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RESUMO

Neste trabalho foram tratados dois problemas: o primeiro é denominado Continuous
Permutation Flowshop Scheduling Problem (CPFSP), que possui a restricio de que
nenhuma tarefa pode esperar por processamento entre maquinas consecutivas; o segundo é
denominado de Permutation Flowshop Scheduling Problem (PFSP), em que a restricdo
anterior nio existe. A metaheuristica Algoritmo Genético (AG) tem sido aplicada com
sucesso ao PFSP, mas até o momento nao foi encontrado na literatura algo que mostre que
0 AG ¢ um bom método para o CPFSP. O objetivo deste trabalho foi desenvolver um AG
eficiente paras esses dois problemas, mas que ndo precisa utilizar inicializag¢do eficiente
e/ou hibridiza¢do com outra técnica de busca. O desenvolvimento do AG proposto levou
em consideracdo as caracteristicas, diversificacdo e a intensificacdo, que inspiraram a
criacdo de tré€s procedimentos que melhoraram o desempenho do AG proposto. Foram
realizados vdarios experimentos com as instincias de Taillard (1993), Reeves (1995) e
Heller (1960). Os resultados foram comparados com outros métodos encontrados na
literatura. Foram construidos polindmios com a utilizacdo de Interpolagdo Lagrangeana
para determinar o tempo execucdo do AG proposto. Por fim, o método foi aplicado num
problema real. Os resultados mostraram que o AG proposto € o melhor método para o
CPFSP e que fica muito préximo do melhor AG encontrado na literatura com inicializacdo

eficiente para o PFSP.

Palavras-Chaves: Problema de Sequenciamento Permutacional Flowshop, Problema de
Sequenciamento Permutacional Continuo Flowshop, Algoritmo Genético, Diversificacdo e

Intensificacao.

vii



ABSTRACT

In this work two problems were solved: the first is Continuous Permutation Flowshop
Scheduling Problem (CPESP) it possesses the constraint that no job can wait for processing
among serial machines; the second is Permutation Flowshop Scheduling Problem (PFSP),
in that the previous restriction does not exist. The metaheuristic Genetic Algorithm (GA)
has been applied with success for solving the PFSP, but up to now it was not found in the
literature something that shows that GA is a good method for CPFSP. The objective of this
work was to develop an efficient GA for both problems, but that does not need to use an
initialization efficient and/or hybridization allied with other search technique. The
development of proposed GA took in consideration the characteristics, diversification and
the intensification, that inspired the creation of three procedures that further improved the
proposed GA. Several experiments were accomplished with the instances of Taillard
(1993), Reeves (1995) and Heller (1960). The results were compared with other methods
found in the literature. Polynomials were built with Lagrangeana's Interpolation use to
determine the time execution of proposed GA. Finally, the method was applied in a real
problem. The results showed that proposed GA is the best method for CPFSP and that is

very close of best GA found in the literature with efficient initialization for PFESP.

Keywords: Permutacional Flowshop Scheduling Problem, Continuous Permutacional

Flowshop Scheduling Problem, Genetic Algorithm, Diversification and Intensification.
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CAPITULO 1 - INTRODUCAO

1.1. Consideracoes Iniciais

As empresas de manufatura enfrentam a dificil tarefa de determinar a melhor seqiiéncia de
processamento de seus produtos em suas maquinas que atenda aos objetivos competitivos
do negdcio. A Pesquisa Operacional denomina este problema como Scheduling Problem
(SP), na Literatura, e o define como: dado um conjunto de tarefas e um conjunto de
mdquinas determinar uma seqiiéncia especifica que otimize uma funcéo objetivo. Existem
vérios tipos de SP, por exemplo, o single machine scheduling problem, multiple machine
scheduling problem e manpower scheduling problem. Este trabalho trata do multiple
machine scheduling problem chamada de Flowshop Scheduling Problem (FSP). O
primeiro artigo publicado sobre este problema foi de Johnson (1954) que formulou e
resolveu o two-machine flowshop problem. Segundo Gupta e Stafford Jr. (2006) de 1954 a
2004 mais de 1.200 artigos foram publicados abordando diferentes aspectos do FSP.

O FSP ¢é definido como um fluxo unidirecional de » tarefas em m maquinas, i.e., a ordem
de processamento de todas as tarefas nas m maquinas € a mesma. Considerando o caso
geral do FSP o nimero de seqiiéncias possiveis e distintas € igual a (n!)”, mesmo para
problemas com n e m pequenos a enumeracdo completa de todas as solugdes possiveis e

distintas torna-se impossivel.

Neste trabalho foram tratados dois problemas da classe FSP. O primeiro problema é uma
simplificagdo do FSP geral, que assume que a seqiiéncia de operacdes das tarefas
processadas em cada mdquina é a mesma, por isso, o nimero de solugdes possiveis é
reduzido para n!, neste caso o problema é denominado Permutation Flowshop Scheduling
Problem (PFSP). Uma das suposi¢cdes necessarias para definir o PFSP é que cada tarefa
pode esperar pelo processamento entre maquinas consecutivas, i.e., estoque em processo ¢é
permitido. Existem processos produtivos onde a suposi¢do anterior ndo se aplica, i.e., as
tarefas ndo podem parar o processamento entre maiquinas consecutivas e, por isso,
precisam ser processados continuamente do inicio ao fim, isto origina um outro problema
chamado de Continuous Permutation Flowshop Scheduling Problem (CPFSP). O segundo
problema e o principal é o CPFSP, dado a sua importincia pratica e as poucas pesquisas

realizadas sobre ele encontradas na literatura.



Ainda sobre o CPFSP, segundo Hall e Sriskandarajah (1994) existem duas razdes para a
ocorréncia de um ambiente de producdo continua. A primeira razdo € a tecnologia de
producdo empregada, por exemplo, a temperatura ou outra caracteristica de um material
requer que cada operagdo siga imediatamente para a préxima etapa. Essas situacdes sdo
comuns nas industrias siderdrgica, quimica, farmacéutica, alimenticia e plastica.
Ambientes de manufatura moderna como just-in-time, sistemas flexiveis de manufatura e
células roboéticas exigem uma complexa coordenagdo no processo de manufatura. Isto
também pode ocorrer em empresas de servico onde o custo de atendimento do cliente é
alto. A segunda razdo de ocorréncia € a falta de espaco de estocagem intermedidria, isto
ocorre geralmente em linhas de produgdo automadticas e em sistemas de estoque gerenciado
por kanbans (cartdes informando a quantidade de produtos a serem produzidos), pois

nestes casos o estoque em processo tem uma quantidade fixa limitada.

As aplicacdes futuras do CPFSP seriam principalmente nas indistrias de manufatura
moderna, especialmente por causa da automag@o do manuseio de materiais, segundo Hall e

Sriskandarajah (1994).

Este trabalho indica uma boa contribuicdo cientifica para o CPFSP principalmente. Além

de outros estudos realizados nas resolucdes dos problemas.

A metaheuristica Algoritmo Genético (AG) baseada na evolucdo das espécies, tem sido
aplicada com sucesso no PFSP (Chen et al. (1995), Reeves (1995), Murata et al. (1996) e
Ruiz et al. (2006)). Ruiz et al. (2006) desenvolveram um AG que teve um bom
desempenho quando aplicado no PFSP. Alguns AGs foram desenvolvidos e aplicados no
CPFSP, tais como Chen et al. (1996), Aldowaisan e Allahverdi (2003) e Schuster e
Framinan (2003). Os AGs de Chen et al. (1996) e Aldowaisan e Allahverdi (2003) foram
testados em problemas gerados aleatoriamente o que torna dificil a comparag@o com outros
métodos que usaram dados da OR-Library, somente o AG de Schuster e Framinan (2003)
foi testado em instancias conhecidas. Testar um algoritmo em problemas conhecidos e
disponiveis na literatura € uma forma de permitir que o método possa ser comparado com
outros métodos. Fink e Vof (2003) desenvolveram vdrias heuristicas e alguns métodos
baseados nas metaheuristicas Simulated Anneling e Tabu Search para o CPFSP que foram

testados nas instincias de Taillard (1993). Grabowski e Pempera (2005) desenvolveram um



método baseado na metaheuristica Tabu Search para o CPFSP que obteve um melhor
resultado que o AG de Schuster e Framinan (2003). At€¢ o momento ndo foi encontrado na
literatura um trabalho que mostre que o AG é um bom método para o CPFSP devido a este

fato escolhemos atacar o CPFSP desenvolvendo um AG que tivesse um bom desempenho.

A primeira justificativa para a escolha do AG ¢ a possibilidade de mostrar que ele pode ser
um bom método de resolugdo quanto ao uso de recursos computacionais. A segunda
justificativa é baseada na hipétese de Silva e Soma (2006) que métodos de resolugdo exata
para problemas da classe FSP geralmente s6 sdo aplicados em problemas com n<20 e que
mesmo assim o tempo computacional ainda é muito alto, por isso a importincia de
desenvolver métodos que encontrem boas solu¢des em tempo computacional aceitavel. A
terceira justificativa é que se trata de uma técnica generalista, i.e., pode ser aplicada em
vdarios problemas necessitando somente de poucas modificacdes. E finalmente, a quarta
justificativa € o fato de que o AG estd sendo usado no setor produtivo, onde se constatou
que em setembro de 1998 através do site EvoWeb, especializado em noticias relacionadas
a computacdo evoluciondria, noticiou que em 1997 uma empresa de manufatura foi
comprada por US$ 53 milhdes por uma empresa de software, o alto valor pago foi
justificado pelo interesse em adquirir um programa de computador baseado em AG
desenvolvido pela empresa de manufatura para fazer o seqiienciamento das ordens de

produgdo da fabrica (EvoWeb, 2007).

O AG foi criado por John Holland durante as décadas de 1960 e 1970 (Holland, 1975).
Segundo Haupt e Haupt (2004), o AG € uma técnica baseada nos principios da genética e
selecdo natural das espécies. A técnica é formada por uma populacido de individuos que
representam as solucdes do problema. Cada individuo da populacio é avaliado segundo
sua qualidade em relag@o aos outros individuos da populagd@o. Os individuos sdo escolhidos
por um procedimento inspirado na sele¢do natural para passarem por operacdes genéticas
que resultam em descendentes que compordo a nova populacdo. Os estudos mostram que a
nova populagdo tem a tendéncia de ter individuos com aptiddes melhores que os individuos
da populacgéo anterior. Este processo de gerar novas populacdes é chamado de geracdo. O
melhor individuo da dltima populacio associado a uma solucio do problema € selecionado

como a melhor solucdo encontrada para o problema.



Verificou-se na literatura, que os AGs usados nos problemas da classe FSP apresentam
como principais caracteristicas: a utilizacdo de uma heuristica eficiente para criar a
populacdo inicial; e uma etapa de hibridiza¢do com outra técnica de busca. A inicializacio
eficiente reduz o tempo necessario para encontrar boas solugdes. A etapa de hibridizacdo é
usada para melhorar a qualidade da solu¢do obtida. Com estes dois novos componentes
fica dificil determinar o quanto da qualidade da solug@o obtida se deve as caracteristicas
originais do AG criado por Holland. Sendo assim, este trabalho também tem como objetivo
desenvolver um AG eficiente para os problemas da classe FSP, principalmente o CPFSP,
que ndo utilize inicializacdo eficiente e hibridizag@o. Este objetivo se justifica do ponto de
vista tedrico porque verificard e analisard se um AG sem inicializagdo eficiente ou
hibridizac¢do pode ser competitivo com os AGs que usam estas estratégias. Além disso, um
AG com estas caracteristicas pode ser ttil quando as heuristicas disponiveis ndo forem tio
eficientes em termos de qualidade das solucdes e o tempo computacional ou a hibridizacao

comprometer o custo computacional.

O desenvolvimento do AG proposto levou em consideragfo as caracteristicas que fazem a
evolucdo da qualidade das solugcdes agirem de forma melhor e por mais tempo, as solugdes
obtidas seriam boas, mesmo sem inicializag@o eficiente e hibridizacdo. Para isso foram
usados dois principios para guiar a construgdo do AG. Mitchell (1998) afirmou que no AG
a evolucdo das solugdes depende da variagdo nas aptiddes dos individuos da populacio.
Outra caracteristica importante € a intensificacdo no processo de busca (Silva e Soma,
2001; Grabowski e Pempera, 2005; Dréo et al., 2006). Dai se escolheu a diversificacdo e a

intensificagdo como caracteristicas importantes para a qualidade de um AG.

Definida a diversidade e a intensificagdo como as caracteristicas que atribuiriam qualidade
ao AG desenvolvido, tratou-se de encontrar formas de implementar estas caracteristicas.
Depois do desenvolvimento do primeiro AG, seguindo o modelo tradicional, foram
desenvolvidos e testados trés procedimentos baseados nos principios da diversificagdo e
intensificagdo para melhorar o desempenho do AG. O primeiro procedimento é baseado no
principio da diversificagdo e consiste em permitir, na etapa da formacgéo da nova populagio
do AG, que individuos de aptiddo menor, mas com caracteristicas diferentes de todos os
outros individuos da populacdo tenham chance de serem escolhidos para a nova populagéo.

O segundo procedimento € baseado no principio da intensificacdo e consiste em fazer o



melhor individuo da populagdo passar por um processo genético com outros individuos da
populacdo mais vezes que o comum. Por fim, o terceiro procedimento € baseado no
principio da diversificag@o e consiste em realizar uma perturbacio em todos os individuos
da populagio depois que um estado de estagnacio € identificado. Todos estes

procedimentos serdo detalhados mais adiante.

O objetivo principal deste trabalho é desenvolver um AG eficiente que ndo utilize
inicializacdo eficiente e hibridiza¢do para resolver os problemas CPESP e PFSP. O AG

desenvolvido foi chamado de rAG para diferenciar dos outros AGs existentes.

Os seguintes objetivos especificos precisam ser realizados para que o objetivo principal

seja cumprido:

1. Caracterizar de forma clara o PFSP e o CPFSP;

2. Apresentar os modelos matematicos e combinatorial do PFSP e do CPFSP;

3. Descrever os AGs mais relevantes encontrados na literatura desenvolvidos para
resolver o PFSP;

4. Analisar os principais métodos desenvolvidos para resolver o CPFSP;

Desenvolver os novos procedimentos que melhorardo a diversidade da populacdo e
o processo de intensificagdo do rAG como forma de o tornar mais eficiente;

6. Realizar experimentos com o rAG para os problemas CPFSP com as instancias de
Taillard (1993), Reeves (1995) e Heller (1960) e para o PFSP com as instincias de
Taillard (1993);

7. Comparar os resultados obtidos pelo rAG com os métodos que foram testados em
problemas conhecidos encontrados na revisdo bibliogréifica para o CPFSP com o
critério de desempenho sendo o tempo total de fluxo e o makespan;

8. Comparar o rAG com os melhores AG encontrados na revisdo bibliogrifica para o
PFSP com o critério de desempenho sendo o makespan;

9. Usar interpolagdo para construir fun¢des que possam ser usadas para determinar o
tempo de execucdo necessdrio para o TAG encontrar uma solu¢do de qualidade
desejada para o PFSP; e

10. Aplicar o rAG num problema pratico analisando seus resultados.



Este trabalho foi dividido em seis capitulos, sendo o Capitulo 1 a introdugdo. O Capitulo 2
apresenta o PFSP com suas principais caracteristicas e quatro AGs, os mais relevantes
encontrados na literatura aplicados ao problema. O Capitulo 3 trata do CPFSP, onde sio
apresentados os modelos matemadtico e combinatorial e os métodos de resolu¢do mais
recentes. O Capitulo 4 aborda a técnica AG, onde sdo descritas as principais caracteristicas
de um AG e do rAG, com suas particularidades. O Capitulo 5 aborda para o rAG: os
experimentos com o método, uma aplicacdo real e o desenvolvimento de fungdes
polinomiais (interpolacdo) que possam ser usadas para determinar o tempo de execucdo
necessdrio para o rAG encontrar uma solu¢do de qualidade desejada para o PFSP. O
Capitulo 6 apresenta as conclusdes e as propostas para futuros trabalhos na drea. Por fim,
sdo apresentados a revisdo bibliografica do trabalho e os Anexos I e II, o primeiro anexo
apresenta as melhores seqiiéncias de tarefas obtidas pelo rAG para o CPFSP com as
instancias de Taillard (1993) e o segundo as melhores seqii€ncias para as instincias de

Reeves (1995) e Heller (1960).



CAPITULO 2 - O PROBLEMA DE SEQUENCIAMENTO PERMUTACIONAL
FLOWSHOP

Este capitulo é composto de cinco se¢des que tratam do PFSP: a primeira se¢do apresenta a
definicdo do PFSP; a segunda secdo apresenta o modelo matemdtico em Programacio
Linear Inteiro e Mista do PFSP, com sua complexidade; a terceira se¢do mostra outra
forma de representar o PFSP, baseada na modelagem de Problemas de Otimizacdo
Combinatorial Permutacional (POCP); a quarta se¢do apresenta um histérico da evolucio
das técnicas aplicadas na solucio do PFSP; e finalmente, a quinta secio onde sdo

apresentados os AGs mais relevantes encontrados na literatura aplicados ao PFSP.

2.1. Definicao do PFSP

Antes de definir o PFSP € importante esclarecer que flowshop ndo é sindnimo de linha de
montagem, mesmo que a caracteristica do flowshop seja um fluxo que pareca ser constante
de trabalhos através de um conjunto de maquinas em série, conforme Gupta e Stafford Jr.
(2006). A seguir s@o apresentadas trés diferencas entre estes dois tipos de modelo de

sistema de producao.

a) No ambiente flowshop existe uma variedade de produtos e na linha de montagem
existe um produto padrio;

b) No ambiente flowshop as tarefas ndo sdo obrigadas a passarem em todas as
madquinas dependendo das necessidades tecnoldgicas e na linha de montagem todas
as tarefas tém que passar por todas as estagdes de trabalho; e

c) No ambiente flowshop cada tarefa tem seu préprio tempo de processamento em
cada maquina e na linha de montagem todas as unidades dos produtos t€m o mesmo

tempo padrao em cada estacdo de trabalho.



Assim o PFSP pode ser definido como sendo: um conjunto de n tarefas J;, J,,..., J,, onde
cada tarefa tem para ser processada m maquinas M;, My, ..., My,. Cada tarefa demanda m
operagdes, com uma operacdo representando o tempo de processamento da tarefa por
maquina. As tarefas seguem o mesmo fluxo de operagdes nas maquinas, i.e., para qualquer
j =1, 2, ..., n, a tarefa J; deve ser processada primeira na maquina M;, depois na maquina
M,, e assim por diante até a ultima maquina, no caso a maquina M,,, conforme mostra a
Figura 2.1. Caso a tarefa J; ndo utilize todas as maquinas, o seu fluxo continua sendo o
mesmo, todavia com o tempo de operagdao sendo igual a zero. Uma mdquina pode
processar somente uma operacdo de cada vez, e iniciada uma operagdo, ela deve ser
processada até a sua conclusdo. O nimero de seqiiéncias distintas possiveis para realizacio
das tarefas nas maquinas é grande, i.e., O (n!). O problema consiste em realizar todas as n

tarefas no menor tempo possivel (Silva e Soma, 2006).
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I, M, M, M, M,

Figura 2.1 - Ilustracio do PFSP.

Conforme Silva e Soma (2006) um input do PFSP é dado por n, m € uma matriz P(n x m)
de elementos ndo negativos, onde Pjj denota o tempo de processamento da tarefa J; na
mdaquina M;. Seguindo os 4 parametros da notacdo A/B/C/D adotada por Conway et al.
(1967), o problema ¢ classificado como n/m/P/Fy,,x. Na menos antiga notacdo paramétrica
o/B/y, proposta por Graham et al. (1979), o problema € denotado como sendo
F/prmu/Cmax. O PFSP pertence a classe dos problemas NP-completo, no sentido forte,
quando m>3, conforme Garey e Johnson (1979), no caso em que m=2, o problema pode ser

solucionado através de um algoritmo em tempo polinomial.



Suposicoes relacionadas as tarefas:

J1 — Cada tarefa é liberada para a fabrica no comego do periodo de programacao.

J2 — Cada tarefa pode ter sua prépria data de entrega fixa e ndo sujeita a mudanca.

J3 — Cada tarefa € independente das demais.

J4 — Cada tarefa consiste de operagdes especificas que sdo realizadas por somente uma
méquina.

J5 — Cada tarefa tem uma seqiiéncia tecnoldgica preestabelecida fixa e que € igual para
todas as demais tarefas.

J6 — Cada operacdo de uma tarefa requer um tempo de processamento finito e conhecido
para ser processada nas varias maquinas. Nesse tempo de processamento estdo incluidos
tempos de transporte, sefup e outros. O tempo de processamento € independente dos
tempos de processamento das tarefas anteriores e posteriores.

J7 — Cada tarefa é processada ndo mais que uma vez em cada maquina.

J8 — Cada tarefa pode esperar entre maquinas consecutivas, ou seja, estoque em processo é

permitido.

Suposicoes em relacao as maquinas:

M1 — Cada setor € composto de somente uma maquina e a fabrica tem somente uma
madquina de cada tipo.

M?2 — Cada miquina esté inicialmente desocupada no inicio do periodo de programacao.
M3 — Cada mdquina na fébrica opera independentemente das outras e, por isso, pode
operar na taxa de produ¢do mixima.

M4 — Cada maquina s6 pode processar uma tarefa por vez.

M5 — Cada mdquina estd continuamente disponivel para processar tarefas durante o
periodo de programacdo e ndo hé interrup¢des devido a quebras, manutencdo ou outras

causas.

Suposicoes relacionadas as politicas de operacao

PI — Cada tarefa é processada tdo logo seja possivel. Por isso, ndo hd intencio de fazer a

tarefa ficar esperando ou fazer a maquina ficar ociosa.



P2 — Cada tarefa é considerada uma entidade individual mesmo que possa ser composta
por um conjunto de unidades.

P3 — Cada tarefa uma vez iniciada € processada até o fim, ou seja, o cancelamento de
tarefas ndo € permitido.

P4 — Cada operagdo de uma tarefa uma vez iniciada numa maquina € completada antes que
outra tarefa possa comecar na mesma maquina, ou seja, nenhuma preempgao € permitida.
P5 — Cada tarefa é processada somente uma vez em cada mdaquina. Essa suposicido é
resultado das suposi¢des J5 e P2.

P6 — Cada maquina possui drea de estoque suficiente para acomodar as tarefas em espera
para serem processadas.

P7 — Cada maquina estd completamente alocada as tarefas consideradas durante todo o
periodo de programagdo, ou seja, as maquinas ndo sdo usadas para nenhum outro plano de
producio.

P8 — Cada maquina processa as tarefas na mesma ordem.

E importante conhecer estas suposicdes ji que os outros problemas da classe FSP foram
criados a partir de alguma modificacdo nelas. Este é o caso do sequence dependent setup
time Flowshop Scheduling Problem que foi criado a partir da alteracdo da suposi¢do J6 que
deixa de considerar o tempo de sefup como fazendo parte do tempo de processamento e

passa a considerar os dois tempos separadamente.
2.2. O Modelo Matematico do PFSP

A seguir sdo apresentados a notag@o necessdria e o modelo matemético em Programacio

Linear Inteiro e Mista do PFSP.

Notacao:

a) T;; é uma varidvel do modelo que representa o tempo para iniciar o processamento da
tarefa j na maquina i, com 1<j<ne 1<i<m;e

b) W é um nimero bastante grande;

¢) Xijx, € uma varidvel bindria definida por:

’

{1, se a tarefa j precede a tarefa k na maquina i.
ijk =

0, caso contrario.

comi=1,2,3,...mj=1,2 3., (n-1) e k= (j+1), (+2)...., n.
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Observacdes:

i) Sdo dados do problema: n, m e a matriz P (cf. pag. 8);

ii) Em (c), j e k ndo variam de 1 até n, porque iriam comparar as tarefas j e k na mesma

maquina duas vezes; e

iii) As varidveis do tipo Xj;, estabelecem a seqiiéncia de processamento das tarefas em cada

uma das m maquinas.

Minimizar Z= Zij 2.1
j=1

sujeito a:
Ter Tr»l,j + D1 » YV r= 2,3,...,m ej = 1, 2,..., n. 2.2
Tu2Tyi+ pij-W * (1 - Xijx) 2.3
Tiz2 T+ px-W * Xix VI1<i<mj=1,2,..,n1ek=j+1,j+2,.n 2.4
xie € {0,1} 2.5
T;>0,V 1<i<mel<j<n 2.6
Onde:

a) A funcfo objetivo 2.1 tenta minimizar o tempo para a conclusio das n tarefas nas m

b)

d)

mdquinas através da obten¢do do menor tempo para iniciar cada tarefa na dltima
mdéquina. Para o caso da tarefa j ndo utilizar a maquina m substitui-se Tp,; por T,
onde r € a tltima mdquina a ser utilizada pela tarefa j com tempo maior de zero;

O grupo de restricdes 2.2 representa o fluxo que as tarefas devem seguir para serem
concluidas. Cada equagdo do tipo 2.2 determina que a (i+1)-ésima operagdo da
tarefa j ndo pode iniciar até que a i-ésima operacdo da tarefa j na maquina i seja
concluida.

Os grupos de restricdes 2.3 e 2.4 comparam a relacdo de precedéncia das n tarefas
nas m madaquinas. Estes grupos de restricoes também ndo permitem que uma
madquina processe duas tarefas ao mesmo tempo;

As restrigdes do grupo 2.5 representam o atendimento a defini¢cdo da varidvel Xjjx

como sendo binaria;
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e) As restricoes do grupo 2.6 definem a ndo-negatividade dos tempos de
processamento; e

f) O valor de W faz com que uma das restricdes do grupo 2.3 se torne coerente com a
defini¢do da varidvel Xjx da seguinte forma:
1) Se Xjjx = 1, entdo 2.3 fica Ty > T;; + pjj, coerente com a defini¢do de Xj;, enquanto
2.4 fica Tj; > Tk + pix — W, ou seja, T; maior ou igual que um niimero negativo, logo
T;; > Tix + pi — W se torna verdadeiro devido ao grupo de restri¢io 2.6.
ii) Se Xjjx = 0, entdo 2.4 fica T;; > Tix + pix, coerente com a definicdo de Xijj,
enquanto 2.3 fica Ty > Tj; + pij — W, ou seja, Tix maior ou igual que um nimero
negativo, logo Tix > T;; + p;j — W se torna verdadeiro devido ao grupo de restricdes
2.6.

iii) Podemos adotar W sendo 1000*Max{p;}, V 1<i<mel <j<n.
Complexidade do modelo:

a) Varidveis do tipo Xjji: mxnx (n-1)/2;

b) Variaveis do tipo Tj;: m X n;

c¢) Restrigdes do grupo 2.2: n x (m - 1);

d) Restricdes do grupo 2.3 e2.4:mxnx (n- 1);
e) Numero total de variaveis: mxn(n+1)/2;e

f) Namero total de restricdes: n x (m x n -1).
2.3. O Modelo Combinatorial Permutacional do PFSP

Um POCP pode ser definido por um terno (S, g, n), onde S é o conjunto de todas as
solugdes do problema, g € sua fungdo ou procedimento que aplica a cada solug@o vidvel s
€ S um ndimero real e n € uma instncia do problema. O nimero de solucdes existentes
para um POCP ¢é representado por IS| (cardinalidade de S) e igual a n! (fatorial de n). O
objetivo € encontrar uma solucio s* € S que otimize a um dado critério de desempenho

representado pela fung¢do g. Representa-se s como uma permutacdo de n elementos, ou

seja, s=<a1,az,...,an>, comai#a;, V 1<i,j<nei#j.
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Segundo Silva e Soma (2006) o PFSP pode ser modelado como um POCP da seguinte

forma:

a) Um elemento s= (J 1,J 2,y Jn> do conjunto de solugdes vidveis S € representado por uma

permutacdo das n tarefas, com a ordem de s determinando a seqii€ncia na qual as tarefas
serdo processadas; e

b) O procedimento g, dado a seguir, determina o valor do tempo gasto (f,) para processar a
seqiiéncia s, mais precisamente tem-se que f, € o tempo utilizado no processamento da

dltima tarefa de s na dltima maquina My,.

Entrada: m, n, permutacdo s, Matrizes T(m x n) e P(mx n).
Saida: g (tempo gasto para processar todas as n tarefas usando a seqii€ncia s)

for(i=1; i<=m; i++)
for(j=1; j<=n; j++) tlil[j1=0;
for(j=1; j<=n; j++) {
for(i=1; i<=m; i++) {
if (i==1) {
if (>=2) (L 1Lsi1=t 1T 11+l sT-111;
} else {
if (j==1)
{t[]LsC1]]=tli-1][s[1]]+p[i-11Ls[1]];
} else {
x=t[i][s[j-111+plil[s[j-111;
y=tli-1]{s[j-11]+pli-1][s[j-111;
if (x>=y) t[i][s[j1]=x; else t[i][s[j]]=y;

}
}
g=tlm][s[n]] + plm][s[n]];

* « e e 4 .
O elemento t;j representa o tempo para 1niclar a tarefa J ; na maquina M;.

Figura 2.2 — Procedimento para calcular g (s). Fonte: Silva e Soma (2006).

Para determinar a seqiiéncia s com menor valor de g seria necessdrio enumerar e avaliar
todas as n! seqii€ncias distintas de S. A Tabela 2.1 abaixo mostra para alguns valores de n a
quantidade de solucdes distintas de S e o tempo computacional, caso o tempo de
processamento do procedimento g para cada seqii€ncia fosse igual 0,001 segundos. Os
resultados da Tabela 2.1 demonstram que para valores de n maiores que 20 fica

inviabilizada a enumeracido completa de todas as solugdes.
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Tabela 2.1 — Tempos de processamento para valores de n considerando o niimero de solucoes de S.

n Quant. Solucdes Tempo computacional

1,20 x 107 0,12 seg
10 3,63x 10° 3.628,80 seg
20 243x 10" 7,71 x 10 anos

2.4. Estado da Arte do PFSP

A andlise do histdrico do progresso das técnicas utilizadas na resolu¢do dos problemas da
classe PFSP serve para situar o método proposto neste trabalho. Gupta e Stafford Jr. (2006)
analisaram o desenvolvimento da pesquisa em relacdo ao PFSP desde o trabalho de
Johnson (1954) até 2004. Esse periodo foi dividido em cinco décadas (1955-1964, 1965-
1974, 1974-1984, 1985-1994 e 1995-2004) e para cada periodo as suposi¢cdes, as

formulag¢des para o problema e as abordagens de solu¢ao foram analisadas.

A primeira década tratou o PFSP principalmente do ponto de vista teérico. Além da
formulacg@o de Johnson (1954) para duas maquinas foi desenvolvido o m-machine flowshop
para a minimizacdo do makespan. Foram desenvolvidas poucas técnicas para a solugdo do
PFSP. As duas técnicas que mais se destacaram foram a programacdo matemadtica
(Wagner, 1959; Manne, 1960) e a simulacio de Monte Carlo (Sisson, 1959; Muth e
Thompson, 1963). O tamanho dos problemas resolvidos eram pequenos por trés motivos: i)
falta de capacidade computacional; ii) falta de eficientes programas de computador; e iii) a

maioria das variagdes do two-machine flowshop problem eram NP-hard.

A segunda década apresentou um maior nimero de técnicas de solucdo e outras fungdes
objetivo além do makespan. Os primeiros a proporem a abordagem combinatorial foram
Dudek e Teuton (1964). A técnica branch and bound para o PESP foi desenvolvida por
Lomnicki (1965). Nessa época também comecou o desenvolvimento das primeiras

heuristicas para encontrar boas solugdes para o PFSP de grandes dimensdes.

Na terceira década com a publicacdo da teoria do NP-Completeness por Garey e Johnson
(1979) a pesquisa em relagdao ao PFSP passou a ter duas direcoes. Uma direcdo na tentativa
de identificar a complexidade de varios PFSP (Brucker, 1998; Lawler et al. 1993) e a outra

no desenvolvimento de novas heuristicas. Nessa década também ocorreu a proposi¢do de
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varios novos PFSP como o que separa o tempo de sefup do tempo de processamento, que
considera a data de entrega na fun¢@o objetivo e que considera o tempo de processamento

estocastico.

Na quarta década surgiu o hybrid flowshop que consiste em cada centro de trabalho poder
ser constituido de multiplas miquinas em paralelo. Nessa década iniciou-se o uso das
metaheuristicas (Aarts e Lenstra, 1997): Tabu Search; Simulated Annealing; e Algoritmo
Genético. Também foram desenvolvidas técnicas baseadas em inteligéncia artificial,
sistemas de apoio a decisdo e sistemas especialistas (sistemas que utilizam o conhecimento
empirico acumulado da resolugdo de problemas que ja ocorreram para ajudar a resolucao

de novos problemas).

Na quinta década continuou o crescimento na criacdo de novos problemas, fungdes
objetivo e abordagens de resolugdo. A principal novidade foi o aumento das pesquisas

considerando fun¢des multi-objetivo (T’ Kindt e Billaut, 1993).

2.5. Algoritmos Genéticos para a Resolucao do PFSP

Os conceitos sobre o AG sdo apresentados no capitulo 4.

2.5.1. AG de Chen et al. (1995)

Chen et al. (1995) desenvolveram um AG para o PFSP com o makespan como critério de
desempenho. O AG foi testado em problemas cujos dados foram extraidos de seqii€ncias
de nimeros gerados de maneira pseudo-aleatéria. O AG desenvolvido é composto das

seguintes partes:

a) Representacdo dos individuos;

b) Gerag¢do da populacdo inicial e tamanho da populagao;
c) Avaliagdo da aptiddo e método de selecdo;

d) Operadores genéticos; e

e) Critério de parada.
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A representacdo genética adotada foi a permutacional. Por exemplo, para uma instancia
com n = 8, o individuo pode ser representado por qualquer seqiiéncia de oito tarefas como

21785364.

A populacido inicial é gerada a partir dos métodos CDS desenvolvido por Campbell et al.
(1970) e de Dannenbring (1977). Os m - 1 primeiros membros da populacdo sdo gerados
pelo método CDS, o elemento de nimero m é gerado pelo método Dannenbring e do
elemento m + 1 até o dltimo elemento da populacio € gerado a partir do primeiro elemento
da populacdo, segundo e sucessivamente mediante a troca de posi¢des de duas tarefas

escolhidas aleatoriamente.

Segundo Chen et al. (1995), depois de vérios experimentos que nio foram explicitados no

artigo, conclui-se que 60 individuos era o melhor tamanho para a populacio.

A forma como € calculada a aptidao de cada individuo € descrita a seguir. O primeiro
passo € calcular o valor do makespan de todos os individuos da populacdo. O segundo
passo € selecionar o Cy,4x que € o makespan de maior valor da populagdo. O terceiro passo
calcula a aptiddo que € igual a diferenca entre o valor do makespan do individuo e 0 Cpsx.
O método de selecdo ndo foi explicitado, a dnica informacdo dada foi que a selecdo €

baseada na aptiddo do individuo.

O operador de crossover utilizado foi o Partially Mapped (PMX) desenvolvido por
Goldberg (1989). A seguir sdo apresentados os procedimentos do operador PMX

juntamente com uma ilustragdo para n = 8.

1 — Escolher aleatoriamente um intervalo comum aos dois pais. Por exemplo, as posi¢des

de quatro a seis.

P1 437181256

P2 146[(537|82
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2 — Armazenar relacionadamente os elementos dos dois intervalos selecionados. Na

ilustracdo o armazenamento relacionado € o seguinte:

P1 P2
gE—>5

l«—3
24—»7

3 — Trocar os dois intervalos. Na maioria das vezes os individuos resultantes ndo sio

vidveis porque ocorrem tarefas repetidas. O passo 4 corrige esse problema.

PI’ 43753756

P2 146(812|82

4 — Trocar os elementos repetidos e que ndo estdo dentro dos intervalos selecionados pelas
tarefas armazenadas de P1 relacionados as tarefas de P2 e vice-versa. Depois desse passo

os individuos sdo totalmente viaveis.

PI’ 413753 75|6

41 2|53 71(8]6

P2’ 11468128
3146 81215

Chen et al. (1995) realizaram testes com problemas gerados aleatoriamente para
determinar a melhor combinacdo para as taxas de crossover e mutagdo. Foram usadas para
a taxa de crossover os valores 1, 0.95 e 0.90 e para a taxa de mutagdo os valores 0.01,
0.005 e 0. O resultado do experimento mostrou que a melhor combinagdo foi uma taxa de
crossover igual a 1 e uma taxa de mutagdo igual a 0. O significado destes valores é que
sempre os individuos escolhidos para reproducdo passam pelo processo de crossover e

nunca um individuo da populacio sofre mutacao.
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O critério de parada do método foi o nimero de geragcdes. Apods alguns experimentos Chen
et al. (1995) chegaram a conclusdo que depois de 20 geracdes a populagio do AG

estagnava e nao havia mais melhoria.

2.5.2. AG de Reeves (1995)

Reeves (1995) desenvolveu um AG para o PFSP com o makespan sendo o critério de
desempenho. O AG tem como principal diferenca uma probabilidade de mutacdo
adaptativa e foi testado nas instancias desenvolvidas pelo préprio autor e de Taillard

(1993).

A representagdo genética utilizada foi a permutacional que é sempre a opc¢do natural para

este tipo de problema.

A aptiddo de cada individuo na populagdo € igual a vy s — v, onde vpsx € 0 valor do maior

makespan da populacdo e v € o valor do makespan do individuo.

A selecdo do método de geracdo da populacdo inicial deu-se com dois experimentos: 1)
gerada aleatoriamente; e ii) com um individuo gerado pela heuristica NEH de Nawaz et al.
(1983) e o restante da populacdo gerada aleatoriamente. O segundo método obteve
solugdes tdo boas quanto o primeiro método, mas com um tempo computacional menor,

por isso, foi o0 método selecionado.

O método de selecdo € composto por dois tipos de selecdo. O primeiro pai é selecionado
usando o tipo de selecdo por ranking com probabilidade P; dada pela Equacdo 2.6 e o

segundo pai € selecionado com probabilidade uniforme de acordo com a aptidao.

P = k 2.6
Mx(M + 1)

onde:
- i : € um individuo da populagdo, i=1, 2, ..., M;
- k : € a posi¢do do individuo na populagdo em ordem descendente com relacdo ao
makespan; e

- M : é o tamanho da populacio.
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Foram utilizados operadores genéticos de crossover e mutagdo. O operador de crossover
foi o one-point crossover que consiste em escolher um mesmo ponto de corte em cada um
dos pais, copiar as tarefas a esquerda do ponto de corte de cada pai para cada um dos
descendentes e copiar as tarefas que faltam do outro pai na mesma ordem relativa. A

Figura 2.3 ilustra o funcionamento do one-point crossover.

Pai 1 458173216
Descendente 1 4 5 8 |
Descendente 2 1 4 71

Pai 2 147132856

Pai 1 4 5\\:(&2\1 6
Descendente2 1 4 715 8 3 2 6

Descendentel 4 5 811 7 3 2

o

Pai 2 14713285
Figura 2.3 — One-point crossover.

O operador de mutacdo utilizado foi o shift que consiste em escolher uma tarefa
aleatoriamente e colocar numa posicdo da seqiiéncia escolhida aleatoriamente. Também ¢é
utilizada uma estratégia geracional que consiste em inserir os novos individuos no lugar
dos individuos com aptiddo menor que a média da aptiddo da populacdo. Esta estratégia
garante a sobrevivéncia dos individuos com melhor aptiddo, mas por outro lado, diminui a

diversidade da populagdo.

O critério de parada utilizada foi o tempo de execugdo, dada a facilidade no momento de

realizar os experimentos para comparar com outros métodos.

Durante os experimentos preliminares Reeves (1995) notou que a populagdo convergia
prematuramente. Por isso, implementou uma probabilidade de mutacdo Py, adaptativa. Um

parametro D é estabelecido para controlar a diversidade da populacdo. A 1azd0 Viin/Vied
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que mede a diversidade da populacdo € calculada ao fim de cada geragdo, onde vy, € 0
valor do menor makespan da populagdo e vyeq € 0 valor do makespan médio da populagdo.
Se estd razdo € maior ou igual a D, a probabilidade de mutagdo é multiplicada por um fator
de decréscimo 6 (0 < 8 <1), caso contrario esta probabilidade retorna ao valor inicial Pmi"i.
A probabilidade P,,™ é alta no inicio da busca e diminui durante o processo de evolucao.

Ela retorna a crescer quando a diversidade da populacdo esta baixa.
Os valores dos parametros usados por Reeves (1995) foram:

= Tamanho da populagio (M) : 30;

= Probabilidade de crossover (P.) : 1,0;

* Probabilidade inicial de mutacio (Py™) : 0,8;

= Taxa de decréscimo da probabilidade de mutagdo (6) : 0,99; e

= Parametro de controle de diversidade (D) : 0,95.

Reeves (1995) também adotou a estratégia de fazer todos os pais passarem pelo processo

de crossover, ja que usou uma taxa de 100%.
2.5.3. AG de Murata et al. (1996)

Murata et al. (1996) desenvolveram trés tipos de estudos com AG para o PFSP com o
makespan sendo o critério de desempenho. Foram realizados estudos para os operadores

genéticos, os valores dos pardmetros e as op¢des de hibridizagao.
Neste AG, permutacdes foram usadas para representar as solucdes do problema.

Foram testadas duas formas para calcular a probabilidade de selecdo. A Equacdo 2.7 foi
escolhida porque conseguiu a maior pressdo de selecdo, e assim obteve os melhores
resultados. A probabilidade de selecdo é representada por Ps, f representa a geragdo atual, o
tamanho da populagio € representado por Npp, x representa um individuo e a populagdo

. 12 N
atual é representada por ¥, = {x;, X, ..., X¢ T V).
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W o-f(x)]?
Ps t) = -
) S Rt GOF

i
X ey

2.7

Onde:
-f (x[i) € o valor do makespan do individuo i, i = 1, ..., Npop.

- fv (P =max { f () € ¥).

Quanto aos operadores genéticos de crossover e mutagdo foram testados dez operadores de
crossover para determinar o melhor para o PFSP. O two-point crossover (versdo 1) foi o
que obteve o melhor desempenho: dois pontos da seqiiéncia sao escolhidos aleatoriamente
de um dos pais. As tarefas que ficam desses pontos para as extremidades sdo copiados para
o descendente. As tarefas que faltam na seqiiéncia do descendente sdo copiadas na mesma
ordem relativa do outro pai como mostra a Figura 2.4. Foram testados quatro operadores de

mutagdo para determinar o melhor para o PFSP. A mutacgéo shift foi a que obteve o melhor

desempenho.
Pai 1 2315781146
Descendente 2317518146
Pai 2 6 7 3541 82

Figura 2.4 — Two-point crossover (versao 1).

Estudos também foram realizados para quantificar os pardmetros do AG. A Tabela 2.2
mostra os valores que foram testados. A melhor combinagdo foi Ny, = 10, Pc = 1.0 e P, =
1.0, tamanho da populagdo, taxa de crossover e taxa de mutacdo, respectivamente. Estes
valores significam que todos os individuos da populag@o s@o substituidos por individuos
gerados no processo de crossover e todos os individuos da populacdo sofrem mutacido. O
melhor individuo da populagdo anterior é copiado para a nova populacdo no lugar de um

individuo escolhido aleatoriamente.
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Tabela 2.2 — Valores experimentados para os parametros do AG de Murata et al. (1996). Fonte:
Murata et al. (1996).

Noop P. Pn
5 0,5 0,5
10 0.6 0.6
20 0,7 0,7
30 0.8 0.8
40 0.9 0.9
50 1.0 1,0

O dltimo estudo realizado foi testar qual o melhor método para hibridizar com o AG.
Foram testados duas opg¢des, um algoritmo simulated annealing e um algoritmo de busca
local. A hibridizacdo do AG com o algoritmo de busca local foi o que obteve o melhor
desempenho. Para reduzir o custo computacional da busca local usou-se a estratégia de
avaliar s6 uma parte a da vizinhanca de uma solugéo, por exemplo, a = 10% significa que
10% das solugdes da vizinhanca s@o escolhidas aleatoriamente. Nao foi mencionada que
tipo de estrutura de vizinhanca foi utilizada. Para verificar qual seria o melhor valor para o
parametro o foram feitos testes com os seguintes valores: 100%, 75%, 50%, 10% e 5%. O

melhor valor para a foi 75%.

O AG com busca local (a = 75%) é o melhor algoritmo para o PFSP desenvolvido por

Murata et al. (1996). Ele é composto de sete passos que sdo descritos a seguir.

1 — Inicializagdo : gera uma populacdo inicial de individuos de forma aleatdria de tamanho

Npop.

2 — Busca local : aplica a busca local em todos os individuos da populacio se um critério
de parada ¢ satisfeito a busca é encerrada sendo o0 processo continua e as novas solugdes
compordo a populacdo atual. O critério de parada é o seguinte: se depois dos a vizinhos
avaliados tiver havido melhoria em algum individuo a busca é encerrada, sendo, sdo

avaliados todos os vizinhos de todos os individuos da populagao.

3 — Selegdo : seleciona N, pares de pais da populacdo atual de acordo com a

probabilidade de selecao.
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4 — Crossover : Aplica o operador crossover a cada par de pais escolhidos com uma
probabilidade P.. Se o operador ndo for aplicado é escolhido um dos pais para compor a

nova populagao.

5 — Mutagdo : aplica o operador de mutacéo a cada individuo com a probabilidade Py, esta
probabilidade é referente a cada individuo e ndo a cada tarefa como na representagio

binaria.

6 — Estratégia elitista : adiciona o individuo de melhor aptiddao da populagdo atual na nova

populacdo no lugar de um individuo escolhido aleatoriamente.

7 — Critério de parada : finaliza a execucdo do algoritmo se a condicdo de parada (tempo de

execucdo) € satisfeita, caso contrdrio, retorna ao passo 2.

2.5.4. AG de Ruiz et al. (2006)

Ruiz et al. (2006) desenvolveram dois novos AG para o PFSP sendo também o makespan o
critério de desempenho. Os AGs té€m: inicializacdo eficiente; estratégia geracional que sé
aceita individuos melhores e com seqii€ncia tnica; quatro novos operadores de crossover
que foram desenvolvidos; um procedimento para evitar a convergéncia prematura; e
proposta de uma busca local para a hibridizacdo com o primeiro AG. Foi realizado um
projeto de experimento para determinar a melhor combinacdo de operadores genéticos e

valores dos pardmetros dos AGs desenvolvidos.

A representag@o da solugdo utilizada foi permutacional, onde a ordem relativa das tarefas

na permutacdo indica a ordem de processamento das mesmas.

Para gerar a populacdo inicial Ruiz et al. (2006) desenvolveram uma modificagio na
heuristica NEH de Nawaz et al. (1983). A modificagdo foi a seguinte: depois de ordenar
todas as tarefas em ordem decrescente do tempo total de processamento, sdo escolhidas
duas tarefas aleatoriamente e colocadas nas duas primeiras posi¢des, depois disso o
procedimento continua igual ao NEH original. A populagdo inicial € composta por um

individuo gerado pela heuristica NEH, (B;% - 1) individuos gerados pela heuristica NEH
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modificada e os (100 — B;)% individuos restantes sdo gerados aleatoriamente. O parametro

Bj indica o percentual de individuos gerados eficientemente.

Duas condicdes foram desenvolvidas para controlar como os individuos gerados
substituem os individuos da populacdo atual. A primeira é que um individuo gerado sé
substitui o individuo da populacdo atual com o pior makespan se o seu makespan for
menor e a segunda condicdo é que a seqiiéncia do novo individuo seja tinica em relacdo a

populacgdo atual. Isto ajuda a manter a diversidade na populagéo.

Ruiz et al. (2006) desenvolveram quatro novos operadores de crossover para o PFSP que
sdo baseados na idéia de identificar e manter os bons blocos construidos. O primeiro
operador foi chamado de Similar Job Order Crossover (SJOX) que funciona da seguinte
maneira. Os dois pais sdo examinados posi¢do por posicdo. Quando as tarefas sdo idénticas
na mesma posicdo elas sdo copiadas para os dois descendentes (Figura 2.5), depois é
escolhido um ponto de corte aleatoriamente e cada um dos descendentes herda todas as
tarefas a esquerda do ponto de corte de um dos pais (Figura 2.6) e finalmente as tarefas que
faltam em um dos descendentes sdo copiados em ordem relativa do outro pai (Figura 2.7).
O segundo operador de crossover foi resultado da constatagdo de que algumas vezes
muitas tarefas iguais isoladas apareciam, por isso, desenvolveram outro operador de
crossover chamado Similar Block Order Crossover (SBOX). A tunica diferenca do SBOX
em relacdo ao SJOX € que no primeiro passo s6 sdo copiados blocos idénticos de a0 menos
duas tarefas. O terceiro operador de crossover é chamado de Similar Job 2-Point Order
Crossover (SJ20X) que € similar ao operador SJOX com a diferenga que sdo dois pontos
de corte, ao invés de um. As tarefas entre dois pontos de corte sdo copiadas de um dos pais,
enquanto os trabalhos dos dois extremos sdo preenchidos em ordem relativa pelas tarefas
dos extremos do outro pai. O quarto operador de crossover é chamado de Similar Block 2-
Point Order Crossover (SB20X) que € similar ao operador SBOX s6 que utiliza dois

pontos de corte.
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Pail [3]15 17 8[14 11 13 16]19 6 1 9 18 5 10 7 (20 12
\ 4

Desc. 1 | 3 (14 11 13 16] 20 12

Desc.2 | 3 (14 11 13 16] 4 2 20 12
Ar Y Y

Pai2 [3]17 9 15[14 11 13 16]6 18 5 19 7 8|4 2|1 10[20 12

Figura 2.5 — Primeiro passo do crossover SJOX. Fonte: Ruiz e? al. (2006).

l Ponto de corte

Pai | 15 17 8 14 11 13 16|19 6 1 9 18 5 10 7 (20 12
Desc. 1 15 17 8 [14 11 13 16
Desc. 2 17 9 1514 11 13 16| 20 12
Pai 2 17 9 15014 11 13 16|6 18 5 19 7 8 1 10[20 12

T Ponto de corte

Figura 2.6 — Segundo passo do crossover SJOX. Fonte: Ruiz et al. (2006).

Pail [3]15 17 8[14 11 13 16]19 6 1 9 18 5[4 2]10 7[20 12]

Desc.2 [3]17 9 15[14 11 13 16]8 19 6 1 18 5[4 2|10 7[20 12]

Desc.1 [3]15 17 8[14 11 13 16]9 6 18 5 19 7[4 2]1 10[20 12]

Pai2 [3]17 9 15[14 11 13 16]6 18 5 19 7 8[4 2|1 10[20 12]

Figura 2.7 — Terceiro passo do crossover SJOX. Fonte: Ruiz et al. (2006).

O tipo de mutacdo implementada foi a shift que consiste em escolher uma tarefa

aleatoriamente para ser colocado numa posicao escolhida também aleatoriamente.
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O procedimento restart scheme foi desenvolvido com o objetivo de evitar a convergéncia
prematura do AG. Este procedimento é executado toda vez que um nimero de geracdes
sucessivas G; sdo executadas e ndo é gerado um individuo melhor. Este procedimento é

descrito a seguir.

1 - Colocar a populacdo em ordem crescente em relacdo ao makespan;

2 - Manter os 20% dos melhores individuos;

3 - Gerar 40% de novos individuos a partir da mutagdo shift dos 20% melhores individuos;
4 - Gerar 20% dos individuos a partir da modificacdo da heuristica NEH; e

5 - Gerar os 20% restantes dos individuos de forma aleatoria.

A hibridizacdo consiste da aplicacio de uma busca local baseada na técnica insertion
neighborhood que realiza todas as possiveis inser¢des e armazena a melhor seqiiéncia. Se o
resultado for melhor do que a seqiiéncia atual a busca € repetida, sendo a busca é
encerrada. A busca local € realizada a cada geracdo em cada individuo com a probabilidade

Penh-

O primeiro AG ndo tem a etapa de busca local, ou seja, Peyn = 0 0 segundo AG tem a etapa

de hibridizacao, ou seja, Penp > 0.

O projeto de experimentos consiste da comparagdo de todas as possiveis combinacdes de
operadores genéticos e valores dos parametros. A seguir sdo apresentadas as combinagdes

avaliadas.

= Tipo de selecdo : ranking e torneio;

= Tipo de crossover : OP, OX, PMX, SB20X, SBOX, SJ20X, SJIOX e TP;
= Probabilidade de crossover (P.) : 0,0-0,1-0,2-0,3¢ 0,4;

= Probabilidade de mutacao (Py,) : 0,0 — 0,05 — 0,01 e 0,015;

= Tamanho da populacgao (Psi.e) : 20, 30, 40, e 50;

= Restart (Gr): 25,50e75;¢

= Probabilidade de melhoria local (Pepy) : 0,025 — 0,05 — 0,075 ¢ 0,1.

26



O total de combinagdes avaliadas foram 2 x 8 x 5 x 4 x 4 x 3 x 4 = 15.360. Criou-se 68
instancias combinando os valores de n e m, n = {20, 50, 80, ..., 440, 470, 500} e m = {5,

10, 15, 20}, seguindo a metodologia de Taillard (1993).

Os operadores utilizados e os valores finais dos pardmetros dos AG de Ruiz et al. (2006)
foram os seguintes: tipo de selec@o: torneio; tipo de crossover: SBOX; P, : 40%; Py, : 1%;

Pg,e : 20; Gy : 25; Ponh = 5% € Bi = 25%.

O resultado interessante foi que em comparacido com os limites inferiores dos problemas
gerados, a melhor combina¢do de operadores e valores dos pardmetros obteve um desvio
de 3,22%, enquanto a pior combinacdo obteve 3,85%. Como a diferenca nio foi tdo
significativa Ruiz et al. (2006) afirmaram que isto se deveu a robustez dos AG

desenvolvidos.
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CAPITULO 3 - O PROBLEMA DE SEQUENCIAMENTO PERMUTACIONAL
CONTINUO FLOWSHOP

Este capitulo é composto de trés secdes que tratam do CPFSP. A primeira secio apresenta
a definicdo do CPFSP. A segunda secdo mostra o CPFSP modelado como um POCP.
Finalmente, a terceira sec@o apresenta a descricdo e andlise de seis artigos recentes

referente a métodos de resolu¢do do CPFSP.
3.1. Definicao do CPFSP

O CPFSP € um problema da classe FSP originado por pelo menos uma alteragdo em uma
das suposi¢des J8 ou P6, dadas na Secdo 2.1. A suposicdo J8 permite que os trabalhos
esperem entre maquinas consecutivas pelo processamento e a suposi¢cdo P6 garante que
existe drea suficiente para armazenar os trabalhos em espera. A definicio do CPFSP ¢é
semelhante ao do PFSP com o acréscimo da restricdo de que os trabalhos ndo podem
esperar entre maquinas consecutivas. Dado um conjunto de n tarefas para serem
processadas num conjunto de m mdaquinas, onde todas as tarefas usam a mesma ordem de
processamento nas maquinas e depois de iniciada uma tarefa, ela ndo deve esperar por
processamento entre duas maquinas consecutivas, i.e., as tarefas devem ser processadas
continuamente, o tempo de processamento da tarefa i na maquina j € dado por pj, i = 1, 2,
3,...mej=1,2,3,..., n. O CPFSP consiste em determinar uma seqii€ncia especifica das n
tarefas que otimize um critério de desempenho estabelecido. Esta definicdo s6 é védlida na
pratica se as demais suposi¢des apresentadas na Secdo 2.1 forem verdadeiras. A Figura 3.1
apresenta o grafico de Gantt de um CPFSP. Nota-se no grifico de Gantt que ndo existe

folga entre o processamento de cada uma das tarefas.

Mégq.
Mn J4 Jn-k Jn-k+1 | Jn
M- Ji | Jn-k | Jn-k+1 \J_n

M; J—1‘ Jn-k Jn-k+1 Jn

M. Jy Jn-k Jn-k+1 Jn
My | | [ nk Jnket | Jn

Tempo
Figura 3.1 — Grafico de Gantt de um CPFSP com »n trabalhos e m maquinas.
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3.2. O CPFSP como um POCP

O modelo matemdtico para o CPFSP ndo foi apresentado neste capitulo devido sua
semelhanca com o modelo matemadtico descrito para o PFSP, apresentado na secdo 2.2,

com a alterac@o apenas das restri¢des do grupo 2 que devem ser de igualdade.

Também ¢é pequena a diferenca do modelo POCP para o CPFSP em relacdo ao PFSP. Esta
diferenca estd somente no célculo da funcdo g. Fink e Vop (2003) apresentam uma férmula
para calcular o valor da funcdo g. A seguir sdo apresentadas as duas férmulas para calcular

o valor de g de uma permutagdo s com critério de desempenho o tempo total de fluxo ou

makespan.
Tempo total de fluxo (TTF) :  gcprspcrtr) = z (n+1-=0dsi - 1. s6) + z z Dii 3.1
i=2 =1 j=1
Makespan : ZCPFSP(makespan) = Z (I’L +1- i)ds(i -1, s() + Z Dsanj 3.2
i=2 j=1

A incdgnita dix consiste no tempo de espera na primeira maquina entre o comeco da tarefa i
e o comeco da tarefa k, quando k é processado posteriormente a i, em que 1<i<ne 1 <k <

n, com i # k. A Equacdo 3.3 mostra como se calcula o valor de di.

J

J
dix = maX{z pin— Z peh-1} 3.3
h=1

1<j<m e

Segundo Rock (1984) os primeiros a analisarem a complexidade do CPFSP para m>2
foram Lenstra et al. (1977), seguidos por Papadimitriou e Kanellakis (1980) em que
ambos provaram que o problema é NP-hard em sentido forte para m>4. Existem casos que
podem ser tratados polinomialmente, desde que os tempos de processamento satisfacam
uma estrutura especial dada por Panwalkar e Woollam (1980). Por fim, Rock (1984)
provou para m>3 que o CPFSP com o critério de minimizacio sendo o makespan é NP-

hard em sentido forte.
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3.3. Métodos de Resolucao para o CPFSP

Foram avaliados seis artigos com propostas de métodos para a resolugdo do CPFSP. Os
dois primeiros artigos usaram o critério de desempenho como sendo o tempo total de fluxo
e 0s outros quatro artigos restantes usaram o makespan. Um dos artigos com o critério de
desempenho sendo o tempo total de fluxo usou as instincias de Taillard (1993) para testar
os métodos propostos. Dois dos artigos com o critério de desempenho sendo o makespan

usaram as instancias de Reeves (1995) e Heller (1960) para testar os métodos propostos.

Os conceitos sobre 0 AG sdo apresentados no capitulo 4.

3.3.1. AG de Chenetal.

Chen et al. (1996) proporam dois AGs para o CPFSP com o tempo total de fluxo sendo o
critério de desempenho. Um dos AGs foi implementado com populagao inicial eficiente e o
outro com populagdo inicial gerada aleatoriamente. A proposta principal do trabalho foi
analisar a influéncia dos elementos do AG e os valores dos parimetros de controle no

desempenho do mesmo. Os AGs foram testados com problemas gerados aleatoriamente.

O trabalho foi dividido em duas partes, a primeira relacionada a escolha dos elementos do
AG e a segunda relacionada a otimizacdo dos pardmetros de controle. A seguir sdo

apresentados os elementos que compdem o AG de Chen et al. (1996).

a) Representacdo do AG;
b) Populacgdo inicial;

¢) Tamanho da populagao;
d) Método de selecao;

e) Operadores genéticos; e

f) Critério de parada.

A representacdo genética adotada foi a permutacional. Por exemplo, para uma instancia

com n = § a estrutura pode ser representada por qualquer seqii€ncia de oito trabalhos como
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473186 25. Segundo Cleveland e Smith (1989) apud Chen et al. (1996) varios

operadores genéticos eficientes t€m sido desenvolvidos para esse tipo de representagao.

A populacdo inicial é gerada a partir de diferentes procedimentos, com dois objetivos,
melhorar a aptiddo média e a diversificacdo da populagdo inicial. O primeiro objetivo estd
relacionado com a reducéo do tempo computacional e o segundo objetivo com uma busca
mais eficiente. No primeiro AG metade da populagdo inicial é gerada aleatoriamente e a
outra metade usando algumas heuristicas conhecidas. Nas heuristicas utilizadas existem
duas para o PFSP, os métodos CDS e de Danninbring e uma para o CPFSP, o método Job
Insertion Based (JIB) de Rajendran e Chaudhuri (1990). O procedimento que gera a
populacdo inicial é o seguinte: o primeiro membro é gerado pelo método JIB, os m-1
membros seguintes sdo gerados pelo método CDS, onde m é o nimero de maquinas, o
membro m + 1 € gerado pelo método de Danninbring; se o nimero de membros gerados é
menor que a metade do tamanho da populacdo, entdo um membro € selecionada
aleatoriamente e duas tarefas s@o escolhidas aleatoriamente e trocadas suas posi¢des, dando
origem a um novo membro. Esse procedimento é repetido até o nimero de membros ser
igual & metade do tamanho da populacdo. Para analisar o efeito da populacdo inicial no
desempenho do AG, foi implementado um segundo AG com a populagio inicial gerada

totalmente de forma aleatéria e comparado com o primeiro AG.

O procedimento apresentado a seguir € utilizado para determinar o valor da aptidao e da

probabilidade de sele¢do de cada individuo da populag@o.

1 — Calcular o tempo total de fluxo de cada individuo da populagio;

2 — Determinar o Fp,x que € o tempo total de fluxo maximo encontrado na populagao;

3 — Calcular o valor da aptiddo de cada individuo, que € igual a diferenca entre 0 Fix € 0
tempo total de fluxo do individuo; e

4 — Calcular a probabilidade de selecdo de cada individuo, igual a divisdo do valor da

aptiddo do individuo pela soma do valor das aptiddes de todos os individuos da populag@o.
A probabilidade de selecdo de cada membro € usada como critério de sele¢do para os dois

pais que participardo do processo de reproducdo. O procedimento de selecio adotado foi o

método de selecdo por roleta.
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Os operadores de crossover e mutacdo foram os operadores genéticos escolhidos para
compor os AGs. O operador de crossover utilizado foi o PMX desenvolvido por Goldberg
(1989) e descrito na se¢do 2.5.1. O operador de mutacio adotado foi o swap, que troca dois

trabalhos de posi¢do aleatoriamente.

Existem dois fatores conflitantes a considerar no critério de parada: a intensidade da busca
e o tempo computacional. Se a intensidade da busca é grande o tempo computacional € alto
e a qualidade da solucdo € melhor, caso contrario, uma intensidade de busca menor exige
menos tempo computacional, mas a qualidade da solugdo final pode ser pior. Por isso,
foram usados dois critérios de parada para a busca: se o nimero de estruturas na populacio
com o menor tempo de fluxo € maior que 60% da populacdo ou o nimero de geracdes é

igual a 60.

A segunda parte da metodologia de Chen er al. (1996) foi otimizar os parametros de
controle do AG. Foram adotados os mesmos parametros de Grefenstette (1986): tamanho
da populacio (), taxa de crossover (C), taxa de mutacdo (M), gap geracional (G), scaling
window (W) e estratégia de selecdo (Se). Assim, os pardmetros do AG sao representados da

seguinte forma AG (N, C, M, G, W, Se).

O gap geracional é o percentual da populacdo que € trocada a cada geracdo. O scaling
window € o nimero de geracdes durante o qual o valor de f° € atualizado, onde f é usado
como uma base para calcular o valor de aptiddo da cada estrutura. Para um problema de
minimizagdo o valor de f € definido como o valor do objetivo maximo do individuo
avaliado e o valor da aptidao de um individuo é definido como a diferenca entre f* e o valor
objetivo do individuo. O valor de W € definido para estar entre 0 e 7. Existem duas
estratégias de selecdo (Se): o individuo com a melhor aptidao é copiado para a préxima
populacdo (Se = E) ou todos os individuos da populacdo sdo substituidos por novos

individuos (Se = P).
DeJong (1980) apud Chen et al. (1996) depois de realizar experimentos para diversas

combinagdes de valores dos pardmetros chegou aos seguintes valores para os parimetros

AG (50; 0.6; 0.001; 1.0; 7; E). Grefenstette (1986) apud Chen et al. (1996) desenvolveu
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um AG para otimizar os pardmetros de outro AG e encontrou os seguintes valores AG (30;

0.95;0.01; 1.0; 1; E).

Chen et al. (1996) testaram os valores 6timos dos parametros de DeJong (1980) e
Grefenstette (1986). Eles observaram que ambos os conjuntos ndo se comportaram bem
para o CPESP. Por isso, Chen et al. (1996) modificaram o AG de Grefenstette (1986) e
depois o utilizou para determinar os valores 6timos dos parametros de controle para o AG

do CPFSP. Os novos valores encontrados foram N =95, C =0.725 e M = 0.009.

3.3.2. Metaheuristicas de Fink e Vof§

Fink e Vop (2003) desenvolveram e analisaram varios métodos de resoluc¢do para o CPFSP
com o critério de desempenho sendo o tempo total de fluxo. A implementacio foi realizada
com o software HotFrame (Heuristic OpTimization FRAMEwork) sem a preocupagdo de
calibrar otimamente os parimetros dos métodos. Para avaliar o desempenho dos métodos

foram usadas as instancias desenvolvidas por Taillard (1993).

Os métodos construtivos nearest neighbor (NN) e cheapest insertion (Chins) foram os
primeiros a serem descritos por Fink e Vo (2003). A heuristica NN consiste em inserir em
cada passo do método uma tarefa ainda ndo incluida com o minimo tempo de espera para a
ultima tarefa da seqii€ncia em construcdo. A heuristica Chins considera todas as possiveis
insercdes de todas as tarefas ainda ndo incluidas enquanto constréi uma seqii€ncia
completa, i.e, escolhendo uma tarefa inicial, em cada passo k, k= 2,..., n, a melhor
combinacdo das n-k+1/ tarefas em todas as k posi¢des de insercdo € determinada. A
complexidade da heuristica Chins é On). A eficdcia desses dois métodos construtivos

depende da escolha da tarefa inicial.

Para melhorar a eficiéncia dos métodos construtivos foi utilizado o método Pilot
desenvolvido por Duin e Vo3 (1999) apud Fink e Vo (2003) que consiste em considerar
as conseqiiéncias para o valor da fungdo objetivo devido a escolha da inser¢do de uma
nova tarefa, memorizando o melhor resultado e realizando todos os movimentos possiveis.
Dessa forma consegue-se superar os usuais métodos miopes. O método pilot tem um

parametro chamado extensdo que define quantas posi¢des da seqiiéncia serdo avaliadas
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para todas as possiveis combinacdes, por exemplo, pilot-1 significa que para a primeira

posicdo da seqiiéncia as n tarefas sdo testadas com todas as possiveis insercdes para as
- 2 . . . 6 .

outras posi¢des. O método pilot possui complexidade O(n”), por isso, para n grande o

tempo computacional aumenta muito.

Sdo descritos os movimentos swap e shift com complexidades O(n) para gerar as
vizinhangas. O movimento swap consiste na troca de pares de tarefa e o movimento shift
consiste em inserir alguma tarefa numa nova posi¢do. Esses dois movimentos sdo

ilustrados na Figura 3.2.

omoo oo/o\o‘oo

P1 p2 pi | %]

swap shift

Figura 3.2 — Movimentos swap e shift. Fink e Vop (2003)

As estratégias gulosas steepest descent (SD) e iterated steepest descent (ISD) sdo
implementadas com o objetivo de avaliar a qualidade dos movimentos swap e shift. O
método SD consiste em selecionar e realizar em cada iteracio o melhor movimento, a
busca se encerra no 6timo local. Como a solug@o do 6timo local pode ser insatisfatéria, o
método ISD depois de encontrar um 6timo local utiliza algum esquema de perturbacio

para gerar uma nova solug¢ao inicial e recomecar a busca.

Foram escolhidas as metaheuristicas Tabu Search (Glover e Laguna, 1997 apud Fink e
Vop, 2003) e Simulated Annealing (Kirkpatrick et al., 1983 apud Fink e Vop, 2003)
porque sdo do tipo busca local e poderiam aproveitar os métodos construtivos e os tipos de

movimentos.

A implementacdo dos métodos desenvolvidos também usou o software HotFrame. Os
conceitos como problemas, solugdes, vizinhancas e estratégias de diversificacdo sdo
tratadas como objetos ou classes. O HotFrame gera estruturas para busca local e com a

selecdo de diferentes regras de vizinhanca constréi os métodos SD e ISD. Do mesmo
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modo, pode ser modificado para dar os métodos simulated annealing e tabu search.
Também fornece componentes para representar os espacos de busca como estruturas de
permutacdo. Fica a cargo do usudrio, essencialmente, implementar a funcdo objetivo. Para
reduzir o tempo de execugdo, a avaliagdo dos movimentos swap e shift s6 é calculada a
mudanga realizada na seqii€éncia. Por exemplo, usando um Pentium II (266 MHz) e um
problema com n = 200, avaliou-se que o claculo de um movimento da forma direta se gasta

0.9 segundos, enquanto fazendo essa adaptacéo se gasta 0.05 segundos.

Os experimentos de Fink e Vof (2003) mostram que o simulated annealing prové
resultados com alta qualidade e baixo tempo de execu¢do. Os métodos baseados no tabu
search estitico e estrito provém resultados insatisfatérios. O tabu search reativo com
solugdo inicial gerada pelo método pilot-10-Chins apresentou os melhores resultados entre

todos os métodos avaliados.

3.3.3. Algoritmo Genético e Simulated Annealing de Aldowaisan e Allahverdi

Aldowaisan e Allahverdi (2003) desenvolveram quatro algoritmos de busca local para o
CPFSP com o makespan como critério de desempenho. Dois desses algoritmos t€m a
solugdo bdsica inicial obtida pelo algoritmo simulated annealing (SA) de Chakravarthy e
Rajendran (1999) e os outros dois tém a solucdo bdasica inicial obtida pelo AG de Chen et
al. (1996). Para o processo de busca local foi desenvolvida uma nova heuristica chamada
de insertion technique (IT). Os algoritmos foram testados com problemas gerados

aleatoriamente.

O método IT foi inspirado na heuristica NEH criada por Nawaz et al. (1983). O método IT
consiste em considerar dois trabalhos consecutivos como um bloco e o inserir em todas as
posicdes ainda disponiveis na seqii€éncia. O Quadro 3.1 apresenta a descricio do método

IT.
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Quadro 3.1 — Descricao do método IT.

Passo 1: Escolher uma seqii€éncia s, onde os elementos s@o representados por

s (i), i € a posicdo na seqii€ncia e variade 1 an. k := 0.

Passo 2: k := k + 1. Selecionar s (k) e s (k + 1) para formar o bloco. Colocar
o bloco nas posicoes de k a n. Para cada seqii€ncia criada, trocar as posicoes
de s (k) e s (k + 1) dentro do bloco e calcular o valor do makespan.

Selecionar para a seqii€ncia corrente a com menor makespan.

Passo 3: Repetir o passo2 até k=n - 1.

Segundo Aldowaisan e Allahverdi (2003) até aquele momento a metaheuristica simulated
annealing ainda néo tinha sido aplicada ao CPFSP. Eles optaram por adaptar o algoritmo
SA desenvolvido por Chakravarthy e Rajendran (1999) para outro tipo de problema de
scheduling. O AG usado por Aldowaisan e Allahverdi (2003) é o mesmo desenvolvido por

Chen et al. (1996) para o CPESP.

O Quadro 3.2 apresenta os pseudo-codigos das quatro buscas locais desenvolvidas por
Aldowaisan e Allahverdi (2003). As buscas locais SA-1 e GEN-1 tém as solu¢des bésicas
iniciais obtidas pelos algoritmos SA e GEN, respectivamente. A busca local é
implementada através da aplicagdo dos métodos NEH e IT alternadamente cinco vezes
cada. Os experimentos realizados mostraram que dessa forma a qualidade da solugéo final
era melhor que se os métodos fossem aplicados sucessivamente. Os experimentos também
mostraram que a aplicacdo desses métodos mais de cinco vezes ndo proporcionava
melhoria significativa na qualidade da solugéo final. As buscas locais SA-2 e GEN-2 tém
as solucdes bdsicas iniciais obtidas pelos algoritmos SA-1 e GEN-1, respectivamente. A
busca local foi implementada através da aplicagdo do procedimento pairwise trés vezes. O
procedimento pairwise consiste em examinar cada possivel troca de pares de uma tarefa
numa posi¢do com todas as outras tarefas. Os experimentos também mostraram que nao
havia melhoria significativa na qualidade da solucdo final quando o procedimento pairwise

era aplicado mais de trés vezes.
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Quadro 3.2 - Os pseudo-codigos das buscas locais SA-1, SA-2, GEN-1 e GEN-2.

Algoritmo SA-1 (GEN-1)

Passo 1: Executar o algoritmo SA (GEN).

Passo 2: Fazer sp = s*, onde s* € a solugdo final obtida pelo algoritmo SA
(GEN) e s € a solugdo basica.

Passo 3: Aplicar sobre sy os métodos NEH e IT alternadamente cinco
vezes cada.

Passo 4: A solucdo final é a melhor seqiiéncia obtida no passo 3.
Algoritmo SA-2 (GEN-2)

Passo 1: Executar o algoritmo SA-1 (GEN-1).

Passo 2: Fazer sp = s*, onde s* € a solugao final obtida pelo algoritmo SA-
1 (GEN-1) e sy € a solugdo bésica.

Passo 3: Aplicar sobre sy 0 procedimento pairwise tr€s vezes.

Passo 4: A solucdo final é a melhor seqii€ncia obtida no passo 3.

Aldowaisan e Allahverdi (2003) testaram os seus quatro algoritmos, o SA de Chakravarthy
e Rajendran (1999), o AG de Chen et al. (1996) denominado de GEN, a melhor heuristica
desenvolvida por Gangadharan e Rajendran (1993) denominado de GAN-RAJ e a
heuristica desenvolvida por Rajendran (1994) denominada de RAJ. Para os testes foram
usados 1.000 problemas gerados aleatoriamente com 20 combinagdes diferentes de 40 a
120 tarefas e 5 a 20 méquinas. Os algoritmos foram implementados em linguagem
FORTRAN e os testes realizados num SUN SPARC Station 20. Os tempos de execucdo
foram omitidos, mas segundo os autores o maior tempo de execugdo foi 10 segundos. O
resumo dos resultados dos testes estd apresentado na Tabela 3.1, na qual vé-se que os
algoritmos propostos (SA-1, SA-2, GEN-1 e GEN-2) tém melhores desempenhos, ja que as
solugdes iniciais sdo geradas a partir de heuristicas eficientes. O desempenho na média é

semelhante para: SA-1 e GEN-1; e SA-2 e GEN-2.
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Tabela 3.1 — Resumo dos resultados dos experimentos de Aldowaisan e Allahverdi (2003). Fonte:

Aldowaisan e Allahverdi (2003).

Problemas GAN-RAJ (%) RAJ(%) SA (%) SA-1(%) SA-2(%) GEN (%) GEN-1(%) GEN-2(%)
40x 5 4,97 6,15 3,29 0,96 0,42 6,18 0,75 0,31
40 x 10 4,91 5,24 2,66 0,63 0,44 6,32 0,60 0,26
40x 15 5,41 4,79 2,56 0,46 0,18 5,78 0,88 0,58
40 x 20 5,09 4,42 2,87 0,57 0,30 6,04 0,57 0,34
60 x 5 5,26 6,52 2,98 1,09 0,35 6,22 1,12 0,26
60 x 10 5,64 450 2,15 0,79 0,53 5,70 0,56 0,20
60 x 15 5,85 4,66 2,32 0,50 0,18 6,01 0,65 0,41
60 x 20 5,99 5,06 2,44 0,54 0,23 5,76 0,74 0,39
80 x 5 5,48 7,04 3,26 1,15 0,29 6,20 1,17 0,18
80 x 10 6,32 4,78 2,28 0,58 0,25 5,63 0,50 0,21
80 x 15 6,99 481 2,18 0,42 0,18 5,82 0,50 0,19
80 x 20 7,04 4,83 2,14 0,61 0,28 5,33 0,57 0,23
100 x 5 5,83 6,99 3,37 1,20 0,22 5,69 1,41 0,48
100 x 10 6,51 4,73 2,10 0,78 0,40 5,17 0,59 0,27
100 x 15 7,37 4,83 1,91 0,66 0,33 5,39 0,46 0,19
100 x 20 8,00 431 1,84 0,48 0,16 522 0,43 0,20
120x 5 6,61 7,77 3,52 1,40 0,30 5,61 1,39 0,20
120 x 10 6,76 4,56 2,09 0,65 0,31 4,67 0,52 0,16
120 x 15 7,54 434 1,50 0,44 0,18 4,84 0,41 0,21
120 x 20 7,64 431 1,75 0,57 0,27 4,93 0,48 0,19
Média 6,26 523 246 0,72 0,29 5,63 0,72 0,27

3.3.4. As Heuristicas de Aldowaisan e Allahverdi

Aldowaisan e Allahverdi (2004) desenvolveram também oito heuristicas para o CPFSP

com o makespan como critério de desempenho. As heuristicas diferem em trés aspectos:

primeiro, a escolha entre os dois métodos de inser¢do; segundo, a escolha entre os dois

critérios de parada; e finalmente, em usar ou ndo o procedimento de troca pairwise. As

heuristicas propostas sdo comparadas as duas heuristicas de Rajendran e Chaudhuri (1990)

e a0 AG de Chen et al. (1996). As heuristicas foram testadas com problemas gerados

aleatoriamente.

As heuristicas propostas por Aldowaisan e Allahverdi (2004) denotadas por PHi (Proposed

Heuristic), onde i= 1, 2, 3 e 4, fazem uso da seqiiéncia gerada pelo algoritmo ASI

(Algoritmo de Seqiiéncia Inicial), descrito no Quadro 3.3.
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Quadro 3.3 — Descricao do algoritmo ASI.

Passo 1:Parak=2,s5;={1,..,n}es=¢.

Passo 2 : Escolher a tarefa i, tal que, z pyﬁz pi,Vresi, onde p; € o tempo de

j=1 j=1
processamento da tarefa i na maquina j. Remover a tarefa i de s; e colocar na primeira

posicao de s».

Passo 3 : Se k = n ir para o passo 5, se ndo, calcular TTC)y (tempo total de completacdo,
considerando as tarefas da primeira posicdo até a k posi¢do), para cada tarefa i € s;, depois
de ser inserida na posic¢do k. Remover a tarefa i € s; que gerar o menor 77C € inserir em
s2 na posicdo k. Atualizar k = k+1.

Passo 4 : Ir para o passo 3.

Passo 5 : Parar a iteracdo. A seqii€ncia inicial € s,.

As duas primeiras heuristicas propostas se diferenciam apenas pelo método de insercio
utilizado no passo 3. A primeira heuristica, PH1, usa o método de insercio NEH,
desenvolvido por Nawaz et al. (1983). A segunda heuristica, PH2, usa o método de
insercdo, RAZ, proposto por Rajendran e Ziegler (1997) apud Aldowaisan e Allahverdi
(2004). O Quadro 3.4 apresenta a descricdo das heuristicas PH1 e PH2.
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Quadro 3.4 — Descricao das heuristicas PH1 e PH2.

Passo 1 : Gerar a seqiiéncia inicial so usando o algoritmo ASI. Determinar o valor da

funcdo objetivo Ty da seqiiéncia sy, onde T € o valor do makespan da seqiiéncia de tarefas.

Passo 2 : Atribuir T, =Ty, sp= sper=1.

Passo 3 : Aplicar o método de inser¢do NEH (alternativamente, RAZ) para a seqiiéncia s;.;

para obter s; e calcular T..

Passo 4 : Se T, < Ty, entdo, Ty, =To € sp= So.

Passo 5 : Atualizar r =r+ 1. Se r > 10 ir para o passo 6, caso contrario, ir para o passo 3.

Passo 6 : A seqiiéncia do método PH1 (PH2) € s, e o valor da fungdo objetivo é Ty,

Os dois préximos métodos se diferenciam entre si pelo método de inser¢do e em relagdo
aos dois primeiros métodos pelo procedimento de parada. A finalizacdo nas duas primeiras
heuristicas ocorre quando r > 10 e nos dois préximos métodos quando » > 10 ou k =2. O

Quadro 3.5 apresenta a descri¢@o das heuristicas PH3 e PH4.
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Quadro 3.5 - Descricao das heuristicas PH3 e PH4.

Passo 1 : Gerar a seqiiéncia inicial so usando o algoritmo ASI. Determinar o valor da

funcdo objetivo Ty da seqii€ncia s.

Passo 2 : Atribuir 7, =Ty, sp=s0, r=1e k=0.

Passo 3 : Aplicar o método de inser¢do NEH (alternativamente, RAZ) para a seqiiéncia s;.;

para obter s; e calcular T..

Passo 4 : Se T, < Ty, entdo, Ty=To, sp= soe k=0.

Passo 5:Se T, > Ty, entdo, k=k + 1.

Passo 6 : Atualizar r=r + 1. Se r > 10 ou k = 2 ir para o passo 7, caso contrdrio, ir para o

passo 3.

Passo 7 : A seqiiéncia do método PH3 (PH4) € s, e o valor da fungdo objetivo é Ty,

A partir da incorporagdo do procedimento de troca pairwise as heuristicas anteriores,
obtém-se novas heuristicas denotadas por PHi(p), onde i= 1, 2, 3 e 4. O procedimento
pairwise consiste em examinar cada possivel troca de pares de uma tarefa numa posicdo

com todas as outras tarefas.

Entre as oito heuristicas desenvolvidas por Aldowaisan e Allahverdi (2004) foram
apresentados os resultados dos testes das heuristicas PH1, PHI1(p), PH3, PH3(p), PH4 e
PH4(p) e comparadas com as duas heuristicas de Rajendran e Chaudhuri (1990)
denominadas de R-C1 e R-C2 e o AGChen desenvolvido por Chen et al. (1996). Os
experimentos computacionais foram realizados com 750 problemas, gerados
aleatoriamente com 5 combinag¢des diferentes de 50 a 400 tarefas e 5 a 25 mdquinas com
30 replicacdes em cada classe. Os algoritmos foram implementados em linguagem
FORTRAN e os experimentos realizados num SUN SPARC Station 20. Os tempos de
execucdo em segundos sdo apresentados na Tabela 3.2, enquanto um resumo dos

resultados dos testes é apresentado na Tabela 3.3.
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Através da Tabela 3.2 percebe-se que os tempos usados pelos métodos de Aldowaisan e

Allahverdi (2004) foram muito maiores que os tempos usados pelos métodos comparados.

Analisando a Tabela 3.3 vé-se que a heuristica PH1(p) foi a que teve o melhor

desempenho, devido a qualidade da soluc@o inicial obtida pelo método PH1, que entre os

métodos sem a etapa de melhoria foi o que obteve o melhor desempenho. A conclusdo de

Aldowaisan e Allahverdi (2004) foi que seus métodos sdo melhores que as heuristicas

existentes para o CPFSP, entretanto foram usados tempos de execucdo muito grandes.

Tabela 3.2 — Tempos em segundos usados nos experimentos de Aldowaisan e Allahverdi (2004). Fonte:
Aldowaisan e Allahverdi (2004)

Instincias R-C1 R-C2 AGChen PH1 PHI1(p) PH3 PH3(p) PH4 PH4(p)
50X5 0,002 0,001 0076 0,125 0,169 0,245 0,287 0,779 0,824
50X10 0,003 0,006 0,177 0336 0416 0,514 0,591 1,409 1,468
50X 15 0,004 0,004 0,283 0,351 0,480 0,562 0,660 1,761 1,831
50X 20 0,006 0,004 0,200 0,249 0,319 0,397 0,449 1,163 1,234
50X 25 0,003 0,005 0,193 0,289 0,367 0486 0,584 1,494 1,553
100X5 0,006 0,005 0,116 0,450 0,661 0,690 0,879 1,979 2,156
100 X 10 0,008 0,008 0,149 0,926 1,301 1,463 1,803 4,325 4,704
100X 15 0,009 0,013 0,280 1,300 1,774 2,289 2,723 6,693 7,167
100 X 20 0,010 0,013 0,325 1,893 2366 2,681 3,192 7,704 8,229
100 X 25 0,011 0,016 0,404 2,851 3,518 4,092 459 12,049 12,690
200X5 0,030 0,032 0,279 3,800 5427 57756 7360 16,843 18,444
200X 10 0,020 0,039 0,539 6,906 10,033 12,291 15,303 36,413 39,444
200X 15 0,050 0,066 0,713 12,576 16,553 19,163 23,099 55,752 59,713
200 X 20 0,050 0,054 0,887 11,519 15,749 21,810 25,999 64,252 68,424
200 X 25 0,057 0,061 1,007 19,572 25,182 32,587 38,107 95,903 101,502
300X5 0,082 0,082 0,603 12,640 17,995 18,790 24,153 56,301 61,636
300X 10 0,086 0,128 0,989 31,625 41,927 42,396 52,745 126,214 136,519
300X 15 0,163 0,130 1,278 42,280 56,824 68,449 82,772 202,780 217,018
300X 20 0,134 0,155 1,461 56,244 71,401 77,191 92,499 228,679 243,898
300 X 25 0,135 0,154 1,864 67,604 91,099 126,488 147,363 344,600 365,291
400X5 0,138 0,178 0,930 12,440 20,896 21,421 29,677 63,181 71,620
400X 10 0,209 0,174 1,518 47,918 66,250 74,861 93,013 225,292 243,747
400X 15 0,219 0,199 2,024 86,691 113,899 122,128 149,299 366,211 393,371
400X 20 0,211 0,251 2,186 99,298 129,642 143,791 174,137 428,389 458,337
400X 25 0,237 0,234 2,907 126,053 167,323 199,553 240,660 685,406 727,642
Média 0,075 0,080 0,855 25,837 34,463 40,004 48,485 121,423 129,938
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Tabela 3.3 — Resumo dos resultados dos experimentos de Aldowaisan e Allahverdi (2004). Fonte:

Aldowaisan e Allahverdi (2004).

Instancias R-C1 R-C2 AGChen PH1 PHI1(p) PH3 PH3(p) PH4 PH4(p)

50X5 4,532 2,739 2,635 1,034 0,407 1,110 0,469 1,721 0,973
50X 10 2,932 2,016 1,624 0,250 0,108 0,325 0,147 1,202 1,003
50X 15 3272 2414 1,936 0,188 0,053 0,301 0,142 1,857 1,589
50X 20 2,782 2,698 2,040 0,261 0,090 0,357 0,199 1,455 1,331
50X 25 3,576 2,980 2323 0,323 0,078 0442 0,183 1,572 1,445
100X'5 5,366 3,496 3484 1,127 0,358 1,486 0,601 1,550 0,661

100X 10 3,853 2,606 2404 0,320 0,003 0,557 0,295 1,465 1,152
100X 15 3,903 3,072 2,827 0,260 0,011 0,498 0,251 1,944 1,797
100 X 20 4,294 3,147 2930 0,149 0,012 0,629 0,409 2,184 1,988
100 X 25 3,941 3,380 3,008 0,169 0,021 0451 0,267 2,222 2,116
200X5 6,484 3,596 3593 1,563 0,383 1,928 0,571 1,683 0,359
200X 10 4,361 2,635 2,627 0,300 0,036 0,555 0,209 1,499 1,113
200X 15 3,667 2,455 2442 0,251 0,032 0,575 0,294 1,972 1,754
200X 20 3,819 2,843 2,806 0,166 0,000 0,585 0416 1,980 1,855
200 X 25 3,888 3,161 3,054 0,217 0,003 0,557 0,334 2,288 2,129
300X5 6,995 3,678 3673 1,631 0,215 1,949 0,344 1,796 0,222
300X 10 4,300 2,475 2474 0,343 0,039 0,667 0,293 1,571 1,173
300X 15 3914 2,493 2492 0,212 0,000 0,614 0,366 2,137 1,934
300X 20 3,608 2,734 2,717 0,172 0,003 0,398 0,197 2,186 2,023
300 X 25 3,880 2,862 2,841 0,212 0,002 0,572 0,335 2,133 1,999
400 X5 7,065 3,832 3,829 2,051 0,248 2,280 0,389 2,168 0,322
400X 10 4,163 2,325 2323 0,385 0,027 0,675 0,253 1,247 0,786
400X 15 3,635 2,273 2266 0,209 0,005 0,515 0,268 1,934 1,717
400X 20 3,788 2,585 2,554 0,191 0,003 0,558 0,321 2,158 2,004
400 X 25 3,635 2,814 2,764 0,225 0,006 0418 0,257 2,196 2,037
Média 4,230 2,852 2,707 0488 0,090 0,760 0,312 1,845 1,419

3.3.5. GASA de Shuster e Framinan

Wang e Zeng (2001) desenvolveram um método hibrido chamado de GASA para resolver
o Job Shop Scheduling Problem (JSSP). O GASA € uma combinacdo das técnicas AG e
Simulated Annealing (SA). Schuster e Framinan (2003) adaptaram o GASA para o CPFSP
com o critério de desempenho sendo o makespan, e usaram as instincias de Reeves (1995)

e Heller (1960) para os testes.

Wang e Zheng (2001) criaram um novo operador de crossover para ser usado no GASA.
Neste operador primeiramente um conjunto {1, 2, ..., n} € dividido em dois sub-conjuntos
A; e A, aleatoriamente, sendo que cada sub-conjunto tem que possuir a0 menos um
elemento. Cada elemento contido num sub-conjunto é copiado para um descendente na

mesma posicdo que ocupava no individuo pai. Depois sdo escolhidos aleatoriamente dois
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individuos da populagdo atual para serem os pais s; e s;. Os descendentes s’; € s’ sdo
criados da seguinte forma: s’; herda os elementos de s; pertencentes a A; e os elementos de
S, pertencentes a Ay; s’ herda os elementos de s; pertencentes a A, e os elementos de s;

pertencentes a Aj.

O GASA inicia com uma populacdo inicial de tamanho P, gerada aleatoriamente, uma
temperatura inicial ty e o critério de parada € o niimero L de iteracdes sem melhoria. A
cada iteragdo os procedimentos de crossover, mutagdo e SA sdo aplicados. Estes trés

procedimentos sdo descritos a seguir:

1 — Crossover: O melhor individuo da populacdo e um individuo escolhido aleatoriamente
sdao submetidos ao novo operador de crossover. Este procedimento é repetido Pgi,./2 vezes,
gerando Pgi,e novos individuos. Os novos individuos e a populagdo corrente somam um
total de 2*Pg,. individuos que sdo avaliados e os Psj,. individuos com melhores aptiddes

sdo submetidos ao processo de mutacao.

2 — Mutagdo : A mutag@o consiste em escolher um intervalo entre {1, ..., n} e inverter a
ordem das tarefas no intervalo. Os Pj,. individuos gerados sdo avaliados juntamente com
0s Pgize individuos originais, entdo os Pg, individuos com as melhores aptiddes sdo

submetidos ao procedimento SA.

3 — Procedimento SA : O objetivo deste procedimento é realizar uma busca local em cada
individuo da populagdo. O SA é implementado da seguinte forma: sdo escolhidas duas
posicdes aleatoriamente na seqiiéncia do individuo e as respectivas tarefas sdao trocadas de
posicdo, os valores dos makespan antes e depois da troca sdo armazenados, a nova solucao
¢é aceita com uma certa probabilidade dependendo da diferenca entre os makespan antes e
depois da modificag@o e a temperatura atual. Este procedimento € repetido n * m vezes. A
temperatura ¢ decresce seguindo uma funcio de resfriamento exponencial fy =A * f;, A €

{0, 1}.
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Os valores dos pardmetros do GASA foram:

- Tamanho da populagéo (Ps;.e) : 40;

- Fator de resfriamento (A) : 0,9;

- Temperatura inicial (tp) : - (Cworst — Chest) / In(0,1), onde: Cyorse € 0 pior makespan da
populacgdo e Cpest € 0 melhor makespan da populagao;

- Ndmero de iteragdes sem melhoria (L) : 30;

Para comparar o desempenho do GASA, Schuster e Framinan (2003) o testaram nas
instancias de Reeves (1995) e Heller (1960) e compararam com os resultados obtidos pela
heuristica RAJ de Rajendran (1994). O GASA foi implementado em linguagem C++ e os
experimentos foram realizados num computador Athlon 1.400 MHz. Os resultados dos
testes e os tempos utilizados pelo GASA sdo apresentados na Tabela 3.4, onde se verifica
que de modo geral o GASA obtém melhores resultados do que o método RAJ, sé que para
isso precisa usar uma grande quantidade de tempo de execucdo. Além disto para as

instancias com maior nimero de tarefas e maquinas o GASA fica abaixo do método RAJ.

Tabela 3.4 — Resultados dos experimentos com 0 GASA. Fonte: Schuster e Framinan (2003).

Instancia nxm RAJ GASA t(s) Desvio (%)
recOl 20x5 1590 1527 6 -3,96
rec03 20x5 1457 1392 6 -4,46
rec05 20x5 1637 1524 7 -6,90
rec07 20x10 2119 2046 12 -3,45
rec09 20x10 2141 2045 11 -4,48
recll 20x10 1946 1881 10 -3,34
hel2 20x10 189 180 10 -4,76
recl3 20x15 2709 2556 17 -5,65
recl5 20x15 2691 2529 17 -6,02
recl7 20x15 2740 2590 16 -5,47
recl9 30x10 3157 2985 34 -5,45
rec21 30x10 3015 2948 35 -2,22
rec23 30x10 3030 2827 35 -6,70
rec25 30x15 3835 3732 55 -2,69
rec27 30x15 3655 3560 51 -2,60
rec29 30x15 3583 3440 54 -3,99
rec31 50x10 4631 4757 147 2,72
rec33 50x10 4770 4998 145 4,78
rec35 50x10 4718 4891 146 3,67
rec37 75x20 8979 9508 907 5,89
rec39 75x20 9158 9964 890 8,30
rec41 75x20 9344 9978 904 6,79
hell 100x10 780 877 1088 12,44
Média 200,13 -1,18
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3.3.6. Os Algoritmos de Grabowski e Pempera

Grabowski e Pempera (2005) propuseram cinco algoritmos de busca local, dois deles
baseados na técnica Descending Search (DS) e trés baseados na metaheuristica Tabu
Search (TS), para resolver o CPFSP com o makespan sendo o critério de desempenho. As
caracteristicas mais importantes desses algoritmos s@o: o emprego de multimovimento e
lista tabu dinamica. A solugdo inicial de todos os algoritmos é obtida pelo método NEH de
Nawaz et al. (1983). As instincias de Reeves (1995) e Heller (1960) foram utilizadas nos

experimentos computacionais para avaliar o desempenho dos métodos.

O tipo de movimento e a estrutura de vizinhanca sdo componentes importantes dos
algoritmos propostos. Um movimento é definido pelo par v = (x, y) que sdo duas posi¢cdes
da permutagdo s, com x, y € {1, 2, ..., n} e x # y. Segundo Grabowski e Pempera (2005),
baseados na literatura e em experimentos realizados, 0 movimento shift € o que melhor se
adapta ao CPFSP, por isso, € adotado pelos algoritmos. A vizinhanca da permutacdo s
consiste das permutagdes s, obtidas pela execucdo de todos os movimentos de um dado
conjunto de movimentos Z e denotada por N(Z, s) = { s, | v € Z}. Os algoritmos propostos
geram vizinhangas através de movimentos Z = { (x,y) I x,y € {1, 2, ..., n}, y ¢ {x, x-1}}
de cardinalidade (n - 1)%, onde a condicdo y ¢ {x, x-1} evita a redundincia de

movimentos.

Para acelerar a convergéncia as boas solugdes os algoritmos utilizam um procedimento
chamado multimovimento, que tem o propdsito de guiar a busca para regides mais
promissoras onde boas solu¢des podem ser encontradas. O multimovimento consiste de um
conjunto de varios movimentos individuais que sdo executados simultaneamente numa
Unica iteragdo do algoritmo. A execucdo do multimovimento gera permutacdes que
diferem significativamente daquelas obtidas pela execu¢cdo de um unico movimento e
conduz o processo de busca para regides até o momento ndo visitadas do espaco de
solugdes. Segundo Grabowski e Pempera (2005) a aplicagdo de multimovimento em
algoritmos de busca local ¢ uma forma de adotar as estratégias de intensificagdo e
diversificacdo no processo de busca. O multimovimento € composto de um conjunto de

movimentos individuais proveitosos e independentes.
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O subconjunto PZ = { v € Z | Cpax(sy) < Cmax(s)} € chamado de conjunto de movimentos
proveitosos e contém todos os movimentos do conjunto Z que geram permutacdes sy com
menores makespan que s. Dois movimentos v; = (X4, y1) € PZ e v, = (X;, y2) € PZ sdo
chamados independentes em relagdo a permutacdo s se cada uma das posi¢des x; e y; estdo
separadas de cada uma das posi¢des x; € y, por pelo menos uma tarefa. Mais precisamente

0s movimentos v; e v, sdo independentes se alguma das condicdes 3.4 a 3.6 € satisfeita.

max(xi, y1) + 1< min(xz, y2)
ou 34

max(x2, y2) + 1< min(x1, y1)

min(x1, y1) + 1 < min(x2, y2) € max(xz, y2) + 1 > max(x1, y1)
ou 3.5

min(x2, y2) + 1 < min(x1, y1) € max(xi, y1) + 1 > max(xz, y2)

min(x1, y1) + 1< min(x2, y2) € min(x2, y2) + 1 < max(xi, y1) e
max (X1, y1) +1 < max(xz, y2)
ou 3.6

min(xz, y2) + 1 < min(x1, y1) € min(x1, y1) + 1 < max(xz, y2) e

max(x2, y2) + 1 < min(x1, y1)

A Condi¢do 3.4 indica que os movimentos v; € v, operam em série em relacdo a
permutacdo s e separados por pelo menos uma tarefa. A Condi¢do 3.5 indica que v; opera
do lado de dentro de v, ou vice-versa, com as posi¢des X; e y; separadas de x, e y,, por
pelo menos uma tarefa. Finalmente a Condicao 3.6 indica que v, e v; sdo interseccionados,

com cada uma das posicdes x; e y; e separadas de X, e y, por pelo menos uma tarefa.

Define-se IPZ como sendo o subconjunto de PZ que contém todos os movimentos
independentes de PZ, isto significa que para cada par v, e v,€ IPZ, v| # v,, € satisfeita
alguma das condi¢des (3.4) a (3.6). O multimovimento entdo, consiste em executar todos
os movimentos de IPZ simultaneamente, gerando uma permutagéo sy, onde V' € IPZ. A
permutacdo s, ndo pertence a N(Z, s), a menos que V'] = 1. A seguir é apresentado o

procedimento para criar o multimovimento V’.
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Passo 1: Para uma dada permutag@o s, criar o conjunto PZ e atribuir V’ := ¢.

Passo 2: Encontrar o melhor movimento v*, i.e., Cyax(Sy+) = minvepz Cyax(sy) € atribuir PZ

=PZ— {v¥} eV’ =V’ U [v¥].

Passo 3: Encontrar o melhor movimento v*, i.e., Cpax(Sy+) = minverz Cpa(sy) € para cada
movimento v € V' verificar as condi¢des (3.4) a (3.6) para os movimentos v¥ e v. Se ha
um movimento v € V’ tal que para v* e v alguma condi¢do néo ¢ satisfeita, entdo PZ := PZ

— {v*}, caso contrario, PZ :=PZ — {v*} e V' :=V’ U {v*}.

Passo 4: Repetir o passo 3 até PZ := ¢.

Por intuicdo, s, deveria ser significativamente melhor que s, gerado pelo melhor
movimento individual v € V’, desde que a melhoria total de Cp.(sy) seja obtida pela
adi¢do de todos os melhoramentos produzidos pelos movimentos individuais de V’.
Segundo Grabowski e Pempera (2005) essa é uma propriedade especifica, conseqiiéncia da
restricdo ndo espera da qual se utilizam os movimentos proveitosos e independentes e que

ndo tem sido aplicado por outros métodos.

O primeiro algoritmo proposto foi um DS que consiste em pesquisar a vizinhanga N até
encontrar um movimento v¥ € Z que gere uma permutagdo sy« € N com menor makespan
que s, uma solucdo inicial. Dessa forma a permutagao sy« se torna a nova soluco, i.e., s =

syx€ 0 algoritmo € repetido até que nenhuma permutag@o melhor seja encontrada.

O segundo algoritmo proposto € uma combinag¢do de DS e multimovimento (DS+M). O
DS+M comeca de uma solugdo inicial s e uma vizinhanca N(Z, s). Para a vizinhanca N o
conjunto de multimovimentos V’ é criado de acordo com o procedimento descrito
anteriormente. O multimovimento V’ € realizado e a permutacio resultante s,» se torna a
nova solucdo, i.e., s .= Sy, 0 algoritmo € repetido até que V' = ¢.

Segundo Grabowski e Pempera (2005) a metaheuristica Tabu Search (TS) nao tinha sido
aplicada até entdo no CPFSP. Assim foram desenvolvidos trés algoritmos baseados em TS

que t€ém como principal caracteristica a utiliza¢do de lista tabu dindmica com o propdsito

de evitar que o processo de busca fique preso a um 6timo local.
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O comprimento da lista T € alterado quando o nimero de iteragdes (ifer) do TS atinge um
valor especifico chamado de pick. Esse tipo de lista foi empregado primeiramente no very

fast TS, proposto por Grabowski e Wodecki (2004).

Em relagdo a permutacdo s, um movimento (X, y) € Z & proibido: se A(s(x)) N {s(x+1),
S(x+2), ..., s(Y)} # @, se x <y; ou B(s(x)) N {s(y), s(y+1), ..., s(x-1)} # ¢ se x > y. Onde:
AG)={ieJl(,e T}eB(G)={ie JI(@,j) € T}. O conjunto A(j) (ou B(j)) indica
quais tarefas sdo processadas depois (ou antes) da tarefa j em relacdo ao conteido atual da

lista tabu T.

O TS comega de uma solucdo bdasica inicial s a qual € aplicada a vizinhanga N(Z, s).
Primeiramente, o melhor movimento v¥ € Z que gera a permutagio sy+ € N(Z, s) com o
menor makespan € escolhido. Se Cpx(sy+) < C*, entdo o movimento v* € selecionado para
o processo de busca. Caso contrario (Cpax(syx) > C*), entdo € criado o conjunto UZ de
movimentos nio proibidos (UF) que ndo tem o status tabu e definido como UZ={ v e Z|
movimento v é UF}. No proximo passo, sy+ € N(UZ, s) com o menor makespan &
escolhido para o processo de busca. Se o movimento v* é selecionado, entdo o par de
tarefas correspondentes ao movimento v* é adicionado a lista tabu T e a permutacio
resultante sy« € criada. No passo seguinte, a permutacdo se torna a nova solucio, i.e., s :=
sy« € 0 algoritmo comeca a proxima iteracdo. Se todos os movimentos de Z sdo proibidos,

um caso muito raro, i.e., UZ = ¢, entdo o elemento mais velho da lista tabu T € retirado

dela e a busca € repetida até que um movimento UF possa ser encontrado.

O quarto algoritmo proposto € uma combinacdo de TS e multimovimento (TS+M). O
algoritmo TS+M € similar ao TS exceto que em cada iteragdo um multimovimento V’, que
contém vdrios movimentos simples, € realizado, ao contrdrio de um movimento simples
v¥. Se numa itera¢do do TS+M, o multimovimento V’ cont€ém ndo mais que um

movimento, i.e., [V’ <1, entdo o TS+M se transforma em TS.
O quinto e dltimo algoritmo é uma combinagdo de TS e multimovimento (TS+MP) que é

realizado somente em situacdes especificas. O multimovimento ¢ realizado a cada vez que

um ndmero de iteracdes (Piter) onde ndo ocorre melhoria no makespan é atingido. Se Piter
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€ um ndmero suficientemente grande o multimovimento nunca serd criado e TS+MP se

transforma em TS. O parametro Pifer foi calibrado experimentalmente.

Para comparar o desempenho dos seus algoritmos, Grabowski e Pempera (2005)
realizaram testes nas instancias de Reeves (1995) e Heller (1960) e compararam com o0s
resultados obtidos pela heuristica RAJ de Rajendran (1994) e o GASA de Shuster e
Framinan (2003). Os algoritmos foram implementados em linguagem C++ e o0s
experimentos foram realizados em um Pentium 1000. O resumo dos resultados dos
experimentos computacionais é apresentado na Tabela 3.5. Analisando esta tabela verifica-

se que o melhor desempenho foi obtido pelo algoritmo TS-M.

Tabela 3.5 — Resumo dos resultados dos experimentos de Grabowski e Pempera (2005). Fonte:

Grabowski e Pempera (2005).

Métodos Desvio (%) Tempo (s)

RAJ 0,00 -
GASA -1,18 200,13
DS -4,51 0,02
DS-M -4,53 0,00
TS -6,50 0,86
TS-M -6,59 0,87
TS-MP -6,56 0,87
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CAPITULO 4 - ALGORITMO GENETICO

Este capitulo é composto de trés secdes. A primeira secdo faz uma introdugdo sobre AG. A
segunda secdo apresenta os principais componentes de um AG. E finalmente, a terceira

secdo descreve o rAG.

4.1. Introducao

Segundo Dréo et al. (2006) o AG tem caracteristicas como: diversificacdo que é explorar
regides do espaco de busca raramente visitadas; intensificacio que € verificar quase
completamente regides do espaco de busca promissoras; e a memorizacdo da melhor
solug@o encontrada até o momento. Uma desvantagem estd no processo de calibracio dos
seus parametros. Resultados tedricos disponiveis ndo s@o suficientes para ajudar no ajuste

da calibragao.

O AG foi criado por Jonh Holland durante as décadas de 1960 e 1970 (Holland, 1975),
para simular computacionalmente o fenomeno da selecdo natural. Foi um aluno de
Holland, Goldberg, o primeiro a aplicar o AG num problema de otimizacdo, na area de
projeto de gasodutos (Haupt e Haupt, 2004). Depois desta aplicagdo o AG passou a ser
considerado uma técnica de busca baseada nos principios da genética e selecao natural. O
AG € formado por uma populacio de individuos que representam as solugdes do problema.
Os individuos sdo avaliados por uma funcio que atribui um valor chamado aptiddo a cada
individuo da populacdo segundo sua qualidade em relagdo a fun¢éo objetivo do problema.
Os individuos sdo escolhidos por um procedimento inspirado na selecdo natural para
passarem por operagdes genéticas que resultam em descendentes que compordo a nova
populacdo. A Figura 4.1 mostra o fluxograma de um AG, segundo Reeves e Rowe (2002).
Os estudos mostram que a nova populacdo tem a tendéncia de ter individuos com aptiddes
melhores do que a populagdo anterior (Mitchell, 1998; Haupt e Haupt, 2004). Este
processo de gerar novas populacdes é chamado de geracdo. O melhor individuo da tdltima

populacdo € a solug@o a ser apresentada para o problema.
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E importante salientar que o AG trabalha com uma populagio de solucdes. Pode-se
considerar isso como varias buscas locais sendo feitas ao mesmo tempo, que é chamada de
paralelismo implicito (Holland, 1975). A vantagem deste paralelismo € que o processo de
busca melhora a capacidade de sair de minimos locais, devido a uma pesquisa mais
abrangente do espaco de busca. Porém, trabalhar com vérias solu¢cdes a0 mesmo tempo
traz a desvantagem de precisar de mais tempo computacional para avaliar as funcdes que
calculam a aptidao das solucdes, que as vezes tornam o AG mais lento que os métodos de

busca em vizinhanca que sé trabalham com uma solugdo de cada vez.

Escolha de uma populag@o inicial
enquanto o critério de parada nio € satisfeito faca
repita
se a condic@o do crossover € satisfeira entao
inicio
seleciona 0s cromossomos pais;
escolhe os parametros do crossover;
executa o Crossover;
fim
se a condi¢do da mutag@o € satisfeita entio
inicio
seleciona o(s) cromossomo(s) para a mutagao;
escolhe os pardmetros da mutagdo;
executa a mutacio;
fim
avalia a aptiddo dos descendentes;
até a quantidade de descendentes necessaria;
atualiza nova populagao;

fim_enquanto

Figura 4.1 — Pseudocddigo de um AG basico. Fonte: Reeves e Rowe (2002).
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4.2. Os Elementos de um AG

Através da revisdo bibliografica foram escolhidos oito componentes como sendo os mais
importantes num projeto de AG. Os oito componentes sdo elicitados a seguir e descritos no

decorrer desta secao.

a) Escolha da representagdo para o AG;
b) Defini¢do da fun¢do de aptiddo;

c) Definicdo da populagao inicial;

d) Escolha do método de selecdo;

e) Escolha dos operadores genéticos;

f) Escolha da estratégia geracional;

g) Escolha do critério de parada; e

h) Escolha dos valores dos parametros.

4.2.1. Representacido para o AG

A representacdo para o AG € a forma como as solugdes potenciais sdo codificadas para ser
possivel a aplicacdo dos operadores genéticos. Na representac@o para o AG os conceitos de
genotipo, fendtipo, cromossomo, alelo e gene sdo importantes (Rothlauf, 2006). O
gendtipo representa toda a informagdo armazenada no cromossomo. O fendtipo € a
aparéncia de um individuo que é resultado da informacdo contida no gendtipo. Um
cromossomo é uma string de certo comprimento onde toda a informacdo genética de um
individuo estd armazenada, cada cromossomo € constituido de muitos alelos. Alelo € a
menor unidade de informag@o num cromossomo. Um gene € uma regido do cromossomo
constituido por um ou mais alelos que devem ser interpretados conjuntamente e que é
responsdvel por uma propriedade especifica do fenétipo. Estes conceitos estdo ilustrados

na Figura 4.2.
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que € o valor
decimal da string
bindria

10 )1 1¢1 0 1)O0
Q ( > fendtipo € 186

Cromossomo alelo gene

Figura 4.2 - Representacio do fenétipo, cromossomo, alelo e gene.

A representacdo adotada num AG estd diretamente relacionada ao tipo de problema. A
primeira representagdo criada foi a binaria onde os alelos podem assumir os valores O ou 1.
Para muitos problemas de otimizagdo combinatoria onde as varidveis do problema sdo
bindrias esta representacdo ¢ ideal. Quando as varidveis do problema sdo continuas a
precisdo depende do tamanho da string de alelos, quanto maior a string, maior o uso de
recursos computacionais. Outro tipo de representacdo ¢ a permutacional, onde os alelos
podem assumir valores inteiros positivos € 0 cromossomo representa uma solucio baseada

na ordem dos alelos. Este tipo de representacdo € usado principalmente em problemas

como o caixeiro viajante, seqiienciamento, entre outros.

4.2.2. Funcao de Aptidao

A aptiddo corresponde ao grau de qualidade do fendtipo em relacdo ao seu habitat, i.e.,
significa 0 quanto o individuo estd adaptado ao meio-ambiente. Para os problemas de
otimizagdo a aptidao significa a qualidade da solug@o em relacdo ao objetivo do problema.
O valor da aptiddo de cada individuo é muito importante, pois € usado para diferenciar os
individuos na populagdo e no processo de selecdo. Se a aptiddo ndo conseguir representar
adequadamente a diferenca entre os individuos, a eficidcia do AG fica comprometida. A
aptiddo € calculada pela funcdo de aptiddo que pode ser uma fungdo matemadtica, um
experimento ou um jogo (Haupt e Haupt, 2004). Algumas vezes € usada a propria funcio
objetivo como fung¢do de aptidio, esta estratégia pode ser ineficiente quando os valores da
funcdo objetivo dos individuos sdo muito préximos (Mitchell, 1998). Por isso, deve-se ter
muito cuidado em se escolher a funcio de aptiddao. Além disso, a fun¢éo objetivo depende

do problema abordado.

54



4.2.3. Populacao Inicial

Segundo Reeves e Rowe (2002) as duas principais questdes a considerar em relacido a
populacdo inicial sdo o tamanho da populacdo e o método usado para criar os primeiros

individuos.

A principal idéia em relagdo a escolha do tamanho da populagcdo € a existéncia de um
trade-off entre eficiéncia e eficdcia. Parece 16gico supor que para um certo comprimento de
string que representa o individuo, exista um valor 6timo para o tamanho da populagdo, ndo
tdo pequeno que ndo explore todo o espago de busca e nem tdo grande que comprometa o
tempo de execug@o. Mas baseado no levantamento feito por Reeves e Rowe (2002) ainda

ndo se determinou uma fungéo que represente este suposto trade-off.

Em relacdo a escolha do método para gerar a populacio inicial as duas principais formas
sdo a aleatéria e a baseada em boas solugdes conhecidas. A forma aleatéria na pratica é
pseudo-aleatdria, pois € gerada por software usando fungdes matematicas. Neste tipo existe
a possibilidade da populagéo inicial ndo explorar todas as regides do espago de busca e, por
isso, precisar de uma populagdo maior. A populacdo inicial gerada baseada em boas
solugdes conhecidas tem o objetivo de fazer o AG obter melhores solu¢des em um tempo
de execucdo menor em comparagdo a inicializagdo aleatéria. Neste método existe a
possibilidade de convergéncia prematura para uma solucdo de baixa qualidade. Surry e
Radcliffe (1996) apud Reeves e Rowe (2002) fizeram uma revisdo das idéias sobre o
processo de criagdo da populagdo inicial e concluiram que havia uma tendéncia na
inicializacdo eficiente de reduzir a qualidade da solucdo obtida em comparagdo com a

inicializacdo aleatodria.

4.2.4. Métodos de Selecao

Depois da criagdo da populacdo inicial e atribuida uma aptiddo a cada individuo, a préxima
decisdo é escolher o método de selecionar os individuos que dardo origem a préxima
geracdo. A principal caracteristica de qualquer método de selecdo € preferir os individuos
com maior aptiddo com o objetivo que a préxima populagcdo tenha uma aptiddo maior

(Mitchell, 1998). No processo de selecdo existe uma relacio de compensagdo, quanto
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maior a pressdo de selecdo, ou seja, quanto maior a preferéncia por individuos de alta
aptiddo mais rapidamente a populacdo converge para um 6timo local, do contrario quanto

menor a pressdo de sele¢do, mais lentamente a populacio evolui para boas solugdes.

O primeiro método de sele¢@o criado foi o método de sele¢do por roleta (Holland, 1975).
Neste método cada individuo tem a probabilidade de selecdo proporcional a sua aptiddo em
relacdo a populacdo. A maneira mais comum de implementar este método de selecao é
atribuir um ndmero real a cada individuo igual a sua aptiddo dividida pela aptidao total da
populacgdo. Isto implica que cada individuo recebe um nimero maior que 0 e menor que 1,
representando uma probabilidade e o somatério da probabilidade de todos os individuos
sendo igual a 1. Depois que estes individuos sdo ordenados numa lista que pode ser
representada graficamente como um disco, onde cada setor angular é proporcional a
probabilidade do individuo ser selecionado. O processo de sele¢do consiste em gerar N
ndmeros aleatdrios entre 0 e 1, onde N é o tamanho da populag@o. O intervalo que este
ndmero estiver contido na lista de probabilidades acumuladas indica que aquele individuo
foi selecionado. Isto € como se uma roleta fosse girada e onde ela parasse indicasse o
individuo selecionado. A Figura 4.3 ilustra este tipo de selecdo, onde sdo mostrados cinco
individuos com suas respectivas representacdes e aptiddes. O grafico de setor ao lado
representa a probabilidade 1 e conseqiientemente cada setor circular representa a

probabilidade do individuo correspondente ser selecionado.

N° | Individuo | Aptidio

1 010010011 3,651

2 010110110 0,544

3 011010001 0,239

4 110110011 1,463 o

5 100111011 2,987 m2
o3
o4
m5

Figura 4.3 - Representacio da selecao pelo método da roleta.
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E comum ocorrer numa populagio uma pequena quantidade de individuos com alta
aptiddo, isto prejudica os métodos de selecdo proporcionais porque a probabilidade destes
individuos serem selecionadas é bem maior que do resto da populagdo e, por isso, provoca
a convergéncia prematura. Para evitar este problema outros métodos de selecdo foram

criados.

Outro método de selecdo é o de selecdo por torneio, mais resistente a convergéncia
prematura. Na selecdo por torneio um sub-conjunto ¢ da populagdo € escolhido
aleatoriamente, um parametro predefinido k representa a probabilidade do melhor
individuo do sub-conjunto ser escolhido. Neste método é gerado um nimero aleatdrio entre
0 e 1, se for menor que k o melhor individuo do sub-conjunto € escolhido, caso contrario
outro individuo € escolhido (Mitchell, 1998). Este método tem a vantagem de usar pouco

recurso computacional.

4.2.5. Operadores Genéticos

A fung@o dos operadores genéticos € transformar a populacdo atual numa nova populacdo
com aptidao melhor, ou seja, para problemas de otimizacdo encontrar solugdes melhores
que as atuais (Mitchell, 1998). Um conceito importante neste processo ¢ o bom bloco
construido que € uma parte continua do cromossomo que confere ao individuo uma alta
aptiddo. Acredita-se que durante a aplicacdo dos operadores genéticos os bons blocos
construidos sdo formados e preservados, garantindo assim a qualidade das solucdes. Os
operadores genéticos dependem do tipo de representacdo adotada. Os principais operadores

genéticos sdo o crossover e a mutagao.

O operador mais utilizado é o crossover. Através do crossover sdo criados novos
individuos misturando os alelos dos pais. O objetivo é que a mistura de bons blocos
construidos déem origem a individuos de aptiddo melhor que os pais. Outro operador
usado é o de mutacdo que consiste em trocar dois alelos de valor ou posi¢do. A mutacio
tem o objetivo de manter a diversidade da populagdo e evitar a convergéncia prematura
para 6timos locais. A mutacdo assegura que a probabilidade de se chegar a qualquer ponto

do espaco de busca ndo seja zero.
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A implementagdo do operador crossover € feita normalmente com uma regra aleatdria
baseada numa distribui¢do uniforme. E definida uma probabilidade de ocorréncia para o
crossover chamada taxa de crossover. A forma mais comum de implementar a mutagao é

escolher um nimero de perturbagdes por string que ¢ chamada de taxa de mutacgdo.

O mais comum € que estas duas taxas sejam constantes durante todo o tempo de execugao
do AG. Mas Davis (1991) argumenta que se estas taxas variassem durante o processo de
busca, melhores solucdes seriam encontradas. Neste ponto de vista diferentes taxas seriam
apropriadas em diferentes fases do processo de busca. No inicio seria usada uma taxa de
crossover alta para fazer uma pesquisa maior no espaco de busca, enquanto que no fim
uma taxa de mutag@o alta seria usada para diminuir a convergéncia da populacdo. Outra
sugestao € que as taxas dos operadores se adaptem instantaneamente em concordancia com

a evolucgdo das solugdes encontradas.

Ainda em Reeves e Rowe (2002), baseados no trabalho de Holland (1975), o operador de
crossover sempre deveria ser usado. Mas existem na literatura duas estratégias para gerar a
préxima populagio: crossover-e-mutacio e crossover-ou-mutacio. Na primeira estratégia
o operador de crossover € aplicado com uma probabilidade normalmente menor que 1 e a
mutagdo pode ser realizada se o seu critério for verdadeiro. Nesta estratégia existe a
possibilidade dos filhos serem apenas clones dos pais devido a probabilidade de nem um
dos operadores serem aplicados. Na segunda estratégia sempre um dos operadores é
aplicado, ou crossover ou mutacdo, mas ndo ambos. Nesta estratégia ndo existe a

possibilidade dos filhos serem clones dos pais.

4.2.6. Estratégia Geracional

A estratégia geracional é responsdvel por controlar a substituicdo de individuos de uma
geracdo para a outra. A estratégia geracional proposta por Holland (1975) cria um conjunto
do tamanho da populagdo de individuos gerados a partir da populacdo atual, usando os
operadores de crossover e mutacdo. No final este conjunto substitui a populacio atual.
Neste tipo de estratégia existe a possibilidade de que bons individuos desaparecam de uma
geracdo para a outra. Por isso, surgiram outras estratégias como a elitista, a population

overlaps e a steady-state. Na estratégia elitista o melhor individuo € preservado para a
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préxima populagdo, enquanto o restante da populagdo é substituida por novos individuos.
Na estratégia population overlaps uma fracdo da populagio G (generation gap) é
substituida por novos individuos, enquanto a outra fracdo é preservada para a proxima
populacdo. Na estratégia steady-state s6 o melhor individuo gerado € copiado para a

préxima populagdo.

4.2.7. Critério de Parada

Nesta secdo serd feita a descrigdo da escolha de qual critério serd usado para finalizar a
execucdo do AG. Nos métodos de busca em vizinhanga, que trabalham com somente uma
solug@o, uma alternativa é encerrar a execug¢do quando um 6timo local € obtido, mas no
AG isso ndo é possivel. As trés estratégias mais comuns para encerrar a execucao de um

AG sao:

i) O numero de geracgdes;

ii) O tempo de execucdo; e

iii) A diversidade da populagdo. Quando a semelhanga entre os individuos comeca
a se repetir, entdo € definido o momento de parar, por exemplo, quando 90% dos

individuos sdo semelhantes.

4.2.8. Parametrizaciao do AG

A ultima decisdo num projeto de AG € a defini¢cdo dos valores dos seus pardmetros, como
tamanho da populacdo, taxa de crossover e taxa de mutacdo. Segundo Mitchell (1998) os
parametros dos AG interagem entre si de forma nao-linear. Sendo assim, ndo podem ser
otimizados ao mesmo tempo. Muitos trabalhos tém sido realizados nesta 4rea, entretanto
nenhuma funcdo matematica foi apresentada e que fornegca os melhores valores para esses
parametros (DeJong, 1980; Grefenstette, 1986 e Ruiz et al., 2006). Como ja mencionada
anteriormente uma desvantagem do AG ¢é a dificuldade do processo de calibracdo dos seus
parametros (Dréo et al., 2006). Diante disso, foi criado até um AG que utiliza poucos

parametros por Lobo e Goldberg (2004), denominado de AG com menos parimetros.
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4.3. Descricao do rAG

Nesta se¢ao é descrito o projeto do rAG. Para guiar a descri¢do foi usado o modelo visto na

se¢do anterior.

4.3.1. Escolha da Representaciao

Devido aos dois problemas abordados neste trabalho, a representa¢do mais adequada ¢é a
permutacional, onde os alelos sdo representados pelos nimeros das tarefas e a ordem
relativa das tarefas na permutacdo indica a ordem de processamento das mesmas nas

maquinas.

4.3.2. Funcao de Aptidao

Para calcular a aptiddo dos individuos da populagéo foi adotado o valor da fungéo objetivo
de cada problema. Para o CPFSP foram adotadas duas aptiddes porque foram testados
problemas com duas fungdes objetivo diferentes. O rAG usou no CPFSP com o tempo total
de fluxo como critério de desempenho a Equacdo 3.1, Secdo 3.2. O rAG também usou com
o makespan como critério de desempenho a Equacdo 3.2, Secdo 3.2. E finalmente, o rAG
utilizou no PFSP, o makespan como critério de desempenho, o procedimento g descrito na
secdo 2.3 para calcular a aptiddo dos individuos da populacdo. Usar o mesmo valor da
funcdo objetivo sem fazer nenhuma conversdo, como outros AG fazem, para representar a
aptiddo dos individuos da populacdo, foi uma das formas encontradas para diminuir o
tempo computacional utilizado pelo rAG. Diante disso é possivel diminuir a diferenca, em
tempo de execucdo, com relacdo aos métodos que trabalham sobre uma solu¢do de cada
vez. Mas esta estratégia ndo comprometeu a qualidade na diferenciacdo dos individuos que
¢é o proposito da aptiddo. Os métodos usados para calcular a aptiddo dos individuos foi a
unica modificacdo na estrutura do rAG para permitir sua aplicacdo nos dois problemas
deste trabalho. Isto mostra a generalizacdo do uso do rAG na classe de problemas de

sequenciamento permutacional.
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4.3.3. Populacao Inicial

Como uma das propostas do trabalho é a geracdo da populacdo inicial completamente
aleatoria esta foi a forma escolhida. Além da aleatoriedade, evitar que individuos com a
mesma seqiiéncia de tarefas estejam presentes na populagdo inicial também foi tratado.
Esta pritica melhora a diversidade, pois um individuo repetido agora gera um novo
individuo para a populag@o. Para eliminar os individuos repetidos da populacéo inicial, foi
implementado um procedimento que é executado depois da geracdo de todos os individuos
da populagdo. Este procedimento consiste em analisar todos os individuos da populagdo e
em encontrando um individuo repetido fazer ele passar pelo processo de mutacdo até que

se torne um individuo tnico na populagéo.

4.3.4. Método de Selecao

O tipo de selecdo implementada no rAG foi a sele¢do por torneio porque € resistente a
convergéncia prematura e tem custo computacional baixo. E escolhido um sub-conjunto
com d (pardmetro descrito na se¢éo 4.2.4) individuos e gerado um nimero aleatério entre 0
e 1, quando esse nimero for maior que k (pardmetro descrito na segdo 4.2.4), o segundo
melhor individuo do sub-conjunto d € escolhido. Nesta etapa, assim como também no
processo de célculo da aptiddo dos individuos da populacio, foi levado em consideracdo a
importancia de reduzir o tempo computacional do rAG. A escolha deste método de selecdo
contribui para reduzir o consumo de tempo de execucdo do rAG e ndo comprometeu a

eficacia na obtenc¢do de boas solucdes.

Nesta etapa, o segundo procedimento proposto para melhorar o desempenho do rAG foi
implementado. O procedimento consiste em fazer que s6 um dos pais seja escolhido pelo
método de selecdo por torneio, o outro pai serd o melhor individuo da populacdo. Este
procedimento foi denominado de crossover elistista e, a probabilidade de ocorréncia é
controlada pelo pardmetro P... O objetivo deste procedimento é favorecer o processo de
intensificagdo, j4 que o processo de crossover realizado com o melhor individuo da

populacdo tem grandes chances de gerar descendentes com alta aptidao.
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4.3.5. Operadores genéticos

Nesta sec¢do sdo descritos os operadores genéticos implementados no rAG. O operador
crossover implementado foi o Order Crossover (OX) (Goldberg, 1989). O operador de
mutagdo implementado foi o movimento swap. Nesta etapa foi implementado o terceiro
procedimento, proposto para melhorar o desempenho do rAG. O novo operador genético é

chamado de mutag@o populacional. Estes trés operadores genéticos sdo descritos a seguir.

Na aplicac¢do dos operadores genéticos foi adotada a estratégia crossover-ou-mutacao, i.e.,

sempre um dos operadores € aplicado, ou crossover ou mutagdo, mas ndo ambos.

Crossover
O operador crossover OX foi criado baseado na idéia dos bons blocos construidos. Por
isso, baseia-se nas posicdes relativa e absoluta das tarefas na seqiiéncia. Este procedimento

€ descrito a seguir.

1 — Sdo escolhidos dois pais através do método de selegao;

2 — E escolhido aleatoriamente o mesmo fragmento de cada um dos pais e copiado nos
respectivos filhos (Figura 4.4). Esta etapa preserva as posicdes absoluta e relativa das
tarefas na seqiiéncia; e

3 — As posi¢gdes ndo-preenchidas de cada filho sdo copiadas das tarefas do outro pai no
sentido da esquerda para a direita (Figura 4.5). Este procedimento faz com que seja

preservada a ordem relativa das tarefas na seqiiéncia.

Pai 1 (2 [3FafsTe]]7]38]
Rlbod [T T4TsTe[ 1] T ]

Filho 2 | |

Pai 2 (31851421 ]7]6]

Figura 4.4 — Segunda etapa do crossover OX.

62



Pai 1 (2 [3]4]5]6[1][7][8]

Filho 2 (376 [5[4]2[1]7]8]

Filho 1

Pai 2 (3185 4]2]1]7]6]

Figura 4.5 — Terceira etapa do crossover OX.

Mutacao

O operador mutagdo swap consiste em realizar uma Unica alteragdo na estrutura do
individuo. Este operador é implementado da seguinte forma: sdo escolhidos aleatoriamente
duas posi¢des na estrutura do individuo e o valor dos alelos dessas posi¢des sdo trocados.
Nesta etapa também existe a preocupagdo de evitar que surja na populacdo um individuo
repetido, por isso, quando o individuo gerado jd existe na populacdo o procedimento é
repetido até a sua estrutura ser a Unica. A Figura 4.6 mostra um exemplo da aplicacdo deste

operador para um problema com n = 8.

1 45 6 7 3 8 2 antesda mutagdo

Posic¢des escolhidas: 3 e 6

1 43 6 75 8 2 depois da mutacio

Figura 4.6 — Exemplo da aplicacao do operador mutacao (swap).

Mutacao Populacional

A mutagdo populacional baseada no principio da diversificacdo foi o terceiro procedimento
proposto para melhorar o desempenho do rAG. A idéia deste operador surgiu na anélise
dos resultados do rAG, que demonstram que a medida que a qualidade da melhor solucio

aumenta mais geracdes sdo necessdrias para haver outra melhoria, isto prova, que o
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processo de busca estava estagnando. A idéia foi executar uma perturbacdo em todos os
individuos da populacio para reativar o processo de evolugdo, aproveitando a quantidade
de geracdes em que a melhor solucdo nio se alterava. Para exemplificar a Tabela 4.1
mostra alguns valores dos resultados obtidos para a instincia tai031 (Taillard, 1993), com
50 tarefas e 5 mdquinas, pela versdo do AG sem o procedimento criado. O tempo de
execucdo do experimento foi de 3,75 segundos. Durante todo o processo de busca houve
174 melhorias. Os significados das colunas da Tabela 4.1 sdo: a coluna um representa o
nimero da melhoria (NM); a coluna dois representa a aptidio do melhor individuo; a
coluna trés representa o nimero de geracdes; a coluna quatro representa o nimero de
geracdes entre as melhorias (GEM); a coluna cinco representa o desvio I(z — z*)/z*| (z :
solug@o encontrada pelo rAG; z* : melhor solugdo conhecida para a instincia) a solugdo
final; e finalmente a coluna seis representa o percentual de geracdes realizadas (P).
Analisando os dados desta tabela se verifica que depois de 20,84% das geragdes realizadas
o valor de GEM pela primeira vez € maior que 100 e continua assim na maioria das vezes.
Isso quer dizer que s@o centenas de geragdes onde ndo ocorre melhoria da solucio
encontrada pelo rAG, por isso, desenvolveu-se um procedimento para reativar o processo

de evolucgdo da melhor solucdo encontrada, denominado mutag¢éo populacional.
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Tabela 4.1 — Alguns valores obtidos para o problema tai031 por uma versao inicial do rAG.

NM Aptiddo Geracio GEM D (%) P (%)

1 118932 0 0 54,71 0,00

5 108173 8 8 40,77 0,22
10 105199 19 11 36,90 0,53
15 99063 27 8 28,92 0,75
20 96612 42 15 25,73 1,17
25 94917 60 18 23,52 1,67
30 93790 85 25 22,06 2,37
35 91836 104 19 19,51 2,90
40 90859 126 22 18,24 3,51
45 89294 143 17 16,20 3,99
50 88469 191 48 15,13 5,33
55 87634 229 38 14,04 6,39
60 86805 248 19 12,97 6,92
65 86060 277 29 12,00 7,73
70 84948 324 47 10,55 9,04
75 84198 356 32 9,57 9,93
80 84115 441 85 9,46 12,30
85 83796 495 54 9,05 13,81
90 83184 554 59 8,25 15,45
95 82959 594 40 7,96 16,57
100 81861 654 60 6,53 18,24
110 81151 747 93 5,61 20,84
120 80044 1041 294 4,17 29,04
130 79346 1417 376 3,26 39,53
140 78349 1684 267 1,96 46,97
150 77860 2108 424 1,32 58,80
160 77104 2644 536 0,34 73,75
170 76883 3114 470 0,05 86,86
171 76875 3253 139 0,04 90,74
172 76854 3529 276 0,02 98,44
173 76842 3575 46 0,00 99,72
174 76842 3585 10 0,00 100,00

A mutagd@o populacional consiste em realizar a mutagdo swap em todos os individuos da
populacdo depois de um determinado nimero de geracdes sucessivas sem melhoria ter sido
atingido. Ainda nesta etapa, quando um individuo gerado € repetido ele sofre mutagdo
novamente até sua seqii€ncia ser Unica na populagdo. Este procedimento é descrito a

seguir.

Passo 1 : Se fo; = foi.1), entdo ¢ := c+1, caso contrério ¢ := 0;
Passo 2 : Se ¢ = G,, entdo:
- Se fy; < f*, entdo s* = sy e f* := f;, caso contrario sgp; := s* e todos os

individuos da populacido sofrem mutacdo swap e ¢ := 0;
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Onde: f*:¢€ o valor da melhor aptiddo em todas as geracdes ja realizadas;
s* : € o melhor individuo em todas as geracdes jd realizadas;
foi : € o valor da melhor aptiddo na populagdo i;
soi : € 0 melhor individuo da populacéo i;
¢ : € o numero de geragdes sucessivas sem melhoria de fy;;
1: € o ndmero da i-ésima geracio; e

G. : ndmero de geracdes sucessivas sem melhoria.

O segundo passo armazena o melhor individuo de todas as geracdes e faz com que ele

sempre esteja na populacio antes da mutacio de todos os individuos.
4.3.6. Estratégia Geracional

A estratégia geracional implementada no rAG ¢ inspirada na estratégia population
overlaps. Para evitar que existam individuos repetidos na populacdo, um individuo sé é
aceito para ser incorporado na populacdo se a sua estrutura ndo € repetida. A outra
condicdo depende da aptiddao do individuo. Se a aptiddo do novo individuo f é melhor do
que a pior aptiddo da populagdo f,, entdo este individuo substitui o individuo de pior

aptiddo e o valor da pior aptiddo € atualizado.

Nesta etapa o primeiro procedimento proposto, baseado no principio da diversificacdo,
para melhorar o desempenho do rAG foi implementado. A estratégia de sé aceitar um
individuo com aptiddo melhor que a pior aptiddo diminuia a diversidade da populagdo e,
por isso, foi implementada a possibilidade controlada por um pardmetro de um individuo
com aptiddo inferior a pior aptiddo existente na populacdo ser aceito, deste que tenha

seqiiéncia unica. Este procedimento € descrito a seguir:

Passo 1 : Execucdo do operador crossover;
Passo2:Sef<f,es#s; (Vi =1, 2, ..., N), entdo: sp := s e atualiza fj;
Passo3:Sef>f,es#s (Vi =1, 2, ..., N), entdo:

- gera-se um numero aleatério rentre O e 1:

- se r < P,, entdo: s, :=s e atualiza fp;
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Onde:
N : é o tamanho da populagio;
P, : probabilidade de aceitar um individuo;
s : € um dos individuos gerado pelo operador crossover;
f: & aaptidao de s;
sp : € o individuo de pior aptiddo; e

fp : € a aptidao de s,,.

4.3.7. Critério de Parada

O critério de parada utilizado foi o tempo de execugio, devido o rAG ter uma caracteristica
de manter a diversidade. Em compara¢do ao nimero de geracdes, o tempo de execugdo é
mais adequado tanto para o planejamento dos experimentos como para a facilidade da

implementagdo computacional.

4.3.8. Parametrizacio do rAG

Ruiz et al (2006) realizou um projeto de experimentos para encontrar a melhor
combinagdo entre componentes e valores para os parametros do seu AG, o resultado foi um
desvio de 3,22% e 3,85% para a melhor e a pior combinagdo de operadores e valores dos
parametros, respectivamente. Segundo os autores estd diferenca ndo era muito
significativa, o que demonstrava a robustez do AG desenvolvido, i.e., a qualidade das
solugdes obtidas pelo AG eram pouco dependente dos valores dos parametros. Devido a
dificuldade da calibragdo dos valores dos pardmetros e a possibilidade de conseguir uma
melhoria pequena, optou-se por ndo acrescentar aos objetivos deste trabalho realizar uma
calibrag@o otimizada dos pardmetros do rAG. Considerou-se mais importante construir um

bom projeto para o AG que lhe atribuisse robustez.

Os valores dos parametros do rAG foram determinados durante a implementagdo
computacional e os primeiros experimentos. Durante os experimentos se percebeu que o
rAG se comportava melhor para o CPFSP com o critério de desempenho sendo o tempo

total de fluxo, com o tamanho da populagdo e o pardimetro G, maiores que os outros dois
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problemas testados. Assim, foram usados dois conjuntos de valores para os pardmetros do

rAG, apresentados a seguir.

Os parametros do rAG e seus respectivos valores para 0 CPFSP com o tempo total de fluxo

sendo o critério de desempenho:

= Tamanho da populagdo (N) : 75;

= Tamanho do sub-conjunto de selecdo (d) : 3;
= Parametro da selecao por torneio (k) : 0,7;

= Taxa de crossover (P.) : 0,70;

= Taxa de aceitacdo (P,) : 0,30;

= Taxa de crossover elitista (P..): 0,30;

= Taxa de mutacdo (Py) : 0,05; e

= Geragdes de estagnacio (Ge) : 50.

Os parametros do rAG e seus respectivos valores para o CPFSP e o PFSP com o makespan

sendo o critério de desempenho:

= Tamanho da populagio (N) : 30;

= Tamanho do sub-conjunto de selecdo (d) : 3;
= Parametro da selecdo por torneio (k) : 0,7;

= Taxa de crossover (P.) : 0,70;

= Taxa de aceitagdo (P,) : 0,30;

= Taxa de crossover elitista (P..): 0,30;

= Taxa de mutagdo (Py) : 0,05; e

= Geragdes de estagnacio (Ge) : 25.

4.3.9. Resumo do rAG

Um resumo do rAG pode ser dado da seguinte forma: primeiro é gerada uma populacdo
inicial totalmente aleatéria de tamanho N; em seguida € verificado se ha algum individuo
com seqiiéncia repetida, se houver, este individuo sofre mutacdo até sua seqii€ncia ser a
unica da populacdo; depois todos os individuos da populagdo sdo avaliados, i.e., recebem
sua aptiddo; o procedimento crossover € executado N vezes: € gerado um nimero aleatério

entre 0 e 1, se for menor ou igual a P, € realizado o crossover OX, se for maior € realizado
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o crossover elitista. Para cada um dos individuos gerados no processo de crossover siao
testadas as condi¢des do procedimento de estratégia geracional; entdo € executado o
procedimento de mutacfo, realizado i vezes, de 1 a N, onde € gerado um nimero aleatdrio
entre 0 e 1, se for menor ou igual a P, entdo o individuo i sofre mutacdo; depois é
determinada a aptiddo do melhor individuo, se ela for igual ou menor que a melhor aptidao
da populag@o anterior um contador ¢ € acrescentado de uma unidade, caso contrario, o
contador ¢ recebe zero; depois do contador ter sido atualizado, se o seu valor atingir o
valor de G, entdo a mutagdo populacional € executada e o contador ¢ recebe zero. O tempo
de execucdo decorrido é comparado com o tempo de execugdo estabelecido no critério de
parada, se for menor, os procedimentos anteriores deste o crossover sdo realizados
novamente, caso contrdrio, a execugdo do algoritmo € encerrada. Percebe-se que numa
mesma populagdo nunca existem dois individuos com a mesma seqiiéncia. O pseudocodigo

do rAG ¢ apresentado na Figura 4.7.

Gera a populagdo inicial
Identifica e corrige individuos repetidos
Avalia a populagio
Enquanto o critério de parada € falso faga
Escolhe o tipo de crossover
Executa a selecdo
Executa o operador de crossover
Executa o operador de mutagao
Se ¢ = G, entdo
Executa a mutagdo populacional

Fim do enquanto

Figura 4.7 — Pseudocodigo do rAG.

Depois da descri¢cdo do rAG faz-se uma abordagem explicitando a diferenca em relacio
aos outros AGs apresentados neste trabalho. Os AGs apresentados neste trabalho para o
CPFSP foram o GAChen de Chen et al. (1996), o GASA de Shuster ¢ Framinan (2003) e o
GA_AA de Aldowaisan e Allahverdi (2003). Ja para o PFSP foram o GAChen de Chen et
al. (1995), o GAMIT de Murata et al. (1996), o GAReev de Reeves (1995) e 0 GA_RMA
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de Ruiz et al. (2006). A Tabela 4.2 mostra as diferencas entre os outros AGs e o rAG. Na
Tabela 4.2: a coluna um mostra o nome do AG; a coluna dois mostra se a inicializagdo foi
eficiente e qual heuristica utilizada eficientemente ou nio; a coluna trés mostra se foi
utilizada hibridizacdo e qual o método usado; a coluna quatro mostra que tipo de operador
crossover foi utilizado; a coluna cinco mostra se foi utilizado o operador de mutagdo com
que procedimento; a coluna seis mostra a taxa de crossover utilizada; e a coluna sete

mostra a taxa de mutagdo utilizada.

A andlise da tabela 4.2 mostra que o rAG foi o tnico a ndo usar inicializacdo eficiente e/ou
hibridiza¢do. Nota-se que quando os outros AG ndo tém inicializacdo eficiente, usam
hibridizacdo, isso € uma forma de melhorar a qualidade das solucdes obtidas ja que as
solugdes iniciais aleatérias sdo de baixa qualidade, ou quando tem inicializac¢do eficiente
ndo usam hibridizacdo. S6 um o GA_AA usou inicializacdo eficiente e hibridizacdo ao
mesmo tempo. Metade dos AGs comparados usou ao menos o valor de 100% para alguma
das taxas dos operadores genéticos. Os resultados dos experimentos serdo apresentados no
préximo capitulo e mostrard se o rAG consegue ser competitivo mesmo sem usar

inicializacdo eficiente ou hibridizacao.

Tabela 4.2 — Diferenca entre os AG apresentados para o PFSP e o rAG.

AG Inic. eficiente Hibridizacdo Crossover  Mutac¢iao Taxa Taxa

Crossover Mutacao

GAChen CDSe Niao PMX Swap 0,95 0,01
(CPFSP) Dannenbring

GASA Nio Simulated DPA* DPA* 1,00 1,00

annealing

GA_AA CDS e Busca local PMX Swap 0,95 0,01
Dannenbring

GAChen CDS e Nao PMX Nao 1,00 0
(PFSP) Dannenbring

GAMIT Nao Busca local Two-point Shift 1,00 1,00

GA_Reev NEH Nao One-point Shift 1,00 0,80

GA_RMA NEH Nio SBOX Shift 0,40 0,01

rAG Nio Niao (0);¢ Swap 0,70 0,05

* Desenvolvido pelo préprio autor.
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CAPITULO 5 - EXPERIMENTOS COMPUTA CIONAIS

Os resultados dos experimentos computacionais realizados com o rAG e as comparagdes
com os outros métodos sdo apresentados neste capitulo. O cédigo do rAG foi
implementado em Delphi 7. Os experimentos foram realizados em um computador PC-
AMD (2.2 GHz e 512 MB de RAM). Devido a natureza probabilistica dos AGs
tradicionais, o rAG foi executado cinco vezes para cada problema e escolhido o melhor

resultado.

O principal indicador utilizado nas comparagdes entre os métodos € o percentual de desvio
das solugdes, dado por ((s* - s7) / s*)x100, onde s* € a melhor solug@o do problemae s’ € a

melhor soluciao encontrada pelo método de resolugdo aplicado ao problema.

Um conjunto de experimentos foi programado para ser realizado e os resultados obtidos

sdo apresentados nas secdes 5.1 a 5.5, dados adiante.

Além disso, € apresentado um conjunto de polindmios do segundo grau construidos a partir
dos resultados obtidos com o rAG aplicado ao PFSP, com o objetivo de determinar a priori
o tempo de execugdo necessdrio a ser gasto na aplicacdo do método a partir da qualidade

da solucdo desejada.

Por fim, descrevemos como foi o desempenho do rAG aplicado num caso real.

5.1. Experimento 1 — Etapas de melhoria do rAG

O primeiro experimento tem o objetivo de demonstrar e analisar a melhoria obtida pelo
rAG com a utilizacdo dos procedimentos propostos baseados nos principios da diversidade
e intensificacio no CPFSP. Nesta etapa foram realizados 4 tipos de experimentos. O
primeiro experimento foi realizado com o chamado rAG-1 que ndo tem implementado
nenhum dos trés procedimentos propostos. O segundo experimento foi realizado com o
rAG-1 acrescido do procedimento que permite que individuos com aptiddo menor que a
pior aptiddo da populacdo tenham probabilidade de serem aceitos na populacdo, e foi

denominado de rAG-2. O terceiro experimento foi realizado com o rAG-2 acrescido do
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procedimento crossover elitista, e foi denominado de rAG-3. O quarto e dltimo

experimento nesta etapa foi realizado com o rAG-3 acrescido do procedimento mutacdo

populacional, e foi denominado de rAG-4. Todos os experimentos foram realizados com as

instancias de Taillard (1993).

O resumo dos resultados desses experimentos com os tempos de execucdo usados sdo

mostrados na Tabela 5.1. Nesta tabela a coluna um mostra as classes das instancias de

Taillard (1993), as colunas dois a cinco mostram o percentual de desvio para o rAG-1,

rAG-2, rAG-3 e rAG-4, respectivamente, e a coluna seis mostra o tempo de execucio

usado em cada classe de problemas.

A andlise dos dados da Tabela 5.1 produz as seguintes observagdes:

a)

b)

d)

O primeiro procedimento (rAG-2) passou o desvio do rAG de 1,710% para
0,517%, o segundo procedimento (rAG-3) passou o desvio de 0,517% para 0,174%
e o terceiro procedimento (rAG-4) passou o desvio de 0,174% para 0,171%;

O acréscimo do ultimo procedimento melhorou o desempenho do rAG em apenas
0,003%, isto se explica pelos baixos tempos de execucdo utilizados, pois a
caracteristica deste procedimento € agir quando a populaco se encontra em estado
de estagnacdo e o que ndo ocorre com poucas geragdes executadas;

A eficiéncia do terceiro procedimento é sentida nas instdncias com 20 tarefas
porque estes problemas sdo menos complexos e, por isso, rapidamente o rAG
encontra boas solugdes e, por isso, a populacdo entra em estado de estagnagdo e a
mutagdo populacional passa a ter um papel ativo; e

O resultado do rAG-4 ter sido inferior ao resultado do rAG-3 para a classe 100x5 se
deve a utilizagdo dos nimeros aleatdrios gerados pelo Delphi 7, e como esses dois
algoritmos tém quantidades de execug¢des de numeros aleatdrios diferentes, isso

influenciou no resultado.

Estes resultados mostram que foi proveitosa a implementagdo dos procedimentos propostos

para o desempenho do rAG. O rAG-4 foi o que obteve os melhores resultados, por isso,

passard a ser chamado apenas de rAG e serd o algoritmo usado daqui para frente.
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Tabela 5.1 — Resumo da comparacio das varias etapas de melhoria do rAG.

Instancias rAG-1 rAG-2 rAG-3 rAG-4 Tempo (s)

20x 5 0,55 0,15 0,12 0,04 0,08
20x 10 0,39 0,11 0,04 0,02 0,08
20x 20 0,51 0,11 0,08 0,05 0,08
50x5 0,67 0,22 0,15 0,14 3,75
50x 10 0,70 0,29 0,18 0,15 3,75
50x 20 1,01 0,40 0,21 0,12 3,75
100x 5 1,83 0,59 -0,10 -0,01 10,00
100 x 10 2,68 0,71 0,18 0,18 10,00
100 x 20 2,86 1,03 0,51 0,34 10,00
200x 10 3,28 0,79 0,00 0,16 50,00
200 x 20 4,33 1,28 0,53 0,68 50,00
Média 1,710 0,517 0,174 0,171 15,96

As Tabelas 5.2 a 5.5 mostram os resultados dos quatro métodos avaliados para cada um
dos 110 problemas de Taillard (1993). A especifica¢do de cada coluna dessas tabelas € a
seguinte: a coluna um mostra a descricdo dos problemas, a coluna dois mostra o melhor
resultado obtido por Fink e Vof (2003) referenciado como FV, a coluna trés mostra o
resultado obtido pelo rAG-1, a coluna quatro mostra desvio do rAG-1 em relacdo a FV, a
coluna cinco mostra o resultado obtido pelo rAG-2, a coluna seis mostra o desvio do rAG-
2 em relacdo a FV, a coluna sete mostra o resultado obtido pelo rAG-3, a coluna oito
mostra o desvio percentual do rAG-3 em relacdo a FV, a coluna nove mostra o resultado

obtido pelo rAG-4 e a coluna dez mostra o desvio percentual do rAG-4 em relagdo a FV.

A andlise das informacdes contidas nas Tabelas 5.2 a 5.5 tras as seguintes observacoes:

a) Na Tabela 5.2 sabendo-se que as solu¢des FV para as classes com 20 tarefas sdo as
solugdes 6timas dos problemas, o rAG-1 sé obteve 3 solugdes 6timas, o TAG-2
obteve 13 solugdes 6timas, o rAG-3 alcangou 19 solucdes 6timas e o rAG-4 obteve
24 solugdes Otimas;

b) Na Tabela 5.3 para as classes com 50 tarefas o rAG-1 nédo obteve nenhuma solugdo
melhor que FV, jd o rAG-2 conseguiu 5 solu¢des melhores que FV, 0 rAG-3 e o
rAG-4 obtiveram, cada um, 7 solu¢des melhores que FV;

c) Na Tabela 5.4 para as classes com 100 tarefas o rAG-1 e o rAG-2 nio obtiveram
nenhuma solucdo melhor que FV, ja o rAG-3 obteve 7 solucdes melhores que FV e

0 rAG-4 também obteve 7 solu¢des melhores que FV; e
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d) Na Tabela 5.5 Para as classes com 200 tarefas o rAG-1 ndo obteve nenhuma
solugdo melhor que FV, jia o rAG-2 conseguiu 1 solu¢do melhor que FV, o rAG-3

obteve 6 solugdes melhores que FV e o rAG-4 obteve 4 solu¢gdes melhores que FV.

Estes resultados demonstram mais uma vez que as incorporagcdes dos procedimentos
propostos ao rAG melhoram cada vez mais a capacidade deste algoritmo de obter solucdes
melhores. Prova disso foi a mutacdo populacional que fez o algoritmo passar de 19
solucdes 6timas obtidas pelo rAG-3 para as classes com 20 tarefas para 24 solucdes 6timas

obtidas.
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Tabela 5.2 — Comparacio das varias etapas de melhoria do rAG para as classes com n = 20.

Instincias FV rAG-1 D (%) rAG-2 D (%) rAG-3 D (%) rAG-4 D (%)

20x5

tai001 15674 15698 0,15 15674 0,00 15674 0,00 15674 0,00
tai002 17250 17368 0,68 17297 0,27 17250 0,00 17250 0,00
tai003 15821 16062 1,52 15969 0,94 15821 0,00 15877 0,35
tai004 17970 18043 0,41 17999 0,16 17970 0,00 17970 0,00
tai005 15317 15490 1,13 15331 0,09 15317 0,00 15317 0,00
tai006 15501 15527 0,17 15501 0,00 15673 1,11 15501 0,00
tai007 15693 15767 0,47 15696 0,02 15706 0,08 15693 0,00
tai008 15955 16015 0,38 15965 0,06 15957 0,01 15963 0,05
tai009 16385 16394 0,05 16385 0,00 16385 0,00 16385 0,00
tai010 15329 15413 0,55 15329 0,00 15329 0,00 15329 0,00
Média 0,55 0,15 0,12 0,04
20x10

tai011 25205 25417 0,84 25290 0,34 25206 0,00 25205 0,00
tai012 26342 26540 0,75 26342 0,00 26342 0,00 26342 0,00
tai013 22910 22936 0,11 22936 0,11 22910 0,00 22910 0,00
tai014 22243 22315 0,32 22243 0,00 22243 0,00 22243 0,00
tai015 23150 23191 0,18 23191 0,18 23150 0,00 23150 0,00
tai016 22011 22179 0,76 22011 0,00 22048 0,17 22011 0,00
tai017 21939 21965 0,12 21939 0,00 21939 0,00 21939 0,00
tai018 24158 24158 0,00 24158 0,00 24205 0,19 24205 0,19
tai019 23501 23652 0,64 23503 0,01 23501 0,00 23501 0,00
tai020 24597 24633 0,15 24699 0,41 24597 0,00 24597 0,00
Média 0,39 0,11 0,04 0,02
20x20

tai021 38597 38597 0,00 38597 0,00 38597 0,00 38597 0,00
tai022 37571 37798 0,60 37643 0,19 37686 0,31 37571 0,00
tai023 38312 38530 0,57 38312 0,00 38312 0,00 38382 0,18
tai024 38802 39264 1,19 38802 0,00 38812 0,03 38802 0,00
tai025 39012 39296 0,73 39096 0,22 39012 0,00 39073 0,16
tai026 38562 38808 0,64 38620 0,15 38618 0,15 38562 0,00
tai027 39663 39697 0,09 39738 0,19 39730 0,17 39744 0,20
tai028 37000 37342 0,92 37027 0,07 37027 0,07 37000 0,00
tai029 39228 39228 0,00 39228 0,00 39267 0,10 39228 0,00
tai030 37931 38076 0,38 38024 0,25 37931 0,00 37931 0,00
Média 0,51 0,11 0,08 0,05
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Tabela 5.3 — Comparacio das varias etapas de melhoria do rAG para as classes com n = 50.

Instancias FV rAG-1 D (%) rAG-2 D (%) rAG-3 D (%) rAG-4 D (%)
50x5

tai031 76016 76318 0,40 75801 -0,28 75883 -0,17 75882  -0,18
tai032 83403 83733 0,40 83348 -0,07 83589 0,22 83240  -0,20
tai033 78282 78675 0,50 78732 0,57 78747 0,59 78467 0,24
tai034 82737 83059 0,39 82716  -0,03 82517  -0,27 82639  -0,12
tai035 83901 85400 1,79 84353 0,54 84338 0,52 83980 0,09
tai036 80924 81272 043 81319 0,49 80969 0,06 81471 0,68
tai037 78791 79071 0,36 79161 0,47 79172 0,48 79051 0,33
tai038 79007 79693 0,87 79220 0,27 79067 0,08 79263 0,32
tai039 75842 76308 0,61 76054 0,28 75892 0,07 75951 0,14
tai040 83829 84669 1,00 83787  -0,05 83785 -0,05 83882 0,06
Média 0,67 0,22 0,15 0,14
50x10

tai041 114398 115267 0,76 114552 0,13 114473 0,07 114412 0,01
tai042 112725 112988 0,23 112853 0,11 112821 0,09 112408 -0,28
tai043 105433 105890 0,43 105706 0,26 105786 0,33 105694 0,25
tai044 113540 113972 0,38 113809 0,24 113932 0,35 113994 0,40
tai045 115441 116552 0,96 115695 0,22 115896 0,39 115434 -0,01
tai046 112645 113080 0,39 113951 1,16 112522 -0,11 112904 0,23
tai047 116560 117339 0,67 116896 0,29 116890 0,28 116809 0,21
tai048 115056 115865 0,70 115042  -0,01 114995 -0,05 115166 0,10
tai049 110482 111906 1,29 110629 0,13 110814 0,30 110510 0,03
tai050 113462 114775 1,16 113922 0,41 113670 0,18 114145 0,60
Média 0,70 0,29 0,18 0,15
50x20

tai51 172845 173773 0,54 173856 0,58 173402 0,32 173154 0,18
tai52 161092 162001 0,56 161867 0,48 161442 0,22 161260 0,10
tai53 160213 162548 1,46 160891 0,42 160161 -0,03 160625 0,26
tai54 161557 163041 0,92 162217 0,41 161883 0,20 162382 0,51
tai55 167640 169667 1,21 167750 0,07 167397  -0,14 167140  -0,30
tai56 161784 163228 0,89 162525 0,46 162507 0,45 161939 0,10
tai57 167233 169459 1,33 167859 0,37 167291 0,03 167271 0,02
tai58 168100 170213 1,26 169047 0,56 168820 0,43 167822  -0,17
tai59 165292 167003 1,04 165895 0,36 165642 0,21 165292 0,00
tai60 168386 169912 0091 168935 0,33 169148 0,45 169144 0,45
Média 1,01 0,40 0,21 0,12
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Tabela 5.4 — Comparacio das varias etapas de melhoria do rAG para as classes com n = 100.

Instancias FV rAG-1 D (%) rAG-2 D (%) rAG-3 D (%) rAG-4 D (%)
100x5

tai061 308052 315572 2,44 309755 0,55 309589 0,50 307853  -0,06
tai062 302386 307787 1,79 303039 0,22 300877  -0,50 300301  -0,69
tai063 295239 296411 0,40 295705 0,16 293781  -0,49 294746  -0,17
tai064 278811 283647 1,73 283291 1,61 279040 0,08 280520 0,61
tai065 292757 299463 2,29 294944 0,75 293554 0,27 293529 0,26
tai066 290819 297639 2,35 291495 0,23 289502  -0,45 291328 0,18
tai067 300068 307786 2,57 302814 0,92 300934 0,29 302754 0,90
tai068 291859 295408 1,22 292362 0,17 290175  -0,58 289477  -0,82
tai069 307650 312164 1,47 309988 0,76 307174  -0,15 307874 0,07
tai070 301942 308223 2,08 303687 0,58 302161 0,07 300921  -0,34
Média 1,83 0,59 -0,10 -0,01
100x10

tai071 412700 425317 3,06 415571 0,70 413587 0,21 410052 -0,64
tai072 394562 404554 2,53 394619 0,01 396092 0,39 393033  -0,39
tai073 405878 416555 2,63 406606 0,18 406166 0,07 407103 0,30
tai074 422301 434956 3,00 424781 0,59 422966 0,16 422508 0,05
tai075 400175 410467 2,57 405725 1,39 401531 0,34 402891 0,68
tai076 391359 398699 1,88 393526 0,55 392833 0,38 391755 0,10
tai077 394179 405388 2,84 397054 0,73 393455  -0,18 398792 1,17
tai078 402025 415212 3,28 405845 0,95 402134 0,03 402541 0,13
tai079 416833 426680 2,36 420429 0,86 416521  -0,07 417296 0,11
tai080 410372 421285 2,66 414894 1,10 412277 0,46 411741 0,33
Média 2,68 0,71 0,18 0,18
100x20

tai081 562150 578291 2,87 568276 1,09 566299 0,74 563576 0,25
tai082 563923 576738 2,27 572882 1,59 567295 0,60 566027 0,37
tai083 562404 579826 3,10 570003 1,35 564884 0,44 565168 0,49
tai084 562918 582030 3,40 568895 1,06 566140 0,57 564664 0,31
tai085 556311 569888 2,44 560124 0,69 558504 0,39 557451 0,20
tai086 562253 582624 3,62 567371 0,91 565028 0,49 566607 0,77
tai087 574102 589156 2,62 575352 0,22 575047 0,16 574813 0,12
tai088 578119 595341 2,98 586900 1,52 581522 0,59 580907 0,48
tai089 564803 581740 3,00 570992 1,10 568157 0,59 565182 0,07
tai090 572798 585800 2,27 577125 0,76 575738 0,51 574652 0,32
Média 2,86 1,03 0,51 0,34
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Tabela 5.5 — Comparacio das varias etapas de melhoria do rAG para as classes com n = 200.

Instincias FV rAG-1 D (%) rAG-2 D (%) rAG-3 D (%) rAG-4 D (%)
200x10
tai091 1521201 1575895 3,60 1531594 0,68 1527482 0,41 1526609 0,36

tai092 1516009 1559616 2,88 1529300 0,88 1506553  -0,62 1512508  -0,23

tai093 1515535 1580957 4,32 1539853 1,60 1522691 0,47 1515614 0,01

tai094 1489457 1533010 2,92 1508382 1,27 1500234 0,72 1499035 0,64

tai095 1513281 1561600 3,19 1508947  -0,29 1510513  -0,18 1511402 -0,12

tai096 1508331 1547496 2,60 1514446 0,41 1508429 0,01 1513766 0,36

tai097 1541419 1593727 3,39 1553749 0,80 1538915  -0,16 1554570 0,85

tai098 1533397 1578312 293 1546345 0,84 1526500  -0,45 1526915  -042

tai099 1507422 1559530 3,46 1519648 0,81 1507978 0,04 1504755  -0,18

tail00 1520800 1573829 3,49 1534494 0,90 1517887 0,19 1525728 0,32

Média 3,28 0,79 0,00 0,16

200x20

tailOl 2012785 2104986 4,58 2041445 1,42 2032113 0,96 2032802 0,99

tail02 2057409 2143591 4,19 2081288 1,16 2055025 0,12 2070359 0,63

tail03 2050169 2128363 3,81 2072699 1,10 2053455 0,16 2057855 0,37

tail04 2040946 2128780 4,30 2075877 1,71 2048040 0,35 2053048 0,59

tail05 2027138 2112664 4,22 2062773 1,76 2041657 0,72 2047943 1,03

tail06 2046542 2132140 4,18 2064979 0,90 2059528 0,63 2057600 0,54

tail07 2045906 2149991 5,09 2072585 1,30 2061357 0,76 2063947 0,88

tail08 2044218 2130926 4,24 2070443 1,28 2061633 0,85 2055332 0,54

tail09 2037040 2129088 4,52 2050343 0,65 2038011 0,05 2042594 0,27

tail10 2046966 2132272 4,17 2077830 1,51 2066081 0,93 2066217 0,94

Média 4,33 1,28 0,53 0,68

Aproveitando os resultados do rAG-4 construiu-se a Tabela 5.6 para verificar se depois de
todos os processos de melhoria o rAG tinha se tornado tdo eficiente quanto a melhor

heuristica para o CPFSP com o critério de desempenho sendo o tempo total de fluxo.

Tabela 5.6 — Comparacao do rAG com a heuristica Pilot-10-Chins.

Desvio (%) Tempo (s)
Instancias

Pilot-10- Pilot-10-
(n) rAG DIFgeio rAG DIF ¢empo

Chins Chins
20 0,27 0,04 -0,23 0,8 0,08 0,80
50 0,85 0,14 -0,71 37,5 3,75 0,80
100 1,30 0,17 -1,13 879,0 10,00 0,09
200 0,57 0,42 -0,15 7.612,4 50,00 0,05
Média 0,75 0,19 -0,56 2.132,4 15,96 0,44
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A Tabela 5.6, dada acima, mostra o resumo dos resultados do rAG e a comparag@o com a
heuristica Pilot-10-Chins. Nesta tabela a coluna um mostra o nimero de tarefas das
instancias, cada linha representa a agregacdo dos problemas com 5, 10 e 20 maquinas, a
coluna dois mostra a média do desvio da heuristica Pilot-10-Chins em relacdo as melhores
solucdes encontradas por FV, a coluna trés mostra o desvio dos resultados do rAG em
relacdo a FV, a coluna quatro (DIFgesi,) mostra a diferenca entre os desvios do rAG e da
heuristica Pilo-10-Chins, a coluna cinco mostra os tempos de execugdo usados pela
heuristica Pilot-10-Chins, a coluna seis mostra os tempos de execucdo usados pelo rAG, a
coluna sete (DIFmp,) mostra a razdo entre o tempo de execugdo usado pela heuristica
Pilot-10-Chins e pelo rAG ja multiplicado por 8 que € a razao entre as velocidades dos dois

computadores (2.200/266).

Sobre a Tabela 5.6 descrevemos as seguintes observacdes.

a) Nas quatro classes de problemas o rAG foi superior a heuristica Pilot-10-Chins. Na
média o rAG foi 0,56 % superior a heuristica Pilot-10-Chins;

b) O tempo de execucdo do rAG para as quatro classes de problemas sempre foi
inferior ao utilizado pela heuristica Pilot-10-Chins. A média da razdo entre os
tempos usados pela heuristica Pilot-10-Chins e pelo rAG foi 0,44 o que significa
que o rAG foi mais rapido que a heuristica Pilot-10-Chins;

c) A menor razdo entre os tempos usados pela heuristica Pilot-10-Chins e pelo tAG
foi 0,05 e a maior razdo foi 0,30;

d) O melhor resultado do rAG em comparagdo com a heurista Pilot-10-Chins foi
-1,13% na classe com 100 tarefas; e

e) A menor diferenga entre o rAG em comparacio com a heuristica Pilot-10-Chins foi

-0,15% na classe com 200 tarefas.

Estes resultados demonstram que o rAG é mais eficiente e eficaz que a heuristica Pilot-10-
Chins, o que contradiz a opinido de alguns autores (Reeves e Rowe, 2002; Dréo et al.,
2006) que afirmam que um AG que é uma técnica de busca global ndo consegue ser
melhor que uma técnica que usa o conhecimento especifico do problema para guiar a busca

nas mesmas condic¢des de tempo de execugdo.
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5.2. Experimento 2 -rAG x FV

O objetivo deste segundo tipo de experimento € analisar a capacidade do rAG em obter
solugdes tdo boas ou melhores que as solugdes encontradas por Fink e Vo (2003) para o
CPFSP com o tempo total de fluxo como critério de desempenho. Os experimentos do FV
foram realizados num computador Pentium II (266 MHz). Entdo a razdo entre as
velocidades dos dois computadores utilizados nos experimentos é 2.200/266, ou seja, 8,27.
Por isso, os tempos de execug¢do do rAG foram adotados para serem menores que esta
razdo. Os problemas de testes utilizados foram as instincias de Taillard (1993). O resumo
dos resultados do rAG e a comparagdo com o FV sdo mostrados na Tabela 5.7. Na Tabela
5.7 a coluna um mostra as classes de problemas das instancias de Taillard (1993), a coluna
dois mostra os tempos usados pelo FV, a coluna trés mostra os tempos usados pelo rAG, a
coluna quatro mostra a razdo do tempo usado pelo rAG e pelo FV ja multiplicado por 8
que € a diferenca entre as velocidades dos computadores utilizados nos testes e a coluna

cinco mostra o desvio percentual do rAG em relacdo ao FV.

Como o CPFSP € o problema principal deste trabalho e as instincias de Taillard (1993) sdo
as mais utilizadas nas comparagdes entre os métodos propostos para os problemas da
classe FSP, decidiu-se fazer uma andlise mais profunda nos experimentos realizados. Para
isso, foram criados alguns indicadores que sdo definidos a seguir. Os resultados para os
testes com os 110 problemas de Taillard (1993) com os valores dos indicadores sdo

apresentados nas Tabelas 5.8 a 5.11.

a) FV :é o melhor resultado obtido por Fink e Vof3 (2003);

b) rAG* : € o melhor resultado obtido pelo rAG nas cinco execucdes de cada
problema;

c) rAGep : € o pior resultado obtido pelo rAG nas cinco execugdes de cada problema;

d) D (rAGp e rAG*) : € o desvio percentual entre o pior e o melhor resultado obtido
pelo rAG e calculado desta forma: ((rAG* - rAG,)/rAG*)x100;

e) Gr: € ototal de geracdes executadas na obtencdo de rAG¥*;

f) G¥* :¢é a geragdo na qual foi obtido o valor rAG¥*;

g) t¥*:¢€ otempo decorrido até obter rAG*; e
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h)

D (rAG* e FV) : € o desvio percentual entre o valor rAG* e o valor FV, calculado

desta forma: (FV — rAG*)/FV)x100.

A andlise da tabela 5.7 produz os seguintes resultados.

a)

b)

d)

Nas classes com 20 tarefas onde as solucdes de FV sdo étimas o tAG também
obteve todas as solucdes 6timas;

Nas instancias restantes o rAG foi sempre melhor que os resultados de FV. Na
média o rAG foi 0,34 % superior ao FV;

Os tempos de execucdo do rAG foram sempre inferiores aos tempos usados pelo
FV considerando a conversdo. A razdo entre os tempos de execu¢do do rAG e do
FV foi 0,18 o que significa que o rAG ¢é mais rdpido que o FV;

A menor razdo entre os tempos usados pelo rAG e o FV foi 0,006 o que significa
que o rAG foi 166 vezes mais rapido que o FV e a maior razdo foi 0,463 o que
significa que o rAG foi 2 vezes mais rapido que o FV;

O melhor resultado do rAG em comparacdo com o FV foi -1,13 % na classe
200x10; e

Quando o rAG foi melhor que o FV a menor diferenca foi -0,01 % na classe 50x20.

Estes resultados mostram claramente que o rAG é ao mesmo tempo mais eficaz e eficiente

que o FV. E mais eficaz porque obtem os melhores resultados e mais eficiente porque faz

iSso em menos tempo.
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Tabela 5.7 — Resumo da comparacio do rAG com o FV.

Instincia Tempo (s) Desvio (FV e
(nxm) FV rAG#* (rAG*/FV)x8 rAG¥) (%)
20x 5 1.000,80 0,75 0,006 0,00
20x 10 1.000,30 1,50 0,012 0,00
20 x 20 1.000,80 3,00 0,024 0,00
50x5 1.037,50 15,00 0,116 -0,14
50x 10 1.037,50 30,00 0,231 -0,11
50 x 20 1.037,50 60,00 0,463 -0,01
100 x 5 1.879,00 25,00 0,106 -0,53
100 x 10 1.879,00 50,00 0,213 -0,56
100 x 20 1.879,00 100,00 0,426 -0,46
200 x 10 8.612,40 150,00 0,139 -1,13
200 x 20 8.612,40 300,00 0,279 -0,82
Média 2.634,25 66,84 0,18 -0,34

A andlise das Tabelas 5.8 a 5.11 produz os seguintes resultados.

a)

b)

c)

d)

e)

Na Tabela 5.8 oito problemas das classes com 20 tarefas o rAG obteve a mesma
solugdo nas cinco execucdes (tai005, tai017, tai022, tai024, tai027, tai028, tai029 e
tai030), sendo que estas sdo as solucdes Otimas dos problemas. Também no
problema tai053 da classe 50x20 o rAG obteve a mesma solucdo nas cinco
execucdes, sendo que a solugdo é melhor que a solugdo de FV;

A maior diferenca entre a melhor solucéo encontrada pelo rAG e a pior solugao foi
de 2,66 % no problema tai006;

A menor média entre a diferenca da melhor e pior solu¢do encontrada pelo rAG foi
de 0,09 % para a classe 20x20;

A maior média entre a diferenga da melhor e pior solugdo encontrada pelo rAG foi
de 0,99 % para a classe 100x10;

Considerando apenas os 80 problemas que ndo tem solugdo 6tima definida que sdo
os problemas com 50, 100 e 200 tarefas o rAG obteve 69 solu¢des melhores que o
FV, 1 solucdo igual e 10 solucdes inferiores ao FV. Nove problemas que o FV foi
melhor sdo das classes com 50 tarefas e um da classe com 100 tarefas. Todos os
problemas das classes com 200 tarefas o rAG foi melhor que o FV. Isto mostra uma
tendéncia do rAG ser melhor quando o nimero de tarefas aumenta;

A melhor solu¢do mais rdpida obtida pelo rAG foi no problema tai008 com o tempo

de 0,02s em 29 geracoes;
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g) A maior diferenca entre os desvios percentuais do rAG e do FV favoravel ao rAG
foi de -1,68 % para o problema tai098;
h) A maior diferenca entre os desvios percentuais do rAG e do FV favoravel ao FV foi

de 0,22 % para o problema tai058;

A andlise dos resultados dos indicadores mostra a influéncia das cinco execugdes para cada
problema nos resultados do rAG. As cinco execugdes sdo justificadas pela natureza
aleatéria do AG. Mesmo se o tempo de execugdo fosse contado como o tempo das cinco
execucdes o rAG ainda estaria usando tempo de execucdo equivalente ao FV ja que
atualmente cada execucgdo usa em média 20% do tempo de FV e passaria a 100%. Mesmo
considerando este detalhe o rAG ainda é um método melhor que o FV porque consegue

obter solugdes melhores.
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Tabela 5.8 — Resultados da comparacao do rAG com o FV para a classe n = 20.

D (rAGpe D (rAG*e
Instancias FV rAG# rAGy rAG*) % Gy G* t*(s) FV) %
20x5
tai001 15674 15674 15754 0,51 1159 250 0,16 0,00
tai002 17250 17250 17393 0,82 1266 197 0,12 0,00
tai003 15821 15821 15886 0,41 1312 473 0,27 0,00
tai004 17970 17970 18026 0,31 1275 212 0,12 0,00
tai005 15317 15317 15317 0,00 1265 117 0,07 0,00
tai006 15501 15501 15924 2,66 1241 103 0,06 0,00
tai007 15693 15693 15789 0,61 1293 424 0,25 0,00
tai008 15955 15955 15968 0,08 1273 29 0,02 0,00
tai009 16385 16385 16489 0,63 1252 915 0,55 0,00
tai010 15329 15329 15486 1,01 1292 1192 0,69 0,00
Média 0,70 0,23 0,00
20x10
tai0l1 25205 25206 25292 0,34 2412 2252 1,40 0,00
tai012 26342 26342 26388 0,17 2460 1010 0,62 0,00
tai013 22910 22910 23043 0,58 2442 82 0,05 0,00
tai014 22243 22243 22314 0,32 2576 183 0,11 0,00
tai015 23150 23150 23269 0,51 2427 778 0,48 0,00
tai016 22011 22011 22185 0,78 2466 958 0,58 0,00
tai017 21939 21939 21939 0,00 2435 198 0,12 0,00
tai018 24158 24158 24205 0,19 2502 303 0,18 0,00
tai019 23501 23501 23651 0,63 2496 37 0,02 0,00
tai020 24597 24597 24715 0,48 2380 69 0,04 0,00
Média 0,40 0,36 0,00
20x20
tai021 38597 38597 38855 0,66 4970 1673 1,01 0,00
tai022 37571 37571 37571 0,00 4931 101 0,06 0,00
tai023 38312 38312 38337 0,07 4973 444 0,27 0,00
tai024 38802 38802 38802 0,00 5161 571 0,33 0,00
tai025 39012 39012 39038 0,07 5033 160 0,10 0,00
tai026 38562 38562 38612 0,13 4845 943 0,58 0,00
tai027 39663 39663 39663 0,00 5034 1919 1,14 0,00
tai028 37000 37000 37000 0,00 5034 3634 2,17 0,00
tai029 39228 39228 39228 0,00 4850 543 0,34 0,00
tai030 37931 37931 37931 0,00 4990 3883 2,33 0,00
Média 0,09 0,83 0,00
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Tabela 5.9 — Resultados da comparacao do rAG com o FV para a classe n = 50.

D (rAGp e D (rAG* e
Instancias FV rAG# rAGp, rAG*) % Gy G* t*(s) FV) %
50x5
tai031 76016 76148 76492 0,45 13078 2171 2,49 0,17
tai032 83403 83172 83566 0,47 12552 7851 9,38 -0,28
tai033 78282 78416 79621 1,51 13030 10776 12,41 0,17
tai034 82737 82483 83185 0,84 12876 11330 13,20 -0,31
tai035 83901 83514 84280 0,91 12568 7692 9,18 -0,46
tai036 80924 80763 81523 0,93 13061 7671 8,81 -0,20
tai037 78791 78669 78964 0,37 12979 9030 10,44 -0,15
tai038 79007 79046 79449 0,51 13068 9154 10,51 0,05
tai039 75842 75830 76502 0,88 13190 13101 14,90 -0,02
tai040 83829 83550 84710 1,37 13161 3755 4,28 -0,33
Média 0,82 9,56 -0,14
50x10
tai041 114398 114177 114731 0,48 26516 7777 8,80 -0,19
tai042 112725 112116 113429 1,16 25804 24534 28,52 -0,54
tai043 105433 105345 105854 0,48 26238 19988 22,85 -0,08
tai044 113540 113387 113733 0,30 25973 24568 28,38 -0,13
tai045 115441 115425 115781 0,31 26163 23082 26,47 -0,01
tai046 112645 112489 113343 0,75 25859 8631 10,01 -0,14
tai047 116560 116617 117272 0,56 25994 20307 23,44 0,05
tai048 115056 115097 116042 0,81 26110 16205 18,62 0,04
tai049 110482 110451 111184 0,66 24991 4856 5,83 -0,03
tai050 113462 113427 113792 0,32 26017 13813 15,93 -0,03
Média 0,58 18,88 -0,11
50x20
tai051 172845 172740 174301 0,90 53980 27555 30,63 -0,06
tai052 161092 160980 161517 0,33 53904 15726 17,50 -0,07
tai053 160213 160104 160104 0,00 53284 22133 24,92 -0,07
tai054 161557 161678 162382 0,43 53072 33605 37,99 0,07
tai055 167640 167081 167410 0,20 50458 18719 22,26 -0,33
tai056 161784 162027 162347 0,20 53452 28936 32,48 0,15
tai057 167233 167098 167658 0,33 54438 19991 22,03 -0,08
tai058 168100 168462 168828 0,22 53174 38976 43,98 0,22
tai059 165292 165292 167012 1,03 52896 50384 57,15 0,00
tai060 168386 168560 169643 0,64 54052 32681 36,28 0,10
Média 0,43 32,52 -0,01
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Tabela 5.10 — Resultados da comparacao do rAG com o FV para a classe n = 100.

D (rAGpe D (rAG* e
Instincias FV rAG* rAGp rAG*) % Gr G* t* (s) FV) %
100x5
tai061 308052 307329 309689 0,76 12290 11653 23,70 -0,23
tai062 302386 299602 301866 0,75 12129 8416 17,35 -0,92
tai063 295239 292693 294230 0,52 12310 10891 22,12 -0,86
tai064 278811 278860 281998 1,11 12327 10887 22,08 0,02
tai065 292757 291803 293955 0,73 12269 5569 11,35 -0,33
tai066 290819 288486 291211 0,94 12010 10986 22,87 -0,80
tai067 300068 299353 303267 1,29 12059 10729 22,24 -0,24
tai068 291859 289262 293328 1,39 12176 11058 22,70 -0,89
tai069 307650 306259 307417 0,38 12137 10201 21,01 -0,45
tai070 301942 300154 304206 1,33 12326 12162 24.67 -0,59
Média 0,92 21,01 -0,53
100x10
tai071 412700 410289 415227 1,19 24472 17599 35,96 -0,58
tai072 394562 392032 395106 0,78 24769 22584 45,59 -0,64
tai073 405878 403399 405472 0,51 24437 20542 42,03 -0,61
tai074 422301 419582 422681 0,73 24125 14239 29,51 -0,64
tai075 400175 399019 400056 0,26 24406 24096 49,36 -0,29
tai076 391359 389123 393616 1,14 24883 19959 40,11 -0,57
tai077 394179 393034 397527 1,13 24431 21610 44,23 -0,29
tai078 402025 398617 403488 1,21 24302 23752 48,87 -0,85
tai079 416833 414093 418748 1,11 24625 20556 41,74 -0,66
tai080 410372 408580 416365 1,87 24111 20787 43,11 -0,44
Média 0,99 42,05 -0,56
100x20
tai081 562150 559459 562639 0,57 50026 45144 90,24 -0,48
tai082 563923 563649 568368 0,83 49717 47577 95,70 -0,05
tai083 562404 560260 563821 0,63 49708 42297 85,09 -0,38
tai084 562918 561826 565257 0,61 48850 46424 95,03 -0,19
tai085 556311 552584 557465 0,88 49571 45582 91,95 -0,67
tai086 562253 560120 561869 0,31 48996 46362 94,62 -0,38
tai087 574102 570282 573831 0,62 48448 26977 55,68 -0,67
tai088 578119 575843 581755 1,02 49565 18913 38,16 -0,39
tai089 564803 562473 564726 0,40 49455 40550 81,99 -0,41
tai090 572798 567060 576671 1,67 48778 34967 71,69 -1,00
Média 0,75 80,02 -0,46
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Tabela 5.11 — Resultados da comparacao do rAG com o FV para a classe n = 200.

D (rAGpe D (rAG* e
Instancias FV rAG# rAGp rAG*) % Gr G* t*(s) FV) %
200x10
tai091 1521201 1508293 1517798 0,63 38587 34374 133,62 -0,85
tai092 1516009 1498266 1506730 0,56 38437 32743 127,78 -1,17
tai093 1515535 1500991 1510431 0,62 38577 36208 140,79 -0,96
tai094 1489457 1477786 1500640 1,52 38674 37874 146,90 -0,78
tai095 1513281 1490851 1505283 0,96 38662 38649 149,95 -1,48
tai096 1508331 1490569 1506499 1,06 38810 38704 149,59 -1,18
tai097 1541419 1524555 1548666 1,56 38475 38459 149,94 -1,09
tai098 1533397 1507573 1529827 1,45 38569 38042 147,95 -1,68
tai099 1507422 1487669 1504042 1,09 39122 38697 148,37 -1,31
tail00 1520800 1509447 1511636 0,14 38110 35964 141,55 -0,75
Média 0,96 143,64 -1,13
200x20
tailOl 2012785 1997368 2010384 0,65 78700 78579 299,54 -0,77
tail02 2057409 2023201 2061397 1,85 77835 70313 271,01 -1,66
tail03 2050169 2024717 2034127 0,46 78075 70630 271,39 -1,24
tail 04 2040946 2031515 2044056 0,61 77664 77020 297,51 -0,46
tail05 2027138 2020412 2031261 0,53 78554 64871 247,74 -0,33
tail06 2046542 2041153 2045448 0,21 78313 56412 216,10 -0,26
tail07 2045906 2025808 2043081 0,85 77732 77602 299,50 -0,98
tail 08 2044218 2031402 2046303 0,73 77283 76874 298,41 -0,63
tail09 2037040 2010645 2034183 1,16 77866 77846 299,92 -1,30
tail 10 2046966 2035128 2047852 0,62 77831 75553 291,22 -0,58
Média 0,77 279,24 -0,82
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5.3. Experimento 3 - rAG x GASA e TS-M

Este experimento tem como objetivo analisar o desempenho do rAG no CPFSP, sendo o
makespan o critério de desempenho, com os métodos de Grabowski e Pempera (2005), o
TS-M descrito na Se¢do 3.3.6, e com o algoritmo hibrido desenvolvido por Shuster e
Framinan (2003), GASA descrito na Se¢do 3.3.5. Os resultados do TS-M foram obtidos
num computador Pentium 1.000 MHz. Os resultados do GASA foram obtidos num
computador Athlon 1.400 MHz. Dai, os experimentos com o rAG utilizaram metade do

tempo utilizado pelo TS-M para tornar a comparagéo justa.

Estes dois métodos foram escolhidos para serem comparados com o rAG devido aos seus
testes terem sido realizados com as instincias de Reeves (1995) e Heller (1960). A Tabela
5.12 mostra os resultados do rAG e a comparacdo com o GASA, enquanto a Tabela 5.13
mostra a comparacio com o TS-M. Nas Tabelas 5.12 e 5.13 a coluna um mostra o nome
das instancias, a coluna dois mostra o nimero de tarefas e maquinas das instdncias, a
coluna trés mostra os resultados do GASA ou do TS-M, a coluna quatro mostra os tempos
usados pelo GASA ou pelo TS-M, a coluna cinco mostra os resultados do rAG, a coluna
seis mostra o tempo de execugdo usado pelo rAG, a coluna sete mostra a razdo entre o
tempo de execucdo do rAG e do GASA ou do TS-M multiplicado por dois, devido a
consideracdo do computador utilizado nos experimentos do rAG ser duas vezes mais
rapido do que os computadores utilizados pelos outros métodos, e a coluna oito mostra a

diferenca do desvio entre o tAG e 0 GASA ou o TS-M.

A andlise da Tabela 5.12 produz as seguintes observacdes:

a) Nos 23 problemas testados o rAG obteve melhor resultado em 21 problemas e em 2
problemas obteve resultado igual ao GASA. Na média o rAG foi 4,99 % superior
ao GASA;

b) O tempo de execugio do rAG para os 23 problemas sempre foi inferior ao utilizado
pelo GASA. A média da razdo entre os tempos usados pelo rAG e pelo GASA foi
0,014 o que significa que o TAG € mais rapido do que o0 GASA;
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¢) A menor razdo entre os tempos usados pelo rAG e o GASA foi de 0,003 o que
significa que o rAG foi 333 vezes mais rapido que o GASA e, a maior razdo foi
0,033 o que significa que o rAG foi 30 vezes mais rapido que o GASA;

d) O melhor resultado do rAG em comparacdo com o GASA foi -16,76% no problema
hell;

e) Quando o rAG foi melhor que 0 GASA a menor diferenga ficou em -0,07%, no
problema recO1; e

f) Os resultados do rAG tendem a serem melhores que o GASA quando o nimero de

tarefas e maquinas € grande.

Estes resultados mostram claramente que o rAG é ao mesmo tempo mais eficaz e eficiente
que o GASA, € mais eficaz porque obtém os melhores resultados e mais eficiente porque

faz isso em menos tempo.

Tabela 5.12 — Comparacio do rAG com o GASA.

Instancia nxm GASA*  tasa () rAG*  toac(s) (t ac/t gasa) X2 Desvio (%)

recOl 20x5 1527 6,00 1526 0,10 0,033 -0,07
rec03 20x5 1392 6,00 1361 0,10 0,033 -2,23
rec05 20x5 1524 7,00 1514 0,10 0,029 -0,66
rec07 20x10 2046 12,00 2043 0,10 0,017 -0,15
rec09 20x10 2045 11,00 2042 0,10 0,018 -0,15
recll 20x10 1881 10,00 1881 0,10 0,020 0,00
hel2 20x10 180 10,00 179 0,10 0,020 -0,56
recl3 20x15 2556 17,00 2545 0,15 0,018 -0,43
recl5 20x15 2529 17,00 2529 0,15 0,018 0,00
recl? 20x15 2590 16,00 2588 0,15 0,019 -0,08
recl9 30x10 2985 34,00 2850 0,20 0,012 -4,52
rec21 30x10 2948 35,00 2827 0,20 0,011 -4,10
rec23 30x10 2827 35,00 2703 0,20 0,011 -4,39
rec25 30x15 3732 55,00 3593 0,25 0,009 -3,72
rec27 30x15 3560 51,00 3431 0,25 0,010 -3,62
rec29 30x15 3440 54,00 3303 0,25 0,009 -3,98
rec31 50x10 4757 147,00 4343 0,55 0,007 -8,70
rec33 50x10 4998 145,00 4510 0,55 0,008 -9,76
rec35 50x10 4891 146,00 4420 0,55 0,008 -9,63
rec37 75x20 9508 907,00 8203 1,30 0,003 -13,73
rec39 75x20 9964 890,00 8554 1,30 0,003 -14,15
rec41 75x20 9978 904,00 8647 1,30 0,003 -13,34
hell 100x10 877 1088,00 730 1,95 0,004 -16,76
Média 200,13 0,43 0,014 -4,99
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Analisando os dados da Tabela 5.13 se descreve as seguintes observagdes:

a) Nos 23 problemas testados o rAG obteve melhor desempenho que o TS-M em 7
problemas, enquanto em 6 o desempenho foi idéntico e em 10 problemas o TS-M
foi melhor. Na média o rAG foi 0,22% inferior ao desempenho do TS-M;

b) O tempo de execugdo do rAG para os 23 problemas foi comparativamente 0 mesmo
usado pelo TS-M;

¢) O melhor resultado do rAG, em comparagdo com o TS-M, foi -0,52% no problema
recl9; e

d) O pior resultado do rAG em comparacdo com o TS-M foi 1,96%, no problema

hell.

Estes resultados mostram que o rAG ¢ inferior ao TS-M quando as condi¢des de tempo de
execucdo sdo equivalentes. Porém a diferenca € muito pequena de 0,22% e lembrando que

0 TS-M comeca de uma solugéo boa.

Tabela 5.13 — Comparacio do rAG com o TS-M.

Instincia nxm TS-M* t rs.m (S) rAG* to.ag(s) (taag/trsm)Xx2 Desvio (%)

recO1 20x5 1527 0,20 1526 0,10 1,00 -0,07
rec03 20x5 1361 0,20 1361 0,10 1,00 0,00
rec05 20x5 1512 0,20 1514 0,10 1,00 0,13
rec07 20x10 2042 0,20 2043 0,10 1,00 0,05
rec09 20x10 2043 0,20 2042 0,10 1,00 -0,05
recll 20x10 1881 0,20 1881 0,10 1,00 0,00
hel2 20x10 179 0,20 179 0,10 1,00 0,00
recl3 20x15 2545 0,30 2545 0,15 1,00 0,00
recl5 20x15 2529 0,30 2529 0,15 1,00 0,00
recl? 20x15 2587 0,30 2588 0,15 1,00 0,04
recl9 30x10 2865 0,40 2850 0,20 1,00 -0,52
rec21 30x10 2825 0,40 2827 0,20 1,00 0,07
rec23 30x10 2705 0,40 2703 0,20 1,00 -0,07
rec25 30x15 3593 0,50 3593 0,25 1,00 0,00
rec27 30x15 3432 0,50 3431 0,25 1,00 -0,03
rec29 30x15 3291 0,50 3303 0,25 1,00 0,36
rec31 50x10 4347 1,10 4343 0,55 1,00 -0,09
rec33 50x10 4469 1,10 4510 0,55 1,00 0,92
rec35 50x10 4427 1,10 4420 0,55 1,00 -0,16
rec37 75x20 8127 2,60 8203 1,30 1,00 0,94
rec39 75x20 8518 2,60 8554 1,30 1,00 0,42
rec4l 75x20 8543 2,60 8647 1,30 1,00 1,22
hell 100x10 716 3,90 730 1,95 1,00 1,96
Média 0,87 0,43 1,00 0,22
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5.4. Experimento 4 - rAG x TS-M

O quarto tipo de experimento tem o objetivo de analisar a capacidade do rAG obter
solugdes melhores do que o TS-M. Por isso, foram utilizados tempos de execugdo maiores
do que no experimento anterior. A Tabela 5.14 mostra os resultados do rAG e os compara
com o TS-M. Na Tabela 5.14 a coluna um mostra o nome das instancias, a coluna dois
mostra o nimero de tarefas e maquinas das instincias, a coluna trés mostra os resultados
do TS-M, a coluna quatro mostra os tempos usados pelo TS-M, a coluna cinco mostra os
resultados do rAG, a coluna seis mostra o tempo de execugdo usado pelo rAG, a coluna
sete mostra a razdo entre o tempo de execu¢do do rAG e do TS-M multiplicado por dois,
porque se considera o computador utilizado no experimento do rAG duas vezes mais
rdpido do que o computador utilizado pelo TS-M, e a coluna oito mostra o desvio

percentual entre o rAG e o TS-M.

Analisando as informagdes contidas na Tabela 5.14 tem-se que:

a) Nos 23 problemas testados o rAG obteve melhor resultado em 14 problemas,
enquanto em 9 problemas obteve resultado igual ao TS-M. Na média o rAG foi
0,16% superior ao TS-M;

b) O tempo de execucdo do rAG para os 23 problemas sempre foi superior ao
utilizado pelo TS-M. A média da razdo entre os tempos usados pelo rAG e pelo TS-
M foi 4,46 o que significa que o rAG foi mais lento que o TS-M;

c) A menor razdo entre os tempos usados pelo rAG e o TS-M foi 2,00 e a maior razio
foi 8,00;

d) O melhor resultado do rAG em comparagdo com o TS-M foi -0,71% no problema
rec39; e

e) Quando o rAG foi melhor que o TS-M a menor diferenga foi -0,05% no problema

rec09.

Estes resultados mostram que o rAG € mais eficaz que o TS-M, porque obteve as melhores

solugdes quando comparadas com as solucdes apresentadas pelo TS-M.
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Tabela 5.14 — Comparacio do rAG com o TS-M utilizando tempo maior de execucio.

Instincia nxm TS-M* t rs-m (S) rAG*  t.ag(s) (t.ag/trtsm) X2 Desvio (%)

recOl 20x5 1527 0,20 1526 0,20 2,00 -0,07
rec03 20x5 1361 0,20 1361 0,20 2,00 0,00
rec05 20x5 1512 0,20 1511 0,20 2,00 -0,07
rec07 20x10 2042 0,20 2042 0,20 2,00 0,00
rec09 20x10 2043 0,20 2042 0,20 2,00 -0,05
recll 20x10 1881 0,20 1881 0,20 2,00 0,00
hel2 20x10 179 0,20 179 0,20 2,00 0,00
recl3 20x15 2545 0,30 2545 0,50 3,33 0,00
reclS 20x15 2529 0,30 2529 0,50 3,33 0,00
recl? 20x15 2587 0,30 2587 0,50 3,33 0,00
recl9 30x10 2865 0,40 2850 1,50 7,50 -0,52
rec21 30x10 2825 0,40 2821 1,50 7,50 -0,14
rec23 30x10 2705 0,40 2700 1,50 7,50 -0,18
rec25 30x15 3593 0,50 3593 2,00 8,00 0,00
rec27 30x15 3432 0,50 3431 2,00 8,00 -0,03
rec29 30x15 3291 0,50 3291 2,00 8,00 0,00
rec31 50x10 4347 1,10 4320 2,00 3,64 -0,62
rec33 50x10 4469 1,10 4458 2,00 3,64 -0,25
rec35 50x10 44217 1,10 4409 2,00 3,64 -0,41
rec37 75x20 8127 2,60 8069 7,00 5,38 -0,71
rec39 75x20 8518 2,60 8501 7,00 5,38 -0,20
rec41 75x20 8543 2,60 8514 7,00 5,38 -0,34
hell 100x10 716 3,90 715 10,00 5,13 -0,14
Média 0,87 2,19 4,46 -0,16
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5.5. Experimento S - rAG x outros AG

Neste tipo de experimento o objetivo é analisar o desempenho do rAG em relacio a outros
AGs quando aplicado no PFSP com o makespan sendo o critério de desempenho. Os
resultados obtidos para a comparacdo foram retirados de Ruiz er al. (2006). Os
experimentos com os outros AG foram realizados num computador Pentium IV (2,8 GHz e
512 MB de RAM). Os tempos de execugdo utilizados nos experimentos possuem trés
niveis representados pelos valores de p, sdo fornecidos em milissegundos e calculados por
n*(m/2)*p, onde p = 30, 60 e 90. Considerou-se a velocidade do computador utilizado por
Ruiz et al. (2006) como sendo a mesma do usado pelo rAG. Os problemas de teste
utilizados foram as instancias de Taillard (1993). Os AGs usados na comparacio foram o
GAChen de Chen et al. (1995), o GAMIT de Murata et al. (1996), o GAReev de Reeves
(1995) e 0 GA_RMA de Ruiz et al. (2006), considerado o melhor AG sem hibridizacdo
encontrado na literatura. Estes AGs estdo descritos na Secao 2.5 sendo que o quinto AG € o
GA_AA de Aldowaisan e Allahverdi (2003), descrito na Secdo 3.3.3 que foi desenvolvido
para o CPFSP, mas que Ruiz et al. (2006) adaptaram para o PFSP.

A Tabela 5.15 mostra os tempos de execugdo para as 12 classes de problemas e os trés
valores de p utilizado. As Tabelas 5.16 a 5.18 mostram o resumo dos resultados do rAG e a
comparagdo com os outros AGs. Nestas tabelas, a coluna um mostra a classe da instancia, a
coluna dois mostra o desvio do rAG em relacdo as melhores solu¢cdes encontradas nos
problemas de Taillard (1993), as colunas seguintes mostram o desvio das solu¢des dos

outros AGs e as diferencas dos seus desvios em relagdo ao desvio do rAG.
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Tabela 5.15 — Tempos de execucio utilizados nos testes com os outros AGs.

Instancias p=30 p =60 p=90

t(s) t(s) t(s)
20x5 1,50 3,00 4,50
20x 10 3,00 6,00 9,00
20 x 20 6,00 12,00 18,00
50x5 3,75 7,50 11,25
50x 10 7,50 15,00 22,50
50 x 20 15,00 30,00 45,00
100x 5 7,50 15,00 22,50
100 x 10 15,00 30,00 45,00
100 x 20 30,00 60,00 90,00
200 x 10 30,00 60,00 90,00
200 x 20 60,00 120,00 180,00
500 x 20 150,00 300,00 450,00

Analisando as Tabelas 5.16 a 5.18 tem-se que:

a)

b)

c)

d)

e)

No primeiro nivel de tempo de execucdo (p= 30) o rAG foi superior ao GAChen, ao
GAMIT e ao GA_AA e inferior ao GAReev e ao GA_RMA;

Nos segundo (p= 60) e terceiro (p= 90) niveis de tempo de execucdo o rAG so6 foi
inferior ao GA_RMA;

O rAG em relagdo ao GAMIT s6 foi inferior na classe 100x5 em todos os niveis de
tempo de execugdo;

O rAG em relagdo ao GA_AA s6 foi inferior na classe 100x5 em todos os niveis de
tempo de execugdo e na classe 500x20 nos dois primeiros niveis de tempo de
execugdo;

O rAG em relag@o ao GAReev foi superior nas classes 20x5, 20x10, 20x20 e 50x10
em todos os niveis de tempo de execugdo e na classe 50x5 no segundo nivel de
tempo de execucdo. Os resultados do rAG em relacdo ao GAReev sdo no segundo e
terceiro niveis de tempo de execucdo tdo melhores nas primeiras classes de
problemas que fazem na média o rAG ser superior;

O rAG em relacao ao GA_RMA foi superior nas classes 20x5, 20x10 e 20x20 em
todos os niveis de tempo de execucdo e na classe 50x10 no segundo e terceiro
niveis de tempo de execugdo. Diferente do GAReev estes resultados ndo sdo
suficientes para fazer o rAG ser superior ao GA_RMA em qualquer um dos niveis

de tempo de execugio; e
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g) Em comparagido com os outros AGs o rAG tende a ser melhor quando o ndmero de

tarefas e maquinas é pequeno.

Estes resultados mostram que o rAG mesmo sem inicializacdo eficiente e hibridizacdo
consegue ser competitivo em relagdo aos outros AGs, sendo as vezes até melhor. Como ja
mencionado o GA_RMA ¢é o melhor AG encontrado na literatura € mesmo assim o rAG
em algumas instancias conseguiu superd-lo. A média da diferenca entre o rAG e o
GA_RMA no terceiro nivel de tempo de execucdo foi de 0,29%. Esté diferenga mostra que

o rAG consegue ser competitivo em relacdo ao melhor AG encontrado na literatura.
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Tabela 5.16 — Resultados dos experimentos com p = 30.

Instiancia Difer Difer Difer Difer Difer
(n x m) rAG GAChen YAG (%) GAMIT TAG (%) GA_AA TAG (%) GAReey TAG (%) GA RMA TG (%)
20x5 0,06 3,65 3,59 0,84 20,78 0,94 0,88 0,54 0,48 0,24 20,18
20x 10 033 5,00 467 1,96 21,63 1,70 137 178 145 0,62 20,29
20 x 20 0.18 3,90 372 1,66 148 131 113 1,39 121 0,37 20,19
50x5 0.22 1,89 167 0,30 20,08 0,37 0,15 0.17 0,05 0,06 0.16
50x 10 1,90 6,37 447 3,50 1,60 3,60 1,70 223 2033 1,79 0.11
50 x 20 431 7,88 3,57 5,07 20,76 4,66 2035 3,74 057 2,67 1,64
100x5 0.35 1,34 20,99 0,25 0,10 0,26 0,09 0,14 021 0,07 0,28
100 x 10 1.28 3.90 2,62 1,54 20,26 1,65 20,37 0,82 0.46 0,65 0,63
100 x 20 4,30 8,06 376 4,99 20,69 492 20,62 336 0.94 278 152
200 x 10 0.98 2.80 182 1,14 20,16 1,08 20,10 0,59 0.39 0,43 0,55
200 x 20 3.87 6,94 3,07 4,19 20,32 3,95 20,08 271 116 235 152
500 x 20 2.60 479 2,19 2,68 20,08 2,06 0,54 1,47 113 143 117
Média 1,70 471 23,01 2,34 -0,65 221 -0,51 1,58 0,12 1,12 0,58

Tabela 5.17 — Resultados dos experimentos com p = 60.

Instiancia Difer Difer Difer Difer Difer
(nxm) rAG GAChen TAG (%) GAMIT TAG (%) GA AA TAG (%) GAReey TG (%) GA RMA TG (%)
20x5 0.04 4,02 3,98 0,74 20,70 0,80 20,76 0,51 0,47 0,23 0,19
20x 10 0,08 5,14 25,06 172 1,64 141 133 1,67 1,59 0,60 20,52
20 x 20 0,08 3,93 3,85 1,66 1,58 137 1,29 1,41 133 0,34 0,26
50x5 0,16 2,02 -1,86 0,26 -0,10 0,37 0,21 0,20 20,04 0,06 0,10
50x 10 132 6,83 5,51 3,20 1,88 335 2,03 2,26 20,94 1,86 20,54
50 x 20 411 7,08 3,87 4,88 -0,77 452 20,41 3,71 0,40 2,62 1,49
100 x 5 0,36 144 -1,08 0,25 011 0,24 0,12 0,12 0,24 0,08 0,28
100 x 10 0,89 3,78 2,89 1,46 20,57 1,61 0,72 0,74 0,15 0,62 0,27
100 x 20 3,89 8,18 429 477 20,88 473 20,84 325 0,64 2,68 121
200 x 10 0,88 2,75 21,87 1,04 20,16 1,10 20,22 0,50 0,38 0,41 0,47
200 x 20 3,39 7,24 3,85 414 20,75 4,02 20,63 2,65 074 222 1,17
500 x 20 2.19 479 2,60 2,48 20,29 1,98 021 1,38 0,81 1,40 0,79
Média 1,45 4,84 -3,39 2,22 -0,77 2,13 -0,68 1,53 -0,08 1,09 0,36
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Tabela 5.18 — Resultados dos experimentos com p = 90.

Instiancia Difer Difer Difer Difer Difer
(nx m) rAG GAChen rAG (%) GAMIT rAG (%) GA_AA 1AG (%) GAReev TAG (%) GA_RMA rAG (%)
20x5 0,10 3,51 -341 0,53 -0,43 0,84 -0,74 0,62 -0,52 0,25 -0,15
20 x 10 0,12 4,99 -4,87 1,61 -1,49 1,42 -1,30 1,71 -1,59 0,64 -0,52
20 x 20 0,04 4,24 -4,20 1,36 -1,32 1,23 -1,19 1,31 -1,27 0,40 -0,36
50x5 0,17 2,34 -2,17 0,23 -0,06 0,34 -0,17 0,16 0,01 0,06 0,11
50 x10 1,21 6,92 -5,71 3,27 -2,06 3,30 -2,09 2,00 -0,79 1,46 -0,25
50 x 20 3,67 7,77 -4,10 4,75 -1,08 4,69 -1,02 3,58 0,09 2,47 1,20
100 x 5 0,30 1,36 -1,06 0,22 0,08 0,22 0,08 0,11 0,19 0,06 0,24
100 x 10 0,84 3,87 -3,03 1,34 -0,50 1,55 -0,71 0,67 0,17 0,52 0,32
100 x 20 3,58 8,11 -4,53 4,68 -1,10 4,64 -1,06 3,12 0,46 2,54 1,04
200 x 10 0,72 2,81 -2,09 0,98 -0,26 0,99 -0,27 0,41 0,31 0,41 0,31
200 x 20 3,00 7,37 -4,37 3,95 -0,95 3,86 -0,86 2,54 0,46 2,11 0,89
500 x 20 2,00 4,62 -2,62 2,36 -0,36 2,08 -0,08 1,33 0,67 1,36 0,64
Média 1,31 4,83 -3,51 2,11 -0,79 2,10 -0,78 1,46 -0,15 1,02 0,29




5.6. Evolucao das Solucées do rAG

Esta secdo tem o objetivo de analisar a evolucdo das solugdes obtidas pelo rAG nos
problemas testados nos experimentos anteriores. Para isso é comparada a melhor solucio
obtida na populacdo inicial com a soluc¢ao final. A Tabela 5.19 mostra a média dos desvios
entre a melhor solucdo obtida na populagéo inicial e a solugdo final, do segundo tipo de
experimento que foi realizado para o CPFSP, com o tempo total de fluxo como critério de
desempenho. A Tabela 5.20 mostra a média dos desvios entre a melhor solu¢io obtida na
populacdo inicial e a solucdo final, do quarto tipo de experimento que foi realizado para o
CPFSP, como makespan sendo o critério de desempenho. A Tabela 5.21 mostra a média
dos desvios entre a melhor solug@o obtida na populagéo inicial e a solugéo final, do quinto
tipo de experimento no terceiro nivel de tempo de execugdo que foi realizado para o PFSP,

com makespan como critério de desempenho.

Para mostrar a evolucdo das solugdes foram construidos graficos que mostram a melhoria
do desvio em relacdo ao numero de geracdes. Foram escolhidas quatro instancias de cada
um dos trés problemas avaliados. As Figuras 5.1 a 5.4 sdo referentes ao CPFSP, com o
tempo total de fluxo como critério de desempenho. As Figuras 5.5 a 5.8 sdo referentes ao
CPFSP, com o makespan como critério de desempenho. As Figuras 5.9 a 5.12 sdo

referentes ao PFSP, com o makespan como critério de desempenho.

Desses experimentos foram observados que:

a) O rAG consegue melhorar bastante a qualidade da solucdo inicial. Deve-se levar
em conta neste resultado que é mais facil melhorar uma solu¢do ruim que uma
solucdo boa; e

b) Para os dois problemas CPFSP as melhores médias obtidas a partir da solugdo
inicial foram 31,31% e 27,98%, respectivamente, maiores que a melhoria média
obtida no PFSP que foi de 12,98%. Isto pode indicar uma caracteristica diferente do

espaco de solucdes destes dois problemas.
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As Figuras 5.1 a 5.12 mostram a evolugdo do desempenho do método a partir da solucdo
inicial, mesmo quando o nimero de solugdes ja € bastante grande. Isto demonstra que o
rAG consegue aproveitar todo o tempo de execucdo em prol da melhoria das solucdes, ao

invés de ficar em estado de estagnacdo.

Tabela 5.19 — Evolucao das solu¢des do CPFSP com o tempo total de fluxo como critério de

desempenho.

Instancias (n x m) D (rAG;,; e rAG*) (%)

20x5 -20,55
20x 10 -19,43
20x 20 -18,00
50x5 -31,95
50x 10 -32,14
50x20 -30,68
100x 5 -37,07
100 x 10 -36,95
100 x 20 -36,51
200 x 10 -40,45
200 x 20 -40,71
Média -31,31

Tabela 5.20 — Evolucao das solu¢cées do CPFSP com o makespan como critério de desempenho.

Instancias nxm D (rAG;, e rAG*) (%)
recO1 20x5 -23,47
rec03 20x5 -28,33
rec05 20x5 -16,89
rec07 20x10 -24,03
rec09 20x10 -18,39
recll 20x10 -23,35
hel2 20x10 -23,18
recl3 20x15 -26,38
recl5 20x15 -22,38
recl7 20x15 -21,39
recl9 30x10 -28,96
rec21 30x10 -27,91
rec23 30x10 -28,55
rec25 30x15 -29,09
rec27 30x15 -27,29
rec29 30x15 -32,89
rec31 50x10 -31,29
rec33 50x10 -32,82
rec35 50x10 -34,76
rec37 75x20 -35,32
rec39 75x20 -36,00
rec41 75x20 -35,08
hell 100x10 -35,82
Média -27,98
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Tabela 5.21 - Evolucao das solucoes do PFSP com o makespan como critério de desempenho.

Instancias (n x m) D (rAG;, e rAG*) (%)

20x5 -12,10
20x 10 -14,79
20x 20 -12,69
50x5 -8,74
50x 10 -15,46
50x20 -15,81
100x 5 -6,87
100 x 10 -12,71
100 x 20 -14,65
200 x 10 -9,92
200 x 20 -13,31
500 x 20 -10,34
Média -12,28
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Figura 5.6 — Evolucio das solucoes do rAG para o problema rec31 (50x10).
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Figura 5.9 — Evolucao das solu¢des do rAG para o problema tai021 (20x20).
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5.7. Interpolacao

Uma dificuldade de usar o rAG numa situagdo real € aquela em que o tempo de execucdo é
um dado de entrada e a qualidade da soluc¢do € um dado de saida. Em termos praticos isso
s6 € conhecido depois de decorrido o tempo de execugdo, quando a intengdo seria obter a
qualidade da solucdo com base no dado de entrada, sendo o tempo de execucdo. Para
ajudar a enfrentar esta dificuldade foi construido um conjunto de fungdes para calcular o
tempo de execucdo do rAG para o PFSP, a partir do nimero de tarefas, do niimero de
mdaquinas e da qualidade desejada da solucdo. A interpolagdo polinomial foi a técnica
usada para construir este conjunto de funcdes. A interpolacdo é usada quando ndo se
conhece a expressdo que define a funcdo, mas sé alguns valores da fungdo que em geral

sao obtidos por experimentos previamente estabelecidos.

Segundo Claudio e Marins (1994) o problema de interpolagio pode ser definido da
seguinte forma: fornecido um conjunto de dados (x;, y;), i = 1, 2, ...n, correspondentes aos
valores de argumentos e valores de uma funcgdo f, tal que y = f (x), deseja-se obter os
valores f (x), X" # X;, utilizando os pontos dados. Assim, o objetivo da interpolagdo é obter
o valor de f (x’) aproximadamente. Para isso é construido, a partir do conjunto de dados,

uma nova funcdo F que interpola a funcio f, tal que:

YV Xi, X0 <Xi <Xn;  F(xi) =1 (X)) 5.1

Y X € [Xg, Xnl; Fx) = f (x)) 5.2

Para construir o conjunto de fun¢des F(x;) foi escolhida a interpolag@o pelos polindmios de

Lagrange. Dados n+1 pontos o polindmio de interpolacdo de Lagrange é dado pela

Equacio 5.3.
Po=> aiLi(x), 53
i=0
I X-Xi
onde: Lk (x)= 5.4
k( ) i:IO’_kI;tiXk'Xi
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A priori foi escolhido construir polindmios do segundo grau, onde sdo necessarios trés
valores de x e f (x) para construir cada um dos polindmios. Estes valores sdo retirados dos
resultados obtidos pelo rAG segundo os dados das Tabelas 5.16 a 5.18 onde sdo
apresentados trés valores obtidos para cada uma das 12 classes das instincias de Taillard
(1993). Na Tabela 5.22 a coluna um mostra o nimero de conjuntos de valores de x e f (x),
a coluna dois mostra o nimero de tarefas, a coluna trés mostra o nimero de maquinas, as
colunas quatro a seis mostram os pontos x e f (x), onde x é o desvio e f (x) € o tempo de

execucdo utilizado.

A Tabela 5.23 mostra os 12 polindmios construidos com os valores da Tabela 5.22. Na
Tabela 5.23 a coluna um mostra o ndmero do polindmio do segundo grau, a coluna dois
mostra o intervalo de tarefas para o polindmio, a coluna trés mostra o intervalo de
mdaquinas para o polindmio, a coluna quatro mostra o intervalo de desvios para o

polinémio e a coluna cinco mostra o polindmio do segundo grau.

A partir dos 12 polindmios do segundo grau mostrados na Tabela 5.23 € possivel calcular o
tempo de execucdo aproximado necessario para o TAG obter qualquer valor de qualidade
de solucdo mostrado no intervalo. Podem-se calcular tempos de execugéo para problemas a

partir de 1 tarefa e até 500 tarefas, processados em 1 maquina ou até 20 maquinas.

Para exemplificar a utilizacdo dos polindmios, considere um problema com 18 maquinas e

25 tarefas para seqiienciar, o procedimento seria o seguinte:

1. Qual o intervalo de tarefas: 20 < n < 50;
ii.  Qual o intervalo de médquinas: 10 < m < 20;
iii.  Verifica-se na Tabela 5.22 qual é o polindmio que corresponde a esses dois
intervalos: polindmio de nimero 6;
iv.  Escolhe-se um desvio dentro do intervalo correspondente: por exemplo, 4%;
v.  Aplica-se x= 4 no polindmio de nimero 6: —63,920)((4)2 +463,210x(4) — 794,043 =
36,077; ¢
vi. O Resultado € interpretado da seguinte forma: para um desvio de 4% s@o

necessarios 36,077 segundos de tempo de execugdo do rAG.
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Tabela 5.22 — Valores usados para construir os polindmios do segundo grau.

N° n m P1 (x, f(x)) P2 (x, f(x)) P3 (x, f(x))
1 20 5 (0,06% ; 1,5s) (0,04% ; 3,0s) (0,10% ; 4,5s)
2 20 10 (0,33% ; 3,0s) (0,08% ; 6,0s) (0,12% ; 9,0s)
3 20 20 (0,18% ; 6,0s) (0,08% ; 12,0s) (0,04% ; 18,0s)
4 50 5 (0,22% ; 3,75s) (0,16% ; 7,5s) (0,17% ; 11,25s)
5 50 10 (1,90% ; 7,5s) (1,32% ; 15,0s) (1,21% ; 22,5s)
6 50 20 (4,31% ; 15,0s) (4,11% ; 30,0s) (3,67% ; 45,0s)
7 100 5 (0,35% ; 7,5s) (0,36% ; 15,0s) (0,30% ; 22,5s)
8 100 10 (1,28% ; 15,0s) (0,89% ; 30,0s) (0,84% ; 45,0s)
9 100 20 (4,30% ; 30,0s) (3,89% ; 60,0s) (3,58% ; 90,0s)
10 200 10 (0,98% ; 30,0s) (0,88% ; 60,0s) (0,72% ; 90,0s)
11 200 20 (3.87% ; 60,0s) (3,39% ; 120,0s) (3,00% ; 180,0s)
12 500 20 (2,60% ; 150,0s) (2,19% ; 300,0s) (2,00% ; 450,0s)
Tabela 5.23 — Polinomios do segundo grau para o problema PFSP.
N° n m X Polindmio
1 1<n<20 1<m<5 (0,04%; 0,10%) 2.500x” - 325x + 12
2 1<n<20 5<m<10 (0,08%; 0,33%) -414,286x” + 157,857x — 3,977
3 1<n<20 10<m<20 (0,04%; 0,18%) 642,857x" — 227,143x + 26,057
4 20<n<50 1<m<5 (0,16%:; 0,22%) -8.750x" + 3.262,5x — 290,5
5 20<n<50 5<m<10 (1,21%; 1,90%) 80,074x” — 270,768x + 232,894
6 20<n<50 10<m<20 (3,67%; 4,31%) -63,920x” + 463,210x - 794,043
7 50 <n <100 1<m<5 (0,30%; 0,36%) 17.500x” — 11.675x + 1.950
8 50 <n <100 5<m<10 (0,84%; 1,28%) 594,406x" — 1.328,322x + 741,378
9 50 <n <100 10<m<20 (3,58%; 4,30%) 32,783x” — 341,660x + 892,988
10 100 <n <200 1<m<10 (0,72%; 0,98%) -432,692x” + 504,808x — 49,154
11 100<n<200 10<m<20 (3,00%; 3,87%) 33,156x" — 365,716x + 978,740
12 200 <n <500 1<m<20 (2,00%; 2,60%) 706,033x" — 3.747,754x — 5.121,374
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5.8. Aplicacao Pratica

Silva (1996) desenvolveu um algoritmo para resolver o modelo matematico linear inteiro
misto do PFSP. Silva (1996) aplicou este algoritmo num PFSP real de uma inddstria téxtil
do estado do Ceard. Os dados levantados por Silva (1996) foram da producdo de fios do

més de novembro de 1991.

De acordo com Silva (1996) as principais informa¢des do problema pratico sao:

a) Tipos de fios a serem produzidos: AP30/1M, AP40/1T, AP40/1M, AP57/1,
LAP20/1, LAP24/1, LAP30/1, LAP40/1, LPP43/1 e LCY43/1; ¢

b) Tipos e quantidades de maquinas a serem utilizadas na produgdo dos fios: Carda de
algodao (18), Carda de poliéster (1), Pré-passador (1), Penteadeira (36), Passadorl
(12), Passador2 (12), Magarroqueira (8), Filatorio (58) e Conicaleira (8).

Dessas informagdes Silva (1996) definiu os dados de entrada do problema:

a) Tarefas: a quantidade em ton/més de cada tipo de fio que tem que ser produzido;
b) Madquinas: a quantidade de tipos de mdquinas disponiveis para a producdo de fio e
que no total s30 9. A Figura 5.13 apresenta a descricao dos 9 tipos de maquinas; e

¢) Matriz Pj;: calculada de acordo com a Equacdo 5.5 com seu valor dado em horas.
P;=(MN;x8x30)/TME;, Vi=1,2,..,9¢j=1,2,.., 10 55
Onde:

MN;: € a quantidade de maquinas necessdria diariamente por turno para cada

tipo de fio j; e

TME;: é a quantidade de maquinas existentes de cada tipo i.
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Figura 5.13 — Descri¢io das maquinas do problema pratico. Fonte: Silva (1996).

A tabela 5.24 apresenta todos os valores de P;; calculados a partir da Equagdo 5.6.

Tabela 5.24 — Tempos de execucao em horas das tarefas do problema real. Fonte: Silva (1996).

Maq. Tarefas

AP30/1  AP40/ AP40/ AP57/1 LAP20/ LAP LAP LAP40/ LPP43/ LCY43

M 1T 1M 1 24/1 30/1 1 1 1
M1 127.44 10.35 22.44 25.08 1.70 0.70 1.25 4.19 0.00 4.15
M2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  229.68 0.00
M3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 47.76 0.00
M4 53.12 4.31 9.35 9.95 0.72 0.29 0.54 1.80 0.00 1.69
M5 34.24 2.78 6.02 10.36 0.70 0.28 0.52 1.72 3.96 1.62
M6 36.14 2.94 6.36 10.30 0.68 0.28 0.52 1.72 3.96 1.62
M7 111.15 13.53 29.34 42.24 1.20 0.48 2.10 7.05 9.18 6.63
M8 95.43 15.50 29.90 53.88 0.87 041 1.10 7.40 15.39 16.19
M9 112.86 10.86 2547 45.87 1.32 0.60 1.29 5.07 14.19 17.04
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O problema era formado por 10 tarefas e 9 maquinas. O niimero de solucdes possiveis para
este problema (n= 10) é 10! = 3.628.800. Silva (1996) encontrou a solugcdo 6tima que é

igual a 654 horas.

Usou-se um dos polindmios do segundo grau, construidos na Secdo 5.7 para calcular o
tempo de execucdo do rAG para resolver o problema apresentado em Silva (1996). Foi
usado o segundo polindmio da Tabela 5.23 dado que n=10 e m=9. O polindmio ¢é definido
no intervalo (0,08%; 0,33%). Foi escolhido para o valor do desvio 0,10%, i.e., x=0,10.

Com isso o tempo de execugdo calculado foi de 11,39 segundos, mostrado na Equacao 5.6.

F (0,10%) = - 414,286 x (0,10)* + 157,857 x (0,10) — 3,977 = 11,39 5.6

A Tabela 5.25 mostra os resultados obtidos pelo rAG nas cinco execugdes realizadas.
Nesta tabela mostra que o rAG obteve a solucdo 6tima do problema que é 653,95h em
todas as cinco execucdes, a diferenca em relacdo a solugcdo de Silva (1996) deve-se ao
arredondamento. A seqiiéncia de tarefas obtidas na primeira execugdofoi7 8 10 4 3 2 1
6 9 5 e estd ilustrada na Figura 5.14. A melhor soluc¢do da populagdo inicial obtida pelo
rAG na primeira execucdo foi 654,05h e ja na primeira geracdo o rAG obteve a solucio

otima de 653,95 horas, ou seja, uma melhoria de 0,015%.

Tabela 5.25 — Resultados obtidos pelo rAG para o problema real.

N° da execucdo N’ de geracoes Tempo (s) Solucao
1 41.541 11,391 653,95
2 41.578 11,390 653,95
3 41.547 11,391 653,95
4 41.430 11,391 653,95
5 41.572 11,390 653,95
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Figura 5.14 — Grafico de Gantt para a soluciao do problema pratico encontrada pelo rAG.
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5.9. Conclusao dos Experimentos Computacionais

A comparagdo dos resultados do rAG com os resultados da heuristica Pilot-10-Chins de
Fink e Vop (2003) para o CPFSP com o tempo total de fluxo como critério de desempenho
demonstrou que o rAG foi 0,56% melhor, caso raro quando as condi¢cdes de tempo de
execucdo sdo equivalentes, porque normalmente as heuristicas sdo mais rdpidas que o AG
porque usam o conhecimento do problema para construir as suas solugdes, enquanto o AG
trabalha apenas sobre as estruturas da populagcdo, sem nenhuma hipétese definida a priori
sobre o problema. Neste caso niao seria vantajoso usar a heuristica Pilot-10-Chins para
gerar a populacdo inicial do rAG. Este resultado também serve como uma sugestao pratica:
antes de usar uma heuristica para gerar a populacdo inicial de um AG, comparar o
desempenho do AG com a populagdo inicial gerada aleatoriamente e com a populagcio
gerada pela heuristica escolhida. Usar a populacdo inicial aleatéria neste trabalho foi uma
forma de melhorar a eficiéncia do AG sem depender de uma boa heuristica para gerar a

populacao inicial.

O rAG foi 0,34% melhor que o Tabu Search com solugdo inicial obtida pela heuristica
Pilot-10-Chins que é o melhor método de Fink e Vof (2003) para o CPFSP como tempo
total de fluxo como critério de desempenho. O rAG usou 20% do tempo de execugdo que
Fink e Vop (2003) usaram. Este resultado reforca a qualidade do rAG porque a
comparagdo foi com um método que além de usar uma solugdo inicial boa s6 trabalha com

uma solugdo de cada vez e, por isso, normalmente deveria ser mais rapido que um AG.
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A tnica comparagdo possivel entre o TAG e outro AG para o CPFSP € com o GASA,
desenvolvido por Shuster e Framinan (2003). O rAG foi 4,99% melhor que o GASA,
utilizando apenas 1,4% do tempo de execugdo utilizado pelo GASA. Este resultado mostra
a diferenca de qualidade entre os projetos dos dois AGs, sem esquecer que o GASA usa
uma etapa de hibridizagdo com a metaheuristica Simulated Annealing, isto mostra que
quando o projeto do AG ndo consegue aproveitar as suas qualidades tedricas uma etapa de

hibridiza¢do ndo torna o desempenho do AG satisfatorio.

No primeiro experimento do rAG comparado ao Tabu Search com multimovimento (TS-
M) de Grabowski e Pempera (2005) para o CPFSP com o makespan como critério de
desempenho, o rAG foi 0,22% inferior. Mesmo sendo uma diferenca pequena este
resultado mostra que realmente € dificil para um AG superar um método de busca em
vizinhanga. Mas este resultado também serve para mostrar que o AG pode ficar muito

préximo a estes métodos, o que o resultado do GASA ndo mostrava.

Foram realizados mais experimentos com o tAG para o CPFSP com o makespan como
critério de desempenho e dessa vez foram utilizados tempos de execugdo maiores. Nesta
condicdo o rAG foi 0,16% melhor que o TS-M, utilizando 4,46 vezes mais tempo de
execucdo. Este resultado mostra que o rAG consegue obter solugdes cada vez melhores
quando mais tempo de execucdo ¢ utilizado, ao invés da busca tornar-se ineficaz por causa

da convergéncia prematura.

Como o rAG obteve bons resultados para o CPFSP decidiu-se compara-lo com outros bons
AG para saber qual a sua situacdo em relagdo a eles. Existem muitos bons AGs para
problemas permutacionais aplicados ao PFSP, por isso, foi necessdrio fazer experimentos
com este problema. Isto demonstra a caracteristica generalista do AG, porque com uma
pequena modificacdo foi possivel testar o rAG em outro problema. Os experimentos foram

realizados em tré€s niveis de tempo de execucao.

O rAG foi melhor que 0 GAChen de Chen et al. (1995) em todos os trés niveis de tempo
de execucdo. O melhor desempenho comparativo do rAG em relagdo a outro AG foi de -
3,51% com o GAChen no terceiro nivel de tempo de execugdo, a suposi¢do para esta

z

diferenca € a utilizacdo pelo GAChen das heuristicas CDS (Campbell et al., 1970) e
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Dannembing (Dannembring, 1977) para gerar a populacio inicial, que encontram solugdes
inferiores a heuristica NEH de Nawaz et al. (1983) que € usada por outros dois AGs e nio
usar hibridizacdo que € utilizada por outros dois AGs. Este resultado mostra a dependéncia
que um AG pode ter da heuristica que gera a populagdo inicial ou de uma etapa de

hibridizacdo e que o rAG consegue ser eficiente sem usar dessas duas estratégias.

O rAG foi melhor que o GAMIT de Murata et al. (1996) nos trés niveis de tempo de
execucdo. A maior diferenca entre o rAG e o GAMIT foi de 0,79%. O GAMIT utiliza
populacdo inicial gerada aleatoriamente, mas em compensagdo utiliza uma etapa de
hibridiza¢do com busca local para aumentar a qualidade da solucdo final, mesmo assim, o
rAG conseguiu obter solu¢cdes melhores que o GAMIT. Este resultado mostra que o rAG

conseguiu ser mais eficiente mesmo sem utilizar uma etapa de hibridizacgao.

O rAG foi melhor que o0 GA_AA de Aldowaisan e Allahverdi (2003) nos trés niveis de
tempo de execucdo. A maior diferenca entre o rAG e o GA_AA foi de 0,78%. O GA_AA
utilizou inicializagdo eficiente e uma etapa de hibridizagdo com busca local. Este resultado
mostra que o rAG conseguiu ser mais eficiente mesmo sem usar inicializagdo eficiente e

uma etapa de hibridizac3o.

O rAG foi melhor que 0 GAReev de Reeves (1995) em dois niveis de tempo de execucao.
No primeiro nivel de tempo de execucdo o GAReev foi 0,12 melhor que o rAG. No
segundo nivel de tempo de execucdo o rAG foi 0,08% melhor que o GAReev e no terceiro
nivel foi 0,15% melhor. Nao se pode afirmar com certeza, mas talvez o fato do GAReev
ser o primeiro AG a ser melhor que o rAG na comparagido com o PFSP seja porque é o
primeiro AG nessa comparac@o a usar a heuristica NEH de Nawaz et al. (1983) para gerar
a populacdo inicial. Este resultado comprova a teoria que a inicializagado eficiente acelera a
obtencdo de boas solu¢des, mas pode comprometer a qualidade da solugdo final quando a
eficiéncia do algoritmo € especialmente dependente da solugéo inicial. O rAG conseguiu
melhorar a qualidade da solug@o obtida a medida que o tempo de execu¢do aumentava o

que o GAReev ndo conseguiu fazer na mesma intensidade.

O rAG foi inferior a0 GA_RMA de Ruiz er al. (2006) nos trés niveis de tempo de

execucdo. A menor diferenca entre o tAG e 0 GA_RMA foi de 0,29% no terceiro nivel de
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tempo de execugdo e a maior diferenca foi de 0,58% no primeiro nivel de tempo de
execucdo. O GA_RMA ¢€ o segundo AG nesta comparacdo a usar a heuristica NEH de
Nawaz et al. (1983) para gerar a populacdo inicial. A comparacio do rAG com o
GA_RMA comprova que esse € melhor que o rAG para o PFSP. Mesmo assim o rAG foi
melhor que 0 GA_RMA nas classes 20x5, 20x10 e 20x20 em todos os niveis de tempo de
execucdo e na classe 50x10 nos segundo e terceiro niveis de tempo de execucgdo. Este
resultado significa que para os problemas com até 20 tarefas e 20 maquinas o rAG ¢é

melhor que 0o GA_RMA para o PFSP.
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CAPITULO 6 - CONCLUSOES

O rAG mostrou que um AG que utiliza os seus principios originais, diversificacdo e
intensificagcdo, de forma eficiente consegue obter bons resultados. Isto ficou comprovado
com a implementacdo dos trés procedimentos inspirados nesses principios, que no primeiro
experimento diminuiu o desvio das solugdes do rAG de 1,710% para 0,171%, uma
melhoria de 10 vezes. Este resultado aponta a importincia de um bom projeto para os
componentes originais do AG, antes de recorrer a inicializacdo eficiente e hibridizacdo

para tornar o AG competitivo em relacio a outros métodos de otimizagao.

O rAG mostrou também que € possivel um AG ser mais eficiente que uma heuristica para
o CPFSP sendo o tempo total de fluxo o critério de desempenho, pois foi 0,56% melhor
que a heuristica Pilot-10-Chins usando apenas 44% do tempo de execucdo utilizado por
essa heuristica. Mostrando que pelo menos para esse problema a opinido de alguns autores
(Reeves e Rowe, 2002; Dréo et al., 2006) que afirmam que um AG ndo consegue ser

melhor que uma heuristica nas mesmas condi¢des de tempo de execucdo estd equivocada.

O rAG mostrou ser o melhor método para o CPFSP sendo o tempo total de fluxo o critério
de desempenho, porque seus resultados na média foram 0,34% superiores ao melhor
método encontrado na literatura para esse problema que € o Tabu Search de Fink e Vof§

(2003).

O rAG mostrou ser o melhor AG para o CPFSP sendo o makespan o critério de
desempenho, porque foi 4,99% melhor que o AG de Shuster e Framinan (2003). Quando se
trata da comparagdo com o melhor método para esse problema, o rAG, nas mesmas
condicdes de tempo de execugdo foi 0,22% inferior ao TS-M de Grabowski e Pempera
(2005). Mas o rAG se torna o melhor método para esse problema quando usa 4,46 vezes

mais tempo de execugdo, porque apresenta um desvio médio 0,16% melhor que o TS-M.

O rAG em comparagéo aos outros cinco AG para o PFSP mostrou-se ser bem competitivo,
sendo superado apenas pelo GA_RMA de Ruiz et al. (2006). A menor diferenca média dos
desvios entre 0 GA_RMA e o rAG foi de 0,29%. Vale salientar que o GA_RMA tem

inicializacdo eficiente e um processo chamado de restart que realiza uma busca local.
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A anélise da evolucdo das solugdes do rAG desde a solugdo inicial até a solucgdo final
mostrou que ele tem a capacidade de melhorar bastante a qualidade das solugdes, mesmo
depois que a solugdo ja ter atingido uma boa qualidade. Esta andlise também mostrou que
para os problemas avaliados, rapidamente o rAG obtém boas solugdes, motivo pelo qual o
rAG ser mais eficiente que a heuristica Pilot-10-Chins para o CPFSP sendo o tempo total

de fluxo o critério de desempenho.

Por tudo isso o objetivo de construir um AG eficiente para os dois problemas sem
populacdo inicial gerada por uma boa heuristica e nem hibridizacdo foi cumprido. Este
sucesso € atribuido aos trés procedimentos propostos que foram capazes de manter a

diversidade na populagdo e a0 mesmo tempo intensificar o processo de busca.

Além disso, apresentamos 12 polindmios de grau 2 que ajudam no processo de calcular o
tempo de execucdo necessdrio para o tTAG obter uma solucido de determinada qualidade
para o PFSP, a partir do nimero de tarefas, do nimero de maquinas e do desvio da solucio
dentro de um intervalo pré-definido. Estes polindmios podem ser usados para apoiar a

decisdo de quanto tempo de execugdo utilizar para o rAG em problemas reais.

O rAG foi testado num problema PFSP real de uma indistria té€xtil cearense. O tempo de
execucdo foi calculado a partir de um dos polindmios de grau 2 construido. O resultado do
rAG no problema real foi muito satisfatorio, pois na primeira geragdo ja foi encontrada a
solug@o 6tima. Este resultado mostrou a qualidade do rAG, pois entre mais de 3 milhdes de

solugdes possiveis rapidamente encontrou aquela que era a 6tima.
Outro resultado da aplicacdo do rAG no problema prético foi mostrar que compensa

desenvolver um algoritmo testando-o em problemas tedricos, pois quando € aplicado em

um problema pratico se mostra bastante eficiente.
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Propostas para futuros trabalhos:

= Incorporar o atributo reativo a mutacio populacional. Pois a mutagio realiza apenas
uma perturbacio e sempre no mesmo intervalo de geracdes sem melhoria. Uma
sugestdo é poder realizar mais de uma perturbagdo de cada vez e em intervalos de
geracdo diferentes, dependendo da quantidade de tarefas e maquinas do problema;

= Como o rAG obteve bons resultados para o PFSP mesmo sem inicializa¢do
eficiente, uma proposta para melhorar o rAG seria implementar uma inicializa¢do
eficiente que nio comprometa a diversidade da populagao;

= Poderia ser testados outros valores para os parametros do rAG;

= Aplicar o rAG em outros problemas reais de maior tamanho para verificar o seu
desempenho; e

= Aplicar o rAG em outros problemas POCP e comparar o seu resultado com os

melhores métodos desses problemas.
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ANEXO I - As melhores seqiiéncias de trabalho obtidas pelo rAG no segundo

experimento com o CPFSP para as instancias de Taillard (1993).

tai001
31791514816 13126107 20 12 11 19 45 18
tai002
14106 20 1228 1843791116 19 151 13 5 17

tai003
31911624131698 1151014 17 187 205 12
tai004
9168 144 181317121936 111510215720
tai005
312201851013 97 1519184 1716112 146
tai006
2201417135381 116127 16 18 10 159 19 4
tai007
1021516114 1817 137420195129 11386
tai008
12621443117 1697 13 20 11 10 18 155 19 8
tai009
48167 121014513 15220119396 11 18 17
tai010
719151359 111212182017 16 6 103 14 8 4
tai011
185122011 1541216107 6 149317 19 13 8
tai012
913461719320 14 12188 1016 11 151725
tai013
419173 151185679212 10 11 13 20 16 14 8
tai014
1841719 11561320109 1312162157 14 8
tai015

16 1714103911 18 13 6 1 124157 5192 20 8
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tai016
1816 11 12201510983 74215146 13 19 17

tai017
471011 196155316208 17 13181912 142
tai018
78161320104 1735191514296 11 18 121
tai019
14681112201 167 109 13318 1742195 15
tai020
1216631419529 11182017413 151107 8
tai021
1935101614 791516 184 17 2 11 12 13 8 20
tai022
8591317191120 18 11047 61421512163
tai023
2820176314197 11112916 1518 105 13 4
tai024
14411182685201715919 103 17 16 13 12
tai025
1897151286144 1319161720 11521 103
tai026
111312021634 148 19181565179 7 10 12
tai027
1441517973201011 6125818161219 13
tai028
2161159613128 19185117 204 17 3 10 14
tai029
7131984156 141211 1817201016159 23
tai030
7914621642013 118517191813 1512 10
tai031

10 24 36 37 17 39 49 20 38 46 3 12 31 50 40 42 48 23 32 41 44 7 6 18 16
132 2622333519301 11 21 2543 8 4 47 34528 1529 27 45 14 9
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tai032

50 49 38 15 23 47 42 18 3 6 34 36 10 5 2 14 11 8 44 29 7 41 21 33 37
45 13 30 12 16 43 20 32 39 26 1 28 19 9 17 4 31 25 27 40 46 48 24 35
tai033

8 22 15 23 12 18 27 37 21 36 49 2 3 28 25 35 39 26 1 29 48 30 31 6 14
16 19 10 45 9 17 43 7 11 46 41 24 40 5 42 33 20 4 38 47 32 13 50 44
tai034

42 22 12 6 49 9 46 43 31 30 28 2 27 37 44 50 23 15 18 14 47 21 35 16
25 41 45 40 13 3 36 19 39 327 4 1 34 38 26 11 10 29 5 20 48 8 17 33
tai035

46 48 5 45 50 32 7 34 13 9 42 44 27 10 3 30 19 4 22 37 6 33 29 28 18
14 1 43 24 23 21 8 49 31 16 39 35 12 25 36 11 15 26 17 38 20 41 2 47
tai036

421 129 22 12 31 5259 47 32 41 46 27 33 24 40 28 19 43 34 20 36 6
33726848 42 11 39 44 10 2 14 16 30 15 23 18 35 38 49 7 17 13 45
tai037

27 28 22 16 25 5 34 30 40 15 4 50 19 38 47 43 45 42 41 8 36 13 37 14
23149 21396 1217 26 720 18 44 2 10 32 31 3 29 46 48 9 35 11 33
tai038

34 17 4 21 7 23 40 35 47 30 22 13 38 2 36 10 31 46 37 3 15 26 9 20 1
27 50 14 25 18 24 29 43 41 49 5 8 19 39 12 32 11 16 42 48 6 28 44 45
tai039

17 29 14 13 10 46 9 24 50 8 12 45 1 3 16 21 44 47 36 31 28 7 34 32 4
40 37 38 39 6 27 18 22 41 2 49 5 35 11 20 15 23 30 48 25 33 19 42 43
tai040

50 44 30 19 43 23 31 6 20 36 21 18 33 49 42 7 17 12 45 1 34 48 3 26 37
28 3539 47 9 22 253227 8 11 16 13 41 24 38 46 40 15 104 2 5 14
tai041

42 44 33 20 34 6 10 1 43 7 19 17 8 47 18 22 48 39 32 35 26 24 13 30 37
31 36 46 21 41 28 49 2 12 4 38 3 2529 16 11 9 40 15 23 5 45 50 27
tai042

3547 40 529 7 17 49 1 22 46 10 26 3 24 48 42 33 28 23 14 11 50 31 44
230 45159 38 32 13 6 37 20 19 36 43 41 27 34 21 8 25 12 39 16 4

22

34

24

40

50

24

33

26

29

14

18
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tai043

24 4 28 31 12 8 15 16 27 3 32 11 46 39 18 22 36 9 10 7 21 23 26 2 1 5 17
40 48 30 14 49 37 19 45 25 35 34 6 41 29 43 33 47 50 38 42 20 13 44
tai044

20 10 19 9 44 29 5 37 18 40 16 34 13 7 33 39 23 11 25 36 35 30 21 8 22 17
45 41 38 12 26 24 50 32 4 31 48 3 27 46 42 28 1 2 49 6 14 15 43 47

tai045

6 50 34 10 42 48 12 30 33 25 31 1 35 9 46 7 20 23 29 45 36 11 3 49 4 13
19 18 44 21 43 39 15 40 26 37 41 24 5 16 14 22 32 27 17 38 47 28 8 2
tai046

342 33 20 45 31 23 26 40 39 47 27 34 35 38 28 44 19 37 15 24 5 11 9 16
41 46 22 8 50 4 7 17 25 14 6 43 49 12 21 32 10 30 1 29 18 2 36 48 13
tai047

6 41 27 33 48 17 40 46 13 38 22 44 20 3 28 25 11 35 23 31 36 18 21 26 34
21301545128 7 10 9 43 37 49 32 16 50 39 4 29 42 24 19 5 14 47
tai048

28 31 32 41 21 13 17 34 1535 1 6 3 44 37 45 33 42 23 5 38 43 40 39 36 11
7 30 14 20 26 29 22 19 8 4 25 48 2 12 24 9 47 49 50 18 46 16 10 27

tai049

33 30 25 50 45 40 44 6 42 31 39 12 10 38 13 28 21 3519 49 32 20 15 47 7
37 26 46 8 22 48 11 27 34 2 36 23 41 14 43 24 9 15 29 18 16 4 3 17

tai050

49 8 38 10 14 21 19 4 41 37 15 27 9 42 45 13 24 23 2 12 28 39 44 29 40 33
46 32 6 1 48 16 26 34 47 7 36 30 5 22 50 20 18 43 17 3 11 31 25 35

tai051

37 27 8 44 43 20 15 39 34 31 41 47 32 30 38 33 17 50 3 26 40 24 29 9 12
36 13 49 28 48 22 21 7 10 35 6 42 1 18 25 4 46 11 45 14 2 5 19 16 23
tai052

32 49 8 39 31 40 33 7 38 20 41 30 16 22 10 36 3 14 23 6 29 21 24 50 5 4
13 35 17 47 42 11 45 1 12 26 18 9 15 37 2 28 48 44 27 25 19 46 34 43
tai053

24 428 11 2573121319 39 26 10 41 35 12 18 6 30 14 21 23 49 36 8 15
16 27 46 5 45 9 17 40 33 34 29 47 38 44 13 43 48 20 42 50 32 22 37
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tai054

1 19 47 14 8 13 34 38 9 44 48 40 25 37 46 39 11 24 50 27 18 12 45 5 20 43
42 7 30 4 21 15 35 31 17 16 41 32 2 33 6 10 26 22 3 49 28 29 23 36

tai055

23 25 11 7 36 43 49 46 37 28 40 20 15 50 21 3 39 38 10 34 44 24 48 45 32
17 30 47 16 35 13 1 33 19 42 9 29 27 41 22 6 14 12 18 8 2 4 31 5 26
tai056

14 33 5 49 37 11 25 42 4 39 29 12 47 26 6 24 9 15 38 3 13 27 17 35 2 19
31 46 8 1 18 50 45 21 41 36 44 32 48 16 40 23 7 34 22 28 30 20 43 10
tai057

4 355 1542 48 17 9 23 38 13 45 2 30 44 27 36 19 31 11 46 28 1 20 24 6
25 37 22 32 41 14 34 12 10 40 16 26 43 18 21 47 33 8 29 7 3 49 50 39
tai058

333917 1942 28 12 2 29 32 30 8 48 27 26 359 3 20 14 40 11 13 31 6 50
23 22 37 45 38 15 36 18 16 5 41 49 21 47 43 25 34 24 46 10 17 44 4

tai059

44 29 35 15 11 31 9 14 50 1 27 37 43 45 3 38 23 47 5 20 12 16 22 41 30 21
28 8224 17 19 34 42 26 33 36 40 25 4 48 6 13 10 32 46 18 39 7 49

tai060

38 11 18 10 1 16 39 43 15 48 49 20 42 12 3 23 2 5 28 30 31 19 46 22 29 21
37 50 27 13 26 25 17 45 4 33 6 35 41 14 8 32 40 7 44 36 34 24 47 9

tai061

10 93 46 5 40 16 66 55 84 19 59 24 65 12 82 72 56 62 7 14 77 26 96 33 34
88 83 71 58 15 92 61 35 20 60 29 30 50 42 80 78 3 36 64 95 23 68 1 85 39
28 21 97 99 11 63 79 47 87 74 8 13 44 2 98 76 69 53 32 49 38 37 6 51 94
31 45 89 4 75 17 27 43 91 73 67 90 41 81 52 54 18 86 22 25 57 48 9 70 100
tai062

69 79 33 46 45 99 10 15 83 88 98 77 65 16 86 92 25 53 93 8 20 6 61 100 39
1 60 90 75 56 26 34 58 52 89 5 80 67 82 19 76 29 31 37 68 78 14 57 81 43
66 24 70 36 97 91 54 48 38 72 17 42 40 12 85 47 96 7 22 55 73 28 50 51 32
27 95 63 84 64 30 41 13 9 59 23 94 62 35 21 18 71 3 87 4 74 11 49 2 44
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tai063

55 68 23 42 1 6 43 58 25 77 57 51 11 60 89 17 86 71 90 88 31 94 82 30 32
46 7 64 41 13 28 2 96 12 10 61 34 40 62 21 79 95 26 97 18 100 45 48 16 54
44 24 83 80 99 69 56 49 19 75 53 76 22 5 36 65 59 70 47 52 39 38 14 93 15
50 85 67 91 9 8 35 4 33 37 87 92 98 74 20 78 63 27 3 29 73 81 84 66 72
tai064

96 51 21 16 37 55 56 18 22 64 43 14 80 58 85 52 83 57 38 93 67 20 28 9 88
45 78 81 73 54 70 31 95 65 77 82 32 63 42 35 79 23 89 91 98 10 61 66 49
59 26 769 19 3 33 4 60 71 46 84 40 2 94 72 36 27 5 11 13 50 17 44 75 97
76 62 39 6 68 8 99 1 90 92 15 25 100 86 87 47 41 12 29 34 24 74 48 30 53
tai065

1274 68 10 16 50 98 77 12 33 79 41 57 75 91 58 86 70 94 18 24 82 29 76
5 11 64 28 87 72 51 47 20 39 61 4 52 37 83 66 78 7 100 53 17 8 22 92 38
69 62 25 97 56 96 84 54 60 27 44 63 99 67 48 40 80 34 19 93 46 30 81 73
15 88 71 23 3 26 13 85 90 55 21 59 35 6 32 89 9 65 31 42 43 49 36 95 14
45

tai066

4 54 83 21 57 51 47 8 65 36 29 61 80 45 96 99 71 53 37 95 69 1 85 72 27
90 49 3 19 77 94 56 7 2 16 33 76 39 44 86 70 50 100 26 92 20 88 14 30 58
78 34 23 67 32 91 98 6 5 93 75 38 46 9 73 22 81 87 79 42 40 97 18 48 15
31 55 68 59 28 62 25 11 74 89 17 12 84 64 41 10 60 35 63 24 52 66 13 43
82

tai067

28 79 13 20 2 5 6 35 50 27 64 24 81 98 14 12 62 71 89 16 92 66 15 40 67
91 75 93 11 4 76 29 77 22 7 80 19 85 69 1 38 96 10 21 72 61 42 3 53 99
100 45 46 41 68 70 54 30 86 26 90 51 49 44 8 9 82 95 32 57 18 94 43 59 84
58 87 33 31 74 78 83 39 47 36 23 63 60 97 37 52 34 73 48 65 56 17 25 88
55

tai068

42 56 2 17 64 41 90 21 97 40 95 87 98 74 1 52 15 25 53 29 86 82 73 67 30
14 70 80 48 27 75 9 59 22 85 79 43 34 68 76 8 36 6 83 91 49 31 19 65 54
32 13 5 11 55 99 72 45 18 69 84 77 58 3 35 100 47 26 96 7 33 46 62 23 16
89 88 20 92 78 94 28 50 12 44 4 81 61 24 66 71 93 39 10 57 51 60 63 37 38
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tai069

70 24 72 47 60 21 40 97 4 73 9 29 28 58 90 48 63 6 43 100 95 75 98 82 10
84 57 2 53 8 17 19 51 81 56 49 44 59 52 34 79 78 80 12 33 42 15 69 36 16
1 32 99 85 68 66 35 23 22 45 65 50 5 71 93 39 11 83 54 20 92 67 31 13 46
87 18 86 61 55 96 74 14 3 27 88 38 94 62 7 37 91 30 76 64 77 89 26 41 25
tai070

220 27 46 70 74 62 83 31 68 47 92 75 37 10 90 23 57 1 58 11 28 88 54 7
32 50 12 65 26 29 94 67 76 51 42 15 55 93 5 80 49 69 72 22 16 38 81 35 18
60 100 98 44 9 48 43 45 95 82 33 87 4 79 64 6 99 53 13 66 56 77 34 91 97
61 19 85 25 73 71 21 84 40 39 63 30 52 8 36 14 59 41 78 86 89 96 3 17 24
tai071

58 64 70 21 15 29 26 45 72 12 36 77 40 74 49 2 5 61 28 82 17 14 81 62 78
69 30 59 87 95 91 24 98 53 99 47 19 83 96 34 56 94 71 46 63 13 27 43 93
84 39 60 8 31 90 18 51 7 88 100 16 86 89 11 20 33 9 79 42 80 55 38 35 25
54 73 92 32 66 97 48 50 6 85 3 4 76 41 67 10 57 68 22 1 23 75 65 52 44 37
tai072

24 99 73 64 3 16 75 28 81 76 51 4 21 80 8 46 12 66 10 78 11 91 36 43 15
69 49 54 98 18 83 40 7 38 56 2 72 87 95 39 6 31 61 60 62 9 19 47 63 13 35
77 1 53 26 44 68 79 71 86 23 89 58 74 25 41 52 82 5 20 57 34 37 65 27 50
33 30 84 97 85 14 42 70 55 17 59 96 92 94 88 93 48 45 90 67 32 22 29 100
tai073

45 25 87 23 58 64 4 16 99 57 39 94 12 42 74 96 72 66 97 20 80 29 63 92 56
34 27 93 50 48 40 9 38 83 32 13 44 41 81 6 61 21 55 73 51 65 15 18 28 5
89 24 54 88 76 14 2 37 62 52 1 36 85 98 70 67 86 91 17 35 31 11 79 10 100
33 60 19 8 69 46 82 26 75 77 59 53 22 78 90 3 43 95 7 84 30 68 47 71 49

tai074

24 76 85 95 46 61 2 90 77 62 30 79 63 98 68 23 97 80 39 55 28 19 14 56 32
99 52 69 26 94 64 83 81 12 540 7 58 13 72 8 22 33 15 6 35 75 70 20 78 59
31 34 10 50 37 65 74 60 53 21 71 49 82 47 67 42 27 41 29 9 3 84 44 1 43
17 54 18 16 51 100 11 86 93 96 92 48 25 88 73 66 91 57 45 36 89 38 87 4

tai075

83 79 65 95 80 90 66 25 93 50 100 19 33 46 5 9 75 56 45 47 26 78 91 55 76
7 21 40 94 71 59 11 72 92 62 31 52 28 99 20 63 51 88 36 70 1 48 53 86 17
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57 32 87 44 18 13 35 43 15 24 14 29 74 38 82 22 2 42 81 8 98 6 49 12 37
68 73 89 16 67 3 64 84 97 58 10 77 85 39 4 96 34 54 27 61 30 23 60 41 69
tai076

78 79 5 76 92 36 19 46 41 98 48 75 44 28 45 38 9 57 6 20 4 95 40 77 18 64
49 70 22 59 65 3 47 90 97 66 30 56 81 71 37 33 34 26 7 32 24 42 43 15 53
52 72 60 99 63 12 67 39 29 58 54 8 74 23 94 50 35 96 25 2 10 21 91 87 11
83 88 86 68 55 69 14 80 93 100 62 1 27 85 84 31 73 89 17 61 51 13 16 82
tai077

76 1 13 56 53 67 59 24 52 14 22 65 39 27 47 74 87 28 5 69 32 54 86 4 83
42 49 6 38 7 12 35 33 64 79 34 46 80 40 23 58 16 26 71 91 97 11 9 21 96
15 55 48 89 3 61 19 17 31 8 68 37 43 44 29 45 25 92 18 99 50 70 20 95 51
98 2 94 75 63 41 85 88 62 66 100 57 93 82 36 60 90 72 84 81 77 10 73 78
30

tai078

48 63 67 17 90 81 80 10 59 55 71 3 33 97 76 50 12 86 40 20 85 47 11 14 66
96 41 70 31 73 56 9 28 45 93 78 21 77 53 1 74 30 72 15 94 65 34 98 19 22
13 83 75 95 51 2 61 68 38 36 89 57 69 92 5 25 6 24 26 27 23 8 44 18 49 62
54 87 52 43 32 99 88 29 46 79 84 64 58 82 42 60 35 16 7 91 39 100 4 37
tai079

91 54 92 64 43 19 67 23 86 29 21 42 18 62 4 10 1 79 100 81 85 74 9 46 75
73 57 36 95 98 2 94 20 68 25 76 3 48 38 34 53 15 16 41 27 80 26 17 96 60
44 65 83 84 66 51 52 24 49 56 45 97 77 31 87 5 58 33 99 61 35 47 30 8 89
3969 7 71 14 72 88 32 70 11 90 50 37 40 12 22 28 63 82 13 78 55 93 59 6
tai080

84 57 48 97 81 71 99 2 14 9 78 15 68 63 100 16 32 64 19 47 62 34 6 87 52
75 17 8 40 89 88 54 66 76 36 21 30 20 80 42 67 38 29 25 55 10 58 11 41 53
93 90 86 96 98 91 73 77 69 56 22 44 3 24 79 82 94 4 70 31 7 28 18 37 1 35
59 39 12 26 72 5 27 85 13 23 92 50 74 49 45 43 65 95 46 33 60 83 51 61
tai081

1 59 36 94 46 3 93 31 39 61 12 4 520 19 75 89 74 80 58 97 13 14 47 38 51
37 92 78 90 2 62 79 27 49 77 41 88 73 50 69 98 44 57 11 82 25 9 54 65 60
32 85 83 81 16 56 6 28 55 66 21 70 52 63 23 45 67 91 29 26 96 15 95 7 87
84 24 30 72 68 86 34 43 71 17 18 99 76 22 33 10 100 48 35 42 64 40 8 53
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tai082

50 76 14 29 98 5 6 15 65 24 38 90 48 9 99 23 72 40 26 83 81 51 16 4 44 62
30 46 55 73 28 63 87 92 58 64 96 27 13 97 61 89 34 54 22 84 95 43 75 70
20 80 56 74 57 94 39 12 42 25 66 49 100 69 82 91 35 31 3 36 2 37 32 52 10
47 79 68 19 78 88 67 86 85 17 18 1 60 7 93 71 11 33 8 77 41 21 53 59 45

tai083

83 37 97 82 75 30 55 62 14 65 45 95 2 96 74 21 28 19 94 87 10 4 9 86 63
22 20 39 76 78 31 48 81 85 47 70 88 58 17 16 3 52 89 69 60 93 8 49 71 12
27 79 18 100 15 38 99 92 64 41 40 56 90 11 23 91 53 46 25 36 26 73 1 13
59 32 34 43 80 77 84 67 54 61 24 42 51 44 66 98 7 29 50 33 57 35 72 68 6
5

tai084

36 80 33 57 89 84 52 21 12 58 25 67 51 26 43 91 66 77 30 7 100 79 15 61
62 27 14 34 11 45 41 17 82 48 39 6 40 73 90 3 2 29 37 74 42 78 4 99 72 10
3594 18 65 49 5 44 98 23 63 60 68 93 81 19 55 47 28 22 46 86 38 95 50 85
209 24 96 92 59 64 83 97 1 32 16 76 8 70 71 13 31 87 75 54 56 69 88 53

tai085

51 49 33 91 36 67 13 15 71 30 99 38 93 7 19 61 54 77 79 9 44 27 23 39 75
98 72 10 12 83 5 26 100 17 60 11 3 81 74 73 22 18 68 20 55 66 85 76 87 58
32 2 16 95 4 31 34 48 24 56 45 28 50 94 90 21 84 80 62 86 78 43 52 37 8
97 64 14 96 42 69 65 53 35 57 70 40 82 1 46 88 92 29 41 6 89 63 25 59 47
tai086

31 12 83 32 96 73 33 89 92 1 78 27 80 65 29 94 54 50 67 70 6 61 63 30 88
79 43 60 36 47 51 59 93 42 90 24 44 18 87 2 45 15 4 38 76 21 22 58 84 23
39 7 66 48 5 69 82 37 56 19 62 75 91 55 71 11 34 97 64 14 10 17 16 99 57
98 3 20 40 85 77 26 86 41 25 28 49 52 8 95 74 9 68 46 53 13 72 100 35 81
tai087

95 50 41 33 28 25 75 27 88 85 94 62 93 14 21 9 1 45 16 32 49 52 44 20 79
26 19 64 60 5 80 78 22 35 76 38 92 83 3 100 65 18 56 71 15 86 96 30 2 57
66 37 68 13 53 12 72 24 84 23 29 82 36 40 59 43 51 34 98 39 4 74 87 89 61
7 11 73 6 67 58 97 8 42 55 99 54 77 90 47 91 46 17 70 31 48 63 10 81 69
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tai088

70 22 87 90 2 73 3 15 4 96 28 39 6 32 48 79 21 99 46 50 8 43 86 30 60 27
64 95 74 54 35 53 66 61 68 25 1 17 10 45 75 23 41 29 89 33 20 97 26 42 52
88 63 31 69 19 62 12 71 24 59 72 56 84 38 14 78 76 77 82 83 65 94 91 85
11 36 67 58 7 37 81 57 51 93 40 47 55 34 49 9 100 13 92 16 5 18 98 44 80
tai089

66 44 7 2 76 71 58 90 80 84 99 27 92 21 88 15 29 63 6 89 10 68 74 22 75
64 42 24 35 3 36 95 77 51 4 56 1 13 28 17 34 47 60 16 43 62 50 81 37 91
23 53 93 65 59 30 11 8 78 20 73 94 41 46 26 14 83 61 79 85 87 25 96 57
100 69 31 72 48 86 18 33 70 98 45 5 55 54 19 9 40 67 82 38 12 97 52 39 32
49

tai090

11 48 28 73 44 53 67 20 39 57 18 2 70 43 88 7 65 100 31 8 42 89 85 66 46
21 35 15 6 22 47 49 82 79 81 14 36 94 59 41 91 45 55 63 75 30 23 17 64 90
27 24 52 77 62 34 56 84 5 26 4 98 37 25 50 12 33 86 99 69 3 61 80 58 76
95 16 96 54 1 38 83 71 13 19 9 68 32 78 72 51 60 87 40 92 10 97 74 29 93
tai091

73 29 28 94 65 15 188 148 30 33 124 71 190 172 132 104 110 49 34 61 3 99
169 160 176 77 147 125 168 183 161 23 98 52 149 156 1 90 146 182 113 142
18 92 187 19 97 8 106 24 63 81 47 136 197 67 57 103 127 6 173 83 75 109
178 78 39 137 152 163 25 36 195 151 164 170 60 167 191 85 87 69 16 158
180 93 129 76 91 135 200 68 64 43 22 198 2 9 101 186 35 50 159 118 111 46
20 134 196 138 42 45 66 13 128 10 54 114 184 21 162 102 27 41 192 74 105
116 107 4 17 84 55 123 157 89 140 155 150 53 100 14 171 70 174 194 154 12
193 58 130 88 31 199 86 165 37 120 117 80 175 48 189 115 108 112 26 72 79
139 82 95 51 144 122 38 121 181 166 59 11 62 143 177 141 126 145 40 56
179 44 32 7 5 131 153 185 119 96 133

tai092

31 166 42 150 161 70 44 115 101 163 11 29 48 119 14 97 63 188 61 26 13
130 94 96 65 57 9 62 107 181 133 25 112 5 34 74 200 145 186 182 15 98 86
109 45 33 183 8 27 170 104 137 156 149 64 40 21 55 88 143 155 17 7 73 187
54 164 158 92 69 174 140 22 68 24 75 66 198 178 138 185 132 171 162 121
194 125 28 114 2 117 139 192 141 127 91 195 76 99 146 49 190 50 152 179
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59 4 41 53 38 103 144 32 77 47 71 30 78 82 111 175 122 134 39 191 58 3 89
147 142 37 126 124 18 46 189 19 148 87 129 157 60 131 167 23 196 10 93
128 16 118 20 84 67 105 136 123 173 1 83 160 110 197 165 135 102 120 6 79
199 56 172 168 81 12 113 106 193 36 51 180 85 80 52 184 108 90 159 153 95
151 72 154 169 116 35 43 176 177 100

tai093

97 52 95 83 92 32 2 39 133 166 157 62 183 72 93 147 42 102 187 57 159 129
134 104 43 135 25 189 128 192 46 148 146 96 49 36 103 58 153 154 78 89 18
91 119 180 15 44 1 126 198 191 173 29 20 51 84 8 68 100 186 179 101 94 41
16 53 82 176 69 184 64 60 150 174 61 3 24 50 88 4 140 14 10 86 70 143 188
145 116 163 19 113 48 110 155 17 118 121 108 33 98 28 125 66 34 123 181
27 115 77 141 85 38 73 182 162 99 87 12 47 71 142 136 190 160 120 22 21
131 164 5 63 106 90 23 9 59 132 199 74 31 151 124 144 65 193 194 112 169
171 6 56 107 117 158 80 40 137 200 149 35 54 7 172 196 161 67 177 26 114
197 30 75 195 138 185 167 122 76 168 139 79 156 105 152 81 175 170 111 55
165 127 130 109 45 11 13 37 178

tai094

160 196 90 192 161 56 131 158 147 71 144 136 11 187 50 130 120 61 134 133
92 103 195 176 128 142 24 80 118 86 74 36 189 111 69 163 32 5 115 184 116
105 145 199 173 76 10 125 15 23 137 82 21 106 30 197 112 165 96 13 64 99
17 75 59 55 153 25 35 156 200 27 151 126 178 119 188 194 38 180 58 174 67
185 170 91 132 42 3 179 78 190 44 43 198 181 183 108 19 100 127 94 104
157 45 29 57 124 33 51 140 16 39 9 149 97 162 123 98 155 41 8 150 117 62
159 83 182 186 110 89 65 20 146 88 79 121 102 68 66 193 4 177 122 47 107
168 26 37 40 84 52 70 167 139 135 54 77 28 73 154 169 6 63 129 46 171 1
101 12 143 113 7 191 138 34 166 93 22 164 53 2 18 81 87 14 48 141 60 72
95 85 109 148 175 114 152 172 49 31

tai095

198 46 189 90 86 186 188 124 32 73 14 101 172 193 108 181 58 92 132 105
11 111 29 106 33 52 84 22 131 149 174 74 89 144 96 95 161 165 80 71 42
109 48 57 168 91 175 17 72 3 98 93 117 195 55 125 26 126 63 35 157 185 51
192 61 37 171 70 128 103 40 164 67 60 64 127 79 135 12 110 155 2 50 182
154 7 25 5 76 143 147 153 123 194 4 178 114 83 75 104 170 47 15 139 184
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140 173 179 38 113 130 85 183 13 6 160 68 82 120 180 150 54 8 152 156 16
122 66 141 190 36 137 177 43 97 166 169 176 196 163 44 81 191 65 10 136
28 151 118 27 121 187 1 87 148 62 34 23 200 59 102 138 21 20 45 99 112
115 77 145 41 49 39 53 129 162 119 133 69 31 159 94 146 30 18 107 100 56
197 116 24 78 167 9 88 134 142 19 158 199

tai096

147 85 13 36 102 47 197 168 118 6 78 134 89 126 178 195 52 69 131 9 143
183 39 107 53 172 3 146 190 164 132 55 158 51 40 138 23 29 25 41 65 186
122 72 114 57 180 67 12 174 103 37 20 156 116 149 1 26 93 99 152 198 95
98 11 10 79 42 61 106 76 60 73 135 18 128 173 181 115 187 145 80 162 142
108 192 133 109 148 159 94 28 68 167 14 2 170 92 169 104 120 137 110 35
101 44 160 166 48 175 184 64 111 63 157 71 91 153 112 136 191 17 165 15
54 141 46 155 75 163 125 200 59 171 30 74 82 16 84 151 90 22 49 66 8 43
62 176 34 130 70 196 185 50 161 199 150 123 38 127 21 129 117 121 81 27
31 33 189 179 140 24 5 32 87 77 83 119 7 86 56 88 45 58 154 144 177 96 97
182 193 139 105 19 4 188 113 124 100 194

tai097

135 198 147 80 117 197 127 28 38 173 179 41 98 145 15 97 56 126 63 36 182
11 88 57 169 75 94 192 34 191 73 196 151 39 71 18 159 52 187 60 50 161
132 87 184 163 115 26 123 141 119 49 107 168 177 23 165 170 85 45 51 4 91
143 139 35 93 46 104 29 76 111 78 108 20 53 77 133 12 90 155 180 17 47 83
194 13 181 24 40 10 144 72 6 32 27 131 152 190 19 105 42 25 112 14 178
162 160 22 54 120 74 66 189 193 43 5 33 110 121 95 116 100 167 70 86 101
154 109 58 195 129 79 122 142 37 153 176 7 199 140 102 185 149 148 136 31
114 62 61 3 99 183 2 186 150 103 157 172 118 188 128 171 89 16 96 65 174
84 130 134 1 48 67 21 175 44 9 8 81 166 106 30 158 113 200 137 124 82 92
68 138 156 164 69 146 125 55 64 59

tai098

153 105 82 154 112 180 90 185 23 1 114 87 43 38 179 101 73 116 94 128 141
8 24 26 20 45 167 34 2 4 83 103 18 176 28 25 75 181 125 118 163 12 92 192
120 148 108 84 156 168 65 137 79 49 165 152 46 170 166 131 50 55 117 194
191 175 85 74 182 119 132 197 70 58 16 190 29 110 37 183 76 135 66 93 177
19 10 150 151 122 31 88 14 69 144 3 71 107 121 162 96 200 17 145 109 11
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143 106 80 7 61 52 98 99 104 59 97 89 102 169 47 91 184 9 195 44 178 139
155 67 62 173 22 146 27 129 51 147 63 186 54 95 13 158 123 78 172 81 196
30 193 53 130 36 134 56 68 188 111 60 174 199 35 72 64 40 33 100 187 142
86 32 161 42 41 159 15 77 140 133 126 5 189 48 149 115 6 164 124 160 157
39 198 171 127 57 138 136 113 21

tai099

97 42 20 65 144 177 180 39 165 18 78 91 3 168 19 145 22 138 175 151 188
73 125 30 119 191 46 158 187 126 71 157 156 174 100 26 141 186 195 24 17
189 76 28 58 184 88 5 45 37 77 142 133 148 9 159 143 69 154 196 15 111
149 40 176 118 12 178 110 137 198 161 72 199 62 127 49 112 128 106 164
181 48 68 81 89 35 116 132 101 59 122 136 34 82 194 115 84 107 93 105 64
121 56 67 55 21 74 83 200 163 124 86 113 103 170 185 95 51 53 135 44 104
70 11 123 167 146 61 60 130 169 4 140 25 129 171 57 13 109 33 54 2 99 102
152 147 172 94 160 90 6 50 16 179 29 197 85 31 8 108 23 190 162 134 47 7
150 32 38 87 80 36 10 173 63 66 92 41 183 139 1 27 166 75 43 193 52 114
182 79 96 192 98 155 117 131 14 153 120

tail 00

148 177 85 143 138 149 46 87 43 103 180 174 188 94 101 1 199 135 89 76 14
69 127 109 57 81 132 38 97 52 182 28 164 168 12 65 152 58 51 2 155 157
184 140 123 83 24 74 3 145 197 193 178 116 158 130 31 119 63 5 66 108 139
196 195 50 9 92 48 141 166 8 136 95 40 111 60 23 176 19 121 39 73 86 190
181 18 22 170 25 147 172 104 131 165 10 186 29 53 4 179 106 154 133 162
187 151 6 134 98 198 161 32 68 77 107 120 45 146 173 82 169 79 21 36 100
72 102 67 80 167 7 142 64 11 117 47 96 124 71 126 153 112 62 20 105 122
90 93 113 35 200 192 54 88 194 128 185 16 42 61 183 150 55 163 33 84 41
70 15 175 34 110 75 114 49 13 144 137 56 159 78 59 129 125 37 27 99 189
156 115 17 26 160 118 44 91 191 30 171

tailOl

83 95 151 198 76 170 29 21 193 138 20 190 174 23 40 90 75 86 183 128 60
65 97 92 62 82 49 88 22 195 162 140 167 131 89 107 194 78 192 96 61 10
159 185 109 166 163 43 145 64 19 152 33 142 155 63 28 24 47 143 26 160 17
50 91 99 146 39 113 132 69 187 120 46 122 25 31 153 171 45 41 141 154 164
32 53 175 55 14 66 67 6 12 77 196 112 15 197 30 44 181 124 121 94 8 9 178
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111 5 93 144 182 7 36 126 79 147 80 136 57 81 34 189 52 68 172 85 158 101
103 165 38 115 73 118 114 3 186 74 179 176 108 48 18 13 16 71 58 148 119
84 1 116 37 102 180 130 54 169 184 156 110 191 11 87 56 188 125 133 59
105 135 168 173 106 150 100 4 149 161 127 98 27 134 70 35 129 72 157 139
51 104 123 117 2 42 177 200 199 137

tail02

56 132 78 26 37 118 43 97 50 92 117 12 83 49 177 172 165 157 86 101 25 73
140 87 136 164 67 69 60 168 103 11 124 2 173 149 179 21 53 3 18 129 114
180 44 151 160 144 159 119 52 94 155 35 146 20 198 81 110 127 90 191 68
111 138 126 167 197 29 24 96 184 135 58 125 200 131 98 88 169 64 32 70 8
45 181 147 142 175 10 115 62 189 51 193 42 113 162 34 123 84 120 143 102
152 57 48 182 15 33 161 27 39 61 22 77 4 47 13 171 99 75 79 38 41 46 156
134 59 121 63 141 190 7 95 72 17 150 174 170 55 28 76 109 82 130 1 128 16
188 6 19 40 154 112 194 65 196 105 85 80 36 153 145 5 106 9 93 186 23 163
54 30 100 139 137 148 183 178 107 176 108 116 122 71 66 187 195 185 104
14 199 158 192 91 74 166 133 89 31

tail03

179 30 132 127 177 111 178 20 187 44 189 184 82 33 162 90 8 152 73 106 46
194 182 61 168 133 159 110 88 58 6 4 134 147 119 101 40 35 125 53 129 81
5 121 59 64 34 139 107 43 67 87 51 38 171 97 144 9 163 14 185 145 72 128
96 195 198 167 123 108 23 165 32 126 112 156 160 192 86 122 153 85 76 80
68 148 186 105 155 151 93 117 138 77 25 115 1 199 54 22 200 143 48 95 173
15 13 146 37 31 183 102 136 158 161 57 49 176 47 78 113 84 169 41 98 174
45 10 166 16 75 130 65 170 193 157 7 70 21 114 109 62 120 55 12 2 50 69
164 24 66 3 149 154 191 188 42 11 27 181 135 141 91 26 29 137 180 116 131
52 103 100 124 19 71 196 190 118 17 104 172 83 140 99 175 60 150 92 74 39
94 18 56 63 28 197 89 142 79 36

tail04

66 43 49 168 15 188 73 148 28 160 3 137 1 33 129 78 39 30 29 99 60 123
183 85 87 195 120 146 110 83 42 158 136 164 151 21 64 19 18 16 175 154 4
26 199 180 93 101 139 40 88 114 24 81 77 149 191 57 71 109 165 20 8 84
147 27 17 178 157 52 23 172 134 6 14 41 196 45 65 124 98 105 194 141 82
55 7 132 2 95 46 89 169 187 75 106 122 68 47 36 155 182 37 103 100 170
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186 35 91 54 70 128 143 31 72 5 63 92 50 193 200 184 127 90 173 171 38
104 69 107 130 118 53 140 163 190 176 67 167 142 34 125 152 198 150 96 74
189 48 12 177 166 112 179 44 145 86 144 59 174 116 121 117 80 192 9 10 13
11 108 32 102 181 153 185 56 62 126 159 79 76 25 161 113 197 51 58 162
135 97 94 156 61 138 115 22 111 133 131 119

tail05

162 83 31 86 168 27 70 112 193 110 8 53 71 172 23 46 17 165 127 148 195
131 41 145 36 149 67 137 196 101 55 6 156 45 128 50 5 37 105 98 100 134
11 97 56 38 3 63 142 40 194 118 25 72 28 43 77 135 10 190 133 102 130 74
117 129 61 66 186 185 158 107 163 29 132 178 85 76 180 174 120 106 124 22
138 52 2 1 154 175 95 68 93 199 99 26 103 150 4 147 116 155 123 125 44
111 80 87 58 167 200 82 69 59 157 113 164 152 64 136 139 108 19 47 9 177
114 30 176 104 51 18 32 141 169 34 24 144 159 160 75 187 48 151 91 88 35
49 79 90 189 197 78 119 84 140 153 181 33 81 15 183 166 57 126 146 96 14
192 89 12 188 182 20 73 7 16 115 60 143 184 122 62 198 191 54 92 39 171
173 13 121 94 21 42 65 109 179 170 161

tail 06

152 170 78 163 190 121 98 195 39 81 142 101 141 178 11 76 99 119 160 157
117 88 198 97 16 62 51 94 103 87 3 126 33 82 29 127 32 23 38 60 145 96 75
92 175 185 107 122 128 44 34 192 139 110 159 80 200 137 115 196 169 13
179 21 151 158 84 42 35 85 172 149 40 164 45 95 77 104 168 197 12 74 56
72 58 90 79 129 156 43 50 146 30 10 183 116 31 15 61 52 68 83 194 109 176
53 171 177 47 89 18 138 123 165 130 199 113 24 186 106 65 131 41 91 111
132 136 14 155 57 63 112 144 118 64 182 27 148 93 184 1 187 17 49 19 37 2
71 180 59 67 4 140 5 102 20 86 9 150 54 191 181 154 147 153 70 173 7 36
125 105 8 108 46 174 188 124 120 28 100 25 6 189 73 193 135 48 133 66 69
167 114 143 55 162 22 26 161 166 134

tail07

200 190 168 29 146 126 59 173 64 27 35 68 181 164 14 154 176 7 69 15 71
46 103 30 199 192 28 12 131 175 9 182 17 91 98 162 52 179 21 45 105 3 186
196 48 22 122 10 44 65 23 101 194 166 153 90 156 111 198 177 133 160 42
36 92 152 25 1 41 119 169 67 31 112 76 114 72 147 130 6 100 75 83 47 163
138 165 155 49 5 50 115 106 104 18 124 110 125 193 74 143 88 158 4 195
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150 139 123 121 132 97 120 109 99 2 116 108 189 187 13 34 26 161 66 140
117 149 86 70 188 174 159 96 77 19 63 142 102 32 82 148 141 53 11 113 171
84 60 151 37 73 94 54 184 136 89 40 80 85 167 128 157 81 51 38 129 56 134
127 8 185 118 183 58 191 180 93 197 145 95 57 62 178 144 24 55 79 61 135
33 172 39 78 137 170 43 16 87 107 20

tail08

196 36 25 122 16 10 151 83 50 125 81 190 132 30 172 121 157 97 150 69 106
61 20 63 176 58 141 184 119 115 193 48 162 165 37 137 47 179 171 9 80 152
70 22 109 199 126 73 31 93 90 91 131 89 44 24 68 104 67 146 62 143 64 28
194 178 14 2 189 53 27 82 175 112 11 6 111 164 155 26 117 43 154 76 38
198 186 3 60 35 33 160 94 65 32 4 128 127 95 192 191 52 114 39 54 5 133
29 124 161 136 105 123 42 102 138 173 8 149 174 147 45 116 23 85 110 139
177 129 153 49 92 182 148 17 72 86 169 100 77 185 40 46 71 197 21 74 7 96
107 88 135 59 134 183 158 101 12 187 103 57 200 144 99 156 51 108 167 120
18 55 87 75 98 180 130 118 188 41 140 145 113 13 181 34 15 195 56 159 163
66 78 19 168 79 1 170 142 166 84

tail09

190 10 148 199 151 166 25 113 160 54 50 70 100 106 19 77 36 55 29 61 74
154 116 153 86 72 101 136 111 28 62 142 80 24 134 94 124 1 20 8 58 16 30
135 14 2 92 192 37 84 173 197 67 76 22 117 6 57 174 158 89 105 78 93 83
46 146 96 69 168 172 186 11 147 71 17 123 145 130 98 144 110 64 170 21
155 102 189 51 161 99 40 162 149 163 68 108 122 26 159 59 194 43 179 90
52 129 15 103 81 23 175 125 121 45 91 41 79 138 107 140 156 169 143 182
13 114 167 133 126 56 115 7 187 164 66 127 5 3 120 165 87 131 73 34 65
178 95 157 32 185 4 75 42 112 183 137 150 63 85 104 27 200 60 176 181 82
118 132 53 31 171 12 47 48 193 139 128 180 152 18 141 198 38 184 177 88
196 39 97 35 191 9 33 119 188 195 109 44 49

tail 10

130 15 116 7 196 142 154 197 77 180 149 47 103 100 83 12 151 59 13 141 94
198 50 131 124 104 126 112 91 177 81 52 65 14 150 172 75 60 189 191 127
55 135 160 163 56 133 139 67 64 192 144 199 121 140 178 173 53 98 48 155
183 122 128 106 21 101 87 167 54 93 40 145 114 27 28 66 123 161 9 132 42
118 108 29 22 169 76 97 17 190 32 25 46 79 57 1 2 61 147 164 158 88 95 49
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38 200 153 43 34 111 31 51 20 119 102 99 134 69 181 62 115 73 92 187 113
35 194 4 174 8 175 18 159 157 120 162 10 86 109 74 68 6 11 182 85 23 170
184 82 129 138 90 44 195 45 71 166 165 156 117 19 168 179 125 33 5 39 37
96 105 3 41 80 30 137 152 136 143 63 26 78 148 176 89 24 72 107 171 36
110 193 58 186 188 185 146 84 70 16
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ANEXO II - As melhores seqiiéncias de trabalhos obtidas pelo rAG no quarto
experimento com o CPFSP para as instincias de Reeves (1995) e Heller (1960).

rec01
6 2151311720417 15109 8 18 14 12 16 3 19
rec03
2951478161018 43117 1512 13 11 19 20 6
rec05
1219119618 131422035184 15107 16 17
rec07
10131149123 1816867 155171219 14 20
rec09
16 152017 14 18 11 1 126 7513 8109 19 3 2 4
recll
16 4220187 149817101213 1911151356
hel2

13129104208 197 14113615516 17 18 12

recl3

431411178122 10157 61620181 131995

reclS

1211691325156 191020 17 14 11 8 3 18 4 7

recl7

201218217 131941473 1011816916 155

recl9

572117206 13 10152922 14 11 213412 27 23 8 24 9 19 30 26 25
16 18 28

rec21

23 12 147 13 17 1 24 8 26 16 20 28 29 18 5 11 19 10 9 4 6 15 2 27 25 30
21 3 22

rec23

3242915221204 16 14 9 19 26 22 28 15 8 30 23 10 18 13 17 25 11 6
727 12
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rec25

29 32420236 16 21 11 2 28 30 14 1522251045 7 121 9 19 8 18 27
17 26 13

rec27

17 19 25241953027 1429 18 10 4 11 3 23 16 22 20 13 7 12 15 6 8 28
2 21 26

rec29

1529252627 11 4236 1012301228920 16 17 14 24 13 5 27 28 3
21 18 19

re3l

34 40 46 6 23 48 8 44 26 27 50 38 13 2 24 47 35 32 10 37 25 28 17 14 22
29 31 11 42 15 9 36 30 49 7 12 43 21 204 5 1 33 3 16 41 39 18 45 19
rec33

47 18 2 36 22 34 39 38 9 28 41 42550 101 6 7 11 26 21 8 13 48 20 49 16
15 27 19 14 44 31 3 37 25 43 32 29 46 33 30 12 35 4 17 40 45 24 23

rec35

25 6 27 2 38 35 13 36 42 20 18 41 10 39 50 32 48 31 43 1 5 14 40 17 3 44
30 26 4 33 15 8 23 19 9 12 45 37 21 28 7 47 34 24 11 46 29 49 16 22

rec37

41 19 18 50 1 63 40 75 44 48 67 53 56 20 61 43 29 28 9 7 32 12 65 66 25
58 60 2 57 16 36 73 55 49 42 3 31 46 69 4 51 74 45 11 64 59 13 34 17 39
47 26 15 68 52 54 10 33 72 6 22 8 71 5 27 30 21 14 62 35 24 38 23 70 37
rec39

24 20 47 40 63 56 45 68 23 12 59 16 42 19 57 44 43 48 32 22 11 55 3 52 54
34 15 61 66 46 13 4 58 38 10 31 18 35 49 65 28 9 30 29 69 37 14 21 1 73
72 39 71 27 74 41 51 6 5 2 25 53 50 17 64 36 26 8 33 67 75 62 60 70 7
rec41

30 68 69 28 7 44 29 72 19 35 52 6 24 54 50 65 23 5 64 67 34 63 41 66 37
59 13 48 3 58 75 71 51 74 18 42 26 33 36 46 9 10 25 60 22 31 47 43 14 8
11 45 20 73 4 39 56 17 2 32 55 49 21 40 53 57 61 70 16 12 27 62 1 38 15
hell

13 37 63 74 98 2 87 48 82 53 32 43 25 24 4 80 67 21 40 58 5 71 52 92 14
94 55 16 17 84 76 15 1 22 90 30 91 65 38 78 72 23 62 41 6 59 51 60 64 11
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33 326 9 93 42 68 27 95 46 86 35 44 75 99 79 97 49 88 47 73 70 57 50 96
10 77 29 66 100 89 20 8 85 39 61 36 34 19 28 7 31 12 45 69 54 81 18 83 56
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