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RESUMO 

 

Neste trabalho foram tratados dois problemas: o primeiro é denominado Continuous 

Permutation Flowshop Scheduling Problem (CPFSP), que possui a restrição de que 

nenhuma tarefa pode esperar por processamento entre máquinas consecutivas; o segundo é 

denominado de Permutation Flowshop Scheduling Problem (PFSP), em que a restrição 

anterior não existe. A metaheurística Algoritmo Genético (AG) tem sido aplicada com 

sucesso ao PFSP, mas até o momento não foi encontrado na literatura algo que mostre que 

o AG é um bom método para o CPFSP. O objetivo deste trabalho foi desenvolver um AG 

eficiente paras esses dois problemas, mas que não precisa utilizar inicialização eficiente 

e/ou hibridização com outra técnica de busca. O desenvolvimento do AG proposto levou 

em consideração as características, diversificação e a intensificação, que inspiraram a 

criação de três procedimentos que melhoraram o desempenho do AG proposto. Foram 

realizados vários experimentos com as instâncias de Taillard (1993), Reeves (1995) e 

Heller (1960). Os resultados foram comparados com outros métodos encontrados na 

literatura. Foram construídos polinômios com a utilização de Interpolação Lagrangeana 

para determinar o tempo execução do AG proposto. Por fim, o método foi aplicado num 

problema real. Os resultados mostraram que o AG proposto é o melhor método para o 

CPFSP e que fica muito próximo do melhor AG encontrado na literatura com inicialização 

eficiente para o PFSP. 
 

Palavras-Chaves: Problema de Sequenciamento Permutacional Flowshop, Problema de 

Sequenciamento Permutacional Contínuo Flowshop, Algoritmo Genético, Diversificação e 

Intensificação. 
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ABSTRACT 

 

In this work two problems were solved: the first is Continuous Permutation Flowshop 

Scheduling Problem (CPFSP) it possesses the constraint that no job can wait for processing 

among serial machines; the second is Permutation Flowshop Scheduling Problem (PFSP), 

in that the previous restriction does not exist. The metaheuristic Genetic Algorithm (GA) 

has been applied with success for solving the PFSP, but up to now it was not found in the 

literature something that shows that GA is a good method for CPFSP. The objective of this 

work was to develop an efficient GA for both problems, but that does not need to use an 

initialization efficient and/or hybridization allied with other search technique. The 

development of proposed GA took in consideration the characteristics, diversification and 

the intensification, that inspired the creation of three procedures that further improved the 

proposed GA. Several experiments were accomplished with the instances of Taillard 

(1993), Reeves (1995) and Heller (1960). The results were compared with other methods 

found in the literature. Polynomials were built with Lagrangeana's Interpolation  use to 

determine the time execution of proposed GA. Finally, the method was applied in a real 

problem. The results showed that proposed GA is the best method for CPFSP and that is 

very close of best GA found in the literature with efficient initialization for PFSP. 

 

Keywords: Permutacional Flowshop Scheduling Problem, Continuous Permutacional 

Flowshop Scheduling Problem, Genetic Algorithm, Diversification and Intensification. 
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CAPÍTULO 1 – INTRODUÇÃO 

1.1. Considerações Iniciais 

 

As empresas de manufatura enfrentam a difícil tarefa de determinar a melhor seqüência de 

processamento de seus produtos em suas máquinas que atenda aos objetivos competitivos 

do negócio. A Pesquisa Operacional denomina este problema como Scheduling Problem 

(SP), na Literatura, e o define como: dado um conjunto de tarefas e um conjunto de 

máquinas determinar uma seqüência específica que otimize uma função objetivo. Existem 

vários tipos de SP, por exemplo, o single machine scheduling problem, multiple machine 

scheduling problem e manpower scheduling problem. Este trabalho trata do multiple 

machine scheduling problem chamada de Flowshop Scheduling Problem (FSP). O 

primeiro artigo publicado sobre este problema foi de Johnson (1954) que formulou e 

resolveu o two-machine flowshop problem. Segundo Gupta e Stafford Jr. (2006) de 1954 a 

2004 mais de 1.200 artigos foram publicados abordando diferentes aspectos do FSP. 

 

O FSP é definido como um fluxo unidirecional de n tarefas em m máquinas, i.e., a ordem 

de processamento de todas as tarefas nas m máquinas é a mesma. Considerando o caso 

geral do FSP o número de seqüências possíveis e distintas é igual a (n!)m, mesmo para 

problemas com n e m pequenos a enumeração completa de todas as soluções possíveis e 

distintas torna-se impossível. 

 

Neste trabalho foram tratados dois problemas da classe FSP. O primeiro problema é uma 

simplificação do FSP geral, que assume que a seqüência de operações das tarefas 

processadas em cada máquina é a mesma, por isso, o número de soluções possíveis é 

reduzido para n!, neste caso o problema é denominado Permutation Flowshop Scheduling 

Problem (PFSP). Uma das suposições necessárias para definir o PFSP é que cada tarefa 

pode esperar pelo processamento entre máquinas consecutivas, i.e., estoque em processo é 

permitido. Existem processos produtivos onde a suposição anterior não se aplica, i.e., as 

tarefas não podem parar o processamento entre máquinas consecutivas e, por isso, 

precisam ser processados continuamente do início ao fim, isto origina um outro problema 

chamado de Continuous Permutation Flowshop Scheduling Problem (CPFSP). O segundo 

problema e o principal é o CPFSP, dado a sua importância prática e as poucas pesquisas 

realizadas sobre ele encontradas na literatura. 
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Ainda sobre o CPFSP, segundo Hall e Sriskandarajah (1994) existem duas razões para a 

ocorrência de um ambiente de produção contínua. A primeira razão é a tecnologia de 

produção empregada, por exemplo, a temperatura ou outra característica de um material 

requer que cada operação siga imediatamente para a próxima etapa. Essas situações são 

comuns nas indústrias siderúrgica, química, farmacêutica, alimentícia e plástica. 

Ambientes de manufatura moderna como just-in-time, sistemas flexíveis de manufatura e 

células robóticas exigem uma complexa coordenação no processo de manufatura. Isto 

também pode ocorrer em empresas de serviço onde o custo de atendimento do cliente é 

alto. A segunda razão de ocorrência é a falta de espaço de estocagem intermediária, isto 

ocorre geralmente em linhas de produção automáticas e em sistemas de estoque gerenciado 

por kanbans (cartões informando a quantidade de produtos a serem produzidos), pois 

nestes casos o estoque em processo tem uma quantidade fixa limitada. 

 

As aplicações futuras do CPFSP seriam principalmente nas indústrias de manufatura 

moderna, especialmente por causa da automação do manuseio de materiais, segundo Hall e 

Sriskandarajah (1994).  

 

Este trabalho indica uma boa contribuição científica para o CPFSP principalmente. Além 

de outros estudos realizados nas resoluções dos problemas. 

 

A metaheurística Algoritmo Genético (AG) baseada na evolução das espécies, tem sido 

aplicada com sucesso no PFSP (Chen et al. (1995), Reeves (1995), Murata et al. (1996) e 

Ruiz et al. (2006)). Ruiz et al. (2006) desenvolveram um AG que teve um bom 

desempenho quando aplicado no PFSP. Alguns AGs foram desenvolvidos e aplicados no 

CPFSP, tais como Chen et al. (1996), Aldowaisan e Allahverdi (2003) e Schuster e 

Framinan (2003). Os AGs de Chen et al. (1996) e Aldowaisan e Allahverdi (2003) foram 

testados em problemas gerados aleatoriamente o que torna difícil a comparação com outros 

métodos que usaram dados da OR-Library, somente o AG de Schuster e Framinan (2003) 

foi testado em instâncias conhecidas. Testar um algoritmo em problemas conhecidos e 

disponíveis na literatura é uma forma de permitir que o método possa ser comparado com 

outros métodos. Fink e Voβ (2003) desenvolveram várias heurísticas e alguns métodos 

baseados nas metaheurísticas Simulated Anneling e Tabu Search para o CPFSP que foram 

testados nas instâncias de Taillard (1993). Grabowski e Pempera (2005) desenvolveram um 
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método baseado na metaheurística Tabu Search para o CPFSP que obteve um melhor 

resultado que o AG de Schuster e Framinan (2003). Até o momento não foi encontrado na 

literatura um trabalho que mostre que o AG é um bom método para o CPFSP devido a este 

fato escolhemos atacar o CPFSP desenvolvendo um AG que tivesse um bom desempenho. 

 

A primeira justificativa para a escolha do AG é a possibilidade de mostrar que ele pode ser 

um bom método de resolução quanto ao uso de recursos computacionais. A segunda 

justificativa é baseada na hipótese de Silva e Soma (2006) que métodos de resolução exata 

para problemas da classe FSP geralmente só são aplicados em problemas com n≤20 e que 

mesmo assim o tempo computacional ainda é muito alto, por isso a importância de 

desenvolver métodos que encontrem boas soluções em tempo computacional aceitável. A 

terceira justificativa é que se trata de uma técnica generalista, i.e., pode ser aplicada em 

vários problemas necessitando somente de poucas modificações. E finalmente, a quarta 

justificativa é o fato de que o AG está sendo usado no setor produtivo, onde se constatou 

que em setembro de 1998 através do site EvoWeb, especializado em notícias relacionadas 

a computação evolucionária, noticiou que em 1997 uma empresa de manufatura foi 

comprada por US$ 53 milhões por uma empresa de software, o alto valor pago foi 

justificado pelo interesse em adquirir um programa de computador baseado em AG 

desenvolvido pela empresa de manufatura para fazer o seqüenciamento das ordens de 

produção da fábrica (EvoWeb, 2007). 

 

O AG foi criado por John Holland durante as décadas de 1960 e 1970 (Holland, 1975). 

Segundo Haupt e Haupt (2004), o AG é uma técnica baseada nos princípios da genética e 

seleção natural das espécies. A técnica é formada por uma população de indivíduos que 

representam as soluções do problema. Cada indivíduo da população é avaliado segundo 

sua qualidade em relação aos outros indivíduos da população. Os indivíduos são escolhidos 

por um procedimento inspirado na seleção natural para passarem por operações genéticas 

que resultam em descendentes que comporão a nova população. Os estudos mostram que a 

nova população tem a tendência de ter indivíduos com aptidões melhores que os indivíduos 

da população anterior. Este processo de gerar novas populações é chamado de geração. O 

melhor indivíduo da última população associado a uma solução do problema é selecionado 

como a melhor solução encontrada para o problema. 
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Verificou-se na literatura, que os AGs usados nos problemas da classe FSP apresentam 

como principais características: a utilização de uma heurística eficiente para criar a 

população inicial; e uma etapa de hibridização com outra técnica de busca. A inicialização 

eficiente reduz o tempo necessário para encontrar boas soluções. A etapa de hibridização é 

usada para melhorar a qualidade da solução obtida. Com estes dois novos componentes 

fica difícil determinar o quanto da qualidade da solução obtida se deve as características 

originais do AG criado por Holland. Sendo assim, este trabalho também tem como objetivo 

desenvolver um AG eficiente para os problemas da classe FSP, principalmente o CPFSP, 

que não utilize inicialização eficiente e hibridização. Este objetivo se justifica do ponto de 

vista teórico porque verificará e analisará se um AG sem inicialização eficiente ou 

hibridização pode ser competitivo com os AGs que usam estas estratégias. Além disso, um 

AG com estas características pode ser útil quando as heurísticas disponíveis não forem tão 

eficientes em termos de qualidade das soluções e o tempo computacional ou a hibridização 

comprometer o custo computacional. 

 

O desenvolvimento do AG proposto levou em consideração as características que fazem a 

evolução da qualidade das soluções agirem de forma melhor e por mais tempo, as soluções 

obtidas seriam boas, mesmo sem inicialização eficiente e hibridização. Para isso foram 

usados dois princípios para guiar a construção do AG. Mitchell (1998) afirmou que no AG 

a evolução das soluções depende da variação nas aptidões dos indivíduos da população. 

Outra característica importante é a intensificação no processo de busca (Silva e Soma, 

2001; Grabowski e Pempera, 2005; Dréo et al., 2006). Daí se escolheu a diversificação e a 

intensificação como características importantes para a qualidade de um AG. 

 

Definida a diversidade e a intensificação como as características que atribuiriam qualidade 

ao AG desenvolvido, tratou-se de encontrar formas de implementar estas características. 

Depois do desenvolvimento do primeiro AG, seguindo o modelo tradicional, foram 

desenvolvidos e testados três procedimentos baseados nos princípios da diversificação e 

intensificação para melhorar o desempenho do AG. O primeiro procedimento é baseado no 

princípio da diversificação e consiste em permitir, na etapa da formação da nova população 

do AG, que indivíduos de aptidão menor, mas com características diferentes de todos os 

outros indivíduos da população tenham chance de serem escolhidos para a nova população. 

O segundo procedimento é baseado no princípio da intensificação e consiste em fazer o 



 5 

melhor indivíduo da população passar por um processo genético com outros indivíduos da 

população mais vezes que o comum. Por fim, o terceiro procedimento é baseado no 

princípio da diversificação e consiste em realizar uma perturbação em todos os indivíduos 

da população depois que um estado de estagnação é identificado. Todos estes 

procedimentos serão detalhados mais adiante. 

 

O objetivo principal deste trabalho é desenvolver um AG eficiente que não utilize 

inicialização eficiente e hibridização para resolver os problemas CPFSP e PFSP. O AG 

desenvolvido foi chamado de rAG para diferenciar dos outros AGs existentes. 

 

Os seguintes objetivos específicos precisam ser realizados para que o objetivo principal 

seja cumprido: 

 

1. Caracterizar de forma clara o PFSP e o CPFSP; 

2. Apresentar os modelos matemáticos e combinatorial do PFSP e do CPFSP; 

3. Descrever os AGs mais relevantes encontrados na literatura desenvolvidos para 

resolver o PFSP; 

4. Analisar os principais métodos desenvolvidos para resolver o CPFSP; 

5. Desenvolver os novos procedimentos que melhorarão a diversidade da população e 

o processo de intensificação do rAG como forma de o tornar mais eficiente; 

6. Realizar experimentos com o rAG para os problemas CPFSP com as instâncias de 

Taillard (1993), Reeves (1995) e Heller (1960) e para o PFSP com as instâncias de 

Taillard (1993); 

7. Comparar os resultados obtidos pelo rAG com os métodos que foram testados em 

problemas conhecidos encontrados na revisão bibliográfica para o CPFSP com o 

critério de desempenho sendo o tempo total de fluxo e o makespan; 

8. Comparar o rAG com os melhores AG encontrados na revisão bibliográfica para o 

PFSP com o critério de desempenho sendo o makespan; 

9. Usar interpolação para construir funções que possam ser usadas para determinar o 

tempo de execução necessário para o rAG encontrar uma solução de qualidade 

desejada para o PFSP; e 

10. Aplicar o rAG num problema prático analisando seus resultados. 
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Este trabalho foi dividido em seis capítulos, sendo o Capítulo 1 a introdução. O Capítulo 2 

apresenta o PFSP com suas principais características e quatro AGs, os mais relevantes 

encontrados na literatura aplicados ao problema. O Capítulo 3 trata do CPFSP, onde são 

apresentados os modelos matemático e combinatorial e os métodos de resolução mais 

recentes. O Capítulo 4 aborda a técnica AG, onde são descritas as principais características 

de um AG e do rAG, com suas particularidades. O Capítulo 5 aborda para o rAG: os 

experimentos com o método, uma aplicação real e o desenvolvimento de funções 

polinomiais (interpolação) que possam ser usadas para determinar o tempo de execução 

necessário para o rAG encontrar uma solução de qualidade desejada para o PFSP. O 

Capítulo 6 apresenta às conclusões e as propostas para futuros trabalhos na área. Por fim, 

são apresentados a revisão bibliográfica do trabalho e os Anexos I e II, o primeiro anexo 

apresenta as melhores seqüências de tarefas obtidas pelo rAG para o CPFSP com as 

instâncias de Taillard (1993) e o segundo as melhores seqüências para as instâncias de 

Reeves (1995) e Heller (1960). 
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CAPÍTULO 2 – O PROBLEMA DE SEQÜENCIAMENTO PERMUTACIONAL 

FLOWSHOP 

 

Este capítulo é composto de cinco seções que tratam do PFSP: a primeira seção apresenta a 

definição do PFSP; a segunda seção apresenta o modelo matemático em Programação 

Linear Inteiro e Mista do PFSP, com sua complexidade; a terceira seção mostra outra 

forma de representar o PFSP, baseada na modelagem de Problemas de Otimização 

Combinatorial Permutacional (POCP); a quarta seção apresenta um histórico da evolução 

das técnicas aplicadas na solução do PFSP; e finalmente, a quinta seção onde são 

apresentados os AGs mais relevantes encontrados na literatura aplicados ao PFSP. 

 

2.1. Definição do PFSP 

 

Antes de definir o PFSP é importante esclarecer que flowshop não é sinônimo de linha de 

montagem, mesmo que a característica do flowshop seja um fluxo que pareça ser constante 

de trabalhos através de um conjunto de máquinas em série, conforme Gupta e Stafford Jr. 

(2006). A seguir são apresentadas três diferenças entre estes dois tipos de modelo de 

sistema de produção. 

 

a) No ambiente flowshop existe uma variedade de produtos e na linha de montagem 

existe um produto padrão; 

b) No ambiente flowshop as tarefas não são obrigadas a passarem em todas as 

máquinas dependendo das necessidades tecnológicas e na linha de montagem todas 

as tarefas têm que passar por todas as estações de trabalho; e 

c) No ambiente flowshop cada tarefa tem seu próprio tempo de processamento em 

cada máquina e na linha de montagem todas as unidades dos produtos têm o mesmo 

tempo padrão em cada estação de trabalho. 

 

 

 

 

 

 



 8 

Assim o PFSP pode ser definido como sendo: um conjunto de n tarefas J1, J2,..., Jn, onde 

cada tarefa tem para ser processada m máquinas M1, M2, ..., Mm. Cada tarefa demanda m 

operações, com uma operação representando o tempo de processamento da tarefa por 

máquina. As tarefas seguem o mesmo fluxo de operações nas máquinas, i.e., para qualquer 

j =1, 2, ..., n, a tarefa Jj deve ser processada primeira na máquina M1, depois na máquina 

M2, e assim por diante até a última máquina, no caso a máquina Mm, conforme mostra a 

Figura 2.1. Caso a tarefa Jj não utilize todas as máquinas, o seu fluxo continua sendo o 

mesmo, todavia com o tempo de operação sendo igual a zero. Uma máquina pode 

processar somente uma operação de cada vez, e iniciada uma operação, ela deve ser 

processada até a sua conclusão. O número de seqüências distintas possíveis para realização 

das tarefas nas máquinas é grande, i.e., O (n!). O problema consiste em realizar todas as n 

tarefas no menor tempo possível (Silva e Soma, 2006). 

 
Figura 2.1 – Ilustração do PFSP. 

 

Conforme Silva e Soma (2006) um input do PFSP é dado por n, m e uma matriz P(n x m) 

de elementos não negativos, onde Pij denota o tempo de processamento da tarefa Jj na 

máquina Mi. Seguindo os 4 parâmetros da notação A/B/C/D adotada por Conway et al. 

(1967), o problema é classificado como n/m/P/Fmax. Na menos antiga notação paramétrica 

α/β/γ, proposta por Graham et al. (1979), o problema é denotado como sendo 

F/prmu/Cmax. O PFSP pertence à classe dos problemas NP-completo, no sentido forte, 

quando m≥3, conforme Garey e Johnson (1979), no caso em que m=2, o problema pode ser 

solucionado através de um algoritmo em tempo polinomial. 

 

 

 

 

 

M1 

J1 

J2 

J3 

... 
Jn 

 

M2 M3 Mm 

... 
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Suposições relacionadas às tarefas: 

 

J1 – Cada tarefa é liberada para a fábrica no começo do período de programação. 

J2 – Cada tarefa pode ter sua própria data de entrega fixa e não sujeita a mudança. 

J3 – Cada tarefa é independente das demais. 

J4 – Cada tarefa consiste de operações específicas que são realizadas por somente uma 

máquina. 

J5 – Cada tarefa tem uma seqüência tecnológica preestabelecida fixa e que é igual para 

todas as demais tarefas. 

J6 – Cada operação de uma tarefa requer um tempo de processamento finito e conhecido 

para ser processada nas várias máquinas. Nesse tempo de processamento estão incluídos 

tempos de transporte, setup e outros. O tempo de processamento é independente dos 

tempos de processamento das tarefas anteriores e posteriores. 

J7 – Cada tarefa é processada não mais que uma vez em cada máquina. 

J8 – Cada tarefa pode esperar entre máquinas consecutivas, ou seja, estoque em processo é 

permitido. 

 

Suposições em relação às máquinas: 

 

M1 – Cada setor é composto de somente uma máquina e a fábrica tem somente uma 

máquina de cada tipo. 

M2 – Cada máquina está inicialmente desocupada no início do período de programação. 

M3 – Cada máquina na fábrica opera independentemente das outras e, por isso, pode 

operar na taxa de produção máxima. 

M4 – Cada máquina só pode processar uma tarefa por vez. 

M5 – Cada máquina está continuamente disponível para processar tarefas durante o 

período de programação e não há interrupções devido a quebras, manutenção ou outras 

causas. 

 

Suposições relacionadas às políticas de operação 

 

P1 – Cada tarefa é processada tão logo seja possível. Por isso, não há intenção de fazer a 

tarefa ficar esperando ou fazer a máquina ficar ociosa. 
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P2 – Cada tarefa é considerada uma entidade individual mesmo que possa ser composta 

por um conjunto de unidades. 

P3 – Cada tarefa uma vez iniciada é processada até o fim, ou seja, o cancelamento de 

tarefas não é permitido. 

P4 – Cada operação de uma tarefa uma vez iniciada numa máquina é completada antes que 

outra tarefa possa começar na mesma máquina, ou seja, nenhuma preempção é permitida. 

P5 – Cada tarefa é processada somente uma vez em cada máquina. Essa suposição é 

resultado das suposições J5 e P2. 

P6 – Cada máquina possui área de estoque suficiente para acomodar as tarefas em espera 

para serem processadas. 

P7 – Cada máquina está completamente alocada às tarefas consideradas durante todo o 

período de programação, ou seja, as máquinas não são usadas para nenhum outro plano de 

produção. 

P8 – Cada máquina processa as tarefas na mesma ordem. 

 

É importante conhecer estas suposições já que os outros problemas da classe FSP foram 

criados a partir de alguma modificação nelas. Este é o caso do sequence dependent setup 

time Flowshop Scheduling Problem que foi criado a partir da alteração da suposição J6 que 

deixa de considerar o tempo de setup como fazendo parte do tempo de processamento e 

passa a considerar os dois tempos separadamente. 

 

2.2. O Modelo Matemático do PFSP 

 

A seguir são apresentados a notação necessária e o modelo matemático em Programação 

Linear Inteiro e Mista do PFSP. 
 

Notação: 

a) Tij é uma variável do modelo que representa o tempo para iniciar o processamento da 

tarefa j na máquina i, com 1≤ j ≤n e 1≤ i ≤m; e 

b) W é um número bastante grande; 

c) Xijk, é uma variável binária definida por: 





=

contrário. caso 0,

. máquina na   tarefaa precede   tarefaa se ,1 ikj
Xijk , 

com i = 1, 2, 3, ..., m, j = 1, 2, 3,..., (n-1) e k = (j+1), (j+2),..., n. 
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Observações: 

 

i) São dados do problema: n, m e a matriz P (cf. pág. 8); 

ii) Em (c), j e k não variam de 1 até n, porque iriam comparar as tarefas j e k na mesma 

máquina duas vezes; e 

iii) As variáveis do tipo Xijk estabelecem a seqüência de processamento das tarefas em cada 

uma das m máquinas. 

 

∑
=

=
n

1j

mj ZMinimizar T                                                                                                    2.1 

 

sujeito a: 

Trj ≥ Tr-1,j + pr-1,j , ∀  r = 2,3,...,m e j = 1, 2,..., n.                                                            2.2 









∈

+≥

+≥

{0,1}

* -     

)-(1* -  

ijkikikij

ijkij

   x

XWpTT

XWpTT

ijk

ijik

     ∀  1 ≤ i ≤ m, j = 1, 2,..., n-1 e k = j+1, j+2,...n             

5.2

4.2

3.2

 

Tij ≥ 0, ∀  1 ≤ i ≤ m e 1 ≤ j ≤ n                                                                                       2.6 

 

Onde: 

 

a) A função objetivo 2.1 tenta minimizar o tempo para a conclusão das n tarefas nas m 

máquinas através da obtenção do menor tempo para iniciar cada tarefa na última 

máquina. Para o caso da tarefa j não utilizar a máquina m substitui-se Tmj por Trj, 

onde r é a última máquina a ser utilizada pela tarefa j com tempo maior de zero; 

b) O grupo de restrições 2.2 representa o fluxo que as tarefas devem seguir para serem 

concluídas. Cada equação do tipo 2.2 determina que a (i+1)-ésima operação da 

tarefa j não pode iniciar até que a i-ésima operação da tarefa j na máquina i seja 

concluída. 

c) Os grupos de restrições 2.3 e 2.4 comparam a relação de precedência das n tarefas 

nas m máquinas. Estes grupos de restrições também não permitem que uma 

máquina processe duas tarefas ao mesmo tempo; 

d) As restrições do grupo 2.5 representam o atendimento à definição da variável Xijk 

como sendo binária; 
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e) As restrições do grupo 2.6 definem a não-negatividade dos tempos de 

processamento; e 

f) O valor de W faz com que uma das restrições do grupo 2.3 se torne coerente com a 

definição da variável Xijk da seguinte forma: 

i) Se Xijk = 1, então 2.3 fica Tik ≥ Tij + pij, coerente com a definição de Xijk, enquanto 

2.4 fica Tij ≥ Tik + pik – W, ou seja, Tij maior ou igual que um número negativo, logo 

Tij ≥ Tik + pik – W se torna verdadeiro devido ao grupo de restrição 2.6. 

ii) Se Xijk = 0, então 2.4 fica Tij ≥ Tik + pik, coerente com a definição de Xijk, 

enquanto 2.3 fica Tik ≥ Tij + pij – W, ou seja, Tik maior ou igual que um número 

negativo, logo Tik ≥ Tij + pij – W se torna verdadeiro devido ao grupo de restrições 

2.6. 

iii) Podemos adotar W sendo 1000*Max{pij}, ∀  1 ≤ i ≤ m e 1 ≤ j ≤ n. 

 

Complexidade do modelo: 

 

a) Variáveis do tipo Xijk: m x n x (n - 1) / 2; 

b) Variáveis do tipo Tij: m x n; 

c) Restrições do grupo 2.2: n x (m - 1); 

d) Restrições do grupo 2.3 e 2.4: m x n x (n - 1); 

e) Número total de variáveis: m x n (n + 1) / 2; e 

f) Número total de restrições: n x (m x n -1). 

 

2.3. O Modelo Combinatorial Permutacional do PFSP 

 

Um POCP pode ser definido por um terno (S, g, n), onde S é o conjunto de todas as 

soluções do problema, g é sua função ou procedimento que aplica a cada solução viável s 

∈S um número real e n é uma instância do problema. O número de soluções existentes 

para um POCP é representado por |S| (cardinalidade de S) e igual a n! (fatorial de n). O 

objetivo é encontrar uma solução s* ∈  S que otimize a um dado critério de desempenho 

representado pela função g. Representa-se s como uma permutação de n elementos, ou 

seja, s= naaa ,...,, 21 , com ai ≠ aj, ∀  1 ≤ i, j ≤ n e i ≠ j. 
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Segundo Silva e Soma (2006) o PFSP pode ser modelado como um POCP da seguinte 

forma: 

 

a) Um elemento s= nJJJ ,...,, 21  do conjunto de soluções viáveis S é representado por uma 

permutação das n tarefas, com a ordem de s determinando a seqüência na qual as tarefas 

serão processadas; e 

b) O procedimento g, dado a seguir, determina o valor do tempo gasto (tg) para processar a 

seqüência s, mais precisamente tem-se que tg é o tempo utilizado no processamento da 

última tarefa de s na última máquina Mm. 

 

     Entrada: m, n, permutação s, Matrizes T(m x n)* e P(m x n). 
     Saída: g  (tempo gasto para processar todas as n tarefas usando a seqüência s) 
 
       for(i=1; i<=m; i++) 
             for(j=1; j<=n; j++)  t[i][j]=0; 
       for(j=1; j<=n; j++) {      
               for(i=1; i<=m; i++) { 
              if (i==1) { 
                 if (j>=2) t[1][s[j]]=t[1][s[j-1]]+p[1][s[j-1]];  
              } else { 
                 if (j==1)  
                      {t[i][s[1]]=t[i-1][s[1]]+p[i-1][s[1]];  
                 } else { 
                      x=t[i][s[j-1]]+p[i][s[j-1]];  
                      y=t[i-1][s[j-1]]+p[i-1][s[j-1]];  
                      if (x>=y) t[i][s[j]]=x; else t[i][s[j]]=y; 
                 } 
              } 
          } 
       } 
       g=t[m][s[n]] + p[m][s[n]]; 
 
* O elemento tij representa o tempo para iniciar a tarefa Jj na máquina Mi. 

Figura 2.2 – Procedimento para calcular g (s). Fonte: Silva e Soma (2006). 

 

Para determinar a seqüência s com menor valor de g seria necessário enumerar e avaliar 

todas as n! seqüências distintas de S. A Tabela 2.1 abaixo mostra para alguns valores de n a 

quantidade de soluções distintas de S e o tempo computacional, caso o tempo de 

processamento do procedimento g para cada seqüência fosse igual 0,001 segundos. Os 

resultados da Tabela 2.1 demonstram que para valores de n maiores que 20 fica 

inviabilizada a enumeração completa de todas as soluções. 
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Tabela 2.1 – Tempos de processamento para valores de n considerando o número de soluções de S. 

n Quant. Soluções Tempo computacional 

5 1,20 x 102 0,12 seg 

10 3,63 x 106 3.628,80 seg 

20 2,43 x 1018 7,71 x 107 anos 

 

2.4. Estado da Arte do PFSP 

 

A análise do histórico do progresso das técnicas utilizadas na resolução dos problemas da 

classe PFSP serve para situar o método proposto neste trabalho. Gupta e Stafford Jr. (2006) 

analisaram o desenvolvimento da pesquisa em relação ao PFSP desde o trabalho de 

Johnson (1954) até 2004. Esse período foi dividido em cinco décadas (1955-1964, 1965-

1974, 1974-1984, 1985-1994 e 1995-2004) e para cada período as suposições, as 

formulações para o problema e as abordagens de solução foram analisadas. 

 

A primeira década tratou o PFSP principalmente do ponto de vista teórico. Além da 

formulação de Johnson (1954) para duas máquinas foi desenvolvido o m-machine flowshop 

para a minimização do makespan. Foram desenvolvidas poucas técnicas para a solução do 

PFSP. As duas técnicas que mais se destacaram foram à programação matemática 

(Wagner, 1959; Manne, 1960) e a simulação de Monte Carlo (Sisson, 1959; Muth e 

Thompson, 1963). O tamanho dos problemas resolvidos eram pequenos por três motivos: i) 

falta de capacidade computacional; ii) falta de eficientes programas de computador; e iii) a 

maioria das variações do two-machine flowshop problem eram NP-hard. 

 

A segunda década apresentou um maior número de técnicas de solução e outras funções 

objetivo além do makespan. Os primeiros a proporem a abordagem combinatorial foram 

Dudek e Teuton (1964). A técnica branch and bound para o PFSP foi desenvolvida por 

Lomnicki (1965). Nessa época também começou o desenvolvimento das primeiras 

heurísticas para encontrar boas soluções para o PFSP de grandes dimensões. 

 

Na terceira década com a publicação da teoria do NP-Completeness por Garey e Johnson 

(1979) a pesquisa em relação ao PFSP passou a ter duas direções. Uma direção na tentativa 

de identificar a complexidade de vários PFSP (Brucker, 1998; Lawler et al. 1993) e a outra 

no desenvolvimento de novas heurísticas. Nessa década também ocorreu a proposição de 
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vários novos PFSP como o que separa o tempo de setup do tempo de processamento, que 

considera a data de entrega na função objetivo e que considera o tempo de processamento 

estocástico. 

 

Na quarta década surgiu o hybrid flowshop que consiste em cada centro de trabalho poder 

ser constituído de múltiplas máquinas em paralelo. Nessa década iniciou-se o uso das 

metaheurísticas (Aarts e Lenstra, 1997): Tabu Search; Simulated Annealing; e Algoritmo 

Genético. Também foram desenvolvidas técnicas baseadas em inteligência artificial, 

sistemas de apoio à decisão e sistemas especialistas (sistemas que utilizam o conhecimento 

empírico acumulado da resolução de problemas que já ocorreram para ajudar a resolução 

de novos problemas). 

 

Na quinta década continuou o crescimento na criação de novos problemas, funções 

objetivo e abordagens de resolução. A principal novidade foi o aumento das pesquisas 

considerando funções multi-objetivo (T’Kindt e Billaut, 1993). 

 

2.5. Algoritmos Genéticos para a Resolução do PFSP 

 

Os conceitos sobre o AG são apresentados no capítulo 4. 

 

2.5.1. AG de Chen et al. (1995) 

 

Chen et al. (1995) desenvolveram um AG para o PFSP com o makespan como critério de 

desempenho. O AG foi testado em problemas cujos dados foram extraídos de seqüências 

de números gerados de maneira pseudo-aleatória. O AG desenvolvido é composto das 

seguintes partes: 

 

a) Representação dos indivíduos; 

b) Geração da população inicial e tamanho da população; 

c) Avaliação da aptidão e método de seleção; 

d) Operadores genéticos; e 

e) Critério de parada. 
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A representação genética adotada foi a permutacional. Por exemplo, para uma instância 

com n = 8, o indivíduo pode ser representado por qualquer seqüência de oito tarefas como 

2 1 7 8 5 3 6 4. 

 

A população inicial é gerada a partir dos métodos CDS desenvolvido por Campbell et al. 

(1970) e de Dannenbring (1977). Os m - 1 primeiros membros da população são gerados 

pelo método CDS, o elemento de número m é gerado pelo método Dannenbring e do 

elemento m + 1 até o último elemento da população é gerado a partir do primeiro elemento 

da população, segundo e sucessivamente mediante a troca de posições de duas tarefas 

escolhidas aleatoriamente. 

 

Segundo Chen et al. (1995), depois de vários experimentos que não foram explicitados no 

artigo, conclui-se que 60 indivíduos era o melhor tamanho para a população. 

 

A forma como é calculada a aptidão de cada indivíduo é descrita a seguir. O primeiro 

passo é calcular o valor do makespan de todos os indivíduos da população. O segundo 

passo é selecionar o Cmáx que é o makespan de maior valor da população. O terceiro passo 

calcula a aptidão que é igual a diferença entre o valor do makespan do indivíduo e o Cmáx. 

O método de seleção não foi explicitado, a única informação dada foi que a seleção é 

baseada na aptidão do indivíduo. 

 

O operador de crossover utilizado foi o Partially Mapped (PMX) desenvolvido por 

Goldberg (1989). A seguir são apresentados os procedimentos do operador PMX 

juntamente com uma ilustração para n = 8. 

 

1 – Escolher aleatoriamente um intervalo comum aos dois pais. Por exemplo, as posições 

de quatro a seis. 

 

 

P1           4  3  7  8  1  2  5  6 
 
P2           1  4  6  5  3  7  8  2 
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2 – Armazenar relacionadamente os elementos dos dois intervalos selecionados. Na 

ilustração o armazenamento relacionado é o seguinte: 

 

 

3 – Trocar os dois intervalos. Na maioria das vezes os indivíduos resultantes não são 

viáveis porque ocorrem tarefas repetidas. O passo 4 corrige esse problema. 

 

 

 

4 – Trocar os elementos repetidos e que não estão dentro dos intervalos selecionados pelas 

tarefas armazenadas de P1 relacionados às tarefas de P2 e vice-versa. Depois desse passo 

os indivíduos são totalmente viáveis. 

 

Chen et al. (1995) realizaram testes com problemas gerados aleatoriamente para 

determinar a melhor combinação para as taxas de crossover e mutação. Foram usadas para 

a taxa de crossover os valores 1, 0.95 e 0.90 e para a taxa de mutação os valores 0.01, 

0.005 e 0. O resultado do experimento mostrou que a melhor combinação foi uma taxa de 

crossover igual a 1 e uma taxa de mutação igual a 0. O significado destes valores é que 

sempre os indivíduos escolhidos para reprodução passam pelo processo de crossover e 

nunca um indivíduo da população sofre mutação. 

P1’          4  3  7  5  3  7  5  6 
                    
                4  1  2  5  3  7  8  6 
 
 
 
P2’          1  4  6  8  1  2  8  2 
 
                3  4  6  8  1  2  5  7 

P1’          4  3  7  5  3  7  5  6 
 
P2’          1  4  6  8  1  2  8  2 

P1        P2 
 
 8          5 
 1          3 
 2          7 
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O critério de parada do método foi o número de gerações. Após alguns experimentos Chen 

et al. (1995) chegaram à conclusão que depois de 20 gerações a população do AG 

estagnava e não havia mais melhoria. 

 

2.5.2. AG de Reeves (1995) 
 

Reeves (1995) desenvolveu um AG para o PFSP com o makespan sendo o critério de 

desempenho. O AG tem como principal diferença uma probabilidade de mutação 

adaptativa e foi testado nas instâncias desenvolvidas pelo próprio autor e de Taillard 

(1993). 

 

A representação genética utilizada foi a permutacional que é sempre a opção natural para 

este tipo de problema. 

 

A aptidão de cada indivíduo na população é igual a vmáx – v, onde vmáx é o valor do maior 

makespan da população e v é o valor do makespan do indivíduo. 

 

A seleção do método de geração da população inicial deu-se com dois experimentos: i) 

gerada aleatoriamente; e ii) com um indivíduo gerado pela heurística NEH de Nawaz et al. 

(1983) e o restante da população gerada aleatoriamente. O segundo método obteve 

soluções tão boas quanto o primeiro método, mas com um tempo computacional menor, 

por isso, foi o método selecionado. 

 

O método de seleção é composto por dois tipos de seleção. O primeiro pai é selecionado 

usando o tipo de seleção por ranking com probabilidade Pi dada pela Equação 2.6 e o 

segundo pai é selecionado com probabilidade uniforme de acordo com a aptidão. 

 

                                                  
) M x (M 

k
  Pi

1+
=                                                      2.6 

onde:  

- i : é um indivíduo da população, i = 1, 2, ..., M; 

- k : é a posição do indivíduo na população em ordem descendente com relação ao 

makespan; e 

- M : é o tamanho da população. 
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Foram utilizados operadores genéticos de crossover e mutação. O operador de crossover 

foi o one-point crossover que consiste em escolher um mesmo ponto de corte em cada um 

dos pais, copiar as tarefas à esquerda do ponto de corte de cada pai para cada um dos 

descendentes e copiar as tarefas que faltam do outro pai na mesma ordem relativa. A 

Figura 2.3 ilustra o funcionamento do one-point crossover. 

 

 
Figura 2.3 – One-point crossover. 

 

O operador de mutação utilizado foi o shift que consiste em escolher uma tarefa 

aleatoriamente e colocar numa posição da seqüência escolhida aleatoriamente. Também é 

utilizada uma estratégia geracional que consiste em inserir os novos indivíduos no lugar 

dos indivíduos com aptidão menor que a média da aptidão da população. Esta estratégia 

garante a sobrevivência dos indivíduos com melhor aptidão, mas por outro lado, diminui a 

diversidade da população. 

 

O critério de parada utilizada foi o tempo de execução, dada a facilidade no momento de 

realizar os experimentos para comparar com outros métodos. 

 

Durante os experimentos preliminares Reeves (1995) notou que a população convergia 

prematuramente. Por isso, implementou uma probabilidade de mutação Pm adaptativa. Um 

parâmetro D é estabelecido para controlar a diversidade da população. A razão vmin/vmed 

Pai 1                     4   5   8  |  7   3   2   1   6 
 
Descendente 1      4   5   8  |   
 
Descendente 2      1   4   7  |   
 
Pai 2                      1   4   7  |  3   2   8   5   6 
 
 
 
Pai 1                     4   5   8  |  7   3   2   1   6 
 
 
Descendente 2      1   4   7  |  5   8   3   2   6   
 
Descendente 1      4   5   8  |  1   7   3   2   6 
 
 
Pai 2                      1   4   7  |  3   2   8   5   6 
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que mede a diversidade da população é calculada ao fim de cada geração, onde vmin é o 

valor do menor makespan da população e vmed é o valor do makespan médio da população. 

Se está razão é maior ou igual a D, a probabilidade de mutação é multiplicada por um fator 

de decréscimo θ (0 < θ <1), caso contrário esta probabilidade retorna ao valor inicial Pm
ini. 

A probabilidade Pm
ini é alta no início da busca e diminui durante o processo de evolução. 

Ela retorna a crescer quando a diversidade da população está baixa. 

 

Os valores dos parâmetros usados por Reeves (1995) foram: 

 

� Tamanho da população (M) : 30; 

� Probabilidade de crossover (Pc) : 1,0; 

� Probabilidade inicial de mutação (Pm
ini) : 0,8; 

� Taxa de decréscimo da probabilidade de mutação (θ) : 0,99; e 

� Parâmetro de controle de diversidade (D) : 0,95. 

 

Reeves (1995) também adotou a estratégia de fazer todos os pais passarem pelo processo 

de crossover, já que usou uma taxa de 100%. 

 

2.5.3. AG de Murata et al. (1996) 

 

Murata et al. (1996) desenvolveram três tipos de estudos com AG para o PFSP com o 

makespan sendo o critério de desempenho. Foram realizados estudos para os operadores 

genéticos, os valores dos parâmetros e as opções de hibridização. 

 

Neste AG, permutações foram usadas para representar as soluções do problema. 

 

Foram testadas duas formas para calcular a probabilidade de seleção. A Equação 2.7 foi 

escolhida porque conseguiu a maior pressão de seleção, e assim obteve os melhores 

resultados. A probabilidade de seleção é representada por Ps, t representa a geração atual, o 

tamanho da população é representado por Npop, x
i representa um indivíduo e a população 

atual é representada por Ψt = {xt
1, xt

2, ..., xt
Npop}. 
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∑
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                                   2.7 

Onde: 

- f (xt
i) é o valor do makespan do indivíduo i, i = 1, ..., Npop. 

- fM (Ψt) = max { f (xt
i) ∈ Ψt}. 

 

Quanto aos operadores genéticos de crossover e mutação foram testados dez operadores de 

crossover para determinar o melhor para o PFSP. O two-point crossover (versão 1) foi o 

que obteve o melhor desempenho: dois pontos da seqüência são escolhidos aleatoriamente 

de um dos pais. As tarefas que ficam desses pontos para as extremidades são copiados para 

o descendente. As tarefas que faltam na seqüência do descendente são copiadas na mesma 

ordem relativa do outro pai como mostra a Figura 2.4. Foram testados quatro operadores de 

mutação para determinar o melhor para o PFSP. A mutação shift foi a que obteve o melhor 

desempenho. 

 
Figura 2.4 – Two-point crossover (versão 1). 

 

Estudos também foram realizados para quantificar os parâmetros do AG. A Tabela 2.2 

mostra os valores que foram testados. A melhor combinação foi Npop = 10, Pc = 1.0 e Pm = 

1.0, tamanho da população, taxa de crossover e taxa de mutação, respectivamente. Estes 

valores significam que todos os indivíduos da população são substituídos por indivíduos 

gerados no processo de crossover e todos os indivíduos da população sofrem mutação. O 

melhor indivíduo da população anterior é copiado para a nova população no lugar de um 

indivíduo escolhido aleatoriamente. 

 

 

 

 

Pai 1                            2   3  |  5   7   8   1  |  4   6 
 
Descendente                2   3  |  7   5   1   8  |  4   6 
 
 
Pai 2                              6   7    3   5   4   1    8   2 
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Tabela 2.2 – Valores experimentados para os parâmetros do AG de Murata et al. (1996). Fonte: 

Murata et al. (1996). 

Npop Pc Pm 

5 0,5 0,5 

10 0,6 0,6 

20 0,7 0,7 

30 0,8 0,8 

40 0,9 0,9 

50 1,0 1,0 

 

O último estudo realizado foi testar qual o melhor método para hibridizar com o AG. 

Foram testados duas opções, um algoritmo simulated annealing e um algoritmo de busca 

local. A hibridização do AG com o algoritmo de busca local foi o que obteve o melhor 

desempenho. Para reduzir o custo computacional da busca local usou-se a estratégia de 

avaliar só uma parte α da vizinhança de uma solução, por exemplo, α = 10% significa que 

10% das soluções da vizinhança são escolhidas aleatoriamente. Não foi mencionada que 

tipo de estrutura de vizinhança foi utilizada. Para verificar qual seria o melhor valor para o 

parâmetro α foram feitos testes com os seguintes valores: 100%, 75%, 50%, 10% e 5%. O 

melhor valor para α foi 75%. 

 

O AG com busca local (α = 75%) é o melhor algoritmo para o PFSP desenvolvido por 

Murata et al. (1996). Ele é composto de sete passos que são descritos a seguir. 

 

1 – Inicialização : gera uma população inicial de indivíduos de forma aleatória de tamanho 

Npop. 

 

2 – Busca local : aplica a busca local em todos os indivíduos da população se um critério 

de parada é satisfeito a busca é encerrada senão o processo continua e as novas soluções 

comporão a população atual. O critério de parada é o seguinte: se depois dos α vizinhos 

avaliados tiver havido melhoria em algum indivíduo a busca é encerrada, senão, são 

avaliados todos os vizinhos de todos os indivíduos da população. 

 

3 – Seleção : seleciona Npop pares de pais da população atual de acordo com a 

probabilidade de seleção. 
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4 – Crossover : Aplica o operador crossover a cada par de pais escolhidos com uma 

probabilidade Pc. Se o operador não for aplicado é escolhido um dos pais para compor a 

nova população. 

 

5 – Mutação : aplica o operador de mutação a cada indivíduo com a probabilidade Pm, esta 

probabilidade é referente a cada indivíduo e não a cada tarefa como na representação 

binária. 

 

6 – Estratégia elitista : adiciona o indivíduo de melhor aptidão da população atual na nova 

população no lugar de um indivíduo escolhido aleatoriamente. 

 

7 – Critério de parada : finaliza a execução do algoritmo se a condição de parada (tempo de 

execução) é satisfeita, caso contrário, retorna ao passo 2. 

 

2.5.4. AG de Ruiz et al. (2006) 

 

Ruiz et al. (2006) desenvolveram dois novos AG para o PFSP sendo também o makespan o 

critério de desempenho. Os AGs têm: inicialização eficiente; estratégia geracional que só 

aceita indivíduos melhores e com seqüência única; quatro novos operadores de crossover 

que foram desenvolvidos; um procedimento para evitar a convergência prematura; e 

proposta de uma busca local para a hibridização com o primeiro AG. Foi realizado um 

projeto de experimento para determinar a melhor combinação de operadores genéticos e 

valores dos parâmetros dos AGs desenvolvidos. 

 

A representação da solução utilizada foi permutacional, onde a ordem relativa das tarefas 

na permutação indica a ordem de processamento das mesmas. 

 

Para gerar a população inicial Ruiz et al. (2006) desenvolveram uma modificação na 

heurística NEH de Nawaz et al. (1983). A modificação foi a seguinte: depois de ordenar 

todas as tarefas em ordem decrescente do tempo total de processamento, são escolhidas 

duas tarefas aleatoriamente e colocadas nas duas primeiras posições, depois disso o 

procedimento continua igual ao NEH original. A população inicial é composta por um 

indivíduo gerado pela heurística NEH, (Bi% - 1) indivíduos gerados pela heurística NEH 
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modificada e os (100 – Bi)% indivíduos restantes são gerados aleatoriamente. O parâmetro 

Bi indica o percentual de indivíduos gerados eficientemente. 

 

Duas condições foram desenvolvidas para controlar como os indivíduos gerados 

substituem os indivíduos da população atual. A primeira é que um indivíduo gerado só 

substitui o indivíduo da população atual com o pior makespan se o seu makespan for 

menor e a segunda condição é que a seqüência do novo indivíduo seja única em relação a 

população atual. Isto ajuda a manter a diversidade na população. 

 

Ruiz et al. (2006) desenvolveram quatro novos operadores de crossover para o PFSP que 

são baseados na idéia de identificar e manter os bons blocos construídos. O primeiro 

operador foi chamado de Similar Job Order Crossover (SJOX) que funciona da seguinte 

maneira. Os dois pais são examinados posição por posição. Quando as tarefas são idênticas 

na mesma posição elas são copiadas para os dois descendentes (Figura 2.5), depois é 

escolhido um ponto de corte aleatoriamente e cada um dos descendentes herda todas as 

tarefas a esquerda do ponto de corte de um dos pais (Figura 2.6) e finalmente as tarefas que 

faltam em um dos descendentes são copiados em ordem relativa do outro pai (Figura 2.7). 

O segundo operador de crossover foi resultado da constatação de que algumas vezes 

muitas tarefas iguais isoladas apareciam, por isso, desenvolveram outro operador de 

crossover chamado Similar Block Order Crossover (SBOX). A única diferença do SBOX 

em relação ao SJOX é que no primeiro passo só são copiados blocos idênticos de ao menos 

duas tarefas. O terceiro operador de crossover é chamado de Similar Job 2-Point Order 

Crossover (SJ2OX) que é similar ao operador SJOX com a diferença que são dois pontos 

de corte, ao invés de um. As tarefas entre dois pontos de corte são copiadas de um dos pais, 

enquanto os trabalhos dos dois extremos são preenchidos em ordem relativa pelas tarefas 

dos extremos do outro pai. O quarto operador de crossover é chamado de Similar Block 2-

Point Order Crossover (SB2OX) que é similar ao operador SBOX só que utiliza dois 

pontos de corte. 
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Pai 1 3 15 17 8 14 11 13 16 19 6 1 9 18 5 4 2 10 7 20 12 
                     

                     
Desc. 1 3    14 11 13 16       4 2   20 12 
                     
                     
Desc. 2 3    14 11 13 16       4 2   20 12 
                     

                     
Pai 2 3 17 9 15 14 11 13 16 6 18 5 19 7 8 4 2 1 10 20 12 

 

Figura 2.5 – Primeiro passo do crossover SJOX. Fonte: Ruiz et al. (2006). 

 

 

Pai 1 3 15 17 8 14 11 13 16 19 6 1 9 18 5 4 2 10 7 20 12 
                     
                     
Desc. 1 3 15 17 8 14 11 13 16       4 2   20 12 
                     
                     
Desc. 2 3 17 9 15 14 11 13 16       4 2   20 12 
                     
                     
Pai 2 3 17 9 15 14 11 13 16 6 18 5 19 7 8 4 2 1 10 20 12 

 

 

Figura 2.6 – Segundo passo do crossover SJOX. Fonte: Ruiz et al. (2006). 

 

Pai 1 3 15 17 8 14 11 13 16 19 6 1 9 18 5 4 2 10 7 20 12 
                     
                     
Desc. 2 3 17 9 15 14 11 13 16 8 19 6 1 18 5 4 2 10 7 20 12 
                     
                     
Desc. 1 3 15 17 8 14 11 13 16 9 6 18 5 19 7 4 2 1 10 20 12 
                     
                     
Pai 2 3 17 9 15 14 11 13 16 6 18 5 19 7 8 4 2 1 10 20 12 

 

Figura 2.7 – Terceiro passo do crossover SJOX. Fonte: Ruiz et al. (2006). 

 

O tipo de mutação implementada foi a shift que consiste em escolher uma tarefa 

aleatoriamente para ser colocado numa posição escolhida também aleatoriamente. 

 

 

Ponto de corte 

Ponto de corte 
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O procedimento restart scheme foi desenvolvido com o objetivo de evitar a convergência 

prematura do AG. Este procedimento é executado toda vez que um número de gerações 

sucessivas Gr são executadas e não é gerado um indivíduo melhor. Este procedimento é 

descrito a seguir. 

 

1  -  Colocar a população em ordem crescente em relação ao makespan; 

2  -  Manter os 20% dos melhores indivíduos; 

3  - Gerar 40% de novos indivíduos a partir da mutação shift dos 20% melhores indivíduos; 

4  -  Gerar 20% dos indivíduos a partir da modificação da heurística NEH; e 

5  -  Gerar os 20% restantes dos indivíduos de forma aleatória. 

 

A hibridização consiste da aplicação de uma busca local baseada na técnica insertion 

neighborhood que realiza todas as possíveis inserções e armazena a melhor seqüência. Se o 

resultado for melhor do que a seqüência atual a busca é repetida, senão a busca é 

encerrada. A busca local é realizada a cada geração em cada indivíduo com a probabilidade 

Penh. 

 

O primeiro AG não tem a etapa de busca local, ou seja, Penh = 0 o segundo AG tem a etapa 

de hibridização, ou seja, Penh > 0. 

 

O projeto de experimentos consiste da comparação de todas as possíveis combinações de 

operadores genéticos e valores dos parâmetros. A seguir são apresentadas as combinações 

avaliadas. 
 

� Tipo de seleção : ranking e torneio; 

� Tipo de crossover : OP, OX, PMX, SB2OX, SBOX, SJ2OX, SJOX e TP; 

� Probabilidade de crossover (Pc) : 0,0 – 0,1 – 0,2 – 0,3 e 0,4; 

� Probabilidade de mutação (Pm) : 0,0 – 0,05 – 0,01 e 0,015; 

� Tamanho da população (Psize) : 20, 30, 40, e 50; 

� Restart (GR) : 25, 50 e 75; e 

� Probabilidade de melhoria local (Penh) : 0,025 – 0,05 – 0,075 e 0,1. 
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O total de combinações avaliadas foram 2 x 8 x 5 x 4 x 4 x 3 x 4 = 15.360. Criou-se 68 

instâncias combinando os valores de n e m, n = {20, 50, 80, ..., 440, 470, 500} e m = {5, 

10, 15, 20}, seguindo a metodologia de Taillard (1993). 

 

Os operadores utilizados e os valores finais dos parâmetros dos AG de Ruiz et al. (2006) 

foram os seguintes: tipo de seleção: torneio; tipo de crossover: SBOX; Pc : 40%; Pm : 1%; 

Psize : 20; Gr : 25; Penh = 5% e Bi = 25%. 

 

O resultado interessante foi que em comparação com os limites inferiores dos problemas 

gerados, a melhor combinação de operadores e valores dos parâmetros obteve um desvio 

de 3,22%, enquanto a pior combinação obteve 3,85%. Como a diferença não foi tão 

significativa Ruiz et al. (2006) afirmaram que isto se deveu a robustez dos AG 

desenvolvidos. 
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CAPÍTULO 3 – O PROBLEMA DE SEQÜENCIAMENTO PERMUTACIONAL 

CONTÍNUO FLOWSHOP 

 

Este capítulo é composto de três seções que tratam do CPFSP. A primeira seção apresenta 

a definição do CPFSP. A segunda seção mostra o CPFSP modelado como um POCP. 

Finalmente, a terceira seção apresenta a descrição e análise de seis artigos recentes 

referente a métodos de resolução do CPFSP. 

 

3.1. Definição do CPFSP 

 

O CPFSP é um problema da classe FSP originado por pelo menos uma alteração em uma 

das suposições J8 ou P6, dadas na Seção 2.1. A suposição J8 permite que os trabalhos 

esperem entre máquinas consecutivas pelo processamento e a suposição P6 garante que 

existe área suficiente para armazenar os trabalhos em espera. A definição do CPFSP é 

semelhante ao do PFSP com o acréscimo da restrição de que os trabalhos não podem 

esperar entre máquinas consecutivas. Dado um conjunto de n tarefas para serem 

processadas num conjunto de m máquinas, onde todas as tarefas usam a mesma ordem de 

processamento nas máquinas e depois de iniciada uma tarefa, ela não deve esperar por 

processamento entre duas máquinas consecutivas, i.e., as tarefas devem ser processadas 

continuamente, o tempo de processamento da tarefa i na máquina j é dado por pij, i = 1, 2, 

3,..., m e j = 1, 2, 3,..., n. O CPFSP consiste em determinar uma seqüência específica das n 

tarefas que otimize um critério de desempenho estabelecido. Esta definição só é válida na 

prática se as demais suposições apresentadas na Seção 2.1 forem verdadeiras. A Figura 3.1 

apresenta o gráfico de Gantt de um CPFSP. Nota-se no gráfico de Gantt que não existe 

folga entre o processamento de cada uma das tarefas. 

 

Máq.                

Mm      J1 ...   Jn-k Jn-k+1 ...  Jn 

Mm-1     J1 ...   Jn-k  Jn-k+1 ...  Jn  

..
. 

   ..
. 

   ..
. 

 ..
. 

  ..
. 

  

M3   J1 ...   Jn-k  Jn-k+1  ... Jn    

M2  J1 ...   Jn-k  Jn-k+1 ...  Jn     

M1 J1 ...   Jn-k  Jn-k+1 ...  Jn      

                                

               Tempo 

Figura 3.1 – Gráfico de Gantt de um CPFSP com n trabalhos e m máquinas. 
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3.2. O CPFSP como um POCP 

 

O modelo matemático para o CPFSP não foi apresentado neste capítulo devido sua 

semelhança com o modelo matemático descrito para o PFSP, apresentado na seção 2.2, 

com a alteração apenas das restrições do grupo 2 que devem ser de igualdade. 

 

Também é pequena a diferença do modelo POCP para o CPFSP em relação ao PFSP. Esta 

diferença está somente no cálculo da função g. Fink e Voβ (2003) apresentam uma fórmula 

para calcular o valor da função g. A seguir são apresentadas as duas fórmulas para calcular 

o valor de g de uma permutação s com critério de desempenho o tempo total de fluxo ou 

makespan. 

 

Tempo total de fluxo (TTF) :     gCPFSP(TTF) = ∑∑∑
===

− +−+
m

j

ij

n

i

n
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isis pdin
112

)(),1()1(              3.1 

 

 

             Makespan :     gCPFSP(makespan) =  ∑∑
==

− +−+
m
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n

i
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12

)(),1( )()1(                          3.2 

 

A incógnita dik consiste no tempo de espera na primeira máquina entre o começo da tarefa i 

e o começo da tarefa k, quando k é processado posteriormente a i, em que 1≤ i ≤n e 1 ≤ k ≤ 

n, com i ≠ k. A Equação 3.3 mostra como se calcula o valor de dik. 
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Segundo Röck (1984) os primeiros a analisarem a complexidade do CPFSP para m>2 

foram Lenstra et al. (1977),  seguidos por Papadimitriou e Kanellakis (1980) em que 

ambos provaram que o problema é NP-hard em sentido forte para m≥4. Existem casos que 

podem ser tratados polinomialmente, desde que os tempos de processamento satisfaçam 

uma estrutura especial dada por Panwalkar e Woollam (1980). Por fim, Röck (1984) 

provou para m≥3 que o CPFSP com o critério de minimização sendo o makespan é NP-

hard em sentido forte. 
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3.3. Métodos de Resolução para o CPFSP 

 

Foram avaliados seis artigos com propostas de métodos para a resolução do CPFSP. Os 

dois primeiros artigos usaram o critério de desempenho como sendo o tempo total de fluxo 

e os outros quatro artigos restantes usaram o makespan. Um dos artigos com o critério de 

desempenho sendo o tempo total de fluxo usou as instâncias de Taillard (1993) para testar 

os métodos propostos. Dois dos artigos com o critério de desempenho sendo o makespan 

usaram as instâncias de Reeves (1995) e Heller (1960) para testar os métodos propostos. 

 

Os conceitos sobre o AG são apresentados no capítulo 4. 

 

3.3.1. AG de Chen et al. 

 

Chen et al. (1996) proporam dois AGs para o CPFSP com o tempo total de fluxo sendo o 

critério de desempenho. Um dos AGs foi implementado com população inicial eficiente e o 

outro com população inicial gerada aleatoriamente. A proposta principal do trabalho foi 

analisar a influência dos elementos do AG e os valores dos parâmetros de controle no 

desempenho do mesmo. Os AGs foram testados com problemas gerados aleatoriamente. 

 

O trabalho foi dividido em duas partes, a primeira relacionada à escolha dos elementos do 

AG e a segunda relacionada à otimização dos parâmetros de controle. A seguir são 

apresentados os elementos que compõem o AG de Chen et al. (1996). 

 

a) Representação do AG; 

b) População inicial; 

c) Tamanho da população; 

d) Método de seleção; 

e) Operadores genéticos; e 

f) Critério de parada.  

 

A representação genética adotada foi a permutacional. Por exemplo, para uma instância 

com n = 8 a estrutura pode ser representada por qualquer seqüência de oito trabalhos como 
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4 7 3 1 8 6 2 5. Segundo Cleveland e Smith (1989) apud Chen et al. (1996) vários 

operadores genéticos eficientes têm sido desenvolvidos para esse tipo de representação. 

 

A população inicial é gerada a partir de diferentes procedimentos, com dois objetivos, 

melhorar a aptidão média e a diversificação da população inicial. O primeiro objetivo está 

relacionado com a redução do tempo computacional e o segundo objetivo com uma busca 

mais eficiente. No primeiro AG metade da população inicial é gerada aleatoriamente e a 

outra metade usando algumas heurísticas conhecidas. Nas heurísticas utilizadas existem 

duas para o PFSP, os métodos CDS e de Danninbring e uma para o CPFSP, o método Job 

Insertion Based (JIB) de Rajendran e Chaudhuri (1990). O procedimento que gera a 

população inicial é o seguinte: o primeiro membro é gerado pelo método JIB, os m-1 

membros seguintes são gerados pelo método CDS, onde m é o número de máquinas, o 

membro m + 1 é gerado pelo método de Danninbring; se o número de membros gerados é 

menor que a metade do tamanho da população, então um membro é selecionada 

aleatoriamente e duas tarefas são escolhidas aleatoriamente e trocadas suas posições, dando 

origem a um novo membro. Esse procedimento é repetido até o número de membros ser 

igual à metade do tamanho da população. Para analisar o efeito da população inicial no 

desempenho do AG, foi implementado um segundo AG com a população inicial gerada 

totalmente de forma aleatória e comparado com o primeiro AG. 

 

O procedimento apresentado a seguir é utilizado para determinar o valor da aptidão e da 

probabilidade de seleção de cada indivíduo da população. 

 

1 – Calcular o tempo total de fluxo de cada indivíduo da população; 

2 – Determinar o Fmax que é o tempo total de fluxo máximo encontrado na população; 

3 – Calcular o valor da aptidão de cada indivíduo, que é igual à diferença entre o Fmax e o 

tempo total de fluxo do indivíduo; e 

4 – Calcular a probabilidade de seleção de cada indivíduo, igual à divisão do valor da 

aptidão do indivíduo pela soma do valor das aptidões de todos os indivíduos da população. 

 

A probabilidade de seleção de cada membro é usada como critério de seleção para os dois 

pais que participarão do processo de reprodução. O procedimento de seleção adotado foi o 

método de seleção por roleta. 
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Os operadores de crossover e mutação foram os operadores genéticos escolhidos para 

compor os AGs. O operador de crossover utilizado foi o PMX desenvolvido por Goldberg 

(1989) e descrito na seção 2.5.1. O operador de mutação adotado foi o swap, que troca dois 

trabalhos de posição aleatoriamente. 

 

Existem dois fatores conflitantes a considerar no critério de parada: a intensidade da busca 

e o tempo computacional. Se a intensidade da busca é grande o tempo computacional é alto 

e a qualidade da solução é melhor, caso contrário, uma intensidade de busca menor exige 

menos tempo computacional, mas a qualidade da solução final pode ser pior. Por isso, 

foram usados dois critérios de parada para a busca: se o número de estruturas na população 

com o menor tempo de fluxo é maior que 60% da população ou o número de gerações é 

igual a 60. 

 

A segunda parte da metodologia de Chen et al. (1996) foi otimizar os parâmetros de 

controle do AG. Foram adotados os mesmos parâmetros de Grefenstette (1986): tamanho 

da população (N), taxa de crossover (C), taxa de mutação (M), gap geracional (G), scaling 

window (W) e estratégia de seleção (Se). Assim, os parâmetros do AG são representados da 

seguinte forma AG (N, C, M, G, W, Se). 

 

O gap geracional é o percentual da população que é trocada a cada geração. O scaling 

window é o número de gerações durante o qual o valor de f’ é atualizado, onde f’ é usado 

como uma base para calcular o valor de aptidão da cada estrutura. Para um problema de 

minimização o valor de f’ é definido como o valor do objetivo máximo do indivíduo 

avaliado e o valor da aptidão de um indivíduo é definido como a diferença entre f’ e o valor 

objetivo do indivíduo. O valor de W é definido para estar entre 0 e 7. Existem duas 

estratégias de seleção (Se): o indivíduo com a melhor aptidão é copiado para a próxima 

população (Se = E) ou todos os indivíduos da população são substituídos por novos 

indivíduos (Se = P). 

 

DeJong (1980) apud Chen et al. (1996) depois de realizar experimentos para diversas 

combinações de valores dos parâmetros chegou aos seguintes valores para os parâmetros 

AG (50; 0.6; 0.001; 1.0; 7; E). Grefenstette (1986) apud Chen et al. (1996) desenvolveu 
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um AG para otimizar os parâmetros de outro AG e encontrou os seguintes valores AG (30; 

0.95; 0.01; 1.0; 1; E). 

 

Chen et al. (1996) testaram os valores ótimos dos parâmetros de DeJong (1980) e 

Grefenstette (1986). Eles observaram que ambos os conjuntos não se comportaram bem 

para o CPFSP. Por isso, Chen et al. (1996) modificaram o AG de Grefenstette (1986) e 

depois o utilizou para determinar os valores ótimos dos parâmetros de controle para o AG 

do CPFSP. Os novos valores encontrados foram N = 95, C = 0.725 e M = 0.009. 

 

3.3.2. Metaheurísticas de Fink e Voβ 

 

Fink e Voβ (2003) desenvolveram e analisaram vários métodos de resolução para o CPFSP 

com o critério de desempenho sendo o tempo total de fluxo. A implementação foi realizada 

com o software HotFrame  (Heuristic OpTimization FRAMEwork) sem a preocupação de 

calibrar otimamente os parâmetros dos métodos. Para avaliar o desempenho dos métodos 

foram usadas as instâncias desenvolvidas por Taillard (1993). 

 

Os métodos construtivos nearest neighbor (NN) e cheapest insertion (Chins) foram os 

primeiros a serem descritos por Fink e Voβ (2003). A heurística NN consiste em inserir em 

cada passo do método uma tarefa ainda não incluída com o mínimo tempo de espera para a 

última tarefa da seqüência em construção. A heurística Chins considera todas as possíveis 

inserções de todas as tarefas ainda não incluídas enquanto constrói uma seqüência 

completa, i.e, escolhendo uma tarefa inicial, em cada passo k, k= 2,..., n, a melhor 

combinação das n-k+1 tarefas em todas as k posições de inserção é determinada. A 

complexidade da heurística Chins é O(n3). A eficácia desses dois métodos construtivos 

depende da escolha da tarefa inicial. 

 

Para melhorar a eficiência dos métodos construtivos foi utilizado o método Pilot 

desenvolvido por Duin e Voβ (1999) apud Fink e Voβ (2003) que consiste em considerar 

as conseqüências para o valor da função objetivo devido a escolha da inserção de uma 

nova tarefa, memorizando o melhor resultado e realizando todos os movimentos possíveis. 

Dessa forma consegue-se superar os usuais métodos míopes. O método pilot tem um 

parâmetro chamado extensão que define quantas posições da seqüência serão avaliadas 
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para todas as possíveis combinações, por exemplo, pilot-1 significa que para a primeira 

posição da seqüência as n tarefas são testadas com todas as possíveis inserções para as 

outras posições. O método pilot possui complexidade O(n6), por isso, para n grande o 

tempo computacional aumenta muito. 

 

São descritos os movimentos swap e shift com complexidades O(n2) para gerar as 

vizinhanças. O movimento swap consiste na troca de pares de tarefa e o movimento shift 

consiste em inserir alguma tarefa numa nova posição. Esses dois movimentos são 

ilustrados na Figura 3.2. 

 

 
Figura 3.2 – Movimentos swap e shift. Fink e Voβ (2003) 

 

As estratégias gulosas steepest descent (SD) e iterated steepest descent (ISD) são 

implementadas com o objetivo de avaliar a qualidade dos movimentos swap e shift. O 

método SD consiste em selecionar e realizar em cada iteração o melhor movimento, a 

busca se encerra no ótimo local. Como a solução do ótimo local pode ser insatisfatória, o 

método ISD depois de encontrar um ótimo local utiliza algum esquema de perturbação 

para gerar uma nova solução inicial e recomeçar a busca. 

 

Foram escolhidas as metaheurísticas Tabu Search (Glover e Laguna, 1997 apud Fink e 

Voβ, 2003) e Simulated Annealing (Kirkpatrick et al., 1983 apud Fink e Voβ, 2003) 

porque são do tipo busca local e poderiam aproveitar os métodos construtivos e os tipos de 

movimentos. 

 

A implementação dos métodos desenvolvidos também usou o software HotFrame. Os 

conceitos como problemas, soluções, vizinhanças e estratégias de diversificação são 

tratadas como objetos ou classes. O HotFrame gera estruturas para busca local e com a 

seleção de diferentes regras de vizinhança constrói os métodos SD e ISD. Do mesmo 

swap shift 

p1                              p2 p1                    p2 
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modo, pode ser modificado para dar os métodos simulated annealing e tabu search. 

Também fornece componentes para representar os espaços de busca como estruturas de 

permutação. Fica a cargo do usuário, essencialmente, implementar a função objetivo. Para 

reduzir o tempo de execução, a avaliação dos movimentos swap e shift só é calculada a 

mudança realizada na seqüência. Por exemplo, usando um Pentium II (266 MHz) e um 

problema com n = 200, avaliou-se que o claculo de um movimento da forma direta se gasta 

0.9 segundos, enquanto fazendo essa adaptação se gasta 0.05 segundos. 

 

Os experimentos de Fink e Voβ (2003) mostram que o simulated annealing provê 

resultados com alta qualidade e baixo tempo de execução. Os métodos baseados no tabu 

search estático e estrito provêm resultados insatisfatórios. O tabu search reativo com 

solução inicial gerada pelo método pilot-10-Chins apresentou os melhores resultados entre 

todos os métodos avaliados. 

 

3.3.3. Algoritmo Genético e Simulated Annealing de Aldowaisan e Allahverdi 

 

Aldowaisan e Allahverdi (2003) desenvolveram quatro algoritmos de busca local para o 

CPFSP com o makespan como critério de desempenho. Dois desses algoritmos têm a 

solução básica inicial obtida pelo algoritmo simulated annealing (SA) de Chakravarthy e 

Rajendran (1999) e os outros dois têm a solução básica inicial obtida pelo AG de Chen et 

al. (1996). Para o processo de busca local foi desenvolvida uma nova heurística chamada 

de insertion technique (IT). Os algoritmos foram testados com problemas gerados 

aleatoriamente. 

 

O método IT foi inspirado na heurística NEH criada por Nawaz et al. (1983). O método IT 

consiste em considerar dois trabalhos consecutivos como um bloco e o inserir em todas as 

posições ainda disponíveis na seqüência. O Quadro 3.1 apresenta a descrição do método 

IT.  
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Quadro 3.1 – Descrição do método IT. 

 

 

Segundo Aldowaisan e Allahverdi (2003) até aquele momento a metaheurística simulated 

annealing ainda não tinha sido aplicada ao CPFSP. Eles optaram por adaptar o algoritmo 

SA desenvolvido por Chakravarthy e Rajendran (1999) para outro tipo de problema de 

scheduling. O AG usado por Aldowaisan e Allahverdi (2003) é o mesmo desenvolvido por 

Chen et al. (1996) para o CPFSP. 

 

O Quadro 3.2 apresenta os pseudo-códigos das quatro buscas locais desenvolvidas por 

Aldowaisan e Allahverdi (2003). As buscas locais SA-1 e GEN-1 têm as soluções básicas 

iniciais obtidas pelos algoritmos SA e GEN, respectivamente. A busca local é 

implementada através da aplicação dos métodos NEH e IT alternadamente cinco vezes 

cada. Os experimentos realizados mostraram que dessa forma a qualidade da solução final 

era melhor que se os métodos fossem aplicados sucessivamente. Os experimentos também 

mostraram que a aplicação desses métodos mais de cinco vezes não proporcionava 

melhoria significativa na qualidade da solução final. As buscas locais SA-2 e GEN-2 têm 

as soluções básicas iniciais obtidas pelos algoritmos SA-1 e GEN-1, respectivamente. A 

busca local foi implementada através da aplicação do procedimento pairwise três vezes. O 

procedimento pairwise consiste em examinar cada possível troca de pares de uma tarefa 

numa posição com todas as outras tarefas. Os experimentos também mostraram que não 

havia melhoria significativa na qualidade da solução final quando o procedimento pairwise 

era aplicado mais de três vezes. 

 

Passo 1: Escolher uma seqüência s, onde os elementos são representados por 

s (i), i é a posição na seqüência e varia de 1 a n. k := 0. 

 

Passo 2: k := k + 1. Selecionar s (k) e s (k + 1) para formar o bloco. Colocar 

o bloco nas posições de k a n. Para cada seqüência criada, trocar as posições 

de s (k) e s (k + 1) dentro do bloco e calcular o valor do makespan. 

Selecionar para a seqüência corrente a com menor makespan. 

 

Passo 3: Repetir o passo 2 até k = n - 1. 
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Quadro 3.2 – Os pseudo-códigos das buscas locais SA-1, SA-2, GEN-1 e GEN-2. 

 

 

Aldowaisan e Allahverdi (2003) testaram os seus quatro algoritmos, o SA de Chakravarthy 

e Rajendran (1999), o AG de Chen et al. (1996) denominado de GEN, a melhor heurística 

desenvolvida por Gangadharan e Rajendran (1993) denominado de GAN-RAJ e a 

heurística desenvolvida por Rajendran (1994) denominada de RAJ. Para os testes foram 

usados 1.000 problemas gerados aleatoriamente com 20 combinações diferentes de 40 a 

120 tarefas e 5 a 20 máquinas. Os algoritmos foram implementados em linguagem 

FORTRAN e os testes realizados num SUN SPARC Station 20. Os tempos de execução 

foram omitidos, mas segundo os autores o maior tempo de execução foi 10 segundos. O 

resumo dos resultados dos testes está apresentado na Tabela 3.1, na qual vê-se que os 

algoritmos propostos (SA-1, SA-2, GEN-1 e GEN-2) têm melhores desempenhos, já que as 

soluções iniciais são geradas a partir de heurísticas eficientes. O desempenho na média é 

semelhante para: SA-1 e GEN-1; e SA-2 e GEN-2. 

 

 

 

 

Algoritmo SA-1 (GEN-1) 
 
Passo 1: Executar o algoritmo SA (GEN). 
 

Passo 2: Fazer s0 = s*, onde s* é a solução final obtida pelo algoritmo SA 
(GEN) e s0 é a solução básica. 
 

Passo 3: Aplicar sobre s0 os métodos NEH e IT alternadamente cinco 
vezes cada. 
 

Passo 4: A solução final é a melhor seqüência obtida no passo 3. 
 

Algoritmo SA-2 (GEN-2) 
 
Passo 1: Executar o algoritmo SA-1 (GEN-1). 
 

Passo 2: Fazer s0 = s*, onde s* é a solução final obtida pelo algoritmo SA-
1 (GEN-1) e s0 é a solução básica. 
 

Passo 3: Aplicar sobre s0 o procedimento pairwise três vezes. 
 

Passo 4: A solução final é a melhor seqüência obtida no passo 3. 
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Tabela 3.1 – Resumo dos resultados dos experimentos de Aldowaisan e Allahverdi (2003). Fonte: 

Aldowaisan e Allahverdi (2003). 

 Problemas GAN-RAJ (%) RAJ (%) SA (%) SA-1 (%) SA-2 (%) GEN (%) GEN-1 (%) GEN-2 (%) 
40 x 5 4,97 6,15 3,29 0,96 0,42 6,18 0,75 0,31 
40 x 10 4,91 5,24 2,66 0,63 0,44 6,32 0,60 0,26 
40 x 15 5,41 4,79 2,56 0,46 0,18 5,78 0,88 0,58 
40 x 20 5,09 4,42 2,87 0,57 0,30 6,04 0,57 0,34 
60 x 5 5,26 6,52 2,98 1,09 0,35 6,22 1,12 0,26 
60 x 10 5,64 4,50 2,15 0,79 0,53 5,70 0,56 0,20 
60 x 15 5,85 4,66 2,32 0,50 0,18 6,01 0,65 0,41 
60 x 20 5,99 5,06 2,44 0,54 0,23 5,76 0,74 0,39 
80 x 5 5,48 7,04 3,26 1,15 0,29 6,20 1,17 0,18 
80 x 10 6,32 4,78 2,28 0,58 0,25 5,63 0,50 0,21 
80 x 15 6,99 4,81 2,18 0,42 0,18 5,82 0,50 0,19 
80 x 20 7,04 4,83 2,14 0,61 0,28 5,33 0,57 0,23 
100 x 5 5,83 6,99 3,37 1,20 0,22 5,69 1,41 0,48 
100 x 10 6,51 4,73 2,10 0,78 0,40 5,17 0,59 0,27 
100 x 15 7,37 4,83 1,91 0,66 0,33 5,39 0,46 0,19 
100 x 20 8,00 4,31 1,84 0,48 0,16 5,22 0,43 0,20 
120 x 5 6,61 7,77 3,52 1,40 0,30 5,61 1,39 0,20 
120 x 10 6,76 4,56 2,09 0,65 0,31 4,67 0,52 0,16 
120 x 15 7,54 4,34 1,50 0,44 0,18 4,84 0,41 0,21 
120 x 20 7,64 4,31 1,75 0,57 0,27 4,93 0,48 0,19 
Média 6,26 5,23 2,46 0,72 0,29 5,63 0,72 0,27 
 

3.3.4. As Heurísticas de Aldowaisan e Allahverdi 

 

Aldowaisan e Allahverdi (2004) desenvolveram também oito heurísticas para o CPFSP 

com o makespan como critério de desempenho. As heurísticas diferem em três aspectos: 

primeiro, a escolha entre os dois métodos de inserção; segundo, a escolha entre os dois 

critérios de parada; e finalmente, em usar ou não o procedimento de troca pairwise. As 

heurísticas propostas são comparadas às duas heurísticas de Rajendran e Chaudhuri (1990) 

e ao AG de Chen et al. (1996). As heurísticas foram testadas com problemas gerados 

aleatoriamente. 

 

As heurísticas propostas por Aldowaisan e Allahverdi (2004) denotadas por PHi (Proposed 

Heuristic), onde i= 1, 2, 3 e 4, fazem uso da seqüência gerada pelo algoritmo ASI 

(Algoritmo de Seqüência Inicial), descrito no Quadro 3.3. 
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Quadro 3.3 – Descrição do algoritmo ASI. 

Passo 1 : Para k = 2, s1= {1,..., n} e s2= φ . 

 

Passo 2 : Escolher a tarefa i, tal que, 1

11

 r   , spp
m

j

rj

m

j

ij ∈∀≤∑∑
==

, onde pij é o tempo de 

processamento da tarefa i na máquina j. Remover a tarefa i de s1 e colocar na primeira 

posição de s2. 

 

Passo 3 : Se k = n ir para o passo 5, se não, calcular TTC1k (tempo total de completação, 

considerando as tarefas da primeira posição até a k posição), para cada tarefa i ∈ s1, depois 

de ser inserida na posição k. Remover a tarefa i ∈ s1 que gerar o menor TTC1k e inserir em 

s2 na posição k. Atualizar k = k+1. 

 

Passo 4 : Ir para o passo 3. 

 

Passo 5 : Parar a iteração. A seqüência inicial é s2. 

 

As duas primeiras heurísticas propostas se diferenciam apenas pelo método de inserção 

utilizado no passo 3. A primeira heurística, PH1, usa o método de inserção NEH, 

desenvolvido por Nawaz et al. (1983). A segunda heurística, PH2, usa o método de 

inserção, RAZ, proposto por Rajendran e Ziegler (1997) apud Aldowaisan e Allahverdi 

(2004). O Quadro 3.4 apresenta a descrição das heurísticas PH1 e PH2. 
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Quadro 3.4 – Descrição das heurísticas PH1 e PH2. 

Passo 1 : Gerar a seqüência inicial s0 usando o algoritmo ASI. Determinar o valor da 

função objetivo T0 da seqüência s0, onde T é o valor do makespan da seqüência de tarefas. 

 

Passo 2 : Atribuir Tb = T0, sb =  s0 e r = 1. 

 

Passo 3 : Aplicar o método de inserção NEH (alternativamente, RAZ) para a seqüência sr-1 

para obter sr e calcular Tr. 

 

Passo 4 : Se Tr < Tb, então, Tb = T0 e sb = s0. 

 

Passo 5 : Atualizar r = r + 1. Se r > 10 ir para o passo 6, caso contrário, ir para o passo 3. 

 

Passo 6 : A seqüência do método PH1 (PH2) é sb e o valor da função objetivo é Tb. 

 

Os dois próximos métodos se diferenciam entre si pelo método de inserção e em relação 

aos dois primeiros métodos pelo procedimento de parada. A finalização nas duas primeiras 

heurísticas ocorre quando r > 10 e nos dois próximos métodos quando r > 10 ou k = 2. O 

Quadro 3.5 apresenta a descrição das heurísticas PH3 e PH4. 
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Quadro 3.5 – Descrição das heurísticas PH3 e PH4. 

Passo 1 : Gerar a seqüência inicial s0 usando o algoritmo ASI. Determinar o valor da 

função objetivo T0 da seqüência s0. 

 

Passo 2 : Atribuir Tb = T0, sb = s0, r = 1 e k = 0. 

 

Passo 3 : Aplicar o método de inserção NEH (alternativamente, RAZ) para a seqüência sr-1 

para obter sr e calcular Tr. 

 

Passo 4 : Se Tr < Tb, então, Tb = T0, sb =  s0 e k = 0. 

 

Passo 5 : Se Tr  ≥ Tb, então, k = k + 1. 

 

Passo 6 : Atualizar r = r + 1. Se r > 10 ou k = 2 ir para o passo 7, caso contrário, ir para o 

passo 3. 

 

Passo 7 : A seqüência do método PH3 (PH4) é sb e o valor da função objetivo é Tb. 

 

A partir da incorporação do procedimento de troca pairwise às heurísticas anteriores, 

obtêm-se novas heurísticas denotadas por PHi(p), onde i= 1, 2, 3 e 4. O procedimento 

pairwise consiste em examinar cada possível troca de pares de uma tarefa numa posição 

com todas as outras tarefas. 

 

Entre as oito heurísticas desenvolvidas por Aldowaisan e Allahverdi (2004) foram 

apresentados os resultados dos testes das heurísticas PH1, PH1(p), PH3, PH3(p), PH4 e 

PH4(p) e comparadas com as duas heurísticas de Rajendran e Chaudhuri (1990) 

denominadas de R-C1 e R-C2 e o AGChen desenvolvido por Chen et al. (1996). Os 

experimentos computacionais foram realizados com 750 problemas, gerados 

aleatoriamente com 5 combinações diferentes de 50 a 400 tarefas e 5 a 25 máquinas com 

30 replicações em cada classe. Os algoritmos foram implementados em linguagem 

FORTRAN e os experimentos realizados num SUN SPARC Station 20. Os tempos de 

execução em segundos são apresentados na Tabela 3.2, enquanto um resumo dos 

resultados dos testes é apresentado na Tabela 3.3. 
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Através da Tabela 3.2 percebe-se que os tempos usados pelos métodos de Aldowaisan e 

Allahverdi (2004) foram muito maiores que os tempos usados pelos métodos comparados. 

Analisando a Tabela 3.3 vê-se que a heurística PH1(p) foi a que teve o melhor 

desempenho, devido à qualidade da solução inicial obtida pelo método PH1, que entre os 

métodos sem a etapa de melhoria foi o que obteve o melhor desempenho. A conclusão de 

Aldowaisan e Allahverdi (2004) foi que seus métodos são melhores que as heurísticas 

existentes para o CPFSP, entretanto foram usados tempos de execução muito grandes. 

 

Tabela 3.2 – Tempos em segundos usados nos experimentos de Aldowaisan e Allahverdi (2004). Fonte: 

Aldowaisan e Allahverdi (2004) 

 Instâncias R-C 1 R-C 2 AGChen PH1 PH1(p) PH3 PH3(p) PH4 PH4(p) 
50 X 5 0,002 0,001 0,076 0,125 0,169 0,245 0,287 0,779 0,824 
50 X 10 0,003 0,006 0,177 0,336 0,416 0,514 0,591 1,409 1,468 
50 X 15 0,004 0,004 0,283 0,351 0,480 0,562 0,660 1,761 1,831 
50 X 20 0,006 0,004 0,200 0,249 0,319 0,397 0,449 1,163 1,234 
50 X 25 0,003 0,005 0,193 0,289 0,367 0,486 0,584 1,494 1,553 
100 X 5 0,006 0,005 0,116 0,450 0,661 0,690 0,879 1,979 2,156 
100 X 10 0,008 0,008 0,149 0,926 1,301 1,463 1,803 4,325 4,704 
100 X 15 0,009 0,013 0,280 1,300 1,774 2,289 2,723 6,693 7,167 
100 X 20 0,010 0,013 0,325 1,893 2,366 2,681 3,192 7,704 8,229 
100 X 25 0,011 0,016 0,404 2,851 3,518 4,092 4,759 12,049 12,690 
200 X 5 0,030 0,032 0,279 3,800 5,427 5,756 7,360 16,843 18,444 
200 X 10 0,020 0,039 0,539 6,906 10,033 12,291 15,303 36,413 39,444 
200 X 15 0,050 0,066 0,713 12,576 16,553 19,163 23,099 55,752 59,713 
200 X 20 0,050 0,054 0,887 11,519 15,749 21,810 25,999 64,252 68,424 
200 X 25 0,057 0,061 1,007 19,572 25,182 32,587 38,107 95,903 101,502 
300 X 5 0,082 0,082 0,603 12,640 17,995 18,790 24,153 56,301 61,636 
300 X 10 0,086 0,128 0,989 31,625 41,927 42,396 52,745 126,214 136,519 
300 X 15 0,163 0,130 1,278 42,280 56,824 68,449 82,772 202,780 217,018 
300 X 20 0,134 0,155 1,461 56,244 71,401 77,191 92,499 228,679 243,898 
300 X 25 0,135 0,154 1,864 67,604 91,099 126,488 147,363 344,600 365,291 
400 X 5 0,138 0,178 0,930 12,440 20,896 21,421 29,677 63,181 71,620 
400 X 10 0,209 0,174 1,518 47,918 66,250 74,861 93,013 225,292 243,747 
400 X 15 0,219 0,199 2,024 86,691 113,899 122,128 149,299 366,211 393,371 
400 X 20 0,211 0,251 2,186 99,298 129,642 143,791 174,137 428,389 458,337 
400 X 25 0,237 0,234 2,907 126,053 167,323 199,553 240,660 685,406 727,642 
Média 0,075 0,080 0,855 25,837 34,463 40,004 48,485 121,423 129,938 
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Tabela 3.3 – Resumo dos resultados dos experimentos de Aldowaisan e Allahverdi (2004). Fonte: 

Aldowaisan e Allahverdi (2004). 

 Instâncias R-C 1 R-C 2 AGChen PH1 PH1(p) PH3 PH3(p) PH4 PH4(p) 
50 X 5 4,532 2,739 2,635 1,034 0,407 1,110 0,469 1,721 0,973 
50 X 10 2,932 2,016 1,624 0,250 0,108 0,325 0,147 1,202 1,003 
50 X 15 3,272 2,414 1,936 0,188 0,053 0,301 0,142 1,857 1,589 
50 X 20 2,782 2,698 2,040 0,261 0,090 0,357 0,199 1,455 1,331 
50 X 25 3,576 2,980 2,323 0,323 0,078 0,442 0,183 1,572 1,445 
100 X 5 5,366 3,496 3,484 1,127 0,358 1,486 0,601 1,550 0,661 
100 X 10 3,853 2,606 2,404 0,320 0,103 0,557 0,295 1,465 1,152 
100 X 15 3,903 3,072 2,827 0,260 0,011 0,498 0,251 1,944 1,797 
100 X 20 4,294 3,147 2,930 0,149 0,012 0,629 0,409 2,184 1,988 
100 X 25 3,941 3,380 3,008 0,169 0,021 0,451 0,267 2,222 2,116 
200 X 5 6,484 3,596 3,593 1,563 0,383 1,928 0,571 1,683 0,359 
200 X 10 4,361 2,635 2,627 0,300 0,036 0,555 0,209 1,499 1,113 
200 X 15 3,667 2,455 2,442 0,251 0,032 0,575 0,294 1,972 1,754 
200 X 20 3,819 2,843 2,806 0,166 0,000 0,585 0,416 1,980 1,855 
200 X 25 3,888 3,161 3,054 0,217 0,003 0,557 0,334 2,288 2,129 
300 X 5 6,995 3,678 3,673 1,631 0,215 1,949 0,344 1,796 0,222 
300 X 10 4,300 2,475 2,474 0,343 0,039 0,667 0,293 1,571 1,173 
300 X 15 3,914 2,493 2,492 0,212 0,000 0,614 0,366 2,137 1,934 
300 X 20 3,698 2,734 2,717 0,172 0,003 0,398 0,197 2,186 2,023 
300 X 25 3,880 2,862 2,841 0,212 0,002 0,572 0,335 2,133 1,999 
400 X 5 7,065 3,832 3,829 2,051 0,248 2,289 0,389 2,168 0,322 
400 X 10 4,163 2,325 2,323 0,385 0,027 0,675 0,253 1,247 0,786 
400 X 15 3,635 2,273 2,266 0,209 0,005 0,515 0,268 1,934 1,717 
400 X 20 3,788 2,585 2,554 0,191 0,003 0,558 0,321 2,158 2,004 
400 X 25 3,635 2,814 2,764 0,225 0,006 0,418 0,257 2,196 2,037 
Média 4,230 2,852 2,707 0,488 0,090 0,760 0,312 1,845 1,419 

 

3.3.5. GASA de Shuster e Framinan 

 

Wang e Zeng (2001) desenvolveram um método híbrido chamado de GASA para resolver 

o Job Shop Scheduling Problem (JSSP). O GASA é uma combinação das técnicas AG e 

Simulated Annealing (SA). Schuster e Framinan (2003) adaptaram o GASA para o CPFSP 

com o critério de desempenho sendo o makespan, e usaram as instâncias de Reeves (1995) 

e Heller (1960) para os testes. 

 

Wang e Zheng (2001) criaram um novo operador de crossover para ser usado no GASA. 

Neste operador primeiramente um conjunto {1, 2, ..., n} é dividido em dois sub-conjuntos 

A1 e A2 aleatoriamente, sendo que cada sub-conjunto tem que possuir ao menos um 

elemento. Cada elemento contido num sub-conjunto é copiado para um descendente na 

mesma posição que ocupava no indivíduo pai. Depois são escolhidos aleatoriamente dois 
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indivíduos da população atual para serem os pais s1 e s2. Os descendentes s’1 e s’2 são 

criados da seguinte forma: s’1 herda os elementos de s1 pertencentes a A1 e os elementos de 

s2 pertencentes a A2; s’2 herda os elementos de s1 pertencentes a A2 e os elementos de s2 

pertencentes a A1. 

 

O GASA inicia com uma população inicial de tamanho Psize gerada aleatoriamente, uma 

temperatura inicial t0 e o critério de parada é o número L de iterações sem melhoria.  A 

cada iteração os procedimentos de crossover, mutação e SA são aplicados. Estes três 

procedimentos são descritos a seguir: 

 

1 – Crossover: O melhor indivíduo da população e um indivíduo escolhido aleatoriamente 

são submetidos ao novo operador de crossover. Este procedimento é repetido Psize/2 vezes, 

gerando Psize novos indivíduos. Os novos indivíduos e a população corrente somam um 

total de 2*Psize indivíduos que são avaliados e os Psize indivíduos com melhores aptidões 

são submetidos ao processo de mutação. 

 

2 – Mutação : A mutação consiste em escolher um intervalo entre {1, ..., n} e inverter a 

ordem das tarefas no intervalo. Os Psize indivíduos gerados são avaliados juntamente com 

os Psize indivíduos originais, então os Psize indivíduos com as melhores aptidões são 

submetidos ao procedimento SA. 

 

3 – Procedimento SA : O objetivo deste procedimento é realizar uma busca local em cada 

indivíduo da população. O SA é implementado da seguinte forma: são escolhidas duas 

posições aleatoriamente na seqüência do indivíduo e as respectivas tarefas são trocadas de 

posição, os valores dos makespan antes e depois da troca são armazenados, a nova solução 

é aceita com uma certa probabilidade dependendo da diferença entre os makespan antes e 

depois da modificação e a temperatura atual. Este procedimento é repetido n * m vezes. A 

temperatura t decresce seguindo uma função de resfriamento exponencial tk = λ * tk-1,   λ ∈ 

{0, 1}. 
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Os valores dos parâmetros do GASA foram: 

- Tamanho da população (Psize) : 40; 

- Fator de resfriamento (λ) : 0,9; 

- Temperatura inicial (t0) : - (Cworst – Cbest) / ln(0,1), onde: Cworst é o pior makespan da 

população e Cbest é o melhor makespan da população;  

- Número de iterações sem melhoria (L) : 30; 

 

Para comparar o desempenho do GASA, Schuster e Framinan (2003) o testaram nas 

instâncias de Reeves (1995) e Heller (1960) e compararam com os resultados obtidos pela 

heurística RAJ de Rajendran (1994). O GASA foi implementado em linguagem C++ e os 

experimentos foram realizados num computador Athlon 1.400 MHz. Os resultados dos 

testes e os tempos utilizados pelo GASA são apresentados na Tabela 3.4, onde se verifica 

que de modo geral o GASA obtém melhores resultados do que o método RAJ, só que para 

isso precisa usar uma grande quantidade de tempo de execução. Além disto para as 

instâncias com maior número de tarefas e máquinas o GASA fica abaixo do método RAJ. 

 

Tabela 3.4 – Resultados dos experimentos com o GASA. Fonte: Schuster e Framinan (2003). 

Instância n x m RAJ GASA t (s) Desvio (%) 
rec01 20x5 1590 1527 6 -3,96 
rec03 20x5 1457 1392 6 -4,46 
rec05 20x5 1637 1524 7 -6,90 
rec07 20x10 2119 2046 12 -3,45 
rec09 20x10 2141 2045 11 -4,48 
rec11 20x10 1946 1881 10 -3,34 
hel2 20x10 189 180 10 -4,76 
rec13 20x15 2709 2556 17 -5,65 
rec15 20x15 2691 2529 17 -6,02 
rec17 20x15 2740 2590 16 -5,47 
rec19 30x10 3157 2985 34 -5,45 
rec21 30x10 3015 2948 35 -2,22 
rec23 30x10 3030 2827 35 -6,70 
rec25 30x15 3835 3732 55 -2,69 
rec27 30x15 3655 3560 51 -2,60 
rec29 30x15 3583 3440 54 -3,99 
rec31 50x10 4631 4757 147 2,72 
rec33 50x10 4770 4998 145 4,78 
rec35 50x10 4718 4891 146 3,67 
rec37 75x20 8979 9508 907 5,89 
rec39 75x20 9158 9964 890 8,80 
rec41 75x20 9344 9978 904 6,79 
hel1 100x10 780 877 1088 12,44 
Média       200,13 -1,18 
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3.3.6. Os Algoritmos de Grabowski e Pempera 

 

Grabowski e Pempera (2005) propuseram cinco algoritmos de busca local, dois deles 

baseados na técnica Descending Search (DS) e três baseados na metaheurística Tabu 

Search (TS), para resolver o CPFSP com o makespan sendo o critério de desempenho. As 

características mais importantes desses algoritmos são: o emprego de multimovimento e 

lista tabu dinâmica. A solução inicial de todos os algoritmos é obtida pelo método NEH de 

Nawaz et al. (1983). As instâncias de Reeves (1995) e Heller (1960) foram utilizadas nos 

experimentos computacionais para avaliar o desempenho dos métodos. 

 

O tipo de movimento e a estrutura de vizinhança são componentes importantes dos 

algoritmos propostos. Um movimento é definido pelo par v = (x, y) que são duas posições 

da permutação s, com x, y ∈{1, 2, ..., n} e x ≠ y. Segundo Grabowski e Pempera (2005), 

baseados na literatura e em experimentos realizados, o movimento shift é o que melhor se 

adapta ao CPFSP, por isso, é adotado pelos algoritmos. A vizinhança da permutação s 

consiste das permutações sv obtidas pela execução de todos os movimentos de um dado 

conjunto de movimentos Z e denotada por N(Z, s) = { sv | v ∈Z}. Os algoritmos propostos 

geram vizinhanças através de movimentos Z = { (x,y) | x, y ∈{1, 2, ..., n}, y ∉  {x, x-1}} 

de cardinalidade (n - 1)2, onde a condição y ∉ {x, x-1} evita a redundância de 

movimentos. 

 

Para acelerar a convergência às boas soluções os algoritmos utilizam um procedimento 

chamado multimovimento, que tem o propósito de guiar a busca para regiões mais 

promissoras onde boas soluções podem ser encontradas. O multimovimento consiste de um 

conjunto de vários movimentos individuais que são executados simultaneamente numa 

única iteração do algoritmo. A execução do multimovimento gera permutações que 

diferem significativamente daquelas obtidas pela execução de um único movimento e 

conduz o processo de busca para regiões até o momento não visitadas do espaço de 

soluções. Segundo Grabowski e Pempera (2005) a aplicação de multimovimento em 

algoritmos de busca local é uma forma de adotar as estratégias de intensificação e 

diversificação no processo de busca. O multimovimento é composto de um conjunto de 

movimentos individuais proveitosos e independentes. 
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O subconjunto PZ = { v ∈Z | Cmax(sv) < Cmax(s)} é chamado de conjunto de movimentos 

proveitosos e contêm todos os movimentos do conjunto Z que geram permutações sv com 

menores makespan que s. Dois movimentos v1 = (x1, y1) ∈PZ e v2 = (x2, y2) ∈PZ são 

chamados independentes em relação a permutação s se cada uma das posições x1 e y1 estão 

separadas de cada uma das posições x2 e y2 por pelo menos uma tarefa. Mais precisamente 

os movimentos v1 e v2 são independentes se alguma das condições 3.4 a 3.6 é satisfeita. 
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A Condição 3.4 indica que os movimentos v1 e v2 operam em série em relação a 

permutação s e separados por pelo menos uma tarefa. A Condição 3.5 indica que v1 opera 

do lado de dentro de v2, ou vice-versa, com as posições x1 e y1 separadas de x2 e y2, por 

pelo menos uma tarefa. Finalmente a Condição 3.6 indica que v1 e v2 são interseccionados, 

com cada uma das posições x1 e y1 e separadas de x2 e y2 por pelo menos uma tarefa. 

 

Define-se IPZ como sendo o subconjunto de PZ que contêm todos os movimentos 

independentes de PZ, isto significa que para cada par v1 e v2∈IPZ, v1 ≠ v2, é satisfeita 

alguma das condições (3.4) a (3.6). O multimovimento então, consiste em executar todos 

os movimentos de IPZ simultaneamente, gerando uma permutação sv’, onde V’ ∈  IPZ. A 

permutação sv’ não pertence a N(Z, s), a menos que |V’| = 1. A seguir é apresentado o 

procedimento para criar o multimovimento V’. 
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Passo 1: Para uma dada permutação s, criar o conjunto PZ e atribuir V’ := φ . 

 

Passo 2: Encontrar o melhor movimento v*, i.e., Cmax(sv*) = min PZ  ∈v  Cmax(sv) e atribuir PZ 

:= PZ – {v*} e V’ := V’ U {v*}. 

 

Passo 3: Encontrar o melhor movimento v*, i.e., Cmax(sv*) = min PZ  ∈v  Cmax(sv) e para cada 

movimento v ∈V’ verificar as condições (3.4) a (3.6) para os movimentos v* e v. Se há 

um movimento v ∈V’ tal que para v* e v alguma condição não é satisfeita, então PZ := PZ 

– {v*}, caso contrário, PZ := PZ – {v*} e V’ := V’ U {v*}. 

 

Passo 4: Repetir o passo 3 até PZ := φ . 

 

Por intuição, sv’ deveria ser significativamente melhor que sv gerado pelo melhor 

movimento individual v ∈V’, desde que a melhoria total de Cmax(sv’) seja obtida pela 

adição de todos os melhoramentos produzidos pelos movimentos individuais de V’. 

Segundo Grabowski e Pempera (2005) essa é uma propriedade específica, conseqüência da 

restrição não espera da qual se utilizam os movimentos proveitosos e independentes e que 

não tem sido aplicado por outros métodos. 

 

O primeiro algoritmo proposto foi um DS que consiste em pesquisar a vizinhança N até 

encontrar um movimento v* ∈  Z que gere uma permutação sv* ∈  N com menor makespan 

que s, uma solução inicial. Dessa forma a permutação sv* se torna a nova solução, i.e., s := 

sv* e o algoritmo é repetido até que nenhuma permutação melhor seja encontrada. 

 

O segundo algoritmo proposto é uma combinação de DS e multimovimento (DS+M). O 

DS+M começa de uma solução inicial s e uma vizinhança N(Z, s). Para a vizinhança N o 

conjunto de multimovimentos V’ é criado de acordo com o procedimento descrito 

anteriormente. O multimovimento V’ é realizado e a permutação resultante sv’ se torna a 

nova solução, i.e., s := sv’, o algoritmo é repetido até que V’ = φ . 

Segundo Grabowski e Pempera (2005) a metaheurística Tabu Search (TS) não tinha sido 

aplicada até então no CPFSP. Assim foram desenvolvidos três algoritmos baseados em TS 

que têm como principal característica à utilização de lista tabu dinâmica com o propósito 

de evitar que o processo de busca fique preso a um ótimo local. 
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O comprimento da lista T é alterado quando o número de iterações (iter) do TS atinge um 

valor específico chamado de pick. Esse tipo de lista foi empregado primeiramente no very 

fast TS, proposto por Grabowski e Wodecki (2004). 

 

Em relação a permutação s, um movimento (x, y) ∈  Z é proibido: se A(s(x)) ∩ {s(x+1), 

s(x+2), ..., s(y)} ≠ φ , se x < y; ou B(s(x)) ∩ {s(y), s(y+1), ..., s(x-1)} ≠ φ  se x > y. Onde: 

A(j) = { i ∈  J | (j, i) ∈  T} e B(j) = { i ∈  J | (i, j) ∈  T}. O conjunto A(j) (ou B(j)) indica 

quais tarefas são processadas depois (ou antes) da tarefa j em relação ao conteúdo atual da 

lista tabu T. 

 

O TS começa de uma solução básica inicial s a qual é aplicada à vizinhança N(Z, s). 

Primeiramente, o melhor movimento v* ∈  Z que gera a permutação sv* ∈N(Z, s) com o 

menor makespan é escolhido. Se Cmax(sv*) < C*, então o movimento v* é selecionado para 

o processo de busca. Caso contrário (Cmax(sv*) ≥ C*), então é criado o conjunto UZ de 

movimentos não proibidos (UF) que não tem o status tabu e definido como UZ = { v ∈  Z | 

movimento v é UF}. No próximo passo, sv* ∈  N(UZ, s) com o menor makespan é 

escolhido para o processo de busca. Se o movimento v* é selecionado, então o par de 

tarefas correspondentes ao movimento v* é adicionado à lista tabu T e a permutação 

resultante sv* é criada. No passo seguinte, a permutação se torna a nova solução, i.e., s := 

sv* e o algoritmo começa a próxima iteração. Se todos os movimentos de Z são proibidos, 

um caso muito raro, i.e., UZ = φ , então o elemento mais velho da lista tabu T é retirado 

dela e a busca é repetida até que um movimento UF possa ser encontrado. 

 

O quarto algoritmo proposto é uma combinação de TS e multimovimento (TS+M). O 

algoritmo TS+M é similar ao TS exceto que em cada iteração um multimovimento V’, que 

contém vários movimentos simples, é realizado, ao contrário de um movimento simples 

v*. Se numa iteração do TS+M, o multimovimento V’ contêm não mais que um 

movimento, i.e., |V’| ≤ 1, então o TS+M se transforma em TS. 

 

O quinto e último algoritmo é uma combinação de TS e multimovimento (TS+MP) que é 

realizado somente em situações específicas. O multimovimento é realizado a cada vez que 

um número de iterações (Piter) onde não ocorre melhoria no makespan é atingido. Se Piter 
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é um número suficientemente grande o multimovimento nunca será criado e TS+MP se 

transforma em TS. O parâmetro Piter foi calibrado experimentalmente. 

 

Para comparar o desempenho dos seus algoritmos, Grabowski e Pempera (2005) 

realizaram testes nas instâncias de Reeves (1995) e Heller (1960) e compararam com os 

resultados obtidos pela heurística RAJ de Rajendran (1994) e o GASA de Shuster e 

Framinan (2003). Os algoritmos foram implementados em linguagem C++ e os 

experimentos foram realizados em um Pentium 1000. O resumo dos resultados dos 

experimentos computacionais é apresentado na Tabela 3.5. Analisando esta tabela verifica-

se que o melhor desempenho foi obtido pelo algoritmo TS-M. 

 

 

Tabela 3.5 – Resumo dos resultados dos experimentos de Grabowski e Pempera (2005). Fonte: 

Grabowski e Pempera (2005). 

Métodos Desvio (%) Tempo (s) 
RAJ 0,00 - 
GASA -1,18 200,13 
DS -4,51 0,02 
DS-M -4,53 0,00 
TS -6,50 0,86 
TS-M -6,59 0,87 
TS-MP -6,56 0,87 
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CAPÍTULO 4 – ALGORITMO GENÉTICO 

 

Este capítulo é composto de três seções. A primeira seção faz uma introdução sobre AG. A 

segunda seção apresenta os principais componentes de um AG. E finalmente, a terceira 

seção descreve o rAG. 

 

4.1. Introdução 

 

Segundo Dréo et al. (2006) o AG tem características como: diversificação que é explorar 

regiões do espaço de busca raramente visitadas; intensificação que é verificar quase 

completamente regiões do espaço de busca promissoras; e a memorização da melhor 

solução encontrada até o momento. Uma desvantagem está no processo de calibração dos 

seus parâmetros. Resultados teóricos disponíveis não são suficientes para ajudar no ajuste 

da calibração. 

 

O AG foi criado por Jonh Holland durante as décadas de 1960 e 1970 (Holland, 1975), 

para simular computacionalmente o fenômeno da seleção natural. Foi um aluno de 

Holland, Goldberg, o primeiro a aplicar o AG num problema de otimização, na área de 

projeto de gasodutos (Haupt e Haupt, 2004). Depois desta aplicação o AG passou a ser 

considerado uma técnica de busca baseada nos princípios da genética e seleção natural. O 

AG é formado por uma população de indivíduos que representam as soluções do problema. 

Os indivíduos são avaliados por uma função que atribui um valor chamado aptidão a cada 

indivíduo da população segundo sua qualidade em relação à função objetivo do problema. 

Os indivíduos são escolhidos por um procedimento inspirado na seleção natural para 

passarem por operações genéticas que resultam em descendentes que comporão a nova 

população. A Figura 4.1 mostra o fluxograma de um AG, segundo Reeves e Rowe (2002). 

Os estudos mostram que a nova população tem a tendência de ter indivíduos com aptidões 

melhores do que a população anterior (Mitchell, 1998; Haupt e Haupt, 2004). Este 

processo de gerar novas populações é chamado de geração. O melhor indivíduo da última 

população é a solução a ser apresentada para o problema. 
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É importante salientar que o AG trabalha com uma população de soluções. Pode-se 

considerar isso como várias buscas locais sendo feitas ao mesmo tempo, que é chamada de 

paralelismo implícito (Holland, 1975). A vantagem deste paralelismo é que o processo de 

busca melhora a capacidade de sair de mínimos locais, devido a uma pesquisa mais 

abrangente do espaço de busca. Porém, trabalhar com várias soluções ao mesmo tempo 

traz a desvantagem de precisar de mais tempo computacional para avaliar as funções que 

calculam a aptidão das soluções, que às vezes tornam o AG mais lento que os métodos de 

busca em vizinhança que só trabalham com uma solução de cada vez. 

 
Figura 4.1 – Pseudocódigo de um AG básico. Fonte: Reeves e Rowe (2002). 

 

 

 

 

 

 

Escolha de uma população inicial 

enquanto o critério de parada não é satisfeito faça 

    repita 

       se a condição do crossover é satisfeira então 

         início 

           seleciona os cromossomos pais; 

           escolhe os parâmetros do crossover; 

           executa o crossover; 

         fim 

       se a condição da mutação é satisfeita então 

         início 

           seleciona o(s) cromossomo(s) para a mutação; 

           escolhe os parâmetros da mutação; 

           executa a mutação; 

         fim 

       avalia a aptidão dos descendentes; 

     até a quantidade de descendentes necessária; 

     atualiza nova população; 

fim_enquanto 
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4.2. Os Elementos de um AG 

 

Através da revisão bibliográfica foram escolhidos oito componentes como sendo os mais 

importantes num projeto de AG. Os oito componentes são elicitados a seguir e descritos no 

decorrer desta seção. 

 

a) Escolha da representação para o AG; 

b) Definição da função de aptidão; 

c) Definição da população inicial; 

d) Escolha do método de seleção; 

e) Escolha dos operadores genéticos; 

f) Escolha da estratégia geracional; 

g) Escolha do critério de parada; e 

h) Escolha dos valores dos parâmetros. 

 

4.2.1. Representação para o AG 

 

A representação para o AG é a forma como as soluções potenciais são codificadas para ser 

possível a aplicação dos operadores genéticos. Na representação para o AG os conceitos de 

genótipo, fenótipo, cromossomo, alelo e gene são importantes (Rothlauf, 2006). O 

genótipo representa toda a informação armazenada no cromossomo. O fenótipo é a 

aparência de um indivíduo que é resultado da informação contida no genótipo. Um 

cromossomo é uma string de certo comprimento onde toda a informação genética de um 

indivíduo está armazenada, cada cromossomo é constituído de muitos alelos. Alelo é a 

menor unidade de informação num cromossomo. Um gene é uma região do cromossomo 

constituído por um ou mais alelos que devem ser interpretados conjuntamente e que é 

responsável por uma propriedade específica do fenótipo. Estes conceitos estão ilustrados 

na Figura 4.2. 
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Figura 4.2 - Representação do fenótipo, cromossomo, alelo e gene. 

 

A representação adotada num AG está diretamente relacionada ao tipo de problema. A 

primeira representação criada foi a binária onde os alelos podem assumir os valores 0 ou 1. 

Para muitos problemas de otimização combinatoria onde as variáveis do problema são 

binárias esta representação é ideal. Quando as variáveis do problema são contínuas a 

precisão depende do tamanho da string de alelos, quanto maior a string, maior o uso de 

recursos computacionais. Outro tipo de representação é a permutacional, onde os alelos 

podem assumir valores inteiros positivos e o cromossomo representa uma solução baseada 

na ordem dos alelos. Este tipo de representação é usado principalmente em problemas 

como o caixeiro viajante, seqüenciamento, entre outros. 

 

4.2.2. Função de Aptidão 

 

A aptidão corresponde ao grau de qualidade do fenótipo em relação ao seu habitat, i.e., 

significa o quanto o indivíduo está adaptado ao meio-ambiente. Para os problemas de 

otimização a aptidão significa a qualidade da solução em relação ao objetivo do problema. 

O valor da aptidão de cada indivíduo é muito importante, pois é usado para diferenciar os 

indivíduos na população e no processo de seleção. Se a aptidão não conseguir representar 

adequadamente a diferença entre os indivíduos, a eficácia do AG fica comprometida. A 

aptidão é calculada pela função de aptidão que pode ser uma função matemática, um 

experimento ou um jogo (Haupt e Haupt, 2004). Algumas vezes é usada a própria função 

objetivo como função de aptidão, esta estratégia pode ser ineficiente quando os valores da 

função objetivo dos indivíduos são muito próximos (Mitchell, 1998). Por isso, deve-se ter 

muito cuidado em se escolher a função de aptidão. Além disso, a função objetivo depende 

do problema abordado. 

 

 

1      0      1      1      1      0      1      0 
fenótipo é 186 
que é o valor 
decimal da string 
binária cromossomo alelo gene 
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4.2.3. População Inicial 

 

Segundo Reeves e Rowe (2002) as duas principais questões a considerar em relação a 

população inicial são o tamanho da população e o método usado para criar os primeiros 

indivíduos. 

 

A principal idéia em relação à escolha do tamanho da população é a existência de um 

trade-off entre eficiência e eficácia. Parece lógico supor que para um certo comprimento de 

string que representa o indivíduo, exista um valor ótimo para o tamanho da população, não 

tão pequeno que não explore todo o espaço de busca e nem tão grande que comprometa o 

tempo de execução. Mas baseado no levantamento feito por Reeves e Rowe (2002) ainda 

não se determinou uma função que represente este suposto trade-off. 

 

Em relação à escolha do método para gerar a população inicial as duas principais formas 

são a aleatória e a baseada em boas soluções conhecidas. A forma aleatória na prática é 

pseudo-aleatória, pois é gerada por software usando funções matemáticas. Neste tipo existe 

a possibilidade da população inicial não explorar todas as regiões do espaço de busca e, por 

isso, precisar de uma população maior. A população inicial gerada baseada em boas 

soluções conhecidas tem o objetivo de fazer o AG obter melhores soluções em um tempo 

de execução menor em comparação a inicialização aleatória. Neste método existe a 

possibilidade de convergência prematura para uma solução de baixa qualidade. Surry e 

Radcliffe (1996) apud Reeves e Rowe (2002) fizeram uma revisão das idéias sobre o 

processo de criação da população inicial e concluíram que havia uma tendência na 

inicialização eficiente de reduzir a qualidade da solução obtida em comparação com a 

inicialização aleatória. 

 

4.2.4. Métodos de Seleção 

 

Depois da criação da população inicial e atribuída uma aptidão a cada indivíduo, a próxima 

decisão é escolher o método de selecionar os indivíduos que darão origem à próxima 

geração. A principal característica de qualquer método de seleção é preferir os indivíduos 

com maior aptidão com o objetivo que a próxima população tenha uma aptidão maior 

(Mitchell, 1998). No processo de seleção existe uma relação de compensação, quanto 
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maior a pressão de seleção, ou seja, quanto maior a preferência por indivíduos de alta 

aptidão mais rapidamente a população converge para um ótimo local, do contrário quanto 

menor a pressão de seleção, mais lentamente a população evolui para boas soluções. 

 

O primeiro método de seleção criado foi o método de seleção por roleta (Holland, 1975). 

Neste método cada indivíduo tem a probabilidade de seleção proporcional a sua aptidão em 

relação à população. A maneira mais comum de implementar este método de seleção é 

atribuir um número real a cada indivíduo igual a sua aptidão dividida pela aptidão total da 

população. Isto implica que cada indivíduo recebe um número maior que 0 e menor que 1, 

representando uma probabilidade e o somatório da probabilidade de todos os indivíduos 

sendo igual a 1. Depois que estes indivíduos são ordenados numa lista que pode ser 

representada graficamente como um disco, onde cada setor angular é proporcional a 

probabilidade do indivíduo ser selecionado. O processo de seleção consiste em gerar N 

números aleatórios entre 0 e 1, onde N é o tamanho da população. O intervalo que este 

número estiver contido na lista de probabilidades acumuladas indica que aquele indivíduo 

foi selecionado. Isto é como se uma roleta fosse girada e onde ela parasse indicasse o 

indivíduo selecionado. A Figura 4.3 ilustra este tipo de seleção, onde são mostrados cinco 

indivíduos com suas respectivas representações e aptidões. O gráfico de setor ao lado 

representa a probabilidade 1 e conseqüentemente cada setor circular representa a 

probabilidade do indivíduo correspondente ser selecionado.  

 

N º Indivíduo Aptidão 
1 010010011 3,651 
2 010110110 0,544 
3 011010001 0,239 
4 110110011 1,463 
5 100111011 2,987 

 

 

 

 

 

 

Figura 4.3 - Representação da seleção pelo método da roleta. 
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É comum ocorrer numa população uma pequena quantidade de indivíduos com alta 

aptidão, isto prejudica os métodos de seleção proporcionais porque a probabilidade destes 

indivíduos serem selecionadas é bem maior que do resto da população e, por isso, provoca 

a convergência prematura. Para evitar este problema outros métodos de seleção foram 

criados. 

 

Outro método de seleção é o de seleção por torneio, mais resistente a convergência 

prematura. Na seleção por torneio um sub-conjunto d da população é escolhido 

aleatoriamente, um parâmetro predefinido k representa a probabilidade do melhor 

indivíduo do sub-conjunto ser escolhido. Neste método é gerado um número aleatório entre 

0 e 1, se for menor que k o melhor indivíduo do sub-conjunto é escolhido, caso contrário 

outro indivíduo é escolhido (Mitchell, 1998). Este método tem a vantagem de usar pouco 

recurso computacional. 

 

4.2.5. Operadores Genéticos 

 

A função dos operadores genéticos é transformar a população atual numa nova população 

com aptidão melhor, ou seja, para problemas de otimização encontrar soluções melhores 

que as atuais (Mitchell, 1998). Um conceito importante neste processo é o bom bloco 

construído que é uma parte contínua do cromossomo que confere ao indivíduo uma alta 

aptidão. Acredita-se que durante a aplicação dos operadores genéticos os bons blocos 

construídos são formados e preservados, garantindo assim a qualidade das soluções. Os 

operadores genéticos dependem do tipo de representação adotada. Os principais operadores 

genéticos são o crossover e a mutação. 

 

O operador mais utilizado é o crossover. Através do crossover são criados novos 

indivíduos misturando os alelos dos pais. O objetivo é que a mistura de bons blocos 

construídos dêem origem a indivíduos de aptidão melhor que os pais. Outro operador 

usado é o de mutação que consiste em trocar dois alelos de valor ou posição. A mutação 

tem o objetivo de manter a diversidade da população e evitar a convergência prematura 

para ótimos locais. A mutação assegura que a probabilidade de se chegar a qualquer ponto 

do espaço de busca não seja zero. 
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A implementação do operador crossover é feita normalmente com uma regra aleatória 

baseada numa distribuição uniforme. É definida uma probabilidade de ocorrência para o 

crossover chamada taxa de crossover. A forma mais comum de implementar a mutação é 

escolher um número de perturbações por string que é chamada de taxa de mutação. 

 

O mais comum é que estas duas taxas sejam constantes durante todo o tempo de execução 

do AG. Mas Davis (1991) argumenta que se estas taxas variassem durante o processo de 

busca, melhores soluções seriam encontradas. Neste ponto de vista diferentes taxas seriam 

apropriadas em diferentes fases do processo de busca. No início seria usada uma taxa de 

crossover alta para fazer uma pesquisa maior no espaço de busca, enquanto que no fim 

uma taxa de mutação alta seria usada para diminuir a convergência da população. Outra 

sugestão é que as taxas dos operadores se adaptem instantaneamente em concordância com 

a evolução das soluções encontradas. 

 

Ainda em Reeves e Rowe (2002), baseados no trabalho de Holland (1975), o operador de 

crossover sempre deveria ser usado. Mas existem na literatura duas estratégias para gerar a 

próxima população: crossover-e-mutação e crossover-ou-mutação. Na primeira estratégia 

o operador de crossover é aplicado com uma probabilidade normalmente menor que 1 e a 

mutação pode ser realizada se o seu critério for verdadeiro. Nesta estratégia existe a 

possibilidade dos filhos serem apenas clones dos pais devido a probabilidade de nem um 

dos operadores serem aplicados. Na segunda estratégia sempre um dos operadores é 

aplicado, ou crossover ou mutação, mas não ambos. Nesta estratégia não existe a 

possibilidade dos filhos serem clones dos pais. 

 

4.2.6. Estratégia Geracional 

 

A estratégia geracional é responsável por controlar a substituição de indivíduos de uma 

geração para a outra. A estratégia geracional proposta por Holland (1975) cria um conjunto 

do tamanho da população de indivíduos gerados a partir da população atual, usando os 

operadores de crossover e mutação. No final este conjunto substitui a população atual. 

Neste tipo de estratégia existe a possibilidade de que bons indivíduos desapareçam de uma 

geração para a outra. Por isso, surgiram outras estratégias como a elitista, a population 

overlaps e a steady-state. Na estratégia elitista o melhor indivíduo é preservado para a 
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próxima população, enquanto o restante da população é substituída por novos indivíduos. 

Na estratégia population overlaps uma fração da população G (generation gap) é 

substituída por novos indivíduos, enquanto a outra fração é preservada para a próxima 

população. Na estratégia steady-state só o melhor indivíduo gerado é copiado para a 

próxima população. 

 

4.2.7. Critério de Parada 

 

Nesta seção será feita a descrição da escolha de qual critério será usado para finalizar a 

execução do AG. Nos métodos de busca em vizinhança, que trabalham com somente uma 

solução, uma alternativa é encerrar a execução quando um ótimo local é obtido, mas no 

AG isso não é possível. As três estratégias mais comuns para encerrar a execução de um 

AG são: 

 

i)  O número de gerações; 

ii) O tempo de execução; e  

iii) A diversidade da população. Quando a semelhança entre os indivíduos começa 

a se repetir, então é definido o momento de parar, por exemplo, quando 90% dos 

indivíduos são semelhantes. 

 

4.2.8. Parametrização do AG 

 

A última decisão num projeto de AG é a definição dos valores dos seus parâmetros, como 

tamanho da população, taxa de crossover e taxa de mutação. Segundo Mitchell (1998) os 

parâmetros dos AG interagem entre si de forma não-linear. Sendo assim, não podem ser 

otimizados ao mesmo tempo. Muitos trabalhos têm sido realizados nesta área, entretanto 

nenhuma função matemática foi apresentada e que forneça os melhores valores para esses 

parâmetros (DeJong, 1980; Grefenstette, 1986 e Ruiz et al., 2006). Como já mencionada 

anteriormente uma desvantagem do AG é a dificuldade do processo de calibração dos seus 

parâmetros (Dréo et al., 2006). Diante disso, foi criado até um AG que utiliza poucos 

parâmetros por Lobo e Goldberg (2004), denominado de AG com menos parâmetros. 
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4.3. Descrição do rAG 

 

Nesta seção é descrito o projeto do rAG. Para guiar a descrição foi usado o modelo visto na 

seção anterior. 

 

4.3.1. Escolha da Representação 

 

Devido aos dois problemas abordados neste trabalho, a representação mais adequada é a 

permutacional, onde os alelos são representados pelos números das tarefas e a ordem 

relativa das tarefas na permutação indica a ordem de processamento das mesmas nas 

máquinas. 

 

4.3.2. Função de Aptidão 

 

Para calcular a aptidão dos indivíduos da população foi adotado o valor da função objetivo 

de cada problema. Para o CPFSP foram adotadas duas aptidões porque foram testados 

problemas com duas funções objetivo diferentes. O rAG usou no CPFSP com o tempo total 

de fluxo como critério de desempenho a Equação 3.1, Seção 3.2. O rAG também usou com 

o makespan como critério de desempenho a Equação 3.2, Seção 3.2. E finalmente, o rAG 

utilizou no PFSP, o makespan como critério de desempenho, o procedimento g descrito na 

seção 2.3 para calcular a aptidão dos indivíduos da população. Usar o mesmo valor da 

função objetivo sem fazer nenhuma conversão, como outros AG fazem, para representar a 

aptidão dos indivíduos da população, foi uma das formas encontradas para diminuir o 

tempo computacional utilizado pelo rAG. Diante disso é possível diminuir a diferença, em 

tempo de execução, com relação aos métodos que trabalham sobre uma solução de cada 

vez. Mas esta estratégia não comprometeu a qualidade na diferenciação dos indivíduos que 

é o propósito da aptidão. Os métodos usados para calcular a aptidão dos indivíduos foi a 

única modificação na estrutura do rAG para permitir sua aplicação nos dois problemas 

deste trabalho. Isto mostra a generalização do uso do rAG na classe de problemas de 

sequenciamento permutacional. 
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4.3.3. População Inicial 

 

Como uma das propostas do trabalho é a geração da população inicial completamente 

aleatória esta foi a forma escolhida. Além da aleatoriedade, evitar que indivíduos com a 

mesma seqüência de tarefas estejam presentes na população inicial também foi tratado. 

Esta prática melhora a diversidade, pois um indivíduo repetido agora gera um novo 

indivíduo para a população. Para eliminar os indivíduos repetidos da população inicial, foi 

implementado um procedimento que é executado depois da geração de todos os indivíduos 

da população. Este procedimento consiste em analisar todos os indivíduos da população e 

em encontrando um indivíduo repetido fazer ele passar pelo processo de mutação até que 

se torne um indivíduo único na população. 

 

4.3.4. Método de Seleção 

 

O tipo de seleção implementada no rAG foi a seleção por torneio porque é resistente a 

convergência prematura e tem custo computacional baixo. É escolhido um sub-conjunto 

com d (parâmetro descrito na seção 4.2.4) indivíduos e gerado um número aleatório entre 0 

e 1, quando esse número for maior que k (parâmetro descrito na seção 4.2.4), o segundo 

melhor indivíduo do sub-conjunto d é escolhido. Nesta etapa, assim como também no 

processo de cálculo da aptidão dos indivíduos da população, foi levado em consideração a 

importância de reduzir o tempo computacional do rAG. A escolha deste método de seleção 

contribui para reduzir o consumo de tempo de execução do rAG e não comprometeu a 

eficácia na obtenção de boas soluções. 

 

Nesta etapa, o segundo procedimento proposto para melhorar o desempenho do rAG foi 

implementado. O procedimento consiste em fazer que só um dos pais seja escolhido pelo 

método de seleção por torneio, o outro pai será o melhor indivíduo da população. Este 

procedimento foi denominado de crossover elistista e, a probabilidade de ocorrência é 

controlada pelo parâmetro Pce. O objetivo deste procedimento é favorecer o processo de 

intensificação, já que o processo de crossover realizado com o melhor indivíduo da 

população tem grandes chances de gerar descendentes com alta aptidão. 
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4.3.5. Operadores genéticos 

 

Nesta seção são descritos os operadores genéticos implementados no rAG. O operador 

crossover implementado foi o Order Crossover (OX) (Goldberg, 1989). O operador de 

mutação implementado foi o movimento swap. Nesta etapa foi implementado o terceiro 

procedimento, proposto para melhorar o desempenho do rAG. O novo operador genético é 

chamado de mutação populacional. Estes três operadores genéticos são descritos a seguir. 

 

Na aplicação dos operadores genéticos foi adotada a estratégia crossover-ou-mutação, i.e., 

sempre um dos operadores é aplicado, ou crossover ou mutação, mas não ambos. 

 

Crossover 

O operador crossover OX foi criado baseado na idéia dos bons blocos construídos. Por 

isso, baseia-se nas posições relativa e absoluta das tarefas na seqüência. Este procedimento 

é descrito a seguir. 
 

1 – São escolhidos dois pais através do método de seleção; 

2 – É escolhido aleatoriamente o mesmo fragmento de cada um dos pais e copiado nos 

respectivos filhos (Figura 4.4). Esta etapa preserva as posições absoluta e relativa das 

tarefas na seqüência; e 

3 – As posições não-preenchidas de cada filho são copiadas das tarefas do outro pai no 

sentido da esquerda para a direita (Figura 4.5). Este procedimento faz com que seja 

preservada a ordem relativa das tarefas na seqüência. 

 

     
2 3 4 5 6 1 7 8 

 
 

  4 5 6 1   
 
 

  5 4 2 1   
 
 

3 8 5 4 2 1 7 6 
 
 

Figura 4.4 – Segunda etapa do crossover OX. 
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3 6 5 4 2 1 7 8 
 
 

3 8 4 5 6 1 2 7 
 
 

3 8 5 4 2 1 7 6 
 

Figura 4.5 – Terceira etapa do crossover OX. 
 

Mutação 

 

O operador mutação swap consiste em realizar uma única alteração na estrutura do 

indivíduo. Este operador é implementado da seguinte forma: são escolhidos aleatoriamente 

duas posições na estrutura do indivíduo e o valor dos alelos dessas posições são trocados. 

Nesta etapa também existe a preocupação de evitar que surja na população um indivíduo 

repetido, por isso, quando o indivíduo gerado já existe na população o procedimento é 

repetido até a sua estrutura ser a única. A Figura 4.6 mostra um exemplo da aplicação deste 

operador para um problema com n = 8. 

 

 
Figura 4.6 – Exemplo da aplicação do operador mutação (swap). 

 

Mutação Populacional 

 

A mutação populacional baseada no princípio da diversificação foi o terceiro procedimento 

proposto para melhorar o desempenho do rAG. A idéia deste operador surgiu na análise 

dos resultados do rAG, que demonstram que à medida que a qualidade da melhor solução 

aumenta mais gerações são necessárias para haver outra melhoria, isto prova, que o 

1   4   5   6   7   3   8   2   antes da mutação 

Posições escolhidas: 3 e 6 

1   4   3   6   7   5   8   2   depois da mutação 

Pai 1 

Filho 2 

Filho 1 

Pai 2 
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processo de busca estava estagnando. A idéia foi executar uma perturbação em todos os 

indivíduos da população para reativar o processo de evolução, aproveitando a quantidade 

de gerações em que a melhor solução não se alterava. Para exemplificar a Tabela 4.1 

mostra alguns valores dos resultados obtidos para a instância tai031 (Taillard, 1993), com 

50 tarefas e 5 máquinas, pela versão do AG sem o procedimento criado. O tempo de 

execução do experimento foi de 3,75 segundos. Durante todo o processo de busca houve 

174 melhorias. Os significados das colunas da Tabela 4.1 são: a coluna um representa o 

número da melhoria (NM); a coluna dois representa a aptidão do melhor indivíduo; a 

coluna três representa o número de gerações; a coluna quatro representa o número de 

gerações entre as melhorias (GEM); a coluna cinco representa o desvio |(z – z*)/z*| (z : 

solução encontrada pelo rAG; z* : melhor solução conhecida para a instância) à solução 

final; e finalmente a coluna seis representa o percentual de gerações realizadas (P). 

Analisando os dados desta tabela se verifica que depois de 20,84% das gerações realizadas 

o valor de GEM pela primeira vez é maior que 100 e continua assim na maioria das vezes. 

Isso quer dizer que são centenas de gerações onde não ocorre melhoria da solução 

encontrada pelo rAG, por isso, desenvolveu-se um procedimento para reativar o processo 

de evolução da melhor solução encontrada, denominado mutação populacional. 
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Tabela 4.1 – Alguns valores obtidos para o problema tai031 por uma versão inicial do rAG. 

NM Aptidão Geração GEM D (%) P (%) 
1 118932 0 0 54,77 0,00 
5 108173 8 8 40,77 0,22 

10 105199 19 11 36,90 0,53 
15 99063 27 8 28,92 0,75 
20 96612 42 15 25,73 1,17 
25 94917 60 18 23,52 1,67 
30 93790 85 25 22,06 2,37 
35 91836 104 19 19,51 2,90 
40 90859 126 22 18,24 3,51 
45 89294 143 17 16,20 3,99 
50 88469 191 48 15,13 5,33 
55 87634 229 38 14,04 6,39 
60 86805 248 19 12,97 6,92 
65 86060 277 29 12,00 7,73 
70 84948 324 47 10,55 9,04 
75 84198 356 32 9,57 9,93 
80 84115 441 85 9,46 12,30 
85 83796 495 54 9,05 13,81 
90 83184 554 59 8,25 15,45 
95 82959 594 40 7,96 16,57 

100 81861 654 60 6,53 18,24 
110 81151 747 93 5,61 20,84 
120 80044 1041 294 4,17 29,04 
130 79346 1417 376 3,26 39,53 
140 78349 1684 267 1,96 46,97 
150 77860 2108 424 1,32 58,80 
160 77104 2644 536 0,34 73,75 
170 76883 3114 470 0,05 86,86 
171 76875 3253 139 0,04 90,74 
172 76854 3529 276 0,02 98,44 
173 76842 3575 46 0,00 99,72 
174 76842 3585 10 0,00 100,00 

 

A mutação populacional consiste em realizar a mutação swap em todos os indivíduos da 

população depois de um determinado número de gerações sucessivas sem melhoria ter sido 

atingido. Ainda nesta etapa, quando um indivíduo gerado é repetido ele sofre mutação 

novamente até sua seqüência ser única na população. Este procedimento é descrito a 

seguir. 

 

Passo 1 : Se f0i = f0(i-1), então c := c+1, caso contrário c := 0; 

Passo 2 : Se c = Ge, então: 

- Se f0i < f*, então s* := s0i e f* := f0i, caso contrário s0i := s* e todos os 

indivíduos da população sofrem mutação swap e c := 0; 
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Onde:   f* : é o valor da melhor aptidão em todas as gerações já realizadas; 

 s* : é o melhor indivíduo em todas as gerações já realizadas; 

 f0i : é o valor da melhor aptidão na população i; 

 s0i : é o melhor indivíduo da população i; 

 c : é o número de gerações sucessivas sem melhoria de f0i; 

 i : é o número da i-ésima geração; e 

 Ge : número de gerações sucessivas sem melhoria. 

 

O segundo passo armazena o melhor indivíduo de todas as gerações e faz com que ele 

sempre esteja na população antes da mutação de todos os indivíduos. 

 

4.3.6. Estratégia Geracional 

 

A estratégia geracional implementada no rAG é inspirada na estratégia population 

overlaps. Para evitar que existam indivíduos repetidos na população, um indivíduo só é 

aceito para ser incorporado na população se a sua estrutura não é repetida. A outra 

condição depende da aptidão do indivíduo. Se a aptidão do novo indivíduo f é melhor do 

que a pior aptidão da população fp, então este indivíduo substitui o indivíduo de pior 

aptidão e o valor da pior aptidão é atualizado.  

 

Nesta etapa o primeiro procedimento proposto, baseado no princípio da diversificação, 

para melhorar o desempenho do rAG foi implementado. A estratégia de só aceitar um 

indivíduo com aptidão melhor que a pior aptidão diminuía a diversidade da população e, 

por isso, foi implementada a possibilidade controlada por um parâmetro de um indivíduo 

com aptidão inferior a pior aptidão existente na população ser aceito, deste que tenha 

seqüência única. Este procedimento é descrito a seguir: 

 

Passo 1 : Execução do operador crossover; 

Passo 2 : Se f < fp e s ≠ si (∀ i = 1, 2, ..., N), então: sp := s e atualiza fp; 

Passo 3 : Se f ≥ fp e s ≠ si (∀ i = 1, 2, ..., N), então: 

- gera-se um número aleatório r entre 0 e 1: 

- se r < Pa, então: sp := s e atualiza fp; 
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Onde:  

N : é o tamanho da população; 

Pa : probabilidade de aceitar um indivíduo; 

s : é um dos indivíduos gerado pelo operador crossover; 

f : é a aptidão de s; 

sp : é o indivíduo de pior aptidão; e 

fp : é a aptidão de sp. 

 

4.3.7. Critério de Parada 

 

O critério de parada utilizado foi o tempo de execução, devido o rAG ter uma característica 

de manter a diversidade. Em comparação ao número de gerações, o tempo de execução é 

mais adequado tanto para o planejamento dos experimentos como para a facilidade da 

implementação computacional. 

 

4.3.8. Parametrização do rAG 

 

Ruiz et al. (2006) realizou um projeto de experimentos para encontrar a melhor 

combinação entre componentes e valores para os parâmetros do seu AG, o resultado foi um 

desvio de 3,22% e 3,85% para a melhor e a pior combinação de operadores e valores dos 

parâmetros, respectivamente. Segundo os autores está diferença não era muito 

significativa, o que demonstrava a robustez do AG desenvolvido, i.e., a qualidade das 

soluções obtidas pelo AG eram pouco dependente dos valores dos parâmetros. Devido a 

dificuldade da calibração dos valores dos parâmetros e a possibilidade de conseguir uma 

melhoria pequena, optou-se por não acrescentar aos objetivos deste trabalho realizar uma 

calibração otimizada dos parâmetros do rAG. Considerou-se mais importante construir um 

bom projeto para o AG que lhe atribuísse robustez. 

 

Os valores dos parâmetros do rAG foram determinados durante a implementação 

computacional e os primeiros experimentos. Durante os experimentos se percebeu que o 

rAG se comportava melhor para o CPFSP com o critério de desempenho sendo o tempo 

total de fluxo, com o tamanho da população e o parâmetro Ge maiores que os outros dois 
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problemas testados. Assim, foram usados dois conjuntos de valores para os parâmetros do 

rAG, apresentados a seguir. 

 

Os parâmetros do rAG e seus respectivos valores para o CPFSP com o tempo total de fluxo 

sendo o critério de desempenho: 
 

� Tamanho da população (N) : 75; 

� Tamanho do sub-conjunto de seleção (d) : 3; 

� Parâmetro da seleção por torneio (k) : 0,7; 

� Taxa de crossover (Pc) : 0,70; 

� Taxa de aceitação (Pa) : 0,30; 

� Taxa de crossover elitista (Pce): 0,30; 

� Taxa de mutação (Pm) : 0,05; e 

� Gerações de estagnação (Ge) : 50. 
 

Os parâmetros do rAG e seus respectivos valores para o CPFSP e o PFSP com o makespan 

sendo o critério de desempenho: 
 

� Tamanho da população (N) : 30; 

� Tamanho do sub-conjunto de seleção (d) : 3; 

� Parâmetro da seleção por torneio (k) : 0,7; 

� Taxa de crossover (Pc) : 0,70; 

� Taxa de aceitação (Pa) : 0,30; 

� Taxa de crossover elitista (Pce): 0,30; 

� Taxa de mutação (Pm) : 0,05; e 

� Gerações de estagnação (Ge) : 25. 

 

4.3.9. Resumo do rAG 

 

Um resumo do rAG pode ser dado da seguinte forma: primeiro é gerada uma população 

inicial totalmente aleatória de tamanho N; em seguida é verificado se há algum indivíduo 

com seqüência repetida, se houver, este indivíduo sofre mutação até sua seqüência ser a 

única da população; depois todos os indivíduos da população são avaliados, i.e., recebem 

sua aptidão; o procedimento crossover é executado N vezes: é gerado um número aleatório 

entre 0 e 1, se for menor ou igual a Pc é realizado o crossover OX, se for maior é realizado 
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o crossover elitista. Para cada um dos indivíduos gerados no processo de crossover são 

testadas as condições do procedimento de estratégia geracional; então é executado o 

procedimento de mutação, realizado i vezes, de 1 a N, onde é gerado um número aleatório 

entre 0 e 1, se for menor ou igual a Pm então o indivíduo i sofre mutação; depois é 

determinada a aptidão do melhor indivíduo, se ela for igual ou menor que a melhor aptidão 

da população anterior um contador c é acrescentado de uma unidade, caso contrário, o 

contador c recebe zero; depois do contador ter sido atualizado, se o seu valor atingir o 

valor de Ge, então a mutação populacional é executada e o contador c recebe zero. O tempo 

de execução decorrido é comparado com o tempo de execução estabelecido no critério de 

parada, se for menor, os procedimentos anteriores deste o crossover são realizados 

novamente, caso contrário, a execução do algoritmo é encerrada. Percebe-se que numa 

mesma população nunca existem dois indivíduos com a mesma seqüência. O pseudocódigo 

do rAG é apresentado na Figura 4.7. 

 

 
Figura 4.7 – Pseudocódigo do rAG. 

 

Depois da descrição do rAG faz-se uma abordagem explicitando a diferença em relação 

aos outros AGs apresentados neste trabalho. Os AGs apresentados neste trabalho para o 

CPFSP foram o GAChen de Chen et al. (1996), o GASA de Shuster e Framinan (2003) e o 

GA_AA de Aldowaisan e Allahverdi (2003). Já para o PFSP foram o GAChen de Chen et 

al. (1995), o GAMIT de Murata et al. (1996), o GAReev de Reeves (1995) e o GA_RMA 

Gera a população inicial 

Identifica e corrige indivíduos repetidos 
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Fim do enquanto 
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de Ruiz et al. (2006). A Tabela 4.2 mostra as diferenças entre os outros AGs e o rAG. Na 

Tabela 4.2: a coluna um mostra o nome do AG; a coluna dois mostra se a inicialização foi 

eficiente e qual heurística utilizada eficientemente ou não; a coluna três mostra se foi 

utilizada hibridização e qual o método usado; a coluna quatro mostra que tipo de operador 

crossover foi utilizado; a coluna cinco mostra se foi utilizado o operador de mutação com 

que procedimento; a coluna seis mostra a taxa de crossover utilizada; e a coluna sete 

mostra a taxa de mutação utilizada. 

 

A análise da tabela 4.2 mostra que o rAG foi o único a não usar inicialização eficiente e/ou 

hibridização. Nota-se que quando os outros AG não têm inicialização eficiente, usam 

hibridização, isso é uma forma de melhorar a qualidade das soluções obtidas já que as 

soluções iniciais aleatórias são de baixa qualidade, ou quando tem inicialização eficiente 

não usam hibridização. Só um o GA_AA usou inicialização eficiente e hibridização ao 

mesmo tempo. Metade dos AGs comparados usou ao menos o valor de 100% para alguma 

das taxas dos operadores genéticos. Os resultados dos experimentos serão apresentados no 

próximo capítulo e mostrará se o rAG consegue ser competitivo mesmo sem usar 

inicialização eficiente ou hibridização. 

 

Tabela 4.2 – Diferença entre os AG apresentados para o PFSP e o rAG. 
AG Inic. eficiente Hibridização Crossover Mutação Taxa 

Crossover 

Taxa 

Mutação 

GAChen 

(CPFSP) 

CDS e 

Dannenbring 

Não PMX Swap 0,95 0,01 

GASA Não Simulated 

annealing 

DPA* DPA* 1,00 1,00 

GA_AA CDS e 

Dannenbring 

Busca local PMX Swap 0,95 0,01 

GAChen 

(PFSP) 

CDS e 

Dannenbring 

Não PMX Não 1,00 0 

GAMIT Não Busca local Two-point Shift 1,00 1,00 

GA_Reev NEH Não One-point Shift 1,00 0,80 

GA_RMA NEH Não SBOX Shift 0,40 0,01 

rAG Não Não OX Swap 0,70 0,05 

 
* Desenvolvido pelo próprio autor. 
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CAPÍTULO 5 – EXPERIMENTOS COMPUTACIONAIS 

 

Os resultados dos experimentos computacionais realizados com o rAG e as comparações 

com os outros métodos são apresentados neste capítulo. O código do rAG foi 

implementado em Delphi 7. Os experimentos foram realizados em um computador PC-

AMD (2.2 GHz e 512 MB de RAM). Devido a natureza probabilística dos AGs 

tradicionais, o rAG foi executado cinco vezes para cada problema e escolhido o melhor 

resultado. 

 

O principal indicador utilizado nas comparações entre os métodos é o percentual de desvio 

das soluções, dado por ((s* - s’) / s*)x100, onde s* é a melhor solução do problema e s’ é a 

melhor solução encontrada pelo método de resolução aplicado ao problema. 

 

Um conjunto de experimentos foi programado para ser realizado e os resultados obtidos 

são apresentados nas seções 5.1 a 5.5, dados adiante. 

 

Além disso, é apresentado um conjunto de polinômios do segundo grau construídos a partir 

dos resultados obtidos com o rAG aplicado ao PFSP, com o objetivo de determinar a priori 

o tempo de execução necessário a ser gasto na aplicação do método a partir da qualidade 

da solução desejada. 

 

Por fim, descrevemos como foi o desempenho do rAG aplicado num caso real. 

 

5.1. Experimento 1 – Etapas de melhoria do rAG 

 

O primeiro experimento tem o objetivo de demonstrar e analisar a melhoria obtida pelo 

rAG com a utilização dos procedimentos propostos baseados nos princípios da diversidade 

e intensificação no CPFSP. Nesta etapa foram realizados 4 tipos de experimentos. O 

primeiro experimento foi realizado com o chamado rAG-1 que não tem implementado 

nenhum dos três procedimentos propostos. O segundo experimento foi realizado com o 

rAG-1 acrescido do procedimento que permite que indivíduos com aptidão menor que a 

pior aptidão da população tenham probabilidade de serem aceitos na população, e foi 

denominado de rAG-2. O terceiro experimento foi realizado com o rAG-2 acrescido do 
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procedimento crossover elitista, e foi denominado de rAG-3. O quarto e último 

experimento nesta etapa foi realizado com o rAG-3 acrescido do procedimento mutação 

populacional, e foi denominado de rAG-4. Todos os experimentos foram realizados com as 

instâncias de Taillard (1993). 

 

O resumo dos resultados desses experimentos com os tempos de execução usados são 

mostrados na Tabela 5.1. Nesta tabela a coluna um mostra as classes das instâncias de 

Taillard (1993), as colunas dois a cinco mostram o percentual de desvio para o rAG-1, 

rAG-2, rAG-3 e rAG-4, respectivamente, e a coluna seis mostra o tempo de execução 

usado em cada classe de problemas. 

 

A análise dos dados da Tabela 5.1 produz as seguintes observações: 

 

a) O primeiro procedimento (rAG-2) passou o desvio do rAG de 1,710% para 

0,517%, o segundo procedimento (rAG-3) passou o desvio de 0,517% para 0,174% 

e o terceiro procedimento (rAG-4) passou o desvio de 0,174% para 0,171%; 

b) O acréscimo do último procedimento melhorou o desempenho do rAG em apenas 

0,003%, isto se explica pelos baixos tempos de execução utilizados, pois a 

característica deste procedimento é agir quando a população se encontra em estado 

de estagnação e o que não ocorre com poucas gerações executadas; 

c) A eficiência do terceiro procedimento é sentida nas instâncias com 20 tarefas 

porque estes problemas são menos complexos e, por isso, rapidamente o rAG 

encontra boas soluções e, por isso, a população entra em estado de estagnação e a 

mutação populacional passa a ter um papel ativo; e 

d) O resultado do rAG-4 ter sido inferior ao resultado do rAG-3 para a classe 100x5 se 

deve a utilização dos números aleatórios gerados pelo Delphi 7, e como esses dois 

algoritmos têm quantidades de execuções de números aleatórios diferentes, isso 

influenciou no resultado. 

 

Estes resultados mostram que foi proveitosa a implementação dos procedimentos propostos 

para o desempenho do rAG. O rAG-4 foi o que obteve os melhores resultados, por isso, 

passará a ser chamado apenas de rAG e será o algoritmo usado daqui para frente. 
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Tabela 5.1 – Resumo da comparação das várias etapas de melhoria do rAG. 

Instâncias rAG-1 rAG-2 rAG-3 rAG-4 Tempo (s) 

20 x 5 0,55 0,15 0,12 0,04 0,08 
20 x 10 0,39 0,11 0,04 0,02 0,08 
20 x 20 0,51 0,11 0,08 0,05 0,08 
50 x 5 0,67 0,22 0,15 0,14 3,75 
50 x 10 0,70 0,29 0,18 0,15 3,75 
50 x 20 1,01 0,40 0,21 0,12 3,75 
100 x 5 1,83 0,59 -0,10 -0,01 10,00 
100 x 10 2,68 0,71 0,18 0,18 10,00 
100 x 20 2,86 1,03 0,51 0,34 10,00 
200 x 10 3,28 0,79 0,00 0,16 50,00 
200 x 20 4,33 1,28 0,53 0,68 50,00 
Média 1,710 0,517 0,174 0,171 15,96 

 

As Tabelas 5.2 a 5.5 mostram os resultados dos quatro métodos avaliados para cada um 

dos 110 problemas de Taillard (1993). A especificação de cada coluna dessas tabelas é a 

seguinte: a coluna um mostra a descrição dos problemas, a coluna dois mostra o melhor 

resultado obtido por Fink e Voβ (2003) referenciado como FV, a coluna três mostra o 

resultado obtido pelo rAG-1, a coluna quatro mostra desvio do rAG-1 em relação a FV, a 

coluna cinco mostra o resultado obtido pelo rAG-2, a coluna seis mostra o desvio do rAG-

2 em relação a FV, a coluna sete mostra o resultado obtido pelo rAG-3, a coluna oito 

mostra o desvio percentual do rAG-3 em relação a FV, a coluna nove mostra o resultado 

obtido pelo rAG-4 e a coluna dez mostra o desvio percentual do rAG-4 em relação a FV. 

 

A análise das informações contidas nas Tabelas 5.2 a 5.5 trás as seguintes observações: 

 

a) Na Tabela 5.2 sabendo-se que as soluções FV para as classes com 20 tarefas são as 

soluções ótimas dos problemas, o rAG-1 só obteve 3 soluções ótimas, o rAG-2 

obteve 13 soluções ótimas, o rAG-3 alcançou 19 soluções ótimas e o rAG-4 obteve 

24 soluções ótimas; 

b) Na Tabela 5.3 para as classes com 50 tarefas o rAG-1 não obteve nenhuma solução 

melhor que FV, já o rAG-2 conseguiu 5 soluções melhores que FV, o rAG-3 e o 

rAG-4 obtiveram, cada um, 7 soluções melhores que FV; 

c) Na Tabela 5.4 para as classes com 100 tarefas o rAG-1 e o rAG-2 não obtiveram 

nenhuma solução melhor que FV, já o rAG-3 obteve 7 soluções melhores que FV e 

o rAG-4 também obteve 7 soluções melhores que FV; e 
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d) Na Tabela 5.5 Para as classes com 200 tarefas o rAG-1 não obteve nenhuma 

solução melhor que FV, já o rAG-2 conseguiu 1 solução melhor que FV, o rAG-3 

obteve 6 soluções melhores que FV e o rAG-4 obteve 4 soluções melhores que FV. 

 

Estes resultados demonstram mais uma vez que as incorporações dos procedimentos 

propostos ao rAG melhoram cada vez mais a capacidade deste algoritmo de obter soluções 

melhores. Prova disso foi a mutação populacional que fez o algoritmo passar de 19 

soluções ótimas obtidas pelo rAG-3 para as classes com 20 tarefas para 24 soluções ótimas 

obtidas. 
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Tabela 5.2 – Comparação das várias etapas de melhoria do rAG para as classes com n = 20. 

Instâncias FV   rAG-1 D (%)   rAG-2 D (%)   rAG-3 D (%)   rAG-4 D (%) 
20x5                           
tai001 15674   15698 0,15   15674 0,00   15674 0,00   15674 0,00 
tai002 17250   17368 0,68   17297 0,27   17250 0,00   17250 0,00 
tai003 15821   16062 1,52   15969 0,94   15821 0,00   15877 0,35 
tai004 17970   18043 0,41   17999 0,16   17970 0,00   17970 0,00 
tai005 15317   15490 1,13   15331 0,09   15317 0,00   15317 0,00 
tai006 15501   15527 0,17   15501 0,00   15673 1,11   15501 0,00 
tai007 15693   15767 0,47   15696 0,02   15706 0,08   15693 0,00 
tai008 15955   16015 0,38   15965 0,06   15957 0,01   15963 0,05 
tai009 16385   16394 0,05   16385 0,00   16385 0,00   16385 0,00 
tai010 15329   15413 0,55   15329 0,00   15329 0,00   15329 0,00 
Média       0,55     0,15     0,12     0,04 
                            
20x10                           
tai011 25205   25417 0,84   25290 0,34   25206 0,00   25205 0,00 
tai012 26342   26540 0,75   26342 0,00   26342 0,00   26342 0,00 
tai013 22910   22936 0,11   22936 0,11   22910 0,00   22910 0,00 
tai014 22243   22315 0,32   22243 0,00   22243 0,00   22243 0,00 
tai015 23150   23191 0,18   23191 0,18   23150 0,00   23150 0,00 
tai016 22011   22179 0,76   22011 0,00   22048 0,17   22011 0,00 
tai017 21939   21965 0,12   21939 0,00   21939 0,00   21939 0,00 
tai018 24158   24158 0,00   24158 0,00   24205 0,19   24205 0,19 
tai019 23501   23652 0,64   23503 0,01   23501 0,00   23501 0,00 
tai020 24597   24633 0,15   24699 0,41   24597 0,00   24597 0,00 
Média       0,39     0,11     0,04     0,02 
                            
20x20                           
tai021 38597   38597 0,00   38597 0,00   38597 0,00   38597 0,00 
tai022 37571   37798 0,60   37643 0,19   37686 0,31   37571 0,00 
tai023 38312   38530 0,57   38312 0,00   38312 0,00   38382 0,18 
tai024 38802   39264 1,19   38802 0,00   38812 0,03   38802 0,00 
tai025 39012   39296 0,73   39096 0,22   39012 0,00   39073 0,16 
tai026 38562   38808 0,64   38620 0,15   38618 0,15   38562 0,00 
tai027 39663   39697 0,09   39738 0,19   39730 0,17   39744 0,20 
tai028 37000   37342 0,92   37027 0,07   37027 0,07   37000 0,00 
tai029 39228   39228 0,00   39228 0,00   39267 0,10   39228 0,00 
tai030 37931   38076 0,38   38024 0,25   37931 0,00   37931 0,00 
Média       0,51     0,11     0,08     0,05 
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Tabela 5.3 – Comparação das várias etapas de melhoria do rAG para as classes com n = 50. 

Instâncias FV   rAG-1 D (%)   rAG-2 D (%)   rAG-3 D (%)   rAG-4 D (%) 
50x5                           
tai031 76016   76318 0,40   75801 -0,28   75883 -0,17   75882 -0,18 
tai032 83403   83733 0,40   83348 -0,07   83589 0,22   83240 -0,20 
tai033 78282   78675 0,50   78732 0,57   78747 0,59   78467 0,24 
tai034 82737   83059 0,39   82716 -0,03   82517 -0,27   82639 -0,12 
tai035 83901   85400 1,79   84353 0,54   84338 0,52   83980 0,09 
tai036 80924   81272 0,43   81319 0,49   80969 0,06   81471 0,68 
tai037 78791   79071 0,36   79161 0,47   79172 0,48   79051 0,33 
tai038 79007   79693 0,87   79220 0,27   79067 0,08   79263 0,32 
tai039 75842   76308 0,61   76054 0,28   75892 0,07   75951 0,14 
tai040 83829   84669 1,00   83787 -0,05   83785 -0,05   83882 0,06 
Média       0,67     0,22     0,15     0,14 
                            
50x10                           
tai041 114398   115267 0,76   114552 0,13   114473 0,07   114412 0,01 
tai042 112725   112988 0,23   112853 0,11   112821 0,09   112408 -0,28 
tai043 105433   105890 0,43   105706 0,26   105786 0,33   105694 0,25 
tai044 113540   113972 0,38   113809 0,24   113932 0,35   113994 0,40 
tai045 115441   116552 0,96   115695 0,22   115896 0,39   115434 -0,01 
tai046 112645   113080 0,39   113951 1,16   112522 -0,11   112904 0,23 
tai047 116560   117339 0,67   116896 0,29   116890 0,28   116809 0,21 
tai048 115056   115865 0,70   115042 -0,01   114995 -0,05   115166 0,10 
tai049 110482   111906 1,29   110629 0,13   110814 0,30   110510 0,03 
tai050 113462   114775 1,16   113922 0,41   113670 0,18   114145 0,60 
Média       0,70     0,29     0,18     0,15 
                            
50x20                           
tai51 172845   173773 0,54   173856 0,58   173402 0,32   173154 0,18 
tai52 161092   162001 0,56   161867 0,48   161442 0,22   161260 0,10 
tai53 160213   162548 1,46   160891 0,42   160161 -0,03   160625 0,26 
tai54 161557   163041 0,92   162217 0,41   161883 0,20   162382 0,51 
tai55 167640   169667 1,21   167750 0,07   167397 -0,14   167140 -0,30 
tai56 161784   163228 0,89   162525 0,46   162507 0,45   161939 0,10 
tai57 167233   169459 1,33   167859 0,37   167291 0,03   167271 0,02 
tai58 168100   170213 1,26   169047 0,56   168820 0,43   167822 -0,17 
tai59 165292   167003 1,04   165895 0,36   165642 0,21   165292 0,00 
tai60 168386   169912 0,91   168935 0,33   169148 0,45   169144 0,45 
Média       1,01     0,40     0,21     0,12 
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Tabela 5.4 – Comparação das várias etapas de melhoria do rAG para as classes com n = 100. 

Instâncias FV   rAG-1 D (%)   rAG-2 D (%)   rAG-3 D (%)   rAG-4 D (%) 
100x5                           
tai061 308052   315572 2,44   309755 0,55   309589 0,50   307853 -0,06 
tai062 302386   307787 1,79   303039 0,22   300877 -0,50   300301 -0,69 
tai063 295239   296411 0,40   295705 0,16   293781 -0,49   294746 -0,17 
tai064 278811   283647 1,73   283291 1,61   279040 0,08   280520 0,61 
tai065 292757   299463 2,29   294944 0,75   293554 0,27   293529 0,26 
tai066 290819   297639 2,35   291495 0,23   289502 -0,45   291328 0,18 
tai067 300068   307786 2,57   302814 0,92   300934 0,29   302754 0,90 
tai068 291859   295408 1,22   292362 0,17   290175 -0,58   289477 -0,82 
tai069 307650   312164 1,47   309988 0,76   307174 -0,15   307874 0,07 
tai070 301942   308223 2,08   303687 0,58   302161 0,07   300921 -0,34 
Média       1,83     0,59     -0,10     -0,01 
                            
100x10                           
tai071 412700   425317 3,06   415571 0,70   413587 0,21   410052 -0,64 
tai072 394562   404554 2,53   394619 0,01   396092 0,39   393033 -0,39 
tai073 405878   416555 2,63   406606 0,18   406166 0,07   407103 0,30 
tai074 422301   434956 3,00   424781 0,59   422966 0,16   422508 0,05 
tai075 400175   410467 2,57   405725 1,39   401531 0,34   402891 0,68 
tai076 391359   398699 1,88   393526 0,55   392833 0,38   391755 0,10 
tai077 394179   405388 2,84   397054 0,73   393455 -0,18   398792 1,17 
tai078 402025   415212 3,28   405845 0,95   402134 0,03   402541 0,13 
tai079 416833   426680 2,36   420429 0,86   416521 -0,07   417296 0,11 
tai080 410372   421285 2,66   414894 1,10   412277 0,46   411741 0,33 
Média       2,68     0,71     0,18     0,18 
                            
100x20                           
tai081 562150   578291 2,87   568276 1,09   566299 0,74   563576 0,25 
tai082 563923   576738 2,27   572882 1,59   567295 0,60   566027 0,37 
tai083 562404   579826 3,10   570003 1,35   564884 0,44   565168 0,49 
tai084 562918   582030 3,40   568895 1,06   566140 0,57   564664 0,31 
tai085 556311   569888 2,44   560124 0,69   558504 0,39   557451 0,20 
tai086 562253   582624 3,62   567371 0,91   565028 0,49   566607 0,77 
tai087 574102   589156 2,62   575352 0,22   575047 0,16   574813 0,12 
tai088 578119   595341 2,98   586900 1,52   581522 0,59   580907 0,48 
tai089 564803   581740 3,00   570992 1,10   568157 0,59   565182 0,07 
tai090 572798   585800 2,27   577125 0,76   575738 0,51   574652 0,32 
Média       2,86     1,03     0,51     0,34 
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Tabela 5.5 – Comparação das várias etapas de melhoria do rAG para as classes com n = 200. 

Instâncias FV   rAG-1 D (%)   rAG-2 D (%)   rAG-3 D (%)   rAG-4 D (%) 
200x10                           
tai091 1521201   1575895 3,60   1531594 0,68   1527482 0,41   1526609 0,36 
tai092 1516009   1559616 2,88   1529300 0,88   1506553 -0,62   1512508 -0,23 
tai093 1515535   1580957 4,32   1539853 1,60   1522691 0,47   1515614 0,01 
tai094 1489457   1533010 2,92   1508382 1,27   1500234 0,72   1499035 0,64 
tai095 1513281   1561600 3,19   1508947 -0,29   1510513 -0,18   1511402 -0,12 
tai096 1508331   1547496 2,60   1514446 0,41   1508429 0,01   1513766 0,36 
tai097 1541419   1593727 3,39   1553749 0,80   1538915 -0,16   1554570 0,85 
tai098 1533397   1578312 2,93   1546345 0,84   1526500 -0,45   1526915 -0,42 
tai099 1507422   1559530 3,46   1519648 0,81   1507978 0,04   1504755 -0,18 
tai100 1520800   1573829 3,49   1534494 0,90   1517887 -0,19   1525728 0,32 
Média       3,28     0,79     0,00     0,16 
                            
200x20                           
tai101 2012785   2104986 4,58   2041445 1,42   2032113 0,96   2032802 0,99 
tai102 2057409   2143591 4,19   2081288 1,16   2055025 -0,12   2070359 0,63 
tai103 2050169   2128363 3,81   2072699 1,10   2053455 0,16   2057855 0,37 
tai104 2040946   2128780 4,30   2075877 1,71   2048040 0,35   2053048 0,59 
tai105 2027138   2112664 4,22   2062773 1,76   2041657 0,72   2047943 1,03 
tai106 2046542   2132140 4,18   2064979 0,90   2059528 0,63   2057600 0,54 
tai107 2045906   2149991 5,09   2072585 1,30   2061357 0,76   2063947 0,88 
tai108 2044218   2130926 4,24   2070443 1,28   2061633 0,85   2055332 0,54 
tai109 2037040   2129088 4,52   2050343 0,65   2038011 0,05   2042594 0,27 
tai110 2046966   2132272 4,17   2077830 1,51   2066081 0,93   2066217 0,94 
Média       4,33     1,28     0,53     0,68 
 

Aproveitando os resultados do rAG-4 construiu-se a Tabela 5.6 para verificar se depois de 

todos os processos de melhoria o rAG tinha se tornado tão eficiente quanto a melhor 

heurística para o CPFSP com o critério de desempenho sendo o tempo total de fluxo. 

 

Tabela 5.6 – Comparação do rAG com a heurística Pilot-10-Chins. 

Desvio (%)  Tempo (s) 
Instâncias 

(n) 
Pilot-10-

Chins 
rAG DIFdesvio  

Pilot-10-

Chins 
rAG DIFtempo 

20 0,27 0,04 -0,23  0,8 0,08 0,80 

50 0,85 0,14 -0,71  37,5 3,75 0,80 

100 1,30 0,17 -1,13  879,0 10,00 0,09 

200 0,57 0,42 -0,15  7.612,4 50,00 0,05 

Média 0,75 0,19 -0,56  2.132,4 15,96 0,44 
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A Tabela 5.6, dada acima, mostra o resumo dos resultados do rAG e a comparação com a 

heurística Pilot-10-Chins. Nesta tabela a coluna um mostra o número de tarefas das 

instâncias, cada linha representa a agregação dos problemas com 5, 10 e 20 máquinas, a 

coluna dois mostra a média do desvio da heurística Pilot-10-Chins em relação as melhores 

soluções encontradas por FV, a coluna três mostra o desvio dos resultados do rAG em 

relação a FV, a coluna quatro (DIFdesvio) mostra a diferença  entre os desvios do rAG e da 

heurística Pilo-10-Chins, a coluna cinco mostra os tempos de execução usados pela 

heurística Pilot-10-Chins, a coluna seis mostra os tempos de execução usados pelo rAG, a 

coluna sete (DIFtempo) mostra a razão entre o tempo de execução usado pela heurística 

Pilot-10-Chins e pelo rAG já multiplicado por 8 que é a razão entre as velocidades dos dois 

computadores (2.200/266). 

 

Sobre a Tabela 5.6 descrevemos as seguintes observações. 

 

a) Nas quatro classes de problemas o rAG foi superior a heurística Pilot-10-Chins. Na 

média o rAG foi 0,56 % superior a heurística Pilot-10-Chins; 

b) O tempo de execução do rAG para as quatro classes de problemas sempre foi 

inferior ao utilizado pela heurística Pilot-10-Chins. A média da razão entre os 

tempos usados pela heurística Pilot-10-Chins e pelo rAG foi 0,44 o que significa 

que o rAG foi mais rápido que a  heurística Pilot-10-Chins; 

c) A menor razão entre os tempos usados pela heurística Pilot-10-Chins e pelo rAG 

foi 0,05 e a maior razão foi 0,80; 

d) O melhor resultado do rAG em comparação com a heurísta Pilot-10-Chins foi         

-1,13% na classe com 100 tarefas; e 

e) A menor diferença entre o rAG em comparação com a heurística Pilot-10-Chins foi   

-0,15% na classe com 200 tarefas. 

 

Estes resultados demonstram que o rAG é mais eficiente e eficaz que a heurística Pilot-10-

Chins, o que contradiz a opinião de alguns autores (Reeves e Rowe, 2002; Dréo et al., 

2006) que afirmam que um AG que é uma técnica de busca global não consegue ser 

melhor que uma técnica que usa o conhecimento específico do problema para guiar a busca 

nas mesmas condições de tempo de execução. 
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5.2. Experimento 2 – rAG x FV 

 

O objetivo deste segundo tipo de experimento é analisar a capacidade do rAG em obter 

soluções tão boas ou melhores que as soluções encontradas por Fink e Voβ (2003) para o 

CPFSP com o tempo total de fluxo como critério de desempenho. Os experimentos do FV 

foram realizados num computador Pentium II (266 MHz). Então a razão entre as 

velocidades dos dois computadores utilizados nos experimentos é 2.200/266, ou seja, 8,27. 

Por isso, os tempos de execução do rAG foram adotados para serem menores que esta 

razão. Os problemas de testes utilizados foram às instâncias de Taillard (1993). O resumo 

dos resultados do rAG e a comparação com o FV são mostrados na Tabela 5.7. Na Tabela 

5.7 a coluna um mostra as classes de problemas das instâncias de Taillard (1993), a coluna 

dois mostra os tempos usados pelo FV, a coluna três mostra os tempos usados pelo rAG, a 

coluna quatro mostra a razão do tempo usado pelo rAG e pelo FV já multiplicado por 8 

que é a diferença entre as velocidades dos computadores utilizados nos testes e a coluna 

cinco mostra o desvio percentual do rAG em relação ao FV. 

 

Como o CPFSP é o problema principal deste trabalho e as instâncias de Taillard (1993) são 

as mais utilizadas nas comparações entre os métodos propostos para os problemas da 

classe FSP, decidiu-se fazer uma análise mais profunda nos experimentos realizados. Para 

isso, foram criados alguns indicadores que são definidos a seguir. Os resultados para os 

testes com os 110 problemas de Taillard (1993) com os valores dos indicadores são 

apresentados nas Tabelas 5.8 a 5.11. 

 

a) FV : é o melhor resultado obtido por Fink e Voβ (2003); 

b) rAG* : é o melhor resultado obtido pelo rAG nas cinco execuções de cada 

problema; 

c) rAGP : é o pior resultado obtido pelo rAG nas cinco execuções de cada problema; 

d) D (rAGP e rAG*) : é o desvio percentual entre o pior e o melhor resultado obtido 

pelo rAG e calculado desta forma: ((rAG* - rAGp)/rAG*)x100; 

e) GT : é o total de gerações executadas na obtenção de rAG*; 

f) G* : é a geração na qual foi obtido o valor rAG*; 

g) t* : é o tempo decorrido até obter rAG*; e 
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h) D (rAG* e FV) : é o desvio percentual entre o valor rAG* e o valor FV, calculado 

desta forma: ((FV – rAG*)/FV)x100. 

 

A análise da tabela 5.7 produz os seguintes resultados. 

 

a) Nas classes com 20 tarefas onde as soluções de FV são ótimas o rAG também 

obteve todas as soluções ótimas; 

b) Nas instâncias restantes o rAG foi sempre melhor que os resultados de FV. Na 

média o rAG foi 0,34 % superior ao FV; 

c) Os tempos de execução do rAG foram sempre inferiores aos tempos usados pelo 

FV considerando a conversão. A razão entre os tempos de execução do rAG e do 

FV foi 0,18 o que significa que o rAG é mais rápido que o FV; 

d) A menor razão entre os tempos usados pelo rAG e o FV foi 0,006 o que significa 

que o rAG foi 166 vezes mais rápido que o FV e a maior razão foi 0,463 o que 

significa que o rAG foi 2 vezes mais rápido que o FV; 

e) O melhor resultado do rAG em comparação com o FV foi -1,13 % na classe 

200x10; e 

f) Quando o rAG foi melhor que o FV a menor diferença foi -0,01 % na classe 50x20. 

 

Estes resultados mostram claramente que o rAG é ao mesmo tempo mais eficaz e eficiente 

que o FV. É mais eficaz porque obtem os melhores resultados e mais eficiente porque faz 

isso em menos tempo. 
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Tabela 5.7 – Resumo da comparação do rAG com o FV. 

Tempo (s) Instância 
(n x m) FV rAG* (rAG* / FV) x 8 

Desvio (FV e 
rAG*) (%) 

20 x 5 1.000,80 0,75 0,006 0,00 
20 x 10 1.000,80 1,50 0,012 0,00 
20 x 20 1.000,80 3,00 0,024 0,00 
50 x 5 1.037,50 15,00 0,116 -0,14 
50 x 10 1.037,50 30,00 0,231 -0,11 
50 x 20 1.037,50 60,00 0,463 -0,01 
100 x 5 1.879,00 25,00 0,106 -0,53 
100 x 10 1.879,00 50,00 0,213 -0,56 
100 x 20 1.879,00 100,00 0,426 -0,46 
200 x 10 8.612,40 150,00 0,139 -1,13 
200 x 20 8.612,40 300,00 0,279 -0,82 
Média 2.634,25 66,84 0,18 -0,34 

 

A análise das Tabelas 5.8 a 5.11 produz os seguintes resultados. 

 

a) Na Tabela 5.8 oito problemas das classes com 20 tarefas o rAG obteve a mesma 

solução nas cinco execuções (tai005, tai017, tai022, tai024, tai027, tai028, tai029 e 

tai030), sendo que estas são as soluções ótimas dos problemas. Também no 

problema tai053 da classe 50x20 o rAG obteve a mesma solução nas cinco 

execuções, sendo que a solução é melhor que a solução de FV; 

b) A maior diferença entre a melhor solução encontrada pelo rAG e a pior solução foi 

de 2,66 % no problema tai006; 

c) A menor média entre a diferença da melhor e pior solução encontrada pelo rAG foi 

de 0,09 % para a classe 20x20; 

d) A maior média entre a diferença da melhor e pior solução encontrada pelo rAG foi 

de 0,99 % para a classe 100x10; 

e) Considerando apenas os 80 problemas que não tem solução ótima definida que são 

os problemas com 50, 100 e 200 tarefas o rAG obteve 69 soluções melhores que o 

FV, 1 solução igual e 10 soluções inferiores ao FV. Nove problemas que o FV foi 

melhor são das classes com 50 tarefas e um da classe com 100 tarefas. Todos os 

problemas das classes com 200 tarefas o rAG foi melhor que o FV. Isto mostra uma 

tendência do rAG ser melhor quando o número de tarefas aumenta; 

f) A melhor solução mais rápida obtida pelo rAG foi no problema tai008 com o tempo 

de 0,02s em 29 gerações; 
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g) A maior diferença entre os desvios percentuais do rAG e do FV favorável ao rAG 

foi de -1,68 % para o problema tai098; 

h) A maior diferença entre os desvios percentuais do rAG e do FV favorável ao FV foi 

de 0,22 % para o problema tai058; 

 

A análise dos resultados dos indicadores mostra a influência das cinco execuções para cada 

problema nos resultados do rAG. As cinco execuções são justificadas pela natureza 

aleatória do AG. Mesmo se o tempo de execução fosse contado como o tempo das cinco 

execuções o rAG ainda estaria usando tempo de execução equivalente ao FV já que 

atualmente cada execução usa em média 20% do tempo de FV e passaria a 100%. Mesmo 

considerando este detalhe o rAG ainda é um método melhor que o FV porque consegue 

obter soluções melhores. 
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Tabela 5.8 – Resultados da comparação do rAG com o FV para a classe n = 20. 

Instâncias FV rAG* rAGP 
D (rAGP e 
rAG*) % GT G* t* (s) 

D (rAG* e 
FV) % 

20x5                 
tai001 15674 15674 15754 0,51 1159 250 0,16 0,00 
tai002 17250 17250 17393 0,82 1266 197 0,12 0,00 
tai003 15821 15821 15886 0,41 1312 473 0,27 0,00 
tai004 17970 17970 18026 0,31 1275 212 0,12 0,00 
tai005 15317 15317 15317 0,00 1265 117 0,07 0,00 
tai006 15501 15501 15924 2,66 1241 103 0,06 0,00 
tai007 15693 15693 15789 0,61 1293 424 0,25 0,00 
tai008 15955 15955 15968 0,08 1273 29 0,02 0,00 
tai009 16385 16385 16489 0,63 1252 915 0,55 0,00 
tai010 15329 15329 15486 1,01 1292 1192 0,69 0,00 
Média       0,70     0,23 0,00 
                  
20x10                 
tai011 25205 25206 25292 0,34 2412 2252 1,40 0,00 
tai012 26342 26342 26388 0,17 2460 1010 0,62 0,00 
tai013 22910 22910 23043 0,58 2442 82 0,05 0,00 
tai014 22243 22243 22314 0,32 2576 183 0,11 0,00 
tai015 23150 23150 23269 0,51 2427 778 0,48 0,00 
tai016 22011 22011 22185 0,78 2466 958 0,58 0,00 
tai017 21939 21939 21939 0,00 2435 198 0,12 0,00 
tai018 24158 24158 24205 0,19 2502 303 0,18 0,00 
tai019 23501 23501 23651 0,63 2496 37 0,02 0,00 
tai020 24597 24597 24715 0,48 2380 69 0,04 0,00 
Média       0,40     0,36 0,00 
                  
20x20                 
tai021 38597 38597 38855 0,66 4970 1673 1,01 0,00 
tai022 37571 37571 37571 0,00 4931 101 0,06 0,00 
tai023 38312 38312 38337 0,07 4973 444 0,27 0,00 
tai024 38802 38802 38802 0,00 5161 571 0,33 0,00 
tai025 39012 39012 39038 0,07 5033 160 0,10 0,00 
tai026 38562 38562 38612 0,13 4845 943 0,58 0,00 
tai027 39663 39663 39663 0,00 5034 1919 1,14 0,00 
tai028 37000 37000 37000 0,00 5034 3634 2,17 0,00 
tai029 39228 39228 39228 0,00 4850 543 0,34 0,00 
tai030 37931 37931 37931 0,00 4990 3883 2,33 0,00 
Média       0,09     0,83 0,00 
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Tabela 5.9 – Resultados da comparação do rAG com o FV para a classe n = 50. 

Instâncias FV rAG* rAGP 
D (rAGP e 
rAG*) % GT G* t* (s) 

D (rAG* e 
FV) % 

50x5                 
tai031 76016 76148 76492 0,45 13078 2171 2,49 0,17 
tai032 83403 83172 83566 0,47 12552 7851 9,38 -0,28 
tai033 78282 78416 79621 1,51 13030 10776 12,41 0,17 
tai034 82737 82483 83185 0,84 12876 11330 13,20 -0,31 
tai035 83901 83514 84280 0,91 12568 7692 9,18 -0,46 
tai036 80924 80763 81523 0,93 13061 7671 8,81 -0,20 
tai037 78791 78669 78964 0,37 12979 9030 10,44 -0,15 
tai038 79007 79046 79449 0,51 13068 9154 10,51 0,05 
tai039 75842 75830 76502 0,88 13190 13101 14,90 -0,02 
tai040 83829 83550 84710 1,37 13161 3755 4,28 -0,33 
Média       0,82     9,56 -0,14 
                  
50x10                 
tai041 114398 114177 114731 0,48 26516 7777 8,80 -0,19 
tai042 112725 112116 113429 1,16 25804 24534 28,52 -0,54 
tai043 105433 105345 105854 0,48 26238 19988 22,85 -0,08 
tai044 113540 113387 113733 0,30 25973 24568 28,38 -0,13 
tai045 115441 115425 115781 0,31 26163 23082 26,47 -0,01 
tai046 112645 112489 113343 0,75 25859 8631 10,01 -0,14 
tai047 116560 116617 117272 0,56 25994 20307 23,44 0,05 
tai048 115056 115097 116042 0,81 26110 16205 18,62 0,04 
tai049 110482 110451 111184 0,66 24991 4856 5,83 -0,03 
tai050 113462 113427 113792 0,32 26017 13813 15,93 -0,03 
Média       0,58     18,88 -0,11 
                  
50x20                 
tai051 172845 172740 174301 0,90 53980 27555 30,63 -0,06 
tai052 161092 160980 161517 0,33 53904 15726 17,50 -0,07 
tai053 160213 160104 160104 0,00 53284 22133 24,92 -0,07 
tai054 161557 161678 162382 0,43 53072 33605 37,99 0,07 
tai055 167640 167081 167410 0,20 50458 18719 22,26 -0,33 
tai056 161784 162027 162347 0,20 53452 28936 32,48 0,15 
tai057 167233 167098 167658 0,33 54438 19991 22,03 -0,08 
tai058 168100 168462 168828 0,22 53174 38976 43,98 0,22 
tai059 165292 165292 167012 1,03 52896 50384 57,15 0,00 
tai060 168386 168560 169643 0,64 54052 32681 36,28 0,10 
Média       0,43     32,52 -0,01 
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Tabela 5.10 – Resultados da comparação do rAG com o FV para a classe n = 100. 

Instâncias FV rAG* rAGP 
D (rAGP e 
rAG*) % GT G* t* (s) 

D (rAG* e 
FV) % 

100x5                 
tai061 308052 307329 309689 0,76 12290 11653 23,70 -0,23 
tai062 302386 299602 301866 0,75 12129 8416 17,35 -0,92 
tai063 295239 292693 294230 0,52 12310 10891 22,12 -0,86 
tai064 278811 278860 281998 1,11 12327 10887 22,08 0,02 
tai065 292757 291803 293955 0,73 12269 5569 11,35 -0,33 
tai066 290819 288486 291211 0,94 12010 10986 22,87 -0,80 
tai067 300068 299353 303267 1,29 12059 10729 22,24 -0,24 
tai068 291859 289262 293328 1,39 12176 11058 22,70 -0,89 
tai069 307650 306259 307417 0,38 12137 10201 21,01 -0,45 
tai070 301942 300154 304206 1,33 12326 12162 24,67 -0,59 
Média       0,92     21,01 -0,53 
                  
100x10                 
tai071 412700 410289 415227 1,19 24472 17599 35,96 -0,58 
tai072 394562 392032 395106 0,78 24769 22584 45,59 -0,64 
tai073 405878 403399 405472 0,51 24437 20542 42,03 -0,61 
tai074 422301 419582 422681 0,73 24125 14239 29,51 -0,64 
tai075 400175 399019 400056 0,26 24406 24096 49,36 -0,29 
tai076 391359 389123 393616 1,14 24883 19959 40,11 -0,57 
tai077 394179 393034 397527 1,13 24431 21610 44,23 -0,29 
tai078 402025 398617 403488 1,21 24302 23752 48,87 -0,85 
tai079 416833 414093 418748 1,11 24625 20556 41,74 -0,66 
tai080 410372 408580 416365 1,87 24111 20787 43,11 -0,44 
Média       0,99     42,05 -0,56 
                  
100x20                 
tai081 562150 559459 562639 0,57 50026 45144 90,24 -0,48 
tai082 563923 563649 568368 0,83 49717 47577 95,70 -0,05 
tai083 562404 560260 563821 0,63 49708 42297 85,09 -0,38 
tai084 562918 561826 565257 0,61 48850 46424 95,03 -0,19 
tai085 556311 552584 557465 0,88 49571 45582 91,95 -0,67 
tai086 562253 560120 561869 0,31 48996 46362 94,62 -0,38 
tai087 574102 570282 573831 0,62 48448 26977 55,68 -0,67 
tai088 578119 575843 581755 1,02 49565 18913 38,16 -0,39 
tai089 564803 562473 564726 0,40 49455 40550 81,99 -0,41 
tai090 572798 567060 576671 1,67 48778 34967 71,69 -1,00 
Média       0,75     80,02 -0,46 
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Tabela 5.11 – Resultados da comparação do rAG com o FV para a classe n = 200. 

Instâncias FV rAG* rAGP 
D (rAGP e 
rAG*) % GT G* t* (s) 

D (rAG* e 
FV) % 

200x10                 
tai091 1521201 1508293 1517798 0,63 38587 34374 133,62 -0,85 
tai092 1516009 1498266 1506730 0,56 38437 32743 127,78 -1,17 
tai093 1515535 1500991 1510431 0,62 38577 36208 140,79 -0,96 
tai094 1489457 1477786 1500640 1,52 38674 37874 146,90 -0,78 
tai095 1513281 1490851 1505283 0,96 38662 38649 149,95 -1,48 
tai096 1508331 1490569 1506499 1,06 38810 38704 149,59 -1,18 
tai097 1541419 1524555 1548666 1,56 38475 38459 149,94 -1,09 
tai098 1533397 1507573 1529827 1,45 38569 38042 147,95 -1,68 
tai099 1507422 1487669 1504042 1,09 39122 38697 148,37 -1,31 
tai100 1520800 1509447 1511636 0,14 38110 35964 141,55 -0,75 
Média       0,96     143,64 -1,13 
         
200x20                 
tai101 2012785 1997368 2010384 0,65 78700 78579 299,54 -0,77 
tai102 2057409 2023201 2061397 1,85 77835 70313 271,01 -1,66 
tai103 2050169 2024717 2034127 0,46 78075 70630 271,39 -1,24 
tai104 2040946 2031515 2044056 0,61 77664 77020 297,51 -0,46 
tai105 2027138 2020412 2031261 0,53 78554 64871 247,74 -0,33 
tai106 2046542 2041153 2045448 0,21 78313 56412 216,10 -0,26 
tai107 2045906 2025808 2043081 0,85 77732 77602 299,50 -0,98 
tai108 2044218 2031402 2046303 0,73 77283 76874 298,41 -0,63 
tai109 2037040 2010645 2034183 1,16 77866 77846 299,92 -1,30 
tai110 2046966 2035128 2047852 0,62 77831 75553 291,22 -0,58 
Média       0,77     279,24 -0,82 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 88 

5.3. Experimento 3 – rAG x GASA e TS-M 

 

Este experimento tem como objetivo analisar o desempenho do rAG no CPFSP, sendo o 

makespan o critério de desempenho, com os métodos de Grabowski e Pempera (2005), o 

TS-M descrito na Seção 3.3.6, e com o algoritmo híbrido desenvolvido por Shuster e 

Framinan (2003), GASA descrito na Seção 3.3.5. Os resultados do TS-M foram obtidos 

num computador Pentium 1.000 MHz. Os resultados do GASA foram obtidos num 

computador Athlon 1.400 MHz. Daí, os experimentos com o rAG utilizaram metade do 

tempo utilizado pelo TS-M para tornar a comparação justa.  

 

Estes dois métodos foram escolhidos para serem comparados com o rAG devido aos seus 

testes terem sido realizados com as instâncias de Reeves (1995) e Heller (1960). A Tabela 

5.12 mostra os resultados do rAG e a comparação com o GASA, enquanto a Tabela 5.13 

mostra a comparação com o TS-M. Nas Tabelas 5.12 e 5.13 a coluna um mostra o nome 

das instâncias, a coluna dois mostra o número de tarefas e máquinas das instâncias, a 

coluna três mostra os resultados do GASA ou do TS-M, a coluna quatro mostra os tempos 

usados pelo GASA ou pelo TS-M, a coluna cinco mostra os resultados do rAG, a coluna 

seis mostra o tempo de execução usado pelo rAG, a coluna sete mostra a razão entre o 

tempo de execução do rAG e do GASA ou do TS-M multiplicado por dois, devido a 

consideração do computador utilizado nos experimentos do rAG ser duas vezes mais 

rápido do que os computadores utilizados pelos outros métodos, e a coluna oito mostra a 

diferença do desvio entre o rAG e o GASA ou o TS-M. 

 

A análise da Tabela 5.12 produz as seguintes observações: 

 

a) Nos 23 problemas testados o rAG obteve melhor resultado em 21 problemas e em 2 

problemas obteve resultado igual ao GASA. Na média o rAG foi 4,99 % superior 

ao GASA; 

b) O tempo de execução do rAG para os 23 problemas sempre foi inferior ao utilizado 

pelo GASA. A média da razão entre os tempos usados pelo rAG e pelo GASA foi 

0,014 o que significa que o rAG é mais rápido do que o GASA; 
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c) A menor razão entre os tempos usados pelo rAG e o GASA foi de 0,003 o que 

significa que o rAG foi 333 vezes mais rápido que o GASA e, a maior razão foi 

0,033 o que significa que o rAG foi 30 vezes mais rápido que o GASA; 

d) O melhor resultado do rAG em comparação com o GASA foi -16,76% no problema 

hel1; 

e) Quando o rAG foi melhor que o GASA a menor diferença ficou em -0,07%, no 

problema rec01; e 

f) Os resultados do rAG tendem a serem melhores que o GASA quando o número de 

tarefas e máquinas é grande. 

 

Estes resultados mostram claramente que o rAG é ao mesmo tempo mais eficaz e eficiente 

que o GASA, é mais eficaz porque obtém os melhores resultados e mais eficiente porque 

faz isso em menos tempo. 

 

Tabela 5.12 – Comparação do rAG com o GASA. 

Instância n x m GASA* t GASA (s) rAG* t rAG (s) (t rAG/t GASA) x 2 Desvio (%) 
rec01 20x5 1527 6,00 1526 0,10 0,033 -0,07 
rec03 20x5 1392 6,00 1361 0,10 0,033 -2,23 
rec05 20x5 1524 7,00 1514 0,10 0,029 -0,66 
rec07 20x10 2046 12,00 2043 0,10 0,017 -0,15 
rec09 20x10 2045 11,00 2042 0,10 0,018 -0,15 
rec11 20x10 1881 10,00 1881 0,10 0,020 0,00 
hel2 20x10 180 10,00 179 0,10 0,020 -0,56 
rec13 20x15 2556 17,00 2545 0,15 0,018 -0,43 
rec15 20x15 2529 17,00 2529 0,15 0,018 0,00 
rec17 20x15 2590 16,00 2588 0,15 0,019 -0,08 
rec19 30x10 2985 34,00 2850 0,20 0,012 -4,52 
rec21 30x10 2948 35,00 2827 0,20 0,011 -4,10 
rec23 30x10 2827 35,00 2703 0,20 0,011 -4,39 
rec25 30x15 3732 55,00 3593 0,25 0,009 -3,72 
rec27 30x15 3560 51,00 3431 0,25 0,010 -3,62 
rec29 30x15 3440 54,00 3303 0,25 0,009 -3,98 
rec31 50x10 4757 147,00 4343 0,55 0,007 -8,70 
rec33 50x10 4998 145,00 4510 0,55 0,008 -9,76 
rec35 50x10 4891 146,00 4420 0,55 0,008 -9,63 
rec37 75x20 9508 907,00 8203 1,30 0,003 -13,73 
rec39 75x20 9964 890,00 8554 1,30 0,003 -14,15 
rec41 75x20 9978 904,00 8647 1,30 0,003 -13,34 
hel1 100x10 877 1088,00 730 1,95 0,004 -16,76 
Média     200,13   0,43 0,014 -4,99 
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Analisando os dados da Tabela 5.13 se descreve as seguintes observações: 

 

a) Nos 23 problemas testados o rAG obteve melhor desempenho que o TS-M em 7 

problemas, enquanto em 6 o desempenho foi idêntico e em 10 problemas o TS-M 

foi melhor. Na média o rAG foi 0,22% inferior ao desempenho do TS-M; 

b) O tempo de execução do rAG para os 23 problemas foi comparativamente o mesmo 

usado pelo TS-M; 

c) O melhor resultado do rAG, em comparação com o TS-M, foi -0,52% no problema 

rec19; e 

d) O pior resultado do rAG em comparação com o TS-M foi 1,96%, no problema 

hel1. 

 

Estes resultados mostram que o rAG é inferior ao TS-M quando as condições de tempo de 

execução são equivalentes. Porém a diferença é muito pequena de 0,22% e lembrando que 

o TS-M começa de uma solução boa. 

 

Tabela 5.13 – Comparação do rAG com o TS-M. 

Instância n x m TS-M* t TS-M (s) rAG* t rAG (s) (t rAG/ t TS-M) x 2 Desvio (%) 
rec01 20x5 1527 0,20 1526 0,10 1,00 -0,07 
rec03 20x5 1361 0,20 1361 0,10 1,00 0,00 
rec05 20x5 1512 0,20 1514 0,10 1,00 0,13 
rec07 20x10 2042 0,20 2043 0,10 1,00 0,05 
rec09 20x10 2043 0,20 2042 0,10 1,00 -0,05 
rec11 20x10 1881 0,20 1881 0,10 1,00 0,00 
hel2 20x10 179 0,20 179 0,10 1,00 0,00 
rec13 20x15 2545 0,30 2545 0,15 1,00 0,00 
rec15 20x15 2529 0,30 2529 0,15 1,00 0,00 
rec17 20x15 2587 0,30 2588 0,15 1,00 0,04 
rec19 30x10 2865 0,40 2850 0,20 1,00 -0,52 
rec21 30x10 2825 0,40 2827 0,20 1,00 0,07 
rec23 30x10 2705 0,40 2703 0,20 1,00 -0,07 
rec25 30x15 3593 0,50 3593 0,25 1,00 0,00 
rec27 30x15 3432 0,50 3431 0,25 1,00 -0,03 
rec29 30x15 3291 0,50 3303 0,25 1,00 0,36 
rec31 50x10 4347 1,10 4343 0,55 1,00 -0,09 
rec33 50x10 4469 1,10 4510 0,55 1,00 0,92 
rec35 50x10 4427 1,10 4420 0,55 1,00 -0,16 
rec37 75x20 8127 2,60 8203 1,30 1,00 0,94 
rec39 75x20 8518 2,60 8554 1,30 1,00 0,42 
rec41 75x20 8543 2,60 8647 1,30 1,00 1,22 
hel1 100x10 716 3,90 730 1,95 1,00 1,96 
Média     0,87   0,43  1,00 0,22 
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5.4. Experimento 4 – rAG x TS-M 

 

O quarto tipo de experimento tem o objetivo de analisar a capacidade do rAG obter 

soluções melhores do que o TS-M. Por isso, foram utilizados tempos de execução maiores 

do que no experimento anterior. A Tabela 5.14 mostra os resultados do rAG e os compara 

com o TS-M. Na Tabela 5.14 a coluna um mostra o nome das instâncias, a coluna dois 

mostra o número de tarefas e máquinas das instâncias, a coluna três mostra os resultados 

do TS-M, a coluna quatro mostra os tempos usados pelo TS-M, a coluna cinco mostra os 

resultados do rAG, a coluna seis mostra o tempo de execução usado pelo rAG, a coluna 

sete mostra a razão entre o tempo de execução do rAG e do TS-M multiplicado por dois, 

porque se considera o computador utilizado no experimento do rAG duas vezes mais 

rápido do que o computador utilizado pelo TS-M, e a coluna oito mostra o desvio 

percentual entre o rAG e o TS-M. 

 

Analisando as informações contidas na Tabela 5.14 tem-se que: 

 

a) Nos 23 problemas testados o rAG obteve melhor resultado em 14 problemas, 

enquanto em 9 problemas obteve resultado igual ao TS-M. Na média o rAG foi 

0,16% superior ao TS-M; 

b) O tempo de execução do rAG para os 23 problemas sempre foi superior ao 

utilizado pelo TS-M. A média da razão entre os tempos usados pelo rAG e pelo TS-

M foi 4,46 o que significa que o rAG foi mais lento que o TS-M; 

c) A menor razão entre os tempos usados pelo rAG e o TS-M foi 2,00 e a maior razão 

foi 8,00; 

d) O melhor resultado do rAG em comparação com o TS-M foi -0,71% no problema 

rec39; e 

e) Quando o rAG foi melhor que o TS-M a menor diferença foi -0,05% no problema 

rec09. 

 

Estes resultados mostram que o rAG é mais eficaz que o TS-M, porque obteve as melhores 

soluções quando comparadas com as soluções apresentadas pelo TS-M. 
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Tabela 5.14 – Comparação do rAG com o TS-M utilizando tempo maior de execução. 

Instância n x m TS-M* t TS-M (s) rAG* t rAG (s) (t rAG/ t TS-M) x 2 Desvio (%) 
rec01 20x5 1527 0,20 1526 0,20 2,00 -0,07 
rec03 20x5 1361 0,20 1361 0,20 2,00 0,00 
rec05 20x5 1512 0,20 1511 0,20 2,00 -0,07 
rec07 20x10 2042 0,20 2042 0,20 2,00 0,00 
rec09 20x10 2043 0,20 2042 0,20 2,00 -0,05 
rec11 20x10 1881 0,20 1881 0,20 2,00 0,00 
hel2 20x10 179 0,20 179 0,20 2,00 0,00 
rec13 20x15 2545 0,30 2545 0,50 3,33 0,00 
rec15 20x15 2529 0,30 2529 0,50 3,33 0,00 
rec17 20x15 2587 0,30 2587 0,50 3,33 0,00 
rec19 30x10 2865 0,40 2850 1,50 7,50 -0,52 
rec21 30x10 2825 0,40 2821 1,50 7,50 -0,14 
rec23 30x10 2705 0,40 2700 1,50 7,50 -0,18 
rec25 30x15 3593 0,50 3593 2,00 8,00 0,00 
rec27 30x15 3432 0,50 3431 2,00 8,00 -0,03 
rec29 30x15 3291 0,50 3291 2,00 8,00 0,00 
rec31 50x10 4347 1,10 4320 2,00 3,64 -0,62 
rec33 50x10 4469 1,10 4458 2,00 3,64 -0,25 
rec35 50x10 4427 1,10 4409 2,00 3,64 -0,41 
rec37 75x20 8127 2,60 8069 7,00 5,38 -0,71 
rec39 75x20 8518 2,60 8501 7,00 5,38 -0,20 
rec41 75x20 8543 2,60 8514 7,00 5,38 -0,34 
hel1 100x10 716 3,90 715 10,00 5,13 -0,14 
Média     0,87   2,19 4,46 -0,16 
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5.5. Experimento 5 - rAG x outros AG 

 

Neste tipo de experimento o objetivo é analisar o desempenho do rAG em relação a outros 

AGs quando aplicado no PFSP com o makespan sendo o critério de desempenho. Os 

resultados obtidos para a comparação foram retirados de Ruiz et al. (2006). Os 

experimentos com os outros AG foram realizados num computador Pentium IV (2,8 GHz e 

512 MB de RAM). Os tempos de execução utilizados nos experimentos possuem três 

níveis representados pelos valores de p, são fornecidos em milissegundos e calculados por 

n*(m/2)*p, onde p = 30, 60 e 90. Considerou-se a velocidade do computador utilizado por 

Ruiz et al. (2006) como sendo a mesma do usado pelo rAG. Os problemas de teste 

utilizados foram às instâncias de Taillard (1993). Os AGs usados na comparação foram o 

GAChen de Chen et al. (1995), o GAMIT de Murata et al. (1996), o GAReev de Reeves 

(1995) e o GA_RMA de Ruiz et al. (2006), considerado o melhor AG sem hibridização 

encontrado na literatura. Estes AGs estão descritos na Seção 2.5 sendo que o quinto AG é o 

GA_AA de Aldowaisan e Allahverdi (2003), descrito na Seção 3.3.3 que foi desenvolvido 

para o CPFSP, mas que Ruiz et al. (2006) adaptaram para o PFSP. 

 

A Tabela 5.15 mostra os tempos de execução para as 12 classes de problemas e os três 

valores de p utilizado. As Tabelas 5.16 a 5.18 mostram o resumo dos resultados do rAG e a 

comparação com os outros AGs. Nestas tabelas, a coluna um mostra a classe da instância, a 

coluna dois mostra o desvio do rAG em relação as melhores soluções encontradas nos 

problemas de Taillard (1993), as colunas seguintes mostram o desvio das soluções dos 

outros AGs e as diferenças dos seus desvios em relação ao desvio do rAG. 
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Tabela 5.15 – Tempos de execução utilizados nos testes com os outros AGs. 

p = 30 p = 60 p = 90 Instâncias 
t (s) t (s) t (s) 

20 x 5 1,50 3,00 4,50 
20 x 10 3,00 6,00 9,00 
20 x 20 6,00 12,00 18,00 
50 x 5 3,75 7,50 11,25 
50 x 10 7,50 15,00 22,50 
50 x 20 15,00 30,00 45,00 
100 x 5 7,50 15,00 22,50 
100 x 10 15,00 30,00 45,00 
100 x 20 30,00 60,00 90,00 
200 x 10 30,00 60,00 90,00 
200 x 20 60,00 120,00 180,00 
500 x 20 150,00 300,00 450,00 

 

Analisando as Tabelas 5.16 a 5.18 tem-se que: 

 

a) No primeiro nível de tempo de execução (p= 30) o rAG foi superior ao GAChen, ao 

GAMIT e ao GA_AA e inferior ao GAReev e ao GA_RMA; 

b) Nos segundo (p= 60) e terceiro (p= 90) níveis de tempo de execução o rAG só foi 

inferior ao GA_RMA; 

c) O rAG em relação ao GAMIT só foi inferior na classe 100x5 em todos os níveis de 

tempo de execução; 

d) O rAG em relação ao GA_AA só foi inferior na classe 100x5 em todos os níveis de 

tempo de execução e na classe 500x20 nos dois primeiros níveis de tempo de 

execução; 

e) O rAG em relação ao GAReev foi superior nas classes 20x5, 20x10, 20x20 e 50x10 

em todos os níveis de tempo de execução e na classe 50x5 no segundo nível de 

tempo de execução. Os resultados do rAG em relação ao GAReev são no segundo e 

terceiro níveis de tempo de execução tão melhores nas primeiras classes de 

problemas que fazem na média o rAG ser superior; 

f) O rAG em relação ao GA_RMA foi superior nas classes 20x5, 20x10 e 20x20 em 

todos os níveis de tempo de execução e na classe 50x10 no segundo e terceiro 

níveis de tempo de execução. Diferente do GAReev estes resultados não são 

suficientes para fazer o rAG ser superior ao GA_RMA em qualquer um dos níveis 

de tempo de execução; e 
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g) Em comparação com os outros AGs o rAG tende a ser melhor quando o número de 

tarefas e máquinas é pequeno. 

 

Estes resultados mostram que o rAG mesmo sem inicialização eficiente e hibridização 

consegue ser competitivo em relação aos outros AGs, sendo as vezes até melhor. Como já 

mencionado o GA_RMA é o melhor AG encontrado na literatura e mesmo assim o rAG 

em algumas instâncias conseguiu superá-lo. A média da diferença entre o rAG e o 

GA_RMA no terceiro nível de tempo de execução foi de 0,29%. Está diferença mostra que 

o rAG consegue ser competitivo em relação ao melhor AG encontrado na literatura. 
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Tabela 5.16 – Resultados dos experimentos com p = 30. 

Instância 
(n x m) rAG   GAChen 

Difer 
rAG (%) 

  
GAMIT 

Difer 
rAG (%)   GA_AA 

Difer 
rAG (%) 

  
GAReev 

Difer 
rAG (%) 

  
GA_RMA 

Difer 
rAG (%) 

20 x 5 0,06   3,65 -3,59   0,84 -0,78   0,94 -0,88   0,54 -0,48   0,24 -0,18 
20 x 10 0,33   5,00 -4,67   1,96 -1,63   1,70 -1,37   1,78 -1,45   0,62 -0,29 
20 x 20 0,18   3,90 -3,72   1,66 -1,48   1,31 -1,13   1,39 -1,21   0,37 -0,19 
50 x 5 0,22   1,89 -1,67   0,30 -0,08   0,37 -0,15   0,17 0,05   0,06 0,16 
50 x 10 1,90   6,37 -4,47   3,50 -1,60   3,60 -1,70   2,23 -0,33   1,79 0,11 
50 x 20 4,31   7,88 -3,57   5,07 -0,76   4,66 -0,35   3,74 0,57   2,67 1,64 
100 x 5 0,35   1,34 -0,99   0,25 0,10   0,26 0,09   0,14 0,21   0,07 0,28 
100 x 10 1,28   3,90 -2,62   1,54 -0,26   1,65 -0,37   0,82 0,46   0,65 0,63 
100 x 20 4,30   8,06 -3,76   4,99 -0,69   4,92 -0,62   3,36 0,94   2,78 1,52 
200 x 10 0,98   2,80 -1,82   1,14 -0,16   1,08 -0,10   0,59 0,39   0,43 0,55 
200 x 20 3,87   6,94 -3,07   4,19 -0,32   3,95 -0,08   2,71 1,16   2,35 1,52 
500 x 20 2,60   4,79 -2,19   2,68 -0,08   2,06 0,54   1,47 1,13   1,43 1,17 
Média 1,70   4,71 -3,01   2,34 -0,65   2,21 -0,51   1,58 0,12   1,12 0,58 

 

Tabela 5.17 – Resultados dos experimentos com p = 60. 

Instância 
(n x m) rAG   GAChen 

Difer 
rAG (%) 

  
GAMIT 

Difer 
rAG (%)   GA_AA 

Difer 
rAG (%) 

  
GAReev 

Difer 
rAG (%) 

  
GA_RMA 

Difer 
rAG (%) 

20 x 5 0,04   4,02 -3,98   0,74 -0,70   0,80 -0,76   0,51 -0,47   0,23 -0,19 
20 x 10 0,08   5,14 -5,06   1,72 -1,64   1,41 -1,33   1,67 -1,59   0,60 -0,52 
20 x 20 0,08   3,93 -3,85   1,66 -1,58   1,37 -1,29   1,41 -1,33   0,34 -0,26 
50 x 5 0,16   2,02 -1,86   0,26 -0,10   0,37 -0,21   0,20 -0,04   0,06 0,10 
50 x 10 1,32   6,83 -5,51   3,20 -1,88   3,35 -2,03   2,26 -0,94   1,86 -0,54 
50 x 20 4,11   7,98 -3,87   4,88 -0,77   4,52 -0,41   3,71 0,40   2,62 1,49 
100 x 5 0,36   1,44 -1,08   0,25 0,11   0,24 0,12   0,12 0,24   0,08 0,28 
100 x 10 0,89   3,78 -2,89   1,46 -0,57   1,61 -0,72   0,74 0,15   0,62 0,27 
100 x 20 3,89   8,18 -4,29   4,77 -0,88   4,73 -0,84   3,25 0,64   2,68 1,21 
200 x 10 0,88   2,75 -1,87   1,04 -0,16   1,10 -0,22   0,50 0,38   0,41 0,47 
200 x 20 3,39   7,24 -3,85   4,14 -0,75   4,02 -0,63   2,65 0,74   2,22 1,17 
500 x 20 2,19   4,79 -2,60   2,48 -0,29   1,98 0,21   1,38 0,81   1,40 0,79 
Média 1,45   4,84 -3,39   2,22 -0,77   2,13 -0,68   1,53 -0,08   1,09 0,36 
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Tabela 5.18 – Resultados dos experimentos com p = 90. 

Instância 
(n x m) rAG   GAChen 

Difer 
rAG (%) 

  
GAMIT 

Difer 
rAG (%)   GA_AA 

Difer 
rAG (%) 

  
GAReev 

Difer 
rAG (%) 

  
GA_RMA 

Difer 
rAG (%) 

20 x 5 0,10   3,51 -3,41   0,53 -0,43   0,84 -0,74   0,62 -0,52   0,25 -0,15 
20 x 10 0,12   4,99 -4,87   1,61 -1,49   1,42 -1,30   1,71 -1,59   0,64 -0,52 
20 x 20 0,04   4,24 -4,20   1,36 -1,32   1,23 -1,19   1,31 -1,27   0,40 -0,36 
50 x 5 0,17   2,34 -2,17   0,23 -0,06   0,34 -0,17   0,16 0,01   0,06 0,11 
50 x10 1,21   6,92 -5,71   3,27 -2,06   3,30 -2,09   2,00 -0,79   1,46 -0,25 
50 x 20 3,67   7,77 -4,10   4,75 -1,08   4,69 -1,02   3,58 0,09   2,47 1,20 
100 x 5 0,30   1,36 -1,06   0,22 0,08   0,22 0,08   0,11 0,19   0,06 0,24 
100 x 10 0,84   3,87 -3,03   1,34 -0,50   1,55 -0,71   0,67 0,17   0,52 0,32 
100 x 20 3,58   8,11 -4,53   4,68 -1,10   4,64 -1,06   3,12 0,46   2,54 1,04 
200 x 10 0,72   2,81 -2,09   0,98 -0,26   0,99 -0,27   0,41 0,31   0,41 0,31 
200 x 20 3,00   7,37 -4,37   3,95 -0,95   3,86 -0,86   2,54 0,46   2,11 0,89 
500 x 20 2,00   4,62 -2,62   2,36 -0,36   2,08 -0,08   1,33 0,67   1,36 0,64 
Média 1,31   4,83 -3,51   2,11 -0,79   2,10 -0,78   1,46 -0,15   1,02 0,29 
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5.6. Evolução das Soluções do rAG 

 

Esta seção tem o objetivo de analisar a evolução das soluções obtidas pelo rAG nos 

problemas testados nos experimentos anteriores. Para isso é comparada a melhor solução 

obtida na população inicial com a solução final. A Tabela 5.19 mostra a média dos desvios 

entre a melhor solução obtida na população inicial e a solução final, do segundo tipo de 

experimento que foi realizado para o CPFSP, com o tempo total de fluxo como critério de 

desempenho. A Tabela 5.20 mostra a média dos desvios entre a melhor solução obtida na 

população inicial e a solução final, do quarto tipo de experimento que foi realizado para o 

CPFSP, como makespan sendo o critério de desempenho. A Tabela 5.21 mostra a média 

dos desvios entre a melhor solução obtida na população inicial e a solução final, do quinto 

tipo de experimento no terceiro nível de tempo de execução que foi realizado para o PFSP, 

com makespan como critério de desempenho. 

 

Para mostrar a evolução das soluções foram construídos gráficos que mostram a melhoria 

do desvio em relação ao número de gerações. Foram escolhidas quatro instâncias de cada 

um dos três problemas avaliados. As Figuras 5.1 a 5.4 são referentes ao CPFSP, com o 

tempo total de fluxo como critério de desempenho. As Figuras 5.5 a 5.8 são referentes ao 

CPFSP, com o makespan como critério de desempenho. As Figuras 5.9 a 5.12 são 

referentes ao PFSP, com o makespan como critério de desempenho. 

 

Desses experimentos foram observados que: 

 

a) O rAG consegue melhorar bastante a qualidade da solução inicial. Deve-se levar 

em conta neste resultado que é mais fácil melhorar uma solução ruim que uma 

solução boa; e 

b) Para os dois problemas CPFSP as melhores médias obtidas a partir da solução 

inicial foram 31,31% e 27,98%, respectivamente, maiores que a melhoria média 

obtida no PFSP que foi de 12,98%. Isto pode indicar uma característica diferente do 

espaço de soluções destes dois problemas. 
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As Figuras 5.1 a 5.12 mostram a evolução do desempenho do método a partir da solução 

inicial, mesmo quando o número de soluções já é bastante grande. Isto demonstra que o 

rAG consegue aproveitar todo o tempo de execução em prol da melhoria das soluções, ao 

invés de ficar em estado de estagnação. 

 

Tabela 5.19 – Evolução das soluções do CPFSP com o tempo total de fluxo como critério de 

desempenho. 

Instâncias (n x m) D (rAGini e rAG*) (%) 
20 x 5 -20,55 
20 x 10 -19,43 
20 x 20 -18,00 
50 x 5 -31,95 
50 x 10 -32,14 
50 x 20 -30,68 
100 x 5 -37,07 
100 x 10 -36,95 
100 x 20 -36,51 
200 x 10 -40,45 
200 x 20 -40,71 
Média -31,31 

 

Tabela 5.20 – Evolução das soluções do CPFSP com o makespan como critério de desempenho. 

Instâncias n x m D (rAGini e rAG*) (%) 
rec01 20x5 -23,47 
rec03 20x5 -28,33 
rec05 20x5 -16,89 
rec07 20x10 -24,03 
rec09 20x10 -18,39 
rec11 20x10 -23,35 
hel2 20x10 -23,18 
rec13 20x15 -26,38 
rec15 20x15 -22,38 
rec17 20x15 -21,39 
rec19 30x10 -28,96 
rec21 30x10 -27,91 
rec23 30x10 -28,55 
rec25 30x15 -29,09 
rec27 30x15 -27,29 
rec29 30x15 -32,89 
rec31 50x10 -31,29 
rec33 50x10 -32,82 
rec35 50x10 -34,76 
rec37 75x20 -35,32 
rec39 75x20 -36,00 
rec41 75x20 -35,08 
hel1 100x10 -35,82 
Média   -27,98 
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Tabela 5.21 – Evolução das soluções do PFSP com o makespan como critério de desempenho. 

Instâncias (n x m) D (rAGini e rAG*) (%) 
20 x 5 -12,10 
20 x 10 -14,79 
20 x 20 -12,69 
50 x 5 -8,74 
50 x 10 -15,46 
50 x 20 -15,81 
100 x 5 -6,87 
100 x 10 -12,71 
100 x 20 -14,65 
200 x 10 -9,92 
200 x 20 -13,31 
500 x 20 -10,34 
Média -12,28 
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Figura 5.1 – Evolução das soluções do rAG para o problema tai021 (20x20).                                  Figura 5.2 – Evolução das soluções do rAG para o problema tai051 (50x20). 

 

 

 

 

 

 

 

 

 

 

Figura 5.3 – Evolução das soluções do rAG para o problema tai081 (100x20).                          Figura 5.4 – Evolução das soluções do rAG para o problema tai101 (200x20). 
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Figura 5.5 – Evolução das soluções do rAG para o problema rec17 (20x15).                                  Figura 5.6 – Evolução das soluções do rAG para o problema rec31 (50x10). 

 

 

 

 

 

 

 

 

 

Figura 5.7 – Evolução das soluções do rAG para o problema rec37 (75x20).                                  Figura 5.8 – Evolução das soluções do rAG para o problema hel1 (100x10). 
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Figura 5.9 – Evolução das soluções do rAG para o problema tai021 (20x20).                                Figura 5.10 – Evolução das soluções do rAG para o problema tai051 (50x20). 

 

 

 

 

 

 

 

 

 

Figura 5.11 – Evolução das soluções do rAG para o problema tai081 (100x20).                         Figura 5.12 – Evolução das soluções do rAG para o problema tai101 (200x20). 
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5.7. Interpolação 

 

Uma dificuldade de usar o rAG numa situação real é aquela em que o tempo de execução é 

um dado de entrada e a qualidade da solução é um dado de saída. Em termos práticos isso 

só é conhecido depois de decorrido o tempo de execução, quando a intenção seria obter a 

qualidade da solução com base no dado de entrada, sendo o tempo de execução. Para 

ajudar a enfrentar esta dificuldade foi construído um conjunto de funções para calcular o 

tempo de execução do rAG para o PFSP, a partir do número de tarefas, do número de 

máquinas e da qualidade desejada da solução. A interpolação polinomial foi à técnica 

usada para construir este conjunto de funções. A interpolação é usada quando não se 

conhece a expressão que define a função, mas só alguns valores da função que em geral 

são obtidos por experimentos previamente estabelecidos. 

 

Segundo Cláudio e Marins (1994) o problema de interpolação pode ser definido da 

seguinte forma: fornecido um conjunto de dados (xi, yi), i = 1, 2, ...n, correspondentes aos 

valores de argumentos e valores de uma função f, tal que y = f (x), deseja-se obter os 

valores f (x’), x’ ≠ xi, utilizando os pontos dados. Assim, o objetivo da interpolação é obter 

o valor de f (x’) aproximadamente. Para isso é construído, a partir do conjunto de dados, 

uma nova função F que interpola a função f, tal que: 

 

                                         ∀  xi, x0 ≤ xi ≤ xn;    F(xi) = f (xi)                                           5.1 

                                         ∀  x ∈  [x0, xn];       F(xi) ≅  f (xi)                                          5.2 

 

Para construir o conjunto de funções F(xi) foi escolhida a interpolação pelos polinômios de 

Lagrange. Dados n+1 pontos o polinômio de interpolação de Lagrange é dado pela 

Equação 5.3. 

 

                                                            (x) La  P
n

0i

i in ∑
=

= ,                                                   5.3 

 

                          onde:                       
 x- x

 x-x 
  (x) L

n

i k  0,  i ik

i
k ∏

≠=

=                                              5.4 

 



 105 

A priori foi escolhido construir polinômios do segundo grau, onde são necessários três 

valores de x e f (x) para construir cada um dos polinômios. Estes valores são retirados dos 

resultados obtidos pelo rAG segundo os dados das Tabelas 5.16 a 5.18 onde são 

apresentados três valores obtidos para cada uma das 12 classes das instâncias de Taillard 

(1993). Na Tabela 5.22 a coluna um mostra o número de conjuntos de valores de x e f (x), 

a coluna dois mostra o número de tarefas, a coluna três mostra o número de máquinas, as 

colunas quatro a seis mostram os pontos x e f (x), onde x é o desvio e f (x) é o tempo de 

execução utilizado. 

 

A Tabela 5.23 mostra os 12 polinômios construídos com os valores da Tabela 5.22. Na 

Tabela 5.23 a coluna um mostra o número do polinômio do segundo grau, a coluna dois 

mostra o intervalo de tarefas para o polinômio, a coluna três mostra o intervalo de 

máquinas para o polinômio, a coluna quatro mostra o intervalo de desvios para o 

polinômio e a coluna cinco mostra o polinômio do segundo grau. 

 

A partir dos 12 polinômios do segundo grau mostrados na Tabela 5.23 é possível calcular o 

tempo de execução aproximado necessário para o rAG obter qualquer valor de qualidade 

de solução mostrado no intervalo. Podem-se calcular tempos de execução para problemas a 

partir de 1 tarefa e até 500 tarefas, processados em 1 máquina ou até 20 máquinas. 

 

Para exemplificar a utilização dos polinômios, considere um problema com 18 máquinas e 

25 tarefas para seqüenciar, o procedimento seria o seguinte: 

 

i. Qual o intervalo de tarefas: 20 < n ≤ 50; 

ii. Qual o intervalo de máquinas: 10 < m ≤ 20; 

iii. Verifica-se na Tabela 5.22 qual é o polinômio que corresponde a esses dois 

intervalos: polinômio de número 6; 

iv. Escolhe-se um desvio dentro do intervalo correspondente: por exemplo, 4%; 

v. Aplica-se x= 4 no polinômio de número 6: -63,920x(4)2 + 463,210x(4) – 794,043 = 

36,077; e 

vi. O Resultado é interpretado da seguinte forma: para um desvio de 4% são 

necessários 36,077 segundos de tempo de execução do rAG. 
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Tabela 5.22 – Valores usados para construir os polinômios do segundo grau. 

Nº n m P1 (x, f(x)) P2 (x, f(x)) P3 (x, f(x)) 

1 20 5 (0,06% ; 1,5s) (0,04% ; 3,0s) (0,10% ; 4,5s) 

2 20 10 (0,33% ; 3,0s) (0,08% ; 6,0s) (0,12% ; 9,0s) 

3 20 20 (0,18% ; 6,0s) (0,08% ; 12,0s) (0,04% ; 18,0s) 

4 50 5 (0,22% ; 3,75s) (0,16% ; 7,5s) (0,17% ; 11,25s) 

5 50 10 (1,90% ; 7,5s) (1,32% ; 15,0s) (1,21% ; 22,5s) 

6 50 20 (4,31% ; 15,0s) (4,11% ; 30,0s) (3,67% ; 45,0s) 

7 100 5 (0,35% ; 7,5s) (0,36% ; 15,0s) (0,30% ; 22,5s) 

8 100 10 (1,28% ; 15,0s) (0,89% ; 30,0s) (0,84% ; 45,0s) 

9 100 20 (4,30% ; 30,0s) (3,89% ; 60,0s) (3,58% ; 90,0s) 

10 200 10 (0,98% ; 30,0s) (0,88% ; 60,0s) (0,72% ; 90,0s) 

11 200 20 (3,87% ; 60,0s) (3,39% ; 120,0s) (3,00% ; 180,0s) 

12 500 20 (2,60% ; 150,0s) (2,19% ; 300,0s) (2,00% ; 450,0s) 

 

 

Tabela 5.23 – Polinômios do segundo grau para o problema PFSP. 

Nº n m x Polinômio 

1 1 ≤ n ≤ 20 1 ≤ m ≤ 5 (0,04%; 0,10%) 2.500x2 - 325x + 12 

2 1 ≤ n ≤ 20 5 < m ≤ 10 (0,08%; 0,33%) -414,286x2 + 157,857x – 3,977 

3 1 ≤ n ≤ 20 10 < m ≤ 20 (0,04%; 0,18%) 642,857x2 – 227,143x + 26,057 

4 20 < n ≤ 50 1 ≤ m ≤ 5 (0,16%; 0,22%) -8.750x2 + 3.262,5x – 290,5 

5 20 < n ≤ 50 5 < m ≤ 10 (1,21%; 1,90%) 80,074x2 – 270,768x + 232,894 

6 20 < n ≤ 50 10 < m ≤ 20 (3,67%; 4,31%) -63,920x2 + 463,210x - 794,043 

7 50 < n ≤ 100 1 ≤ m ≤ 5 (0,30%; 0,36%) 17.500x2 – 11.675x + 1.950 

8 50 < n ≤ 100 5 < m ≤ 10 (0,84%; 1,28%) 594,406x2 – 1.328,322x + 741,378 

9 50 < n ≤ 100 10 < m ≤ 20 (3,58%; 4,30%) 32,783x2 – 341,660x + 892,988 

10 100 < n ≤ 200 1 ≤ m ≤ 10 (0,72%; 0,98%) -432,692x2 + 504,808x – 49,154 

11 100 < n ≤ 200 10 < m ≤ 20 (3,00%; 3,87%) 33,156x2 – 365,716x + 978,740 

12 200 < n ≤ 500 1 ≤ m ≤ 20 (2,00%; 2,60%) 706,033x2 – 3.747,754x – 5.121,374 
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5.8. Aplicação Prática 

 

Silva (1996) desenvolveu um algoritmo para resolver o modelo matemático linear inteiro 

misto do PFSP. Silva (1996) aplicou este algoritmo num PFSP real de uma indústria têxtil 

do estado do Ceará. Os dados levantados por Silva (1996) foram da produção de fios do 

mês de novembro de 1991. 

 

De acordo com Silva (1996) as principais informações do problema prático são: 

 

a) Tipos de fios a serem produzidos: AP30/1M, AP40/1T, AP40/1M, AP57/1, 

LAP20/1, LAP24/1, LAP30/1, LAP40/1, LPP43/1 e LCY43/1; e 

b) Tipos e quantidades de máquinas a serem utilizadas na produção dos fios: Carda de 

algodão (18), Carda de poliéster (1), Pré-passador (1), Penteadeira (36), Passador1 

(12), Passador2 (12), Maçarroqueira (8), Filatório (58) e Conicaleira (8). 

 

Dessas informações Silva (1996) definiu os dados de entrada do problema: 

 

a) Tarefas: a quantidade em ton/mês de cada tipo de fio que tem que ser produzido; 

b) Máquinas: a quantidade de tipos de máquinas disponíveis para a produção de fio e 

que no total são 9. A Figura 5.13 apresenta a descrição dos 9 tipos de máquinas; e 

c) Matriz Pij: calculada de acordo com a Equação 5.5 com seu valor dado em horas. 

 

Pij = (MNj x 8 x 30) / TMEi, ∀ i = 1, 2, ..., 9 e j = 1, 2, ..., 10                                  5.5 

 

Onde: 

MNj: é a quantidade de máquinas necessária diariamente por turno para cada 

tipo de fio j; e 

TMEi: é a quantidade de máquinas existentes de cada tipo i. 
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Figura 5.13 – Descrição das máquinas do problema prático. Fonte: Silva (1996). 

 

A tabela 5.24 apresenta todos os valores de Pij calculados a partir da Equação 5.6. 

 

Tabela 5.24 – Tempos de execução em horas das tarefas do problema real. Fonte: Silva (1996). 

Tarefas Máq. 

AP30/1

M 

AP40/ 

1T 

AP40/ 

1M 

AP57/ 1 LAP20/

1 

LAP

24/1 

LAP

30/1 

LAP40/

1 

LPP43/

1 

LCY43

/1 

M1 127.44 10.35 22.44 25.08 1.70 0.70 1.25 4.19 0.00 4.15 

M2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 229.68 0.00 

M3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 47.76 0.00 

M4 53.12 4.31 9.35 9.95 0.72 0.29 0.54 1.80 0.00 1.69 

M5 34.24 2.78 6.02 10.36 0.70 0.28 0.52 1.72 3.96 1.62 

M6 36.14 2.94 6.36 10.30 0.68 0.28 0.52 1.72 3.96 1.62 

M7 111.15 13.53 29.34 42.24 1.20 0.48 2.10 7.05 9.18 6.63 

M8 95.43 15.50 29.90 53.88 0.87 0.41 1.10 7.40 15.39 16.19 

M9 112.86 10.86 25.47 45.87 1.32 0.60 1.29 5.07 14.19 17.04 
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O problema era formado por 10 tarefas e 9 máquinas. O número de soluções possíveis para 

este problema (n= 10) é 10! = 3.628.800. Silva (1996) encontrou a solução ótima que é 

igual a 654 horas. 

 

Usou-se um dos polinômios do segundo grau, construídos na Seção 5.7 para calcular o 

tempo de execução do rAG para resolver o problema apresentado em Silva (1996). Foi 

usado o segundo polinômio da Tabela 5.23 dado que n=10 e m=9. O polinômio é definido 

no intervalo (0,08%; 0,33%). Foi escolhido para o valor do desvio 0,10%, i.e., x=0,10. 

Com isso o tempo de execução calculado foi de 11,39 segundos, mostrado na Equação 5.6. 

 

F (0,10%) = - 414,286 x (0,10)2 + 157,857 x (0,10) – 3,977 = 11,39                            5.6 

 

A Tabela 5.25 mostra os resultados obtidos pelo rAG nas cinco execuções realizadas. 

Nesta tabela mostra que o rAG obteve a solução ótima do problema que é 653,95h em 

todas as cinco execuções, a diferença em relação a solução de Silva (1996) deve-se ao 

arredondamento. A seqüência de tarefas obtidas na primeira execução foi 7  8  10  4  3  2  1  

6  9  5 e está ilustrada na Figura 5.14. A melhor solução da população inicial obtida pelo 

rAG na primeira execução foi 654,05h e já na primeira geração o rAG obteve a solução 

ótima de 653,95 horas, ou seja, uma melhoria de 0,015%.  

 

Tabela 5.25 – Resultados obtidos pelo rAG para o problema real. 

Nº da execução Nº de gerações Tempo (s) Solução 

1 41.541 11,391 653,95 

2 41.578 11,390 653,95 

3 41.547 11,391 653,95 

4 41.430 11,391 653,95 

5 41.572 11,390 653,95 
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Figura 5.14 – Gráfico de Gantt para a solução do problema prático encontrada pelo rAG. 

 

5.9. Conclusão dos Experimentos Computacionais 

 

A comparação dos resultados do rAG com os resultados da heurística Pilot-10-Chins de 

Fink e Voβ (2003) para o CPFSP com o tempo total de fluxo como critério de desempenho 

demonstrou que o rAG foi 0,56% melhor, caso raro quando as condições de tempo de 

execução são equivalentes, porque normalmente as heurísticas são mais rápidas que o AG 

porque usam o conhecimento do problema para construir as suas soluções, enquanto o AG 

trabalha apenas sobre as estruturas da população, sem nenhuma hipótese definida a priori 

sobre o problema. Neste caso não seria vantajoso usar a heurística Pilot-10-Chins para 

gerar a população inicial do rAG. Este resultado também serve como uma sugestão prática: 

antes de usar uma heurística para gerar a população inicial de um AG, comparar o 

desempenho do AG com a população inicial gerada aleatoriamente e com a população 

gerada pela heurística escolhida. Usar a população inicial aleatória neste trabalho foi uma 

forma de melhorar a eficiência do AG sem depender de uma boa heurística para gerar a 

população inicial. 

 

O rAG foi 0,34% melhor que o Tabu Search com solução inicial obtida pela heurística 

Pilot-10-Chins que é o melhor método de Fink e Voβ (2003) para o CPFSP como tempo 

total de fluxo como critério de desempenho. O rAG usou 20% do tempo de execução que 

Fink e Voβ (2003) usaram. Este resultado reforça a qualidade do rAG porque a 

comparação foi com um método que além de usar uma solução inicial boa só trabalha com 

uma solução de cada vez e, por isso, normalmente deveria ser mais rápido que um AG. 

  1 

  2 

  3 

  4 

  5 

  6 

  7 

  8 

  9 

  10 

Tarefas 
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A única comparação possível entre o rAG e outro AG para o CPFSP é com o GASA, 

desenvolvido por Shuster e Framinan (2003). O rAG foi 4,99% melhor que o GASA, 

utilizando apenas 1,4% do tempo de execução utilizado pelo GASA. Este resultado mostra 

a diferença de qualidade entre os projetos dos dois AGs, sem esquecer que o GASA usa 

uma etapa de hibridização com a metaheurística Simulated Annealing, isto mostra que 

quando o projeto do AG não consegue aproveitar as suas qualidades teóricas uma etapa de 

hibridização não torna o desempenho do AG satisfatório. 

 

No primeiro experimento do rAG comparado ao Tabu Search com multimovimento (TS-

M) de Grabowski e Pempera (2005) para o CPFSP com o makespan como critério de 

desempenho, o rAG foi 0,22% inferior. Mesmo sendo uma diferença pequena este 

resultado mostra que realmente é difícil para um AG superar um método de busca em 

vizinhança. Mas este resultado também serve para mostrar que o AG pode ficar muito 

próximo a estes métodos, o que o resultado do GASA não mostrava. 

 

Foram realizados mais experimentos com o rAG para o CPFSP com o makespan como 

critério de desempenho e dessa vez foram utilizados tempos de execução maiores. Nesta 

condição o rAG foi 0,16% melhor que o TS-M, utilizando 4,46 vezes mais tempo de 

execução. Este resultado mostra que o rAG consegue obter soluções cada vez melhores 

quando mais tempo de execução é utilizado, ao invés da busca tornar-se ineficaz por causa 

da convergência prematura. 

 

Como o rAG obteve bons resultados para o CPFSP decidiu-se compará-lo com outros bons 

AG para saber qual a sua situação em relação a eles. Existem muitos bons AGs para 

problemas permutacionais aplicados ao PFSP, por isso, foi necessário fazer experimentos 

com este problema. Isto demonstra a característica generalista do AG, porque com uma 

pequena modificação foi possível testar o rAG em outro problema. Os experimentos foram 

realizados em três níveis de tempo de execução. 

 

O rAG foi melhor que o GAChen de Chen et al. (1995) em todos os três níveis de tempo 

de execução. O melhor desempenho comparativo do rAG em relação a outro AG foi de -

3,51% com o GAChen no terceiro nível de tempo de execução, a suposição para esta 

diferença é a utilização pelo GAChen das heurísticas CDS (Campbell et al., 1970) e 
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Dannembing (Dannembring, 1977) para gerar a população inicial, que encontram soluções 

inferiores a heurística NEH de Nawaz et al. (1983) que é usada por outros dois AGs e não 

usar hibridização que é utilizada por outros dois AGs. Este resultado mostra a dependência 

que um AG pode ter da heurística que gera a população inicial ou de uma etapa de 

hibridização e que o rAG consegue ser eficiente sem usar dessas duas estratégias. 

 

O rAG foi melhor que o GAMIT de Murata et al. (1996) nos três níveis de tempo de 

execução. A maior diferença entre o rAG e o GAMIT foi de 0,79%. O GAMIT utiliza 

população inicial gerada aleatoriamente, mas em compensação utiliza uma etapa de 

hibridização com busca local para aumentar a qualidade da solução final, mesmo assim, o 

rAG conseguiu obter soluções melhores que o GAMIT. Este resultado mostra que o rAG 

conseguiu ser mais eficiente mesmo sem utilizar uma etapa de hibridização. 

 

O rAG foi melhor que o GA_AA de Aldowaisan e Allahverdi (2003) nos três níveis de 

tempo de execução. A maior diferença entre o rAG e o GA_AA foi de 0,78%. O GA_AA 

utilizou inicialização eficiente e uma etapa de hibridização com busca local. Este resultado 

mostra que o rAG conseguiu ser mais eficiente mesmo sem usar inicialização eficiente e 

uma etapa de hibridização. 

 

O rAG foi melhor que o GAReev de Reeves (1995) em dois níveis de tempo de execução. 

No primeiro nível de tempo de execução o GAReev foi 0,12 melhor que o rAG. No 

segundo nível de tempo de execução o rAG foi 0,08% melhor que o GAReev e no terceiro 

nível foi 0,15% melhor. Não se pode afirmar com certeza, mas talvez o fato do GAReev 

ser o primeiro AG a ser melhor que o rAG na comparação com o PFSP seja porque é o 

primeiro AG nessa comparação a usar a heurística NEH de Nawaz et al. (1983) para gerar 

a população inicial. Este resultado comprova a teoria que a inicialização eficiente acelera a 

obtenção de boas soluções, mas pode comprometer a qualidade da solução final quando a 

eficiência do algoritmo é especialmente dependente da solução inicial. O rAG conseguiu 

melhorar a qualidade da solução obtida a medida que o tempo de execução aumentava o 

que o GAReev não conseguiu fazer na mesma intensidade. 

 

O rAG foi inferior ao GA_RMA de Ruiz et al. (2006) nos três níveis de tempo de 

execução. A menor diferença entre o rAG e o GA_RMA foi de 0,29% no terceiro nível de 
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tempo de execução e a maior diferença foi de 0,58% no primeiro nível de tempo de 

execução. O GA_RMA é o segundo AG nesta comparação a usar a heurística NEH de 

Nawaz et al. (1983) para gerar a população inicial. A comparação do rAG com o 

GA_RMA comprova que esse é melhor que o rAG para o PFSP. Mesmo assim o rAG foi 

melhor que o GA_RMA nas classes 20x5, 20x10 e 20x20 em todos os níveis de tempo de 

execução e na classe 50x10 nos segundo e terceiro níveis de tempo de execução. Este 

resultado significa que para os problemas com até 20 tarefas e 20 máquinas o rAG é 

melhor que o GA_RMA para o PFSP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 114 

CAPÍTULO 6 – CONCLUSÕES 

 

O rAG mostrou que um AG que utiliza os seus princípios originais, diversificação e 

intensificação, de forma eficiente consegue obter bons resultados. Isto ficou comprovado 

com a implementação dos três procedimentos inspirados nesses princípios, que no primeiro 

experimento diminuiu o desvio das soluções do rAG de 1,710% para 0,171%, uma 

melhoria de 10 vezes. Este resultado aponta a importância de um bom projeto para os 

componentes originais do AG, antes de recorrer a inicialização eficiente e hibridização 

para tornar o AG competitivo em relação a outros métodos de otimização. 

 

O rAG mostrou também que é possível um AG ser mais eficiente que uma heurística para 

o CPFSP sendo o tempo total de fluxo o critério de desempenho, pois foi 0,56% melhor 

que a heurística Pilot-10-Chins usando apenas 44% do tempo de execução utilizado por 

essa heurística. Mostrando que pelo menos para esse problema a opinião de alguns autores 

(Reeves e Rowe, 2002; Dréo et al., 2006) que afirmam que um AG não consegue ser 

melhor que uma heurística nas mesmas condições de tempo de execução está equivocada. 

 

O rAG mostrou ser o melhor método para o CPFSP sendo o tempo total de fluxo o critério 

de desempenho, porque seus resultados na média foram 0,34% superiores ao melhor 

método encontrado na literatura para esse problema que é o Tabu Search de Fink e Voβ 

(2003). 

 

O rAG mostrou ser o melhor AG para o CPFSP sendo o makespan o critério de 

desempenho, porque foi 4,99% melhor que o AG de Shuster e Framinan (2003). Quando se 

trata da comparação com o melhor método para esse problema, o rAG, nas mesmas 

condições de tempo de execução foi 0,22% inferior ao TS-M de Grabowski e Pempera 

(2005). Mas o rAG se torna o melhor método para esse problema quando usa 4,46 vezes 

mais tempo de execução, porque apresenta um desvio médio 0,16% melhor que o TS-M. 

 

O rAG em comparação aos outros cinco AG para o PFSP mostrou-se ser bem competitivo, 

sendo superado apenas pelo GA_RMA de Ruiz et al. (2006). A menor diferença média dos 

desvios entre o GA_RMA e o rAG foi de 0,29%. Vale salientar que o GA_RMA tem 

inicialização eficiente e um processo chamado de restart que realiza uma busca local. 



 115 

A análise da evolução das soluções do rAG desde a solução inicial até a solução final 

mostrou que ele tem a capacidade de melhorar bastante a qualidade das soluções, mesmo 

depois que a solução já ter atingido uma boa qualidade. Esta análise também mostrou que 

para os problemas avaliados, rapidamente o rAG obtém boas soluções, motivo pelo qual o 

rAG ser mais eficiente que a heurística Pilot-10-Chins para o CPFSP sendo o tempo total 

de fluxo o critério de desempenho. 

 

Por tudo isso o objetivo de construir um AG eficiente para os dois problemas sem 

população inicial gerada por uma boa heurística e nem hibridização foi cumprido. Este 

sucesso é atribuído aos três procedimentos propostos que foram capazes de manter a 

diversidade na população e ao mesmo tempo intensificar o processo de busca. 

 

Além disso, apresentamos 12 polinômios de grau 2 que ajudam no processo de calcular o 

tempo de execução necessário para o rAG obter uma solução de determinada qualidade 

para o PFSP, a partir do número de tarefas, do número de máquinas e do desvio da solução 

dentro de um intervalo pré-definido. Estes polinômios podem ser usados para apoiar a 

decisão de quanto tempo de execução utilizar para o rAG em problemas reais. 

 

O rAG foi testado num problema PFSP real de uma indústria têxtil cearense. O tempo de 

execução foi calculado a partir de um dos polinômios de grau 2 construído. O resultado do 

rAG no problema real foi muito satisfatório, pois na primeira geração já foi encontrada a 

solução ótima. Este resultado mostrou a qualidade do rAG, pois entre mais de 3 milhões de 

soluções possíveis rapidamente encontrou aquela que era a ótima. 

 

Outro resultado da aplicação do rAG no problema prático foi mostrar que compensa 

desenvolver um algoritmo testando-o em problemas teóricos, pois quando é aplicado em 

um problema prático se mostra bastante eficiente. 
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Propostas para futuros trabalhos: 

 

� Incorporar o atributo reativo à mutação populacional. Pois a mutação realiza apenas 

uma perturbação e sempre no mesmo intervalo de gerações sem melhoria. Uma 

sugestão é poder realizar mais de uma perturbação de cada vez e em intervalos de 

geração diferentes, dependendo da quantidade de tarefas e máquinas do problema; 

� Como o rAG obteve bons resultados para o PFSP mesmo sem inicialização 

eficiente, uma proposta para melhorar o rAG seria implementar uma inicialização 

eficiente que não comprometa a diversidade da população; 

� Poderia ser testados outros valores para os parâmetros do rAG; 

� Aplicar o rAG em outros problemas reais de maior tamanho para verificar o seu 

desempenho; e 

� Aplicar o rAG em outros problemas POCP e comparar o seu resultado com os 

melhores métodos desses problemas. 
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ANEXO I – As melhores seqüências de trabalho obtidas pelo rAG no segundo 

experimento com o CPFSP para as instâncias de Taillard (1993). 

 

tai001 

3  17  9  15  14  8  16  13  1  2  6  10  7  20  12  11  19  4  5  18 

tai002 

14  10  6  20  12  2  8  18  4  3  7  9  11  16  19  15  1  13  5  17 

tai003 

3  19  11  6  2  4  13  16  9  8  1  15  10  14  17  18  7  20  5  12 

tai004 

9  16  8  14  4  18  13  17  12  19  3  6  11  15  10  2  1  5  7  20 

tai005 

3  12  20  1  8  5  10  13  9  7  15  19  18  4  17  16  11  2  14  6 

tai006 

2  20  14  17  13  5  3  8  1  11  6  12  7  16  18  10  15  9  19  4 

tai007 

10  2  15  16  1  14  18  17  13  7  4  20  19  5  12  9  11  3  8  6 

tai008 

12  6  2  14  4  3  1  17  16  9  7  13  20  11  10  18  15  5  19  8 

tai009 

4  8  16  7  12  10  14  5  13  15  2  20  1  19  3  9  6  11  18  17 

tai010 

7  19  15  13  5  9  11  12  1  2  18  20  17  16  6  10  3  14  8  4 

tai011 

18  5  12  20  11  15  4  1  2  16  10  7  6  14  9  3  17  19  13  8 

tai012 

9  13  4  6  17  19  3  20  14  12  18  8  10  16  11  15  1  7  2  5 

tai013 

4  19  17  3  15  1  18  5  6  7  9  2  12  10  11  13  20  16  14  8 

tai014 

18  4  17  19  11  5  6  13  20  10  9  1  3  12  16  2  15  7  14  8 

tai015 

16  17  14  10  3  9  11  18  13  6  1  12  4  15  7  5  19  2  20  8 



 123 

tai016 

18  16  11  12  20  15  10  9  8  3  7  4  2  1  5  14  6  13  19  17 

tai017 

4  7  10  11  19  6  15  5  3  16  20  8  17  13  18  1  9  12  14  2 

tai018 

7  8  16  13  20  10  4  17  3  5  19  15  14  2  9  6  11  18  12  1 

tai019 

14  6  8  11  12  20  1  16  7  10  9  13  3  18  17  4  2  19  5  15 

tai020 

12  16  6  3  14  19  5  2  9  11  18  20  17  4  13  15  1  10  7  8 

tai021 

19  3  5  10  16  14  7  9  15  1  6  18  4  17  2  11  12  13  8  20 

tai022 

8  5  9  13  17  19  11  20  18  1  10  4  7  6  14  2  15  12  16  3 

tai023 

2  8  20  17  6  3  14  19  7  11  1  12  9  16  15  18  10  5  13  4 

tai024 

14  4  11  18  2  6  8  5  20  1  7  15  9  19  10  3  17  16  13  12 

tai025 

18  9  7  15  12  8  6  14  4  13  19  16  17  20  11  5  2  1  10  3 

tai026 

11  13  1  20  2  16  3  4  14  8  19  18  15  6  5  17  9  7  10  12 

tai027 

14  4  15  17  9  7  3  20  10  11  6  12  5  8  18  16  1  2  19  13 

tai028 

2  16  1  15  9  6  13  12  8  19  18  5  11  7  20  4  17  3  10  14 

tai029 

7  13  19  8  4  15  6  14  12  11  18  17  20  10  16  1  5  9  2  3 

tai030 

7  9  14  6  2  16  4  20  13  11  8  5  17  19  18  1  3  15  12  10 

tai031 

10  24  36  37  17  39  49  20  38  46  3  12  31  50  40  42  48  23  32  41  44  7  6  18  16  

13  2  26  22  33  35  19  30  1  11  21  25  43  8  4  47  34  5  28  15  29  27  45  14  9  
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tai032 

50  49  38  15  23  47  42  18  3  6  34  36  10  5  2  14  11  8  44  29  7  41  21  33  37  22  

45  13  30  12  16  43  20  32  39  26  1  28  19  9  17  4  31  25  27  40  46  48  24  35 

tai033 

8  22  15  23  12  18  27  37  21  36  49  2  3  28  25  35  39  26  1  29  48  30  31  6  14  34  

16  19  10  45  9  17  43  7  11  46  41  24  40  5  42  33  20  4  38  47  32  13  50  44   

tai034 

42  22  12  6  49  9  46  43  31  30  28  2  27  37  44  50  23  15  18  14  47  21  35  16  24  

25  41  45  40  13  3  36  19  39  32  7  4  1  34  38  26  11  10  29  5  20  48  8  17  33 

tai035 

46  48  5  45  50  32  7  34  13  9  42  44  27  10  3  30  19  4  22  37  6  33  29  28  18  40  

14  1  43  24  23  21  8  49  31  16  39  35  12  25  36  11  15  26  17  38  20  41  2  47 

tai036 

4  21  1  29  22  12  31  5  25  9  47  32  41  46  27  33  24  40  28  19  43  34  20  36  6  50  

3  37  26  8  48  42  11  39  44  10  2  14  16  30  15  23  18  35  38  49  7  17  13  45 

tai037 

27  28  22  16  25  5  34  30  40  15  4  50  19  38  47  43  45  42  41  8  36  13  37  14  24  

23  1  49  21  39  6  12  17  26  7  20  18  44  2  10  32  31  3  29  46  48  9  35  11  33 

tai038 

34  17  4  21  7  23  40  35  47  30  22  13  38  2  36  10  31  46  37  3  15  26  9  20  1  33  

27  50  14  25  18  24  29  43  41  49  5  8  19  39  12  32  11  16  42  48  6  28  44  45 

tai039 

17  29  14  13  10  46  9  24  50  8  12  45  1  3  16  21  44  47  36  31  28  7  34  32  4  26  

40  37  38  39  6  27  18  22  41  2  49  5  35  11  20  15  23  30  48  25  33  19  42  43 

tai040 

50  44  30  19  43  23  31  6  20  36  21  18  33  49  42  7  17  12  45  1  34  48  3  26  37  29  

28  35  39  47  9  22  25  32  27  8  11  16  13  41  24  38  46  40  15  10  4  2  5  14 

tai041 

42  44  33  20  34  6  10  1  43  7  19  17  8  47  18  22  48  39  32  35  26  24  13  30  37  14  

31  36  46  21  41  28  49  2  12  4  38  3  25  29  16  11  9  40  15  23  5  45  50  27 

tai042 

35  47  40  5  29  7  17  49  1  22  46  10  26  3  24  48  42  33  28  23  14  11  50  31  44  18  

2  30  45  15  9  38  32  13  6  37  20  19  36  43  41  27  34  21  8  25  12  39  16  4 
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tai043 

24  4  28  31  12  8  15  16  27  3  32  11  46  39  18  22  36  9  10  7  21  23  26  2  1  5  17  

40  48  30  14  49  37  19  45  25  35  34  6  41  29  43  33  47  50  38  42  20  13  44 

tai044 

20  10  19  9  44  29  5  37  18  40  16  34  13  7  33  39  23  11  25  36  35  30  21  8  22  17  

45  41  38  12  26  24  50  32  4  31  48  3  27  46  42  28  1  2  49  6  14  15  43  47 

tai045 

6  50  34  10  42  48  12  30  33  25  31  1  35  9  46  7  20  23  29  45  36  11  3  49  4  13  

19  18  44  21  43  39  15  40  26  37  41  24  5  16  14  22  32  27  17  38  47  28  8  2 

tai046 

3  42  33  20  45  31  23  26  40  39  47  27  34  35  38  28  44  19  37  15  24  5  11  9  16  

41  46  22  8  50  4  7  17  25  14  6  43  49  12  21  32  10  30  1  29  18  2  36  48  13 

tai047 

6  41  27  33  48  17  40  46  13  38  22  44  20  3  28  25  11  35  23  31  36  18  21  26  34  

2  1  30  15  45  12  8  7  10  9  43  37  49  32  16  50  39  4  29  42  24  19  5  14  47 

tai048 

28  31  32  41  21  13  17  34  15  35  1  6  3  44  37  45  33  42  23  5  38  43  40  39  36  11  

7  30  14  20  26  29  22  19  8  4  25  48  2  12  24  9  47  49  50  18  46  16  10  27 

tai049 

33  30  25  50  45  40  44  6  42  31  39  12  10  38  13  28  21  35  19  49  32  20  1  5  47  7  

37  26  46  8  22  48  11  27  34  2  36  23  41  14  43  24  9  15  29  18  16  4  3  17 

tai050 

49  8  38  10  14  21  19  4  41  37  15  27  9  42  45  13  24  23  2  12  28  39  44  29  40  33  

46  32  6  1  48  16  26  34  47  7  36  30  5  22  50  20  18  43  17  3  11  31  25  35 

tai051 

37  27  8  44  43  20  15  39  34  31  41  47  32  30  38  33  17  50  3  26  40  24  29  9  12  

36  13  49  28  48  22  21  7  10  35  6  42  1  18  25  4  46  11  45  14  2  5  19  16  23 

tai052 

32  49  8  39  31  40  33  7  38  20  41  30  16  22  10  36  3  14  23  6  29  21  24  50  5  4  

13  35  17  47  42  11  45  1  12  26  18  9  15  37  2  28  48  44  27  25  19  46  34  43 

tai053 

24  4  28  11  25  7  31  2  1  3  19  39  26  10  41  35  12  18  6  30  14  21  23  49  36  8  15  

16  27  46  5  45  9  17  40  33  34  29  47  38  44  13  43  48  20  42  50  32  22  37 
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tai054 

1  19  47  14  8  13  34  38  9  44  48  40  25  37  46  39  11  24  50  27  18  12  45  5  20  43  

42  7  30  4  21  15  35  31  17  16  41  32  2  33  6  10  26  22  3  49  28  29  23  36 

tai055 

23  25  11  7  36  43  49  46  37  28  40  20  15  50  21  3  39  38  10  34  44  24  48  45  32  

17  30  47  16  35  13  1  33  19  42  9  29  27  41  22  6  14  12  18  8  2  4  31  5  26 

tai056 

14  33  5  49  37  11  25  42  4  39  29  12  47  26  6  24  9  15  38  3  13  27  17  35  2  19  

31  46  8  1  18  50  45  21  41  36  44  32  48  16  40  23  7  34  22  28  30  20  43  10 

tai057 

4  35  5  15  42  48  17  9  23  38  13  45  2  30  44  27  36  19  31  11  46  28  1  20  24  6  

25  37  22  32  41  14  34  12  10  40  16  26  43  18  21  47  33  8  29  7  3  49  50  39 

tai058 

33  39  1  7  19  42  28  12  2  29  32  30  8  48  27  26  35  9  3  20  14  40  11  13  31  6  50  

23  22  37  45  38  15  36  18  16  5  41  49  21  47  43  25  34  24  46  10  17  44  4 

tai059 

44  29  35  15  11  31  9  14  50  1  27  37  43  45  3  38  23  47  5  20  12  16  22  41  30  21  

28  8  2  24  17  19  34  42  26  33  36  40  25  4  48  6  13  10  32  46  18  39  7  49 

tai060 

38  11  18  10  1  16  39  43  15  48  49  20  42  12  3  23  2  5  28  30  31  19  46  22  29  21  

37  50  27  13  26  25  17  45  4  33  6  35  41  14  8  32  40  7  44  36  34  24  47  9 

tai061 

10  93  46  5  40  16  66  55  84  19  59  24  65  12  82  72  56  62  7  14  77  26  96  33  34  

88  83  71  58  15  92  61  35  20  60  29  30  50  42  80  78  3  36  64  95  23  68  1  85  39  

28  21  97  99  11  63  79  47  87  74  8  13  44  2  98  76  69  53  32  49  38  37  6  51  94  

31  45  89  4  75  17  27  43  91  73  67  90  41  81  52  54  18  86  22  25  57  48  9  70  100 

tai062 

69  79  33  46  45  99  10  15  83  88  98  77  65  16  86  92  25  53  93  8  20  6  61  100  39  

1  60  90  75  56  26  34  58  52  89  5  80  67  82  19  76  29  31  37  68  78  14  57  81  43  

66  24  70  36  97  91  54  48  38  72  17  42  40  12  85  47  96  7  22  55  73  28  50  51  32  

27  95  63  84  64  30  41  13  9  59  23  94  62  35  21  18  71  3  87  4  74  11  49  2  44 
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tai063 

55  68  23  42  1  6  43  58  25  77  57  51  11  60  89  17  86  71  90  88  31  94  82  30  32  

46  7  64  41  13  28  2  96  12  10  61  34  40  62  21  79  95  26  97  18  100  45  48  16  54  

44  24  83  80  99  69  56  49  19  75  53  76  22  5  36  65  59  70  47  52  39  38  14  93  15  

50  85  67  91  9  8  35  4  33  37  87  92  98  74  20  78  63  27  3  29  73  81  84  66  72 

tai064 

96  51  21  16  37  55  56  18  22  64  43  14  80  58  85  52  83  57  38  93  67  20  28  9  88  

45  78  81  73  54  70  31  95  65  77  82  32  63  42  35  79  23  89  91  98  10  61  66  49  

59  26  7  69  19  3  33  4  60  71  46  84  40  2  94  72  36  27  5  11  13  50  17  44  75  97  

76  62  39  6  68  8  99  1  90  92  15  25  100  86  87  47  41  12  29  34  24  74  48  30  53 

tai065 

1  2  74  68  10  16  50  98  77  12  33  79  41  57  75  91  58  86  70  94  18  24  82  29  76  

5  11  64  28  87  72  51  47  20  39  61  4  52  37  83  66  78  7  100  53  17  8  22  92  38  

69  62  25  97  56  96  84  54  60  27  44  63  99  67  48  40  80  34  19  93  46  30  81  73  

15  88  71  23  3  26  13  85  90  55  21  59  35  6  32  89  9  65  31  42  43  49  36  95  14  

45 

tai066 

4  54  83  21  57  51  47  8  65  36  29  61  80  45  96  99  71  53  37  95  69  1  85  72  27  

90  49  3  19  77  94  56  7  2  16  33  76  39  44  86  70  50  100  26  92  20  88  14  30  58  

78  34  23  67  32  91  98  6  5  93  75  38  46  9  73  22  81  87  79  42  40  97  18  48  15  

31  55  68  59  28  62  25  11  74  89  17  12  84  64  41  10  60  35  63  24  52  66  13  43  

82 

tai067 

28  79  13  20  2  5  6  35  50  27  64  24  81  98  14  12  62  71  89  16  92  66  15  40  67  

91  75  93  11  4  76  29  77  22  7  80  19  85  69  1  38  96  10  21  72  61  42  3  53  99  

100  45  46  41  68  70  54  30  86  26  90  51  49  44  8  9  82  95  32  57  18  94  43  59  84  

58  87  33  31  74  78  83  39  47  36  23  63  60  97  37  52  34  73  48  65  56  17  25  88  

55 

tai068 

42  56  2  17  64  41  90  21  97  40  95  87  98  74  1  52  15  25  53  29  86  82  73  67  30  

14  70  80  48  27  75  9  59  22  85  79  43  34  68  76  8  36  6  83  91  49  31  19  65  54  

32  13  5  11  55  99  72  45  18  69  84  77  58  3  35  100  47  26  96  7  33  46  62  23  16  

89  88  20  92  78  94  28  50  12  44  4  81  61  24  66  71  93  39  10  57  51  60  63  37  38 
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tai069 

70  24  72  47  60  21  40  97  4  73  9  29  28  58  90  48  63  6  43  100  95  75  98  82  10  

84  57  2  53  8  17  19  51  81  56  49  44  59  52  34  79  78  80  12  33  42  15  69  36  16  

1  32  99  85  68  66  35  23  22  45  65  50  5  71  93  39  11  83  54  20  92  67  31  13  46  

87  18  86  61  55  96  74  14  3  27  88  38  94  62  7  37  91  30  76  64  77  89  26  41  25 

tai070 

2  20  27  46  70  74  62  83  31  68  47  92  75  37  10  90  23  57  1  58  11  28  88  54  7  

32  50  12  65  26  29  94  67  76  51  42  15  55  93  5  80  49  69  72  22  16  38  81  35  18  

60  100  98  44  9  48  43  45  95  82  33  87  4  79  64  6  99  53  13  66  56  77  34  91  97  

61  19  85  25  73  71  21  84  40  39  63  30  52  8  36  14  59  41  78  86  89  96  3  17  24 

tai071 

58  64  70  21  15  29  26  45  72  12  36  77  40  74  49  2  5  61  28  82  17  14  81  62  78  

69  30  59  87  95  91  24  98  53  99  47  19  83  96  34  56  94  71  46  63  13  27  43  93  

84  39  60  8  31  90  18  51  7  88  100  16  86  89  11  20  33  9  79  42  80  55  38  35  25  

54  73  92  32  66  97  48  50  6  85  3  4  76  41  67  10  57  68  22  1  23  75  65  52  44  37 

tai072 

24  99  73  64  3  16  75  28  81  76  51  4  21  80  8  46  12  66  10  78  11  91  36  43  15  

69  49  54  98  18  83  40  7  38  56  2  72  87  95  39  6  31  61  60  62  9  19  47  63  13  35  

77  1  53  26  44  68  79  71  86  23  89  58  74  25  41  52  82  5  20  57  34  37  65  27  50  

33  30  84  97  85  14  42  70  55  17  59  96  92  94  88  93  48  45  90  67  32  22  29  100 

tai073 

45  25  87  23  58  64  4  16  99  57  39  94  12  42  74  96  72  66  97  20  80  29  63  92  56  

34  27  93  50  48  40  9  38  83  32  13  44  41  81  6  61  21  55  73  51  65  15  18  28  5  

89  24  54  88  76  14  2  37  62  52  1  36  85  98  70  67  86  91  17  35  31  11  79  10  100  

33  60  19  8  69  46  82  26  75  77  59  53  22  78  90  3  43  95  7  84  30  68  47  71  49 

tai074 

24  76  85  95  46  61  2  90  77  62  30  79  63  98  68  23  97  80  39  55  28  19  14  56  32  

99  52  69  26  94  64  83  81  12  5  40  7  58  13  72  8  22  33  15  6  35  75  70  20  78  59  

31  34  10  50  37  65  74  60  53  21  71  49  82  47  67  42  27  41  29  9  3  84  44  1  43  

17  54  18  16  51  100  11  86  93  96  92  48  25  88  73  66  91  57  45  36  89  38  87  4 

tai075 

83  79  65  95  80  90  66  25  93  50  100  19  33  46  5  9  75  56  45  47  26  78  91  55  76  

7  21  40  94  71  59  11  72  92  62  31  52  28  99  20  63  51  88  36  70  1  48  53  86  17  
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57  32  87  44  18  13  35  43  15  24  14  29  74  38  82  22  2  42  81  8  98  6  49  12  37  

68  73  89  16  67  3  64  84  97  58  10  77  85  39  4  96  34  54  27  61  30  23  60  41  69 

tai076 

78  79  5  76  92  36  19  46  41  98  48  75  44  28  45  38  9  57  6  20  4  95  40  77  18  64  

49  70  22  59  65  3  47  90  97  66  30  56  81  71  37  33  34  26  7  32  24  42  43  15  53  

52  72  60  99  63  12  67  39  29  58  54  8  74  23  94  50  35  96  25  2  10  21  91  87  11  

83  88  86  68  55  69  14  80  93  100  62  1  27  85  84  31  73  89  17  61  51  13  16  82 

tai077 

76  1  13  56  53  67  59  24  52  14  22  65  39  27  47  74  87  28  5  69  32  54  86  4  83  

42  49  6  38  7  12  35  33  64  79  34  46  80  40  23  58  16  26  71  91  97  11  9  21  96  

15  55  48  89  3  61  19  17  31  8  68  37  43  44  29  45  25  92  18  99  50  70  20  95  51  

98  2  94  75  63  41  85  88  62  66  100  57  93  82  36  60  90  72  84  81  77  10  73  78  

30 

tai078 

48  63  67  17  90  81  80  10  59  55  71  3  33  97  76  50  12  86  40  20  85  47  11  14  66  

96  41  70  31  73  56  9  28  45  93  78  21  77  53  1  74  30  72  15  94  65  34  98  19  22  

13  83  75  95  51  2  61  68  38  36  89  57  69  92  5  25  6  24  26  27  23  8  44  18  49  62  

54  87  52  43  32  99  88  29  46  79  84  64  58  82  42  60  35  16  7  91  39  100  4  37 

tai079 

91  54  92  64  43  19  67  23  86  29  21  42  18  62  4  10  1  79  100  81  85  74  9  46  75  

73  57  36  95  98  2  94  20  68  25  76  3  48  38  34  53  15  16  41  27  80  26  17  96  60  

44  65  83  84  66  51  52  24  49  56  45  97  77  31  87  5  58  33  99  61  35  47  30  8  89  

39  69  7  71  14  72  88  32  70  11  90  50  37  40  12  22  28  63  82  13  78  55  93  59  6 

tai080 

84  57  48  97  81  71  99  2  14  9  78  15  68  63  100  16  32  64  19  47  62  34  6  87  52  

75  17  8  40  89  88  54  66  76  36  21  30  20  80  42  67  38  29  25  55  10  58  11  41  53  

93  90  86  96  98  91  73  77  69  56  22  44  3  24  79  82  94  4  70  31  7  28  18  37  1  35  

59  39  12  26  72  5  27  85  13  23  92  50  74  49  45  43  65  95  46  33  60  83  51  61 

tai081 

1  59  36  94  46  3  93  31  39  61  12  4  5  20  19  75  89  74  80  58  97  13  14  47  38  51  

37  92  78  90  2  62  79  27  49  77  41  88  73  50  69  98  44  57  11  82  25  9  54  65  60  

32  85  83  81  16  56  6  28  55  66  21  70  52  63  23  45  67  91  29  26  96  15  95  7  87  

84  24  30  72  68  86  34  43  71  17  18  99  76  22  33  10  100  48  35  42  64  40  8  53 
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tai082 

50  76  14  29  98  5  6  15  65  24  38  90  48  9  99  23  72  40  26  83  81  51  16  4  44  62  

30  46  55  73  28  63  87  92  58  64  96  27  13  97  61  89  34  54  22  84  95  43  75  70  

20  80  56  74  57  94  39  12  42  25  66  49  100  69  82  91  35  31  3  36  2  37  32  52  10  

47  79  68  19  78  88  67  86  85  17  18  1  60  7  93  71  11  33  8  77  41  21  53  59  45 

tai083 

83  37  97  82  75  30  55  62  14  65  45  95  2  96  74  21  28  19  94  87  10  4  9  86  63  

22  20  39  76  78  31  48  81  85  47  70  88  58  17  16  3  52  89  69  60  93  8  49  71  12  

27  79  18  100  15  38  99  92  64  41  40  56  90  11  23  91  53  46  25  36  26  73  1  13  

59  32  34  43  80  77  84  67  54  61  24  42  51  44  66  98  7  29  50  33  57  35  72  68  6  

5 

tai084 

36  80  33  57  89  84  52  21  12  58  25  67  51  26  43  91  66  77  30  7  100  79  15  61  

62  27  14  34  11  45  41  17  82  48  39  6  40  73  90  3  2  29  37  74  42  78  4  99  72  10  

35  94  18  65  49  5  44  98  23  63  60  68  93  81  19  55  47  28  22  46  86  38  95  50  85  

20  9  24  96  92  59  64  83  97  1  32  16  76  8  70  71  13  31  87  75  54  56  69  88  53 

tai085 

51  49  33  91  36  67  13  15  71  30  99  38  93  7  19  61  54  77  79  9  44  27  23  39  75  

98  72  10  12  83  5  26  100  17  60  11  3  81  74  73  22  18  68  20  55  66  85  76  87  58  

32  2  16  95  4  31  34  48  24  56  45  28  50  94  90  21  84  80  62  86  78  43  52  37  8  

97  64  14  96  42  69  65  53  35  57  70  40  82  1  46  88  92  29  41  6  89  63  25  59  47 

tai086 

31  12  83  32  96  73  33  89  92  1  78  27  80  65  29  94  54  50  67  70  6  61  63  30  88  

79  43  60  36  47  51  59  93  42  90  24  44  18  87  2  45  15  4  38  76  21  22  58  84  23  

39  7  66  48  5  69  82  37  56  19  62  75  91  55  71  11  34  97  64  14  10  17  16  99  57  

98  3  20  40  85  77  26  86  41  25  28  49  52  8  95  74  9  68  46  53  13  72  100  35  81 

tai087 

95  50  41  33  28  25  75  27  88  85  94  62  93  14  21  9  1  45  16  32  49  52  44  20  79  

26  19  64  60  5  80  78  22  35  76  38  92  83  3  100  65  18  56  71  15  86  96  30  2  57  

66  37  68  13  53  12  72  24  84  23  29  82  36  40  59  43  51  34  98  39  4  74  87  89  61  

7  11  73  6  67  58  97  8  42  55  99  54  77  90  47  91  46  17  70  31  48  63  10  81  69 
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tai088 

70  22  87  90  2  73  3  15  4  96  28  39  6  32  48  79  21  99  46  50  8  43  86  30  60  27  

64  95  74  54  35  53  66  61  68  25  1  17  10  45  75  23  41  29  89  33  20  97  26  42  52  

88  63  31  69  19  62  12  71  24  59  72  56  84  38  14  78  76  77  82  83  65  94  91  85  

11  36  67  58  7  37  81  57  51  93  40  47  55  34  49  9  100  13  92  16  5  18  98  44  80 

tai089 

66  44  7  2  76  71  58  90  80  84  99  27  92  21  88  15  29  63  6  89  10  68  74  22  75  

64  42  24  35  3  36  95  77  51  4  56  1  13  28  17  34  47  60  16  43  62  50  81  37  91  

23  53  93  65  59  30  11  8  78  20  73  94  41  46  26  14  83  61  79  85  87  25  96  57  

100  69  31  72  48  86  18  33  70  98  45  5  55  54  19  9  40  67  82  38  12  97  52  39  32  

49 

tai090 

11  48  28  73  44  53  67  20  39  57  18  2  70  43  88  7  65  100  31  8  42  89  85  66  46  

21  35  15  6  22  47  49  82  79  81  14  36  94  59  41  91  45  55  63  75  30  23  17  64  90  

27  24  52  77  62  34  56  84  5  26  4  98  37  25  50  12  33  86  99  69  3  61  80  58  76  

95  16  96  54  1  38  83  71  13  19  9  68  32  78  72  51  60  87  40  92  10  97  74  29  93 

tai091 

73  29  28  94  65  15  188  148  30  33  124  71  190  172  132  104  110  49  34  61  3  99  

169  160  176  77  147  125  168  183  161  23  98  52  149  156  1  90  146  182  113  142  

18  92  187  19  97  8  106  24  63  81  47  136  197  67  57  103  127  6  173  83  75  109  

178  78  39  137  152  163  25  36  195  151  164  170  60  167  191  85  87  69  16  158  

180  93  129  76  91  135  200  68  64  43  22  198  2  9  101  186  35  50  159  118  111  46  

20  134  196  138  42  45  66  13  128  10  54  114  184  21  162  102  27  41  192  74  105  

116  107  4  17  84  55  123  157  89  140  155  150  53  100  14  171  70  174  194  154  12  

193  58  130  88  31  199  86  165  37  120  117  80  175  48  189  115  108  112  26  72  79  

139  82  95  51  144  122  38  121  181  166  59  11  62  143  177  141  126  145  40  56  

179  44  32  7  5  131  153  185  119  96  133 

tai092 

31  166  42  150  161  70  44  115  101  163  11  29  48  119  14  97  63  188  61  26  13  

130  94  96  65  57  9  62  107  181  133  25  112  5  34  74  200  145  186  182  15  98  86  

109  45  33  183  8  27  170  104  137  156  149  64  40  21  55  88  143  155  17  7  73  187  

54  164  158  92  69  174  140  22  68  24  75  66  198  178  138  185  132  171  162  121  

194  125  28  114  2  117  139  192  141  127  91  195  76  99  146  49  190  50  152  179  
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59  4  41  53  38  103  144  32  77  47  71  30  78  82  111  175  122  134  39  191  58  3  89  

147  142  37  126  124  18  46  189  19  148  87  129  157  60  131  167  23  196  10  93  

128  16  118  20  84  67  105  136  123  173  1  83  160  110  197  165  135  102  120  6  79  

199  56  172  168  81  12  113  106  193  36  51  180  85  80  52  184  108  90  159  153  95  

151  72  154  169  116  35  43  176  177  100 

tai093 

97  52  95  83  92  32  2  39  133  166  157  62  183  72  93  147  42  102  187  57  159  129  

134  104  43  135  25  189  128  192  46  148  146  96  49  36  103  58  153  154  78  89  18  

91  119  180  15  44  1  126  198  191  173  29  20  51  84  8  68  100  186  179  101  94  41  

16  53  82  176  69  184  64  60  150  174  61  3  24  50  88  4  140  14  10  86  70  143  188  

145  116  163  19  113  48  110  155  17  118  121  108  33  98  28  125  66  34  123  181  

27  115  77  141  85  38  73  182  162  99  87  12  47  71  142  136  190  160  120  22  21  

131  164  5  63  106  90  23  9  59  132  199  74  31  151  124  144  65  193  194  112  169  

171  6  56  107  117  158  80  40  137  200  149  35  54  7  172  196  161  67  177  26  114  

197  30  75  195  138  185  167  122  76  168  139  79  156  105  152  81  175  170  111  55  

165  127  130  109  45  11  13  37  178 

tai094 

160  196  90  192  161  56  131  158  147  71  144  136  11  187  50  130  120  61  134  133  

92  103  195  176  128  142  24  80  118  86  74  36  189  111  69  163  32  5  115  184  116  

105  145  199  173  76  10  125  15  23  137  82  21  106  30  197  112  165  96  13  64  99  

17  75  59  55  153  25  35  156  200  27  151  126  178  119  188  194  38  180  58  174  67  

185  170  91  132  42  3  179  78  190  44  43  198  181  183  108  19  100  127  94  104  

157  45  29  57  124  33  51  140  16  39  9  149  97  162  123  98  155  41  8  150  117  62  

159  83  182  186  110  89  65  20  146  88  79  121  102  68  66  193  4  177  122  47  107  

168  26  37  40  84  52  70  167  139  135  54  77  28  73  154  169  6  63  129  46  171  1  

101  12  143  113  7  191  138  34  166  93  22  164  53  2  18  81  87  14  48  141  60  72  

95  85  109  148  175  114  152  172  49  31 

tai095 

198  46  189  90  86  186  188  124  32  73  14  101  172  193  108  181  58  92  132  105  

11  111  29  106  33  52  84  22  131  149  174  74  89  144  96  95  161  165  80  71  42  

109  48  57  168  91  175  17  72  3  98  93  117  195  55  125  26  126  63  35  157  185  51  

192  61  37  171  70  128  103  40  164  67  60  64  127  79  135  12  110  155  2  50  182  

154  7  25  5  76  143  147  153  123  194  4  178  114  83  75  104  170  47  15  139  184  



 133 

140  173  179  38  113  130  85  183  13  6  160  68  82  120  180  150  54  8  152  156  16  

122  66  141  190  36  137  177  43  97  166  169  176  196  163  44  81  191  65  10  136  

28  151  118  27  121  187  1  87  148  62  34  23  200  59  102  138  21  20  45  99  112  

115  77  145  41  49  39  53  129  162  119  133  69  31  159  94  146  30  18  107  100  56  

197  116  24  78  167  9  88  134  142  19  158  199 

tai096 

147  85  13  36  102  47  197  168  118  6  78  134  89  126  178  195  52  69  131  9  143  

183  39  107  53  172  3  146  190  164  132  55  158  51  40  138  23  29  25  41  65  186  

122  72  114  57  180  67  12  174  103  37  20  156  116  149  1  26  93  99  152  198  95  

98  11  10  79  42  61  106  76  60  73  135  18  128  173  181  115  187  145  80  162  142  

108  192  133  109  148  159  94  28  68  167  14  2  170  92  169  104  120  137  110  35  

101  44  160  166  48  175  184  64  111  63  157  71  91  153  112  136  191  17  165  15  

54  141  46  155  75  163  125  200  59  171  30  74  82  16  84  151  90  22  49  66  8  43  

62  176  34  130  70  196  185  50  161  199  150  123  38  127  21  129  117  121  81  27  

31  33  189  179  140  24  5  32  87  77  83  119  7  86  56  88  45  58  154  144  177  96  97  

182  193  139  105  19  4  188  113  124  100  194 

tai097 

135  198  147  80  117  197  127  28  38  173  179  41  98  145  15  97  56  126  63  36  182  

11  88  57  169  75  94  192  34  191  73  196  151  39  71  18  159  52  187  60  50  161  

132  87  184  163  115  26  123  141  119  49  107  168  177  23  165  170  85  45  51  4  91  

143  139  35  93  46  104  29  76  111  78  108  20  53  77  133  12  90  155  180  17  47  83  

194  13  181  24  40  10  144  72  6  32  27  131  152  190  19  105  42  25  112  14  178  

162  160  22  54  120  74  66  189  193  43  5  33  110  121  95  116  100  167  70  86  101  

154  109  58  195  129  79  122  142  37  153  176  7  199  140  102  185  149  148  136  31  

114  62  61  3  99  183  2  186  150  103  157  172  118  188  128  171  89  16  96  65  174  

84  130  134  1  48  67  21  175  44  9  8  81  166  106  30  158  113  200  137  124  82  92  

68  138  156  164  69  146  125  55  64  59 

tai098 

153  105  82  154  112  180  90  185  23  1  114  87  43  38  179  101  73  116  94  128  141  

8  24  26  20  45  167  34  2  4  83  103  18  176  28  25  75  181  125  118  163  12  92  192  

120  148  108  84  156  168  65  137  79  49  165  152  46  170  166  131  50  55  117  194  

191  175  85  74  182  119  132  197  70  58  16  190  29  110  37  183  76  135  66  93  177  

19  10  150  151  122  31  88  14  69  144  3  71  107  121  162  96  200  17  145  109  11  
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143  106  80  7  61  52  98  99  104  59  97  89  102  169  47  91  184  9  195  44  178  139  

155  67  62  173  22  146  27  129  51  147  63  186  54  95  13  158  123  78  172  81  196  

30  193  53  130  36  134  56  68  188  111  60  174  199  35  72  64  40  33  100  187  142  

86  32  161  42  41  159  15  77  140  133  126  5  189  48  149  115  6  164  124  160  157  

39  198  171  127  57  138  136  113  21 

tai099 

97  42  20  65  144  177  180  39  165  18  78  91  3  168  19  145  22  138  175  151  188  

73  125  30  119  191  46  158  187  126  71  157  156  174  100  26  141  186  195  24  17  

189  76  28  58  184  88  5  45  37  77  142  133  148  9  159  143  69  154  196  15  111  

149  40  176  118  12  178  110  137  198  161  72  199  62  127  49  112  128  106  164  

181  48  68  81  89  35  116  132  101  59  122  136  34  82  194  115  84  107  93  105  64  

121  56  67  55  21  74  83  200  163  124  86  113  103  170  185  95  51  53  135  44  104  

70  11  123  167  146  61  60  130  169  4  140  25  129  171  57  13  109  33  54  2  99  102  

152  147  172  94  160  90  6  50  16  179  29  197  85  31  8  108  23  190  162  134  47  7  

150  32  38  87  80  36  10  173  63  66  92  41  183  139  1  27  166  75  43  193  52  114  

182  79  96  192  98  155  117  131  14  153  120 

tai100 

148  177  85  143  138  149  46  87  43  103  180  174  188  94  101  1  199  135  89  76  14  

69  127  109  57  81  132  38  97  52  182  28  164  168  12  65  152  58  51  2  155  157  

184  140  123  83  24  74  3  145  197  193  178  116  158  130  31  119  63  5  66  108  139  

196  195  50  9  92  48  141  166  8  136  95  40  111  60  23  176  19  121  39  73  86  190  

181  18  22  170  25  147  172  104  131  165  10  186  29  53  4  179  106  154  133  162  

187  151  6  134  98  198  161  32  68  77  107  120  45  146  173  82  169  79  21  36  100  

72  102  67  80  167  7  142  64  11  117  47  96  124  71  126  153  112  62  20  105  122  

90  93  113  35  200  192  54  88  194  128  185  16  42  61  183  150  55  163  33  84  41  

70  15  175  34  110  75  114  49  13  144  137  56  159  78  59  129  125  37  27  99  189  

156  115  17  26  160  118  44  91  191  30  171 

tai101 

83  95  151  198  76  170  29  21  193  138  20  190  174  23  40  90  75  86  183  128  60  

65  97  92  62  82  49  88  22  195  162  140  167  131  89  107  194  78  192  96  61  10  

159  185  109  166  163  43  145  64  19  152  33  142  155  63  28  24  47  143  26  160  17  

50  91  99  146  39  113  132  69  187  120  46  122  25  31  153  171  45  41  141  154  164  

32  53  175  55  14  66  67  6  12  77  196  112  15  197  30  44  181  124  121  94  8  9  178  
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111  5  93  144  182  7  36  126  79  147  80  136  57  81  34  189  52  68  172  85  158  101  

103  165  38  115  73  118  114  3  186  74  179  176  108  48  18  13  16  71  58  148  119  

84  1  116  37  102  180  130  54  169  184  156  110  191  11  87  56  188  125  133  59  

105  135  168  173  106  150  100  4  149  161  127  98  27  134  70  35  129  72  157  139  

51  104  123  117  2  42  177  200  199  137 

tai102 

56  132  78  26  37  118  43  97  50  92  117  12  83  49  177  172  165  157  86  101  25  73  

140  87  136  164  67  69  60  168  103  11  124  2  173  149  179  21  53  3  18  129  114  

180  44  151  160  144  159  119  52  94  155  35  146  20  198  81  110  127  90  191  68  

111  138  126  167  197  29  24  96  184  135  58  125  200  131  98  88  169  64  32  70  8  

45  181  147  142  175  10  115  62  189  51  193  42  113  162  34  123  84  120  143  102  

152  57  48  182  15  33  161  27  39  61  22  77  4  47  13  171  99  75  79  38  41  46  156  

134  59  121  63  141  190  7  95  72  17  150  174  170  55  28  76  109  82  130  1  128  16  

188  6  19  40  154  112  194  65  196  105  85  80  36  153  145  5  106  9  93  186  23  163  

54  30  100  139  137  148  183  178  107  176  108  116  122  71  66  187  195  185  104  

14  199  158  192  91  74  166  133  89  31 

tai103 

179  30  132  127  177  111  178  20  187  44  189  184  82  33  162  90  8  152  73  106  46  

194  182  61  168  133  159  110  88  58  6  4  134  147  119  101  40  35  125  53  129  81  

5  121  59  64  34  139  107  43  67  87  51  38  171  97  144  9  163  14  185  145  72  128  

96  195  198  167  123  108  23  165  32  126  112  156  160  192  86  122  153  85  76  80  

68  148  186  105  155  151  93  117  138  77  25  115  1  199  54  22  200  143  48  95  173  

15  13  146  37  31  183  102  136  158  161  57  49  176  47  78  113  84  169  41  98  174  

45  10  166  16  75  130  65  170  193  157  7  70  21  114  109  62  120  55  12  2  50  69  

164  24  66  3  149  154  191  188  42  11  27  181  135  141  91  26  29  137  180  116  131  

52  103  100  124  19  71  196  190  118  17  104  172  83  140  99  175  60  150  92  74  39  

94  18  56  63  28  197  89  142  79  36 

tai104 

66  43  49  168  15  188  73  148  28  160  3  137  1  33  129  78  39  30  29  99  60  123  

183  85  87  195  120  146  110  83  42  158  136  164  151  21  64  19  18  16  175  154  4  

26  199  180  93  101  139  40  88  114  24  81  77  149  191  57  71  109  165  20  8  84  

147  27  17  178  157  52  23  172  134  6  14  41  196  45  65  124  98  105  194  141  82  

55  7  132  2  95  46  89  169  187  75  106  122  68  47  36  155  182  37  103  100  170  
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186  35  91  54  70  128  143  31  72  5  63  92  50  193  200  184  127  90  173  171  38  

104  69  107  130  118  53  140  163  190  176  67  167  142  34  125  152  198  150  96  74  

189  48  12  177  166  112  179  44  145  86  144  59  174  116  121  117  80  192  9  10  13  

11  108  32  102  181  153  185  56  62  126  159  79  76  25  161  113  197  51  58  162  

135  97  94  156  61  138  115  22  111  133  131  119 

tai105 

162  83  31  86  168  27  70  112  193  110  8  53  71  172  23  46  17  165  127  148  195  

131  41  145  36  149  67  137  196  101  55  6  156  45  128  50  5  37  105  98  100  134  

11  97  56  38  3  63  142  40  194  118  25  72  28  43  77  135  10  190  133  102  130  74  

117  129  61  66  186  185  158  107  163  29  132  178  85  76  180  174  120  106  124  22  

138  52  2  1  154  175  95  68  93  199  99  26  103  150  4  147  116  155  123  125  44  

111  80  87  58  167  200  82  69  59  157  113  164  152  64  136  139  108  19  47  9  177  

114  30  176  104  51  18  32  141  169  34  24  144  159  160  75  187  48  151  91  88  35  

49  79  90  189  197  78  119  84  140  153  181  33  81  15  183  166  57  126  146  96  14  

192  89  12  188  182  20  73  7  16  115  60  143  184  122  62  198  191  54  92  39  171  

173  13  121  94  21  42  65  109  179  170  161 

tai106 

152  170  78  163  190  121  98  195  39  81  142  101  141  178  11  76  99  119  160  157  

117  88  198  97  16  62  51  94  103  87  3  126  33  82  29  127  32  23  38  60  145  96  75  

92  175  185  107  122  128  44  34  192  139  110  159  80  200  137  115  196  169  13  

179  21  151  158  84  42  35  85  172  149  40  164  45  95  77  104  168  197  12  74  56  

72  58  90  79  129  156  43  50  146  30  10  183  116  31  15  61  52  68  83  194  109  176  

53  171  177  47  89  18  138  123  165  130  199  113  24  186  106  65  131  41  91  111  

132  136  14  155  57  63  112  144  118  64  182  27  148  93  184  1  187  17  49  19  37  2  

71  180  59  67  4  140  5  102  20  86  9  150  54  191  181  154  147  153  70  173  7  36  

125  105  8  108  46  174  188  124  120  28  100  25  6  189  73  193  135  48  133  66  69  

167  114  143  55  162  22  26  161  166  134 

tai107 

200  190  168  29  146  126  59  173  64  27  35  68  181  164  14  154  176  7  69  15  71  

46  103  30  199  192  28  12  131  175  9  182  17  91  98  162  52  179  21  45  105  3  186  

196  48  22  122  10  44  65  23  101  194  166  153  90  156  111  198  177  133  160  42  

36  92  152  25  1  41  119  169  67  31  112  76  114  72  147  130  6  100  75  83  47  163  

138  165  155  49  5  50  115  106  104  18  124  110  125  193  74  143  88  158  4  195  
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150  139  123  121  132  97  120  109  99  2  116  108  189  187  13  34  26  161  66  140  

117  149  86  70  188  174  159  96  77  19  63  142  102  32  82  148  141  53  11  113  171  

84  60  151  37  73  94  54  184  136  89  40  80  85  167  128  157  81  51  38  129  56  134  

127  8  185  118  183  58  191  180  93  197  145  95  57  62  178  144  24  55  79  61  135  

33  172  39  78  137  170  43  16  87  107  20 

tai108 

196  36  25  122  16  10  151  83  50  125  81  190  132  30  172  121  157  97  150  69  106  

61  20  63  176  58  141  184  119  115  193  48  162  165  37  137  47  179  171  9  80  152  

70  22  109  199  126  73  31  93  90  91  131  89  44  24  68  104  67  146  62  143  64  28  

194  178  14  2  189  53  27  82  175  112  11  6  111  164  155  26  117  43  154  76  38  

198  186  3  60  35  33  160  94  65  32  4  128  127  95  192  191  52  114  39  54  5  133  

29  124  161  136  105  123  42  102  138  173  8  149  174  147  45  116  23  85  110  139  

177  129  153  49  92  182  148  17  72  86  169  100  77  185  40  46  71  197  21  74  7  96  

107  88  135  59  134  183  158  101  12  187  103  57  200  144  99  156  51  108  167  120  

18  55  87  75  98  180  130  118  188  41  140  145  113  13  181  34  15  195  56  159  163  

66  78  19  168  79  1  170  142  166  84 

tai109 

190  10  148  199  151  166  25  113  160  54  50  70  100  106  19  77  36  55  29  61  74  

154  116  153  86  72  101  136  111  28  62  142  80  24  134  94  124  1  20  8  58  16  30  

135  14  2  92  192  37  84  173  197  67  76  22  117  6  57  174  158  89  105  78  93  83  

46  146  96  69  168  172  186  11  147  71  17  123  145  130  98  144  110  64  170  21  

155  102  189  51  161  99  40  162  149  163  68  108  122  26  159  59  194  43  179  90  

52  129  15  103  81  23  175  125  121  45  91  41  79  138  107  140  156  169  143  182  

13  114  167  133  126  56  115  7  187  164  66  127  5  3  120  165  87  131  73  34  65  

178  95  157  32  185  4  75  42  112  183  137  150  63  85  104  27  200  60  176  181  82  

118  132  53  31  171  12  47  48  193  139  128  180  152  18  141  198  38  184  177  88  

196  39  97  35  191  9  33  119  188  195  109  44  49 

tai110 

130  15  116  7  196  142  154  197  77  180  149  47  103  100  83  12  151  59  13  141  94  

198  50  131  124  104  126  112  91  177  81  52  65  14  150  172  75  60  189  191  127  

55  135  160  163  56  133  139  67  64  192  144  199  121  140  178  173  53  98  48  155  

183  122  128  106  21  101  87  167  54  93  40  145  114  27  28  66  123  161  9  132  42  

118  108  29  22  169  76  97  17  190  32  25  46  79  57  1  2  61  147  164  158  88  95  49  
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38  200  153  43  34  111  31  51  20  119  102  99  134  69  181  62  115  73  92  187  113  

35  194  4  174  8  175  18  159  157  120  162  10  86  109  74  68  6  11  182  85  23  170  

184  82  129  138  90  44  195  45  71  166  165  156  117  19  168  179  125  33  5  39  37  

96  105  3  41  80  30  137  152  136  143  63  26  78  148  176  89  24  72  107  171  36  

110  193  58  186  188  185  146  84  70  16 
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ANEXO II – As melhores seqüências de trabalhos obtidas pelo rAG no quarto 

experimento com o CPFSP para as instâncias de Reeves (1995) e Heller (1960). 

 

rec01 

6  2  15  13  11  7  20  4  17  1  5  10  9  8  18  14  12  16  3  19 

rec03 

2  9  5  14  7  8  16  10  18  4  3  1  17  15  12  13  11  19  20  6 

rec05 

12  19  11  9  6  1  8  13  14  2  20  3  5  18  4  15  10  7  16  17 

rec07 

10  13  11  4  9  12  3  18  16  8  6  7  15  5  17  1  2  19  14  20 

rec09 

16  15  20  17  14  18  11  1  12  6  7  5  13  8  10  9  19  3  2  4 

rec11 

16  4  2  20  18  7  14  9  8  17  10  12  13  19  11  15  1  3  5  6 

hel2 

13  1  2  9  10  4  20  8  19  7  14  11  3  6  15  5  16  17  18  12 

rec13 

4  3  14  11  17  8  12  2  10  15  7  6  16  20  18  1  13  19  9  5 

rec15 

12  1  16  9  13  2  5  15  6  19  10  20  17  14  11  8  3  18  4  7 

rec17 

20  12  18  2  17  13  19  4  14  7  3  10  11  8  1  6  9  16  15  5 

rec19 

5  7  21  17  20  6  13  10  15  29  22  14  11  2  1  3  4  12  27  23  8  24  9  19  30  26  25  

16  18  28 

rec21 

23  12  14  7  13  17  1  24  8  26  16  20  28  29  18  5  11  19  10  9  4  6  15  2  27  25  30  

21  3  22 

rec23 

3  24  29  1  5  2  21  20  4  16  14  9  19  26  22  28  15  8  30  23  10  18  13  17  25  11  6  

7  27  12 
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rec25 

29  3  24  20  23  6  16  21  11  2  28  30  14  15  22  25  10  4  5  7  12  1  9  19  8  18  27  

17  26  13 

rec27 

17  19  25  24  1  9  5  30  27  14  29  18  10  4  11  3  23  16  22  20  13  7  12  15  6  8  28  

2  21  26 

rec29 

15  29  25  26  2  7  11  4  23  6  10  12  30  1  22  8  9  20  16  17  14  24  13  5  27  28  3  

21  18  19 

re31 

34  40  46  6  23  48  8  44  26  27  50  38  13  2  24  47  35  32  10  37  25  28  17  14  22  

29  31  11  42  15  9  36  30  49  7  12  43  21  20  4  5  1  33  3  16  41  39  18  45  19 

rec33 

47  18  2  36  22  34  39  38  9  28  41  42  5  50  10  1  6  7  11  26  21  8  13  48  20  49  16  

15  27  19  14  44  31  3  37  25  43  32  29  46  33  30  12  35  4  17  40  45  24  23 

rec35 

25  6  27  2  38  35  13  36  42  20  18  41  10  39  50  32  48  31  43  1  5  14  40  17  3  44  

30  26  4  33  15  8  23  19  9  12  45  37  21  28  7  47  34  24  11  46  29  49  16  22 

rec37 

41  19  18  50  1  63  40  75  44  48  67  53  56  20  61  43  29  28  9  7  32  12  65  66  25  

58  60  2  57  16  36  73  55  49  42  3  31  46  69  4  51  74  45  11  64  59  13  34  17  39  

47  26  15  68  52  54  10  33  72  6  22  8  71  5  27  30  21  14  62  35  24  38  23  70  37 

rec39 

24  20  47  40  63  56  45  68  23  12  59  16  42  19  57  44  43  48  32  22  11  55  3  52  54  

34  15  61  66  46  13  4  58  38  10  31  18  35  49  65  28  9  30  29  69  37  14  21  1  73  

72  39  71  27  74  41  51  6  5  2  25  53  50  17  64  36  26  8  33  67  75  62  60  70  7 

rec41 

30  68  69  28  7  44  29  72  19  35  52  6  24  54  50  65  23  5  64  67  34  63  41  66  37  

59  13  48  3  58  75  71  51  74  18  42  26  33  36  46  9  10  25  60  22  31  47  43  14  8  

11  45  20  73  4  39  56  17  2  32  55  49  21  40  53  57  61  70  16  12  27  62  1  38  15 

hel1 

13  37  63  74  98  2  87  48  82  53  32  43  25  24  4  80  67  21  40  58  5  71  52  92  14  

94  55  16  17  84  76  15  1  22  90  30  91  65  38  78  72  23  62  41  6  59  51  60  64  11  
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33  3  26  9  93  42  68  27  95  46  86  35  44  75  99  79  97  49  88  47  73  70  57  50  96  

10  77  29  66  100  89  20  8  85  39  61  36  34  19  28  7  31  12  45  69  54  81  18  83  56 

 

 

 

 

 

 

 

 

 

 

 

 


