicted in Figure 4.4.
In the third scenario, the performance was assessed by varying the SNR, while
keeping the sample size and the number of sensors fixed, as illustrated in Fig-
ure 4.5. In all scenarios, the global array was formed by translating a reference
uniform rectangular array along the x-axis, as illustrated in Figure 4.2.

Figure 4.2: Illustration of the antenna array factorization considered in the com-
putational simulations for N = 256 sensors.
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4.3 Discussion

The proposed multilinear model for translation invariant arrays allowed us
to employ the TWH algorithm presented in Chapter 2 to perform the array
beamforming. In the conducted simulations, a translation invariant array was
decomposed into multiple setups expressed in terms of virtual subarrays. This
representation allowed us to perform the beamforming on each subarray instead
of processing the global array. Any sensor array whose received signals and spa-
tial signature are well modeled by equations (4.2) and (4.3), respectively, can be
regarded as translation invariant. This property was exploited by TWH, provid-
ing an important reduction on computational costs as observed in Figures 4.3b,
4.4b, and 4.5b. The computational cost decreased with the separability order,
as expected. It is important to stress that this reduction was obtained without
significant loss on MSE performance, as observed in Figures 4.3a, 4.4a, and 4.5a.
Indeed, the MSE performance of the TWH algorithm could not be better than
the WH filter, since both are bounded by the MMSE (A.4), unlike the relative
system mismatch in Chapter 3.
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Figure 4.3: Performance for a varying number of samples, N = 128 sensors and
SNR = 15 dB.

45



0 100 200 300 400 500
−44

−42

−40

−38

−36

−34

−32

−30

−28

−26

Number of sensors (N)

M
S

E
 [

d
B

]

 

 

TWH (M=2)

TWH (M=3)

TWH (M=4)

WH

(a) MSE vs. Number of sensors.

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

x 10
9

Number of sensors (N)

N
u

m
b

e
r 

o
f 

F
L

O
P

S

 

 

TWH (M=2)

TWH (M=3)

TWH (M=4)

WH

(b) Number of FLOPS vs. Number of sensors.

Figure 4.4: Performance for a varying number of sensors, K = 5000 samples and
SNR = 15 dB.
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Figure 4.5: Performance for a varying SNR, K = 5000 samples and N = 128.
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Chapter 5

Conclusion
In this thesis, we have proposed a computationally efficient tensor method

for large-scale multilinear filtering problems. In the context of supervised system
identification, we have shown that separable FIR filters admit a factorization
in terms of its subfilters, which leads to a multilinear filtering structure. This
multilinearity calls for a tensor formulation that leads to the separate estimation
of each subfilter, allowing the computational complexity reduction and accurate
system identification. In the context of array processing, we have proposed a
multilinear model for translation invariant arrays that allowed us to reduce the
computational costs of the MMSE beamforming without any significant trade-
offs.

From the numerical results of Chapter 3, we have observed that tensor meth-
ods provides more accurate system parameter estimates in a computationally
efficient manner. This is because of the subfilter interdependency present in each
subproblem (2.33). More specifically, the subfilter interdependency takes into ac-
count updated versions of the other subfilters, increasing the estimation accuracy.
We have observed that our proposed algorithm, TWH, is more efficient than the
TLMS algorithm. This is due to its optimal ALS updates and fast convergence,
whereas TLMS is subject to slow convergence when a small step size is used. Ex-
periments also showed the strong dependence of the tensor method performance
on the system separability order and partitioning. It is important to mention that
since the relative system mismatch is not directly linked with the error surface,
it is not bounded by the MMSE. The WH filter and the NLMS algorithm do
not provide estimates as accurate as tensor methods in the considered multilin-
ear large-scale problem, since they ignore the system separability. Although the
SepWH method considers this a priori in some sense, the estimation step of each
subfilter does not regard the other subfilters, resulting in the same accuracy of
the WH filter.
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The numerical results obtained in Chapter 4 confirm those from Chapter 3.
TWH provides an important computational cost reduction compared to that of
WH beamformer. This reduction becomes more important as the separability or-
der grows. We have also remarked that these gains comes without compromising
the MSE performance, which is bounded by the MMSE. We have shown that
translation invariant arrays admit a representation in terms of virtual subarrays
and translations. Since any array modeled by (4.2) and (4.3) is translation in-
variant, many practical sensor array systems can benefit from this multilinear
representation.

In conclusion, the proposed TWH algorithm provides a significant computa-
tional complexity reduction compared to the classical filtering methods. It is also
more efficient than the TLMS algorithm, which faces slow convergence when a
very accurate system parameter estimate is demanded. System separability of-
fers more accuracy and computational cost reduction up to a certain separability
order.

Tensor filtering is an emergent field on signal processing that has been at-
tracting more and more attention due to their advantages and open problems. In
the following, we list some research perspectives and open problems concerning
this topic.

– In this thesis we have considered rank-1 tensor filters. The low-rank tensor
filtering extension is natural, allowing us, for example, to identify non-
separable systems. Preliminary simulations indicated that the low-rank
tensor filtering problem is subject to local minima. Since ALS is very sen-
sitive local stationary points, more robust optimization methods such as
Levenberg-Marquadt could be used.

– Tensor formulation of other filtering methods such as the Kalman filter
and the Recursive Least Squares algorithm could provide, at least, com-
putational complexity reduction. It is known that Kalman filtering can be
interpreted in terms of Bayesian networks, which become unpractical to
handle when a large number of variables is considered. Tensor networks
models [21], such as Hierarchical Tucker Decomposition and Tensor Train,
are able to efficiently represent large networks. Therefore, we may formulate
Kalman filters as tensor networks to reduce their computational complexity
in massive scenarios.

– Although the SepWH algorithm did not provide any improvements com-
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pared to the WH filter, its idea can be further improved. We have observed
that the extended subsystems are sparse, but we have not exploited this
property in SepWH. Indeed, a L1 regularization term can be added to
Equation (2.31) for exploiting the system sparsity. Furthermore, an heuris-
tic method for sparsity exploitation could be employed the LMS algorithm
to increase its convergence rate. Such method would set to zero elements
previously known to be null, producing an instantaneous decrease in the
MSE.

– A priori information usually leads to unsupervised filtering methods. The
cross relation approach [41], which blindly identifies co-prime channels,
could be generalized to the tensor scenario. Likewise, sparsity constraints
could blindly identify separable systems.

– The multilinear filtering problem can be interpreted as a relaxed projec-
tion mapping (RPM) problem [42]. The solutions of the linear subproblems
(2.33) can be interpreted as alternating projections. The RPM framework
could provide a geometrical interpretation to this multilinear filtering op-
eration.

– Although we have indicated that TWH is monotonically convergent, it is
still necessary to study its convergence properties. However, the analytical
convergence study of alternating methods is a challenging problem still
under investigation.

We list some application problems that could benefit from tensor filtering.

– Tensor filtering can be employed to jointly process multiple signal domains.
In biomedical signal processing problems, a space-time-frequency can be
constructed and tensor filtering methods can be used to filter all domains
incorporating a priori information. For instance, independent component
analysis could be used in the time domain, beamforming techniques in
the space domain, and adaptive filtering in the frequency domain. Tensor
filtering could also be employed in the design of transceiver systems. Higher-
order tensor signals can be obtained by exploiting the multiple diversities
often present in communication systems.

– In [19, 38], tensor-based beamforming methods for narrowband signals were
proposed. A natural extension is the design of wideband tensor beamform-
ers, which would lead to a low-rank tensor filtering problem.
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Appendix A

Classical Supervised Linear
Filtering Methods

In this Appendix, we will present the supervised linear filtering methods used
in this thesis: the Wiener-Hopf filter, the Least Mean Square algorithm, and its
normalized version.

A.1 Wiener-Hopf Filter

Let Jw := E
[∣∣d(n)−wHx(n)

∣∣2
]
denote the objective function. Since Jw is a

convex surface, it has an unique critical point which coincides with the global
minimum. Let us expand the objective function:

Jw = E
[∣∣d(n)−wHx(n)

∣∣2
]

= E
{[
d(n)−wHx(n)

] [
d(n)−wHx(n)

]∗}

= σ2
d − pH

dxw −wHpdx + wHRxw, (A.1)

where

σ2
d := E

[
|d(n)d∗(n)|2

]

pdx := E [d∗(n)x(n)]

Rx := E
[
x(n)x(n)H

]

denote the desired signal variance, the cross-correlation vector between d(n) and
x(n), and the autocorrelation matrix of x(n), respectively.
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The minimizer of (2.2) is obtained by setting the gradient

∇Jw =
∂Jw
∂wH

= −pdx + Rxw (A.2)

equal to 0 ∈ CN , and solving for w:

wopt = R−1
x pdx. (A.3)

This solution is known as the WH filter. To compute (A.3), a N ×N matrix has
to be inverted. Therefore, the WH filter has computational complexity O(N3).
The minimum mean square error Jmin is found by substituting (A.3) into (A.1):

Jmin = Jwopt

= σ2
d − pH

dxwopt − pH
dxR

−H
x pdx + pdxR

−H
x RxR

−1
x pdx

= σ2
d − pH

dxwopt. (A.4)

The WH filter provides the MMSE solution, however solution, in practice,
might be too computationally expensive since it depends on matrix inversion
and on the statistical expectation operator. In large-scale problems, these op-
erations might be unfeasible. A method to obtain an approximate WH filter
is summarized in Algorithm 4, where X := [x(n), . . . ,x(n− T + 1)] ∈ CN×T ,
d := [d(n), . . . , d(n − T + 1)]T ∈ CT , and T denotes the sample size. In this
algorithm, we make use of averaging operations to approximate the statistical
expectation in equation (A.3).

Algorithm 4 Wiener-Hopf filter
1: procedure WH(X ∈ CN×T , d ∈ CT )
2: R̂x ← (1/T )XXH

3: p̂dx ← (1/T )Xd∗

4: w← R̂−1
x p̂dx

5: end procedure

A.2 LMS Algorithm

Adaptive filtering is a popular alternative to analytical solutions due to its im-
plementation simplicity and reduced computational cost. It consists of updating
the filter coefficients according to a numerical algorithm which solves the problem
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(2.2). Let us consider the steepest descent method, which takes an initial guess
w(0) and computes the next guess by making a change in a direction opposed
to that of the gradient of Jw [1]. This process is repeated in current time until
the filter coefficients converge ergodically to the WH filter. The steepest descent
update rule is given by

w(k + 1) := w(k)− µ∇Jw(k)

= w(k)− µ [pdx −Rxw(k)] , (A.5)

where µ ∈ R+ is the step size factor. It can be shown that the steepest descent
method will converge to the MMSE solution, i.e. limk→∞ Jw(k) = Jmin provided
that 0 < µ < 2

λmax
, where λmax is the largest eigenvalue of Rx. To compute the

update rule (A.5), it is necessary to estimate Rx and pdx, which we are trying
to avoid.

The LMS algorithm solves (2.2) using the stochastic gradient descent, which
approximates the deterministic gradient (A.2) by considering the instantaneous
estimates of pdx and Rx:

∇̂Jw(k) := −d∗(k)x(n) + x(n)x(n)H. (A.6)

Substituting (A.6) into (A.5) gives the LMS update rule:

w(k + 1) := w(k)− µ
[
−d∗(k)x(k) + x(k)x(k)H

]

= w(k)− µx(k)
[
d(n)−w(k)Hx(k)

]

= w(k) + µx(k)e∗(k). (A.7)

The LMS algorithm will converge provided that 0 < µ < 2
λmax

. Unlike the steep-
est descent algorithm, it relies on an inexact gradient vector estimate, which
only approximates the optimal solution wopt. The computation of (A.7) has a
computational complexity of O(N).

The convergence rate of the LMS algorithm strongly depends on ξ(Rx), the
eigenvalue spreading of Rx, the step size factor, and the filter length [43, Chap-
ter 5]. It will converge faster as ξ(Rx)→ 1, and slower as ξ(Rx)→∞. However
even when the eigenvalue spreading of Rx is around 1 and µ is sufficiently large,
the LMS algorithm will slowly converge when the filter is large [4]. This algorithm
is summarized in Algorithm 5.
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Algorithm 5 Least Mean Square algorithm
1: procedure LMS(x(n) ∈ CN , d(n) ∈ CT , µ ∈ R+)
2: k ← 1
3: Initialize w(k).
4: for k = 0, . . . , T − 1 do
5: e(k)← d(n− k)−w(k)Hx(n− k)
6: w(k + 1)← w(k) + µx(n− k)e∗(k)
7: end for
8: end procedure

A.3 NLMS Algorithm

A natural approach to increase the LMS convergence rate consists of employ-
ing a variable step size factor. The NLMS algorithm was designed to reduce the
instantaneous squared error e2(k) as much as possible and minimize the gradient
noise amplification [10]. This gradient noise amplification occurs when ‖x(k)‖2

becomes too large, resulting in a large correction term µx(k)e∗(k). We will show
in the following that minimizing e2(k) using a variable step size increases the
convergence rate and solves the gradient noise amplification problem.

Consider the LMS update rule with a variable step size µ(k):

w(k + 1) = w(k) + µ(k)x(k)e∗(k). (A.8)

The filter coefficients in w(k) are corrected by a factor ∆w(k) = µ(k)x(k)e∗(k),
resulting in a corrected filter coefficients w̃(k) = w(k) + ∆w(k). The corrected
instantaneous error ẽ(k) at instant k is given by

ẽ(k) = d(k)−w(k + 1)Hx(k)

= d(k)− [w(k) + ∆w(k)]Hx(k)

= d(k)−w(k)Hx(k) + ∆w(k)Hx(k). (A.9)

It is produced by using w(k + 1) to obtain the output at instant k using the
same x(k). We seek to minimize the corrected instantaneous squared error ẽ2(k)

as much as possible. In this sense, consider the instantaneous squared error before
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the correction:

e2(k) = [d(k)− y(k)]2

=
[
d(k)−w(k)Hx(k)

]2

= d2(k)− 2d(k)w(k)Hx(k) + w(k)Hx(k)w(k)Hx(k). (A.10)

Now let us expand (A.9):

ẽ2(k) =
[
d(k)−w(k)Hx(k) + ∆w(k)Hx(k)

]2

=

e2(k)︷ ︸︸ ︷
d2(k)− 2d(k)w(k)Hx(k) + w(k)Hx(k)w(k)Hx(k)

+ 2∆w(k)Hx(k)w(k)Hx(k) + ∆w(k)Hx(k)∆w(k)Hx(k)

− 2d(k)∆w(k)Hx(k)

= e2(k) + 2∆w(k)Hx(k)w(k)Hx(k) + ∆w(k)Hx(k)∆w(k)Hx(k)

− 2d(k)∆w(k)Hx(k)

= e2(k) + 2∆w(k)Hx(k)y(k)− 2∆w(k)Hx(k)d(k)

+ ∆w(k)Hx(k)∆w(k)Hx(k)

= e2(k) +
[
−2∆w(k)Hx(k)e(k) + ∆w(k)Hx(k)∆w(k)Hx(k)

]
︸ ︷︷ ︸

∆e2(k)

. (A.11)

Substituting ∆w(k) = µ(k)x(k)e∗(k) into (A.11) gives:

∆e2(k) = ẽ2(k)− e2(k) = −2µ(k)e2(k)x(k)Hx(k) + µ2(k)e2(k)
[
x(k)Hx(k)

]2
.

(A.12)
The minimum value of ∆e2(k) is given by µopt(k) such that ∂∆e2(k)

∂µ(k)

∣∣∣
µ=µopt

= 0.

It then follows that

µopt(k) =
1

x(k)Hx(k)
=

1

‖x(k)‖2
2

. (A.13)

A fixed step size µ̃ ∈ R+ is considered (A.13) to regularize the algorithm conver-
gence rate, and a small positive constant γ is included to avoid large step size
when ‖x(k)‖2

2 is small:

µ(k) =
µ̃

γ + ‖x(k)‖2
2

. (A.14)

The update rule of the NLMS algorithm is obtained by substituting (A.14) into
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(A.8):

w(k + 1) = w(k) +
µ̃

γ + ‖x(k)‖2
2

x(k)e∗(k). (A.15)

The NLMS algorithm will converge given that 0 < µ̃ < 2 [10]. Although the
variable step size increases its convergence rate, this algorithm still converges
slowly when the filter parameter space is too large. The computational complexity
of (A.15) is O(N). The NLMS algorithm is summarized in Algorithm 6:

Algorithm 6 Normalized Least Mean Square algorithm
1: procedure NLMS(x(n) ∈ CN , d(n) ∈ CT , µ̃ ∈ R+)
2: k ← 1
3: Initialize w(k).
4: for k = 0, . . . , T − 1 do
5: e(k)← d(n− k)−w(k)Hx(n− k)
6: w(k + 1)← w(k) + µ̃

γ+‖x(n−k)‖22
x(n− k)e∗(k)

7: end for
8: end procedure

The computational complexity associated with the classical filtering methods
discussed in this Appendix are listed in Table A.1

Method Computational complexity
WH O(N3)
LMS O(N)
NLMS O(N)

Table A.1: Computational complexity of the classical filtering methods.
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Appendix B

Exponential Filter Separability

To test the influence of the system separability order on the multilinear fil-
tering methods performance, it was necessary to devise a linear time-invariant
system whose coefficients vector was equivalently separable across different sep-
arability levels. We show that an exponential filter can be expressed in terms of
M exponential subfilters for any M ∈ N.

Proposition 5. Any exponential FIR filter w ∈ CN whose elements are defined
as

[w]n = bn, b ∈ C, n ∈ {1, . . . , N} (B.1)

is equivalently separable across different separability levels, i.e.

w =
M⊗

m=1

wm =
J⊗

j=1

wj, ∀M,J ∈ Z+. (B.2)

Proof. Let n = 1 +
∑M

u=1(iu − 1)
∏u−1

v=1 Iv and n′ = 1 +
∑J

u′=1(iu′ − 1)
∏u′−1

v′=1 Iv′

correspond to the indices of the Mth order and Jth order separable filters where
n, n′ ∈ {1, . . . , N}. Substituting these indices in (B.1) gives

[w]n = bn = b1b(i1−1)b(i2−1)I1 . . . b(iM−1)
∏M−1

v=1 Iv (B.3)

and
[w]n′ = bn

′
= b1b(i1−1)b(i2−1)I1 . . . b(iJ−1)

∏J−1
v=1 Iv (B.4)

Since the indices n and n′ span the same interval, Equations (B.3) and (B.4) are
equal, completing the proof.
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CAMSAP 2015 Paper

Paper presented in the 2015 IEEE International Workshop on Computational
Advances in Multi-Sensor Adaptive Processing (CAMSAP 2015).

Title: “Identification of Separable Systems Using Trilinear Filtering”

Authors: Lucas N. Ribeiro, André L. F. de Almeida, João César M. Mota
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Federal University of Ceará, Fortaleza, Brazil
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Abstract—Linear filtering methods are well known and have
been successfully applied in system identification and equalization
problems. However, they become unpractical when the number
of parameters to estimate is very large. The recently proposed
assumption of system separability allows the development of
computationally efficient alternatives to classic adaptive methods
in this scenario. In this work, we show that system separability
calls for multilinear system representation and filtering. Based
on this parallel, the proposed filtering framework consists of a
trilinear extension of the classical Wiener-Hopf (WH) solution
that exploits the separability property to solve the supervised
identification problem. Our numerical results shows the proposed
algorithm can provide a better accuracy than the classical WH
solution which ignores the multilinear system representation.

I. INTRODUCTION

System identification is the problem of identifying
parameters of an unknown system [1]. When the system input
and output are available, supervised techniques such as the
so-called Wiener-Hopf (WH) solution can be employed to
identify the system response. Indeed, the WH solution is the
minimum mean square error (MMSE) estimator for linear
filters. However, it becomes inadequate for online system
identification due to its relatively high computational cost.
An alternative to this approach consists of using an adaptive
filter. The coefficients of this device are updated according
to an algorithm that minimizes the energy of the estimation
error. The so-called least mean squares (LMS) algorithm
is the canonical to adaptive filtering method due to its
implementation simplicity and low complexity. Nevertheless,
LMS-based algorithms suffer from slow convergence rate
when the parameter space becomes too large [2].

Many ideas have been proposed to ameliorate the
convergence rate of adaptive algorithms. For instance, step-size
adaptation [3] and sparsity constraints [4] are known
approaches for learning rate improvement. Recently, the
authors in [2] proposed a low complexity LMS algorithm
with fast learning rate, therein referred to as TensorLMS,
which exploits the system separability assumption, meaning
that the system impulse response vector can be decomposed
as the Kronecker products of two vectors representing its
components. Indeed, this assumption is plausible in Volterra
systems [5] and array processing [6]. In [2], the existence and
uniqueness of second-order separable systems was discussed.

This work was partially supported by CAPES, CNPq, and FUNCAP
(Brazil).

Higher-order tensor filtering presents itself as the proper
signal processing framework for exploiting multilinearly
structured systems. Multilinear filtering was first introduced
in the context of noise reduction in color images and
multicomponent seismic data [7]. In this context, the
higher-order tensor data is corrupted by a multidimensional
noise and the original data is recovered by filtering the
observed tensor data by matrix filters operating on each mode.
Since reference signals were not available, the optima filters
are obtained from subspace decomposition. In [8], a tensor
(trilinear) filtering framework was proposed for equalization
problems.

In this work, the multilinearity of separable systems
is exploited for solving the identification problem using
higher-order tensor modeling and filtering. More specifically,
we assume that the overall system impulse response is
third-order separable, i.e. it can be factored as the Kronecker
product of three components. A tensor formalism is used to
devise an algorithm for the identification of the system impulse
response, leading to the trilinear extension of the WH solution.
Furthermore, this tensor formalism provides proper notation
and insight regarding the filtering operations. The proposed
method employs an alternating minimization approach,
whereas TensorLMS is based on the stochastic gradient descent
method. According to our numerical simulations, the proposed
algorithm overcomes the drawbacks of its classic counterpart
and provides better system estimation quality.

Notation: Lowercase letters denote scalars, lowercase
boldface letters denote vectors, uppercase boldface letters
denote matrices and calligraphic letters denote higher-order
tensors. The symbol ⊗ denotes the Kronecker product, �
Khatri-Rao product, ‖ · ‖22, ×n n-mode product, Euclidean
norm, E[·] statistical expectation, and (·)T transpose operator.

II. THE TRILINEAR FILTERING FRAMEWORK

Before presenting the trilinear filtering framework and its
connection with the system identification problem, some useful
tensor formalism is given for later use.

A. Tensor preliminaries

The {1, . . . , N}-mode products of T with N matrices
{U(n)}Nn=1 yield the tensor T̃ = T ×1 U

(1) . . .×N U(N) ∈
RJ1×...×JN defined as [9]

[T̃ ]j1,...,jN =

I1∑

i1=1

. . .

IN∑

iN=1

xi1,...,iNu
(1)
j1,i1

. . . u
(N)
jN ,iN

,



where U(n) ∈ RJn×In , in ∈ {1, . . . , In}, and jn ∈
{1, . . . , Jn}, n = 1, . . . , N . The n-mode unfolding of T̃ is
given by

T̃(n) = U(n)T(n)U
⊗nT

, (1)

where T(n) denotes the n-mode unfolding of T , and

U⊗n = U(N) ⊗ . . .⊗U(n+1) ⊗U(n−1) ⊗ . . .⊗U(1)

denotes the Kronecker product of the matrices {U(j)}Nj=1,j 6=n
in the decreasing order. Note that the {1, . . . , N}-mode
products of T with the N vectors {u(n)}Nn=1 yields a scalar
t = T ×1 u(1)T . . . ×N u(N)T where u(n) ∈ RIn×1, n =
1, . . . , N .

Vector-Tensorization: Let us consider the linear map Θ :
RI1I2I3 → RI3×I2×I1 , defined as

[Θ(v)]i3,i2,i1 = [v]i3+I3(i2−1)+I2I3(i1−1) , (2)

where v ∈ RI1I2I3 is the input vector, which can be partitioned
into I1 partitions of length I2I3. These partitions can be further
divided into I2 subpartitions of length I3. The input vector
can be transformed into a third-order tensor V = Θ(v) ∈
RI3×I2×I1 . The operation of transforming a vector (or matrix)
into a tensor is referred to as “tensorization” [10], [11]. There
are different forms of tensorization operations, and the specific
transformation depends on the considered application. In our
case, tensorization is deterministic and achieved by vector
tri-partitioning, according to (2). The vector-tensorization is
an isometric isomorphism for the l2-norm of v on RI1I2I3 and
the Frobenius norm of V on RI3×I2×I1 .

B. Trilinear filtering

Consider an M th order finite impulse response (FIR)
filter with impulse response z ∈ RM . The input regression
vector and the output signal at instant k are represented by
x(k) ∈ RM and y(k) = zTx(k), respectively. Let us suppose
this filter is third-order separable, i.e. it can be expressed as
z = za ⊗ zb ⊗ zc, where za ∈ RMa , zb ∈ RMb , and zc ∈ RMc

are its component subfilters, with MaMbMc = M . This
corresponds to a rank-one third-order tensor decomposition
problem [11]. In view of this, its existence and uniqueness
in the least squares (LS) sense is guaranteed [12], [13]. Since
there are no results ensuring the estimation error bound for
higher-order tensor decompositions, devising the closed-form
MMSE expression for a third-order tensor decomposition is a
challenge.

In order to express the output signal y(k) = zTx(k)
as the outcome of a trilinear filtering, let us partition
the input signal into x(k) = [x1(k),x2(k), . . . ,xMa

(k)]
T

where xma(k) ∈ RMbMc for ma = 1, . . . ,Ma. Now, let
us further divide each partition xma(k) into xma(k) =
[x1,ma(k),x2,ma(k), . . . ,xMb,ma(k)]T, where xmb,ma(k) =
[x1,mb,ma(k), x2,mb,ma(k), . . . , xMc,mb,ma(k)]T ∈ RMc for
mb = 1, . . . ,Mb and xmc,mb,ma(k) ∈ R is an element of
the third-order tensor X (k) = Θ[x(k)] ∈ RMc×Mb×Ma . The

(a) System identification
using classical adaptive
filtering.

(b) System identification using trilinear
filtering.

Fig. 1. Comparison between classical and trilinear WH approaches.

output signal can be written as:

y(k) = (za ⊗ zb ⊗ zc)
Tx(k)

=

Ma∑

ma=1

[za]ma (zb ⊗ zc)
T xma(k)

=

Ma∑

ma=1

Mb∑

mb=1

[za]ma [zb]mb z
T
cxmb,ma(k)

=

Ma∑

ma=1

Mb∑

mb=1

Mc∑

mc=1

[za]ma [zb]mb [zc]mcxmc,mb,ma(k). (3)

Note that y(k) is trilinear with respect to the elements of the
subfilters as seen on (3). This operation is identified as the
{1, 2, 3}-mode product (1):

y(k) = X (k)×1 z
T
c ×2 z

T
b ×3 z

T
a , (4)

= zTc uc(k) = zTc X(1)(k)(za ⊗ zb) (5)

= zTb ub(k) = zTb X(2)(k)(za ⊗ zc) (6)

= zTaua(k) = zTaX(3)(k)(zb ⊗ zc) (7)

where uc(k) = X(1)(k)(za ⊗ zb) ∈ RMc , ub(k) =
X(2)(k)(za ⊗ zc) ∈ RMb , and ua(k) = X(3)(k)(zb ⊗ zc) ∈
RMa are the input of the subfilters zc, zb, and za, respectively.
The matrices X(1)(k) ∈ RMc×MaMb , X(2)(k) ∈ RMb×MaMc ,
and X(3)(k) ∈ RMa×MbMc denote the {1, 2, 3}-mode
unfoldings of X (k), respectively. Equations (5), (6), and (7)
indicate that the product (4) can be equivalently represented
by the output of the three linear subfilters

C. Optimum trilinear filtering

Consider an M th order unknown trilinearly separable FIR
system whose impulse response is h = ha ⊗ hb ⊗ hc, where
ha ∈ RMa , hb ∈ RMb , hc ∈ RMc and MaMbMc = M . Now
consider a trilinearly separable filter w = wa⊗wb⊗wc, where
wa ∈ RMa , wb ∈ RMb and wc ∈ RMc are its subfilters. The
input regression vector x(k) ∈ RM is tensorized, resulting
in the input tensor signal X (k) = Θ(x(k)) ∈ RMc×Mb×Ma .
Both the unknown system and the trilinear filter are driven
by this tensor signal. The output of the unknown system is
the desired signal d(k) = hTx(k) of the trilinear filter, as
depicted in Fig. 1(a). At the filter output, the estimation error
e(k) = d(k) − y(k) is calculated, where y(k) = wTx(k) =
X (k) ×1 wT

c ×2 wT
b ×3 wT

a is the filter output. The mean
square value of the estimation error is chosen to design the
filter, leading to the following optimization problem:

min
wa,wb,wc

E
[
|d(k)−X (k)×1 w

T
c ×2 w

T
b ×3 w

T
a |2
]
. (8)



The objective function is clearly nonlinear with respect to the
subfilters. Recalling that y(k) can be represented in terms of its
subfilters, the problem (8) can be divided in three subproblems:

min
wa

E
[∣∣d(k)−wT

aua(k)
∣∣2
]
, (9)

min
wb

E
[∣∣d(k)−wT

b ub(k)
∣∣2
]
, (10)

min
wc

E
[∣∣d(k)−wT

c uc(k)
∣∣2
]
, (11)

where ua(k), ub(k), and uc(k) are defined as in Section
II-B. Note that these vectors can be alternatively interpreted
as weighted versions of the X (k) unfoldings. There is clearly
an interdependency between the modes of y(k) which hinders
the optimization of (8). In view of this, the alternating
least-squares (ALS) method can be used to solve (8). In this
case, the subproblems (9), (10), and (11) are solved in a
alternating manner. This method converges at least to a local
minimum, and convergence to the global minimum cannot
be guaranteed. Each subproblem corresponds to a classical
LS estimation problem [1] (conditioned on the solutions
provided by the other two subproblems). The solution of these
subproblems is given by the WH equations:

ŵa = R−1a pa, (12)
ŵb = R−1b pb, (13)
ŵc = R−1c pc, , (14)

where Rλ = E
[
uλ(k)uλ(k)T

]
∈ RMλ×Mλ is the

autocorrelation matrix of uλ(k), and pλ = E [d(k)uλ(k)] ∈
RMλ is the crosscorrelation vector between uλ(k) and d(k)
for λ = a, b, c. Note that these statistics can be expressed in
terms of adaptive weighting matrices. For instance, consider
the autocorrelation matrix of ua(k):

Ra = E
[
ua(k)ua(k)T

]

= E
[
X(3)(k)(wb ⊗wc)(wb ⊗wc)

TX(3)(k)T
]

= E
[
X(3)(k)QaX(3)(k)T

]
. (15)

Now Ra is interpreted as the autocorrelation matrix of X(3)(k)
weighted by Qa = (wb⊗wc)(wb⊗wc)

T. The crosscorrelation
vector pa can be interpreted as the weighted crosscorrelation
between X(3)(k) and d(k):

pa = E [d(k)ua(k)]

= E
[
d(k)X(3)(k)(wb ⊗wc)

]

= E
[
d(k)X(3)(k)qa

]
, (16)

where qa = (wb ⊗wc) and Qa = qaq
T
a .

D. Trilinear Wiener-Hopf algorithm

To implement the ALS optimization, the batch Trilinear
Wiener-Hopf (TriWH) algorithm is proposed. It consists of
sequentially calculating (12), (13), and (14) using the sample
estimate of the autocorrelation matrices and crosscorrelation
vectors, as described in Algorithm 1. The convergence is
attained when the normalized square error (NSE) between
the true filter h and the estimated filter w is smaller than
a threshold ε.

While the classical WH solution presents the
standard complexity of O(M2) due to the inversion of

Algorithm 1 TriWH
procedure TRIWH(x(k), d(k), h, ε)

q ← 0
Initialize NSE(q), wa(q), wb(q) and wc(q).
repeat

Initialize Rλ(k) and pλ(k) for λ = a, b, c
qc(q)← (wa(q)⊗wb(q))
Qc(q)← qcqT

c
for k = 0, . . . ,K − 1 do
X (k)← Θ(x(k))
Rc(k + 1)← Rc(k) + (1/K)X(1)(k)Qc(q)X(1)(k)

T

pc(k + 1)← pc(k) + (1/K)d(k)X(1)(k)qc(q)
end for
wc(q + 1)← Rc(k + 1)−1pc(k + 1)

qb(q)← (wa(q)⊗wc(q + 1))
Qb(q)← qbq

T
b

for k = 0, . . . ,K − 1 do
X (k)← Θ(x(k))
Rb(k + 1)← Rb(k) + (1/K)X(2)(k)Qb(q)X(1)(k)

T

pb(k + 1)← pb(k) + (1/K)d(k)X(2)(k)qb(q)
end for
wb(q + 1)← Rb(k + 1)−1pb(k + 1)

qa(q)← (wb(q + 1)⊗wc(q + 1))
Qa(q)← qaqT

a
for k = 0, . . . ,K − 1 do
X (k)← Θ(x(k))
Ra(k + 1)← Ra(k) + (1/K)X(3)(k)Qa(q)X(3)(k)

T

pa(k + 1)← pa(k) + (1/K)d(k)X(3)(k)qa(q)
end for
wa(q + 1)← Ra(q + 1)−1pa(q + 1)
q ← q + 1
w(q)← wa(q)⊗wb(q)⊗wc(q)
NSE(q) = ‖h−w(q)‖22 / ‖h‖22

until |NSE(q)− NSE(q − 1)| < ε
end procedure

a (M ×M)-dimensional autocorrelation matrix, TriWH
presents a complexity of O(Q(M2

a +M2
b +M2

c )), where Q is
the number of iterations necessary to attain the convergence.
This computational complexity considerably smaller than
its classic counterpart depending on how the input vector
partitioning is done [2].

III. NUMERICAL RESULTS

A separable FIR filter h = ha ⊗ hb ⊗ hc ∈ RM with M =
1024 parameters was estimated in the carried out experiments.
The subfilters were defined similar to [2]: ha ∈ R8 is a
vector whose math element is given by [ha]ma = 0.9ma−1

for ma = 1, 2, . . . , 8, hb = [0, 0, . . . , 0, 1, 0]
T ∈ R32, and

hc ∈ R4 is a vector whose elements are Gaussian random
variables with zero mean and unitary variance. This setup,
depicted in Fig. 2, approximates a channel with echoes [2].
The input signal x(k) was taken from a zero mean and unit
variance Gaussian random process. An additive white Gaussian
noise (AWGN) term with zero mean and variance 10−2 was
added to the desired signal d(k) for k = 0, . . . ,K − 1. The
sample size was set to K = 15000 in all experiments.

Monte Carlo simulations with N independent realizations
were performed to assess the performance of NLMS,
TensorLMS, TriWH, and the WH solution. The step-size of
the LMS-based algorithms was set to 0.5. Independent impulse
responses h(n) were generated for each nth realization.
The normalized mean square error (NMSE) between the
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Fig. 2. Example of separable impulse response considered in this work.

actual and estimated filter at the qth iteration, defined as
1
N

∑N
n=1 ‖h(n) − w(n)(q)‖22/‖h(n)‖22, was used to measure

the system mismatch. In the first experiment, the system to
be identified was assumed to be perfectly separable. The
performance of the studied methods is depicted in the left
plot in Fig. 3. In the second experiment, their performances
were assessed when the system was not perfectly separable.
To reproduce this scenario, an AWGN component with zero
mean and variance 10−4 was added to the true system impulse
response. The right plot in Fig. 3 depicts their performance in
this scenario.

When the system separability assumption holds, the TriWH
solution presents the smallest system mismatch. It is an
expected result since TriWH is a nonlinear method that was
designed to properly explore the system separability, which
is ignored by the classic methods. Furthermore, the adaptive
weighting present in the autocorrelation and crosscorrelation
matrices and vectors (c.f. (15) and (16)) contribute as well
to the performance gain, playing the role of a weighted LS
estimation with adjustable weights. It is important to recall
that TriWH is less computationally expensive than its classical
counterpart that do not exploit system separability. Regarding
the iterative solutions, it can be seen that TriWH presented
the best performance. In our simulations, the algorithm
converged in about 3 iterations and presented a relative system
mismatch much lower than the other algorithms. However,
its computational complexity is greater than the iterative
alternatives due to the calculation of matrix inverses. We
also note that when the unknown system was not perfectly
separable, TensorLMS and TriWH do not perform very well,
since they could only identify the separable components. Since
TensorLMS exploits the system separability, its performance
could be similar to that of TriWH by setting a sufficiently small
step-size, which would considerably decrease its convergence
rate.

IV. CONCLUSION AND PERSPECTIVES

The tensor filtering framework was introduced in the
supervised separable system estimation problem. Such type
of system is useful to model multidimensional array of
sensors. The tensor formalism present in this framework
provided proper notation and interpretation for this trilinear
problem. A nonlinear problem was considered to perform
the identification. This problem was solved by exploiting its
trilinear structure, leading to three linear subproblems. Based
on this idea, the TriWH algorithm was proposed. According to
our numerical experiments, it performed better than alternative
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Fig. 3. Performance evaluation when the system is perfectly separable (left)
and not perfectly separable (right).

solutions. A convergence analysis and the extension to the
multichannel case will be provided in an extended version of
this paper.
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ABSTRACT

In the past few years, multidimensional array processing emerged as
the generalization of classic array signal processing. Tensor methods
exploiting array multidimensionality provided more accurate param-
eter estimation and consistent modeling. In this paper, multilinear
translation invariant arrays are studied. An M -dimensional transla-
tion invariant array admits a separable representation in terms of a
reference subarray and a set of M − 1 translations, which is equiva-
lent to a rank-1 decomposition of an M th order array manifold ten-
sor. We show that such a multilinear translation invariant property
can be exploited to design tensor beamformers that operate multilin-
early on the subarray level instead of the global array level, which
is usually the case with a linear beamforming. An important reduc-
tion of the computational complexity is achieved with the proposed
tensor beamformer with a negligible loss in performance compared
to the classical minimum mean square error (MMSE) beamforming
solution.

Index Terms— Array processing, beamforming, tensor filter-
ing.

1. INTRODUCTION

Array signal processing techniques have been used in the last
decades in several area of applications such as: communications sys-
tems [1], audio processing [2], biomedical engineering [3], among
others. An array consists of multiple sensors placed in different lo-
cations in space to process the impinging signals using a spatial filter.
This filter is a beamformer when it is employed to enhance a signal
of interest (SOI) arriving from a certain direction while attenuating
any possible interfering signal [4].

In the past few years, generalized models for array processing
have been proposed for taking advantage of the multidimensionality
present in many types of arrays [1, 5, 6, 7]. For instance, in [8] a mul-
tidimensional harmonic retrieval method that improved the parame-
ter estimation accuracy was proposed. Model selection methods for
such multidimensional models were proposed in [9]. In [5], the au-
thors introduced the concept of translation invariant arrays and pro-
posed a joint channel and source estimation method based on the co-
herence properties of the sources. By contrast, very few works have
concentrated on multidimensional beamforming. In [10], the authors
proposed a MVDR-based beamformer that relies on the PARAFAC
decomposition to estimate the DOA of the SOI. Recently, a multi-
dimensional generalized sidelobe canceller (GSC) beamformer has
been proposed in [11]. The separability of a uniform rectangular ar-
ray was exploited by the proposed technique, resulting in better SOI
estimation and reduced computational complexity compared to the
classic GSC. Both tensor beamformers rely on a prior DOA estima-
tion stage, which is then used to derive the filter coefficients. In [12],

This work was partially supported by CAPES, CNPq, and FUNCAP (Brazil).

the authors exploited the separability of the impulse response of a
linear time-invariant system and proposed a trilinear filtering sys-
tem identification algorithm based on a tensor approach. Therein, it
is shown that the tensor approach provides a more accurate system
identification with a reduced computational complexity compared to
its linear counterpart that ignores system separability property.

In this paper, we first extend the translation invariance property
presented in [5] to multiple translation vectors. More specifically, we
start from an M -dimensional translation invariant array that admits
a separable representation in terms of a reference subarray and a set
ofM−1 translations, which is equivalent to a rank-1 decomposition
of an M th order array manifold tensor. We show that such a multi-
linear translation invariant property can be exploited to design tensor
beamformers that operate multilinearly on the subarray level instead
of operating linearly on the global array level, which is the case with
classical beamformers. Hence, an important reduction of the compu-
tational complexity can be achieved by the tensor beamformer, with
a negligible loss in performance compared to the conventional lin-
ear minimum mean square error (MMSE) beamforming. According
to our numerical results, the number of FLOPS demanded by the
proposed method is remarkably lower than that of the linear (vector-
based) MMSE filter for M = 3, 4 even though their SOI estimation
quality are essentially the same. Moreover, since the separability
degrees of freedom increase with the number of sensors in the multi-
dimensional array, the tensor beamforming approach is particularly
interesting for large-scale (massive) sensor arrays.

1.1. Notation
Scalars are denoted by lowercase letters, vectors by lowercase bold-
face letters, matrices by uppercase boldface letters, and higher-order
tensors by calligraphic letters. The Kronecker, outer, and n-mode
products are denoted by the symbols ⊗, ◦, and ×n, respectively.
The `2 norm, statistical expectation, inner product, and n-mode ten-
sor concatenation are denoted by ‖ · ‖22, E[·], 〈·, ·〉, and tn, respec-
tively. The transpose and Hermitian operators are denoted by (·)T
and (·)H, respectively.

2. MULTILINEAR TRANSLATION INVARIANT ARRAYS

In this section, arrays enjoying the translation invariance property
will be studied. Then, a tensor beamforming approach exploiting
the multilinearity present in the translation invariant arrays will be
formulated. First, let us review some tensor prerequisites for conve-
nience.

2.1. Tensor prerequisites
In this work, an N th order tensor is defined as an N -dimensional
array. For instance, T ∈ CI1×I2×...×IN is an N th order tensor
whose elements are denoted by ti1,i2,...,iN = [T ]i1,i2,...,iN where
in ∈ {1, . . . , IN}, n = 1, 2, . . . , N .



The {1, . . . , N}-mode products of T with N matrices
{U(n)}Nn=1 yield the tensor T̃ = T ×1 U

(1) . . .×N U(N) ∈
CJ1×...×JN defined as [13]

[T̃ ]j1,...,jN =

I1∑

i1=1

. . .

IN∑

iN=1

ti1,...,iNu
(1)
j1,i1

. . . u
(N)
jN ,iN

,

where U(n) ∈ CJn×In , in ∈ {1, . . . , In}, and jn ∈ {1, . . . , Jn},
n = 1, . . . , N . The n-mode unfolding of T̃ is given by

T̃(n) = U(n)T(n)U
⊗nT

, (1)

where T(n) denotes the n-mode unfolding of T , and

U⊗n = U(N) ⊗ . . .⊗U(n+1) ⊗U(n−1) ⊗ . . .⊗U(1) (2)

denotes the Kronecker product of the matrices {U(j)}Nj=1,j 6=n in
the decreasing order. Note that the {1, . . . , N}-mode products of T
with theN vectors {u(n)}Nn=1 yields a scalar t = T ×1u

(1)T . . .×N
u(N)T where u(n) ∈ CIn×1, n = 1, . . . , N .

The inner product between A,B ∈ CI1×...×IN is defined as

〈A,B〉 =

I1∑

i1=1

. . .

IN∑

iN=1

ai1,...,iN bi1,...,iN ,

where ai1,...,iN = [A]i1,...,iN and bi1,...,iN = [B]i1,...,iN .
The tensorization operator Θ : C

∏N
n=1 In → RI1×...×IN is de-

fined as [Θ(v)]i1,...,iN = [v]j , where v ∈ C
∏N

n=1 In is an input
vector, and j = i1 +

∑M
µ=2(iµ− 1)

∏µ−1
v=1 Iv for iµ ∈ {1, . . . , Iµ}.

2.2. Signal model
Consider a sensor array composed of N isotropic sensors located
at p̃n ∈ R3×1 for n = 1, . . . , N . This array will be hereafter re-
ferred to as the global array. Consider that R narrowband source
signals with complex amplitudes sr(k) impinge on the global array
from directions dr = [sin θr cosφr, sin θr sinφr, cos θr]

T, where
θr and φr denote the elevation and azimuth angles, respectively,
r = 1, . . . , R. The sources are assumed to be in the far-field and
it is assumed that there are no reflection components. The steering
vector associated with the rth source is given by

a(dr) =
[
e

ω
c
p̃T
1dr , . . . , e

ω
c
p̃T
Ndr

]T
∈ CN×1, (3)

where  =
√
−1, c denotes the velocity of propagation in the

medium, and ω is the wave frequency. The signals collected by the
global array at instant k are modeled as

x(k) =
R∑

r=1

a(dr)sr(k) + b(k) ∈ CN×1, (4)

where b(k) ∈ CN×1 is the additive zero-mean complex white Gaus-
sian noise vector with covariance matrix equal to σ2I.

Lim and Comon presented in [5, 14] the concept of translation
invariant arrays formed by translating a reference subarray. How-
ever, the model discussed therein was limited to one translation vec-
tor only. This idea is now generalized to multiple translation vectors,
leading to a multilinear array structure that will be useful in our con-
text.

Let us assume that the global array enjoys the multilinear trans-
lation invariance property. Consider a reference subarray formed by
N1 reference sensors located at p(1)

n1 for n1 = 1, . . . , N1. The n1th

reference sensor is translated M − 1 times by means of the transla-
tion vectors p

(2)
n2 , . . . ,p

(M)
nM , yielding the following decomposition

for the nth global sensor location vector

p̃n = p(1)
n1

+ p(2)
n2

+ . . .+ p(M)
nM

, (5)

where n = n1 +
∑M
µ=2(nµ − 1)

∏µ−1
v=1 Nv , nµ ∈ {1, . . . , Nµ}.

Note that m = 1 refers to the reference subarray, whereas 2 ≤ m ≤
M refers to the mth order translation vector. Substituting (5) into
the global array vector (3) leads to the following separable form:

a(dr) =




e
ω
c
p
(1)T

1 dr . . . e
ω
c
p
(M)T

1 dr

...

e
ω
c
p
(1)T

N1
dr . . . e

ω
c
p
(M)T

NM
dr




= a(1)(dr)⊗ . . .⊗ a(M)(dr) ∈ C
∏M

m=1 Nm , (6)

where a(m)(dr) = [e
ω
c
p
(m)T

1 dr , . . . , e
ω
c
p
(m)T

Nm
dr ]T ∈ CNm×1 de-

notes the subarray vector associated with the mth order translation
vector p(m)

nm , nm ∈ {1, . . . , Nm}. A close idea was presented in [7]
(therein referred to as multi-scale arrays), although the translation
structure and its interpretation are different from the one we con-
sider in this paper. Indeed, (6) is a vectorization of a rank-1 array
steering tensor defined as

A(dr) = a(M)(dr) ◦ . . . ◦ a(1)(dr) ∈ N1×...×NM . (7)

In view of this, the received signals (4) can be expressed as a linear
combination of R rank-1 tensors:

X (k) =
R∑

r=1

A(dr)sr(k) + B(k), (8)

where B(k) = Θ(b(k)) ∈ CN1×...×NM is the tensorized form of
the noise vector b(k).

The multilinearity inherent to translation invariant arrays allows
us to decompose the array response into multiple setups, as illus-
trated in Fig. 1. From this figure, it can be seen that the same 3-D
global array can be decomposed as two separable (3-D and 1-D)
subarrays (M = 1 translations), or three separable (2-D, 1-D, and
1-D) subarrays (M = 2 translations), or as four 1-D separable ar-
rays (M = 3 translations). Other decompositions are possible, and
the number of possibilities increases as a function of the number of
sensors in the global array.

In the following, we exploit the multilinear translation invariant
property to design tensor beamformers that operate on the subarray
level instead of the global array level. By adopting a multilinear
structure for the beamforming filters, we can obtain a considerable
reduction on the computational complexity of the spatial filtering,
with almost no loss in performance, as will be clear in later sections.

3. TENSOR BEAMFORMING

Classical linear beamforming methods [4] based on model (4) ignore
the multilinearity that may be present in translation invariant arrays.
For convenience, in this work we consider the MMSE beamforming
solution, although the proposed approach is also applicable to other
beamforming solutions. The well-known solution for the MMSE
beamforming problem is given by

wMMSE = R−1
x pdx, (9)



Fig. 1. An 4× 2× 2 volumetric array decomposed in three different
forms, in terms of subarrays translations (M = 2, 3, and 4). Ref-
erence subarrays are indexed by m = 1, whereas m > 1 refers to
translation.

where Rx = E
[
x(k)x(k)H

]
∈ CN×N is the autocorrelation ma-

trix of the received vector, pdx = E [s∗SOI(k)x(k)] is the cross-
correlation vector between the received vector and the SOI. Since
the MMSE filter depends on the inversion of an N × N matrix,
the computational cost of (9) is O(N2). Although the computa-
tional cost is not an issue for small sensor arrays, it may become
prohibitively expensive for large-scale (massive) arrays of sensors.
However, if the global array is translation invariant, then each mth
subarray vector could be estimated/filtered in a lower-dimensional
space, conditioned on the other subarray vectors thanks to the sepa-
rability property of the array structure. Hereafter, instead of design-
ing the beamforming coefficients from the spatial signatures or from
prior DOA estimates (the common approach), we propose a direct
beamforming method that exploits the array separability property in
(8).

Let us consider an M th order tensor filter W ∈
CN1×N2×...×NM , each mode of which is associated with a
different subarray. The output of the tensor beamformer is given by

y(k) = 〈X (k),W∗〉. (10)

The tensor beamformerW can be designed to minimize the follow-
ing cost function

J(W) = E
[
|sSOI(k)− 〈X (k),W∗〉|2

]
, (11)

defined as the MSE between y(k) and the SOI sSOI(k). We as-
sume that the tensor filter is rank-1, i.e.W = w1 ◦ . . . ◦wM , where
wm ∈ CNm×1 form ∈ {1, . . . ,M}. In this case, Eq. (10) becomes
{1, . . . ,M}-mode products between X (k) and {w∗n}Mm=1:

y(k) =

N1∑

n1=1

. . .

NM∑

nM=1

[X (k)]n1,...,nM [W]∗n1,...,nM

=

N1∑

n1=1

. . .

NM∑

nM=1

[X (k)]n1,...,nM [w1]∗n1
. . . [wM ]∗nM

= X (k)×1 w
H
1 . . .×M wH

M . (12)

Substituting (8) into (12), ignoring the noise component for simplic-
ity, and applying the {1, . . . ,M}-mode products yields the follow-
ing output signal

y(k) =
R∑

r=1

[
wH

1a
(1)(dr)

]
◦ . . . ◦

[
wH
Ma(M)(dr)

]
sr(k). (13)

Equation (13) shows that the multilinearity imposed on the beam-
forming tensor W exploits the separability property of the trans-
lation invariant array, i.e., by processing each dimension of X (k)
separately. Due to multilinearity of the tensor beamforming, the cost

function J(W) can be rewritten inM equivalent forms, with respect
to each subfilter:

J(W) = E
[
|sSOI(k)−X (k)×1 w

H
1 . . .×M wH

M |2
]

(14)

= E
[
|sSOI(k)−wH

mX(m)(k)
[
w⊗m

]∗ |2
]

(15)

= E
[
|sSOI(k)−wH

mum(k)|2
]
, (16)

where um(k) = X(m)(k)
[
w⊗m

]∗ ∈ CIm×1 for m = 1, . . . ,M ,
and w⊗m is defined analogously to (2). Note that the n-mode un-
folding (1) is used in (14) to obtain (15). Deriving (16) with respect
to w∗m and equating the result to 0 ∈ CNm×1 yields:

∂J(W)

∂w∗m
= −pm + Rmwm = 0⇒ ŵm = R−1

m pm, (17)

where pm = E [um(k)s∗SOI(k)] ∈ CNm×1 is the cross-
correlation vector between um(k) and sSOI(k), and Rm =
E
[
um(k)um(k)H

]
∈ CNm×Nm is the autocorrelation matrix as-

sociated with the mth subarray.

Multilinear MMSE beamforming
Standard optimization methods do not guarantee global convergence
when minimizing (14) due to its joint nonconvexity with respect to
all the variables. The alternating minimization approach [12, 15] has
demonstrated to be a solution to solve the global nonlinear problem
in terms of M smaller linear problems. It consists in updating the
mth mode beamforming filter each time by solving (17) for wm,
while {wj}Mj=1,j 6=m remain fixed, m = 1, . . . ,M , conditioned on
the previous updates of the other filters.

Define X = [X (k) tM+1 . . . tM+1 X (k − K + 1)] ∈
CN1×...×NM×K as the concatenation of K time snapshots of X (k)

along the (M + 1)th dimension. Let U(m) ∈ CNm×K denote
the {1, . . . ,m − 1,m + 1, . . . , N}-mode products between X and
{wj}Mj=1,j 6=m:

U(m) = X×1w
H
1 . . .×m−1w

H
m−1×m+1w

H
m+1 . . .×MwH

M . (18)

It can be shown that U(m) = [um(k), . . . ,um(k −K + 1)].
Therefore the sample estimate of Rn and pn are given by:

R̂n =
1

K
U(m)U(m)H (19)

p̂n =
1

K
U(m)s∗, (20)

where s = [sSOI(k), sSOI(k − 1), . . . , sSOI(k −K + 1)]T ∈ CK×1.
The mth order subfilter updating rule is given by ŵm = R̂−1

m p̂m.
The subfilters are estimated in an alternate fashion until convergence,
which is attained when the error between two consecutive iterations
is smaller than a threshold ε. This procedure is described in Algo-
rithm 1.

The multilinear MMSE beamforming algorithm presents a com-
putational complexity of O

(
Q
∑M
m=1N

2
m

)
, where Q is the num-

ber of iterations necessary to attain the convergence. Such an alter-
nating minimization procedure has a monotonic convergence. In this
work, we do not assume any prior knowledge on the array response
and a random initialization is used. In the chosen array configura-
tions, convergence is usually achieved within 4 or 6 iterations. It is
worth mentioning that an analytical convergence analysis of this al-
gorithm is a challenging research topic which is under investigation.

An alternative approach to solve (16) would consist in using a
gradient-based algorithm. The idea of this algorithm is similar to



that of [16], therein referred to as TensorLMS. However, such an
approach would need small step sizes and convergence can be much
slower in comparison with the multilinear MMSE algorithm.

Algorithm 1 Multilinear MMSE
1: procedure MULTILINEARMMSE(X , s, ε)
2: q ← 1
3: Initialize e(q), wm(q), m = 1, . . . ,M .
4: repeat
5: for m = 1, . . . ,M do
6: Calculate U(m)(q) using Equation (18)

7: R̂m ← (1/K)U(m)U(m)H

8: p̂m ← (1/K)U(m)s∗

9: wm(q + 1)← R̂−1
m p̂m

10: end for
11: q ← q + 1

12: y(q)← X ×1 w1(q)
H . . .×M wM (q)H

13: e(q) = ‖s− y(q)‖22/K
14: until |e(q)− e(q − 1)| < ε
15: end procedure

4. NUMERICAL RESULTS

Computer experiments were conducted in order to assess the SOI
estimation performance and the computational complexity of the
proposed tensor beamformer. In this context, R = 3 uncorre-
lated QPSK signals with unitary variance arriving from the direc-
tions (θr, φr) rad ∈

{(
π
3
,−π

4

)
,
(
π
6
, π
3

)
,
(
π
4
,−π

6

)}
were consid-

ered. The signal corresponding to r = 1 was set as SOI. The lin-
ear MMSE beamformer (9) was used as benchmark method. Re-
call that the linear beamformer ignores the multilinear translation
invariant structure of the sensor array, by operating over the vec-
torized form of the received signal tensor. A noise component was
added to the observed signals at the array and the signal-to-noise
ratio was set to 15 dB. The convergence threshold of the multi-
linear MMSE algorithm was set to ε = 10−6. The mean perfor-
mance indices were calculated by averaging the results obtained in
J = 100 Monte Carlo (MC) realizations. The SOI estimation per-
formance was evaluated in terms of the MSE measure, defined as
MSE = 1

J

∑J
j=1

1
K
‖s(j) − 〈X (j),W(j)∗〉‖22, where the superscript

(·)(j) denotes the jth MC realization. The number of FLOPS de-
manded by each method was computed using the Lightspeed MAT-
LAB toolbox [17]. The Tensorlab toolbox [18] was used to imple-
ment the tensor operations involved in the proposed algorithm.

Two simulation scenarios were considered. In the first one, the
performance indices were calculated by varying the number N of
sensors of the global array for K = 5000 samples, as depicted in
Fig. 2. In the second scenario, the performance indices were calcu-
lated by varying the sample size K, as illustrated in Fig. 3. In this
case, the global array consisted of N = 128 sensors. In both sce-
narios, the global array was formed by translating a 2 × 4 uniform
rectangular array, the reference array, along the x-axis.

The left plots of Figures 2 and 3 show that the multilinear
MMSE algorithm offers a reduced computational complexity com-
pared to the linear (vector) MMSE filter thanks to the exploitation of
the array separability, as expected. The gains are particularly more
pronounced for M = 3 and 4. On the other hand, the right plots
of these figures indicate that the MSE of the proposed algorithm is
0.5 dB above that of the linear beamformer. Such a performance gap
can be considered negligible in view of the computational gains, and
it can be explained due to the loss of optimality of the rank-1 filter.
Therefore, the multilinear algorithm offers a reduction on the com-
putation cost with almost no trade-offs in terms of MSE performance
for multilinear translation invariant sensor arrays.

0 200 400
0

0.5

1

1.5

2

2.5

x 10
9

Number of sensors (N)

N
u
m

b
e
r 

o
f 
F

L
O

P
S

 

 

Multilinear MMSE (M=2)

Multilinear MMSE (M=3)

Multilinear MMSE (M=4)

Linear MMSE

0 200 400
−44

−42

−40

−38

−36

−34

−32

−30

−28

−26

Number of sensors (N)

M
S

E
 [
d
B

]

 

 

Multilinear MMSE (M=2)

Multilinear MMSE (M=3)

Multilinear MMSE (M=4)

Linear MMSE

Fig. 2. Performance for a varying number of sensors for K = 5000
samples.
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Fig. 3. Performance for a varying sample size for N = 128 sensors.

5. CONCLUSION AND PERSPECTIVES

There has been a growing interest on array processing systems ca-
pable of processing data received by a massive number of sensors.
Multilinear array models are interesting in this context since they
represent a sensor array in simpler terms, allowing the development
of computationally efficient array processing methods. In this work,
a tensor beamformer that exploits the separability present in mul-
tilinear translation invariant arrays model was presented. Numeri-
cal results showed that the presented method has a reduced process-
ing time with almost no performance loss compared with the linear
beamforming solution that operates on the global array by ignoring
the array manifold separability. A future work includes the extension
of the proposed tensor beamforming to the wideband filtering sce-
nario, where separability can be further exploited in the joint space-
time domain. In this work, we have adopted a rank-1 representation
for the beamforming filter. The use of low-rank tensor beamformers
will be addressed in the future.
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