
UNIVERSIDADE FEDERAL DO CEARÁ

PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO

PROGRAMA DE MESTRADO EM LOGÍSTICA E PESQUISA OPERACIONAL

FRANCISCO REGIS ABREU GOMES

ALGORITMO GENÉTICO APLICADO AOS PROBLEMA DE

SEQÜENCIAMENTO PERMUTACIONAL FLOWSHOP SEM E COM

RESTRIÇÃO DE ESPERA

FORTALEZA - CE

2008

 ii

FRANCISCO REGIS ABREU GOMES

Dissertação apresentada ao Programa de

Mestrado em Logística e Pesquisa Operacional

da Universidade Federal do Ceará, como

requisito parcial para obtenção do título de

Mestre em Ciências (M.Sc.) em Logística e

Pesquisa Operacional.

Área de concentração: Gestão Logística

Orientador: Prof. José Lassance de Castro Silva,

D.Sc.

FORTALEZA - CE

2008

G614a Gomes, Francisco Regis Abreu

Algoritmo genético aplicado aos problemas de sequenciamento
permutacional Flowshop sem e com restrição de espera [manuscrito]/
Francisco Regis Abreu Gomes, 2008.

141 f.; il.

Orientador: Prof. Dr. José Lassance de Castro Silva

Área de concentração: Gestão Logística
Dissertação (mestrado) – Universidade federal do Ceará, Pró-Reitoria de
Pesquisa e Pós-Graduação, Fortaleza, 2008.

1. Pesquisa operacional. 2. problema de sequenciamento permutacional

contínuo Flowshop, I. Silva, José Lassance de Castro (orient.) II.
Universidade Federal do Ceará – Curso de Mestrado em Logística e
Pesquisa Operacional. III. Título.

 CDD 003

FRANCISCO REGIS ABREU GOMES

ALGORITMO GENÉTICO APLICADO AOS PROBLEMA DE

SEQÜENCIAMENTO PERMUTACIONAL FLOWSHOP SEM E COM

RESTRIÇÃO DE ESPERA

Dissertação submetida à Coordenação do Curso de Pós-Graduação em Logística e Pesquisa
Operacional em 15 de fevereiro de 2008, da Universidade Federal do Ceará, como
requisito parcial para a obtenção do grau de Mestre em Logística e Pesquisa Operacional.
Área de concentração: Gestão Logística.

Aprovado em 15/02/08

BANCA EXAMINADORA

__

Prof. José Lassance de Castro Silva, D.Sc. (Orientador)

Universidade Federal do Ceará - UFC

__

Prof. Nei Yoshihiro Soma, Ph.D.

Instuto de Tecnologia de Aeronáutica - ITA

__

Prof. Antonio Clécio Fontelles Thomaz, D.Sc.

Universidade Estatual do Ceará – UECE

__

Prof. João Welliandre Carneiro Alexandre, D.Sc.

Universidade Federal do Ceará - UFC

 iv

Aos meus Pais.

 v

AGRADECIMENTOS

A Deus, que para mim é fonte de força para não desistir dos meus sonhos.

A Universidade Federal do Ceará (UFC), onde conclui o curso de Engenharia de Produção

Mecânica em 2005, pela possibilidade de prosseguir nos estudos acadêmicos através do

programa de mestrado interdisciplinar de Logística e Pesquisa Operacional (GESLOG).

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), por ter

financiado meus estudos durante o mestrado.

A meu orientador, o professor José Lassance de Castro Silva, por compartilhar sua

experiência, pela sua supervisão, pelas correções substanciais que melhoraram a qualidade

da minha dissertação e, principalmente por sua confiança em mim.

A todos os professores do GESLOG, principalmente àqueles com quem tive aula.

A todos os servidores técnico-administrativos da UFC, principalmente àqueles ligados

diretamente ao mestrado GESLOG.

A meu grande amigo o Engenheiro Civil e M.Sc. Bruno de Athayde Prata, por ter me

incentivado a participar da seleção do mestrado GESLOG.

Ao Engenheiro Civil Magno Gonçalves da Costa, aluno no curso de Mestrado em

Engenharia Civil, ênfase em recursos hídricos, pelo seminário sobre Algoritmos Genéticos,

ministrado nas férias do meio do ano de 2006, que foi um dos fatos responsável por

despertar o meu interesse nessa fantástica técnica.

Ao grande amigo Caio Colares Vasconcelos que foi fundamental durante a minha

graduação e mestrado, pelos conselhos profissionais, pessoais e técnicos.

Por fim, mas não menos importante, a minha mãe, Regina de Fátima Abreu Gomes, por ter

transmitido aos filhos sua paixão pelo saber.

 vi

“O que você sabe depende de quem você quer

ser, o modelo do que você pode ser depende do

que você sabe”.

Olavo de Carvalho

 vii

RESUMO

Neste trabalho foram tratados dois problemas: o primeiro é denominado Continuous

Permutation Flowshop Scheduling Problem (CPFSP), que possui a restrição de que

nenhuma tarefa pode esperar por processamento entre máquinas consecutivas; o segundo é

denominado de Permutation Flowshop Scheduling Problem (PFSP), em que a restrição

anterior não existe. A metaheurística Algoritmo Genético (AG) tem sido aplicada com

sucesso ao PFSP, mas até o momento não foi encontrado na literatura algo que mostre que

o AG é um bom método para o CPFSP. O objetivo deste trabalho foi desenvolver um AG

eficiente paras esses dois problemas, mas que não precisa utilizar inicialização eficiente

e/ou hibridização com outra técnica de busca. O desenvolvimento do AG proposto levou

em consideração as características, diversificação e a intensificação, que inspiraram a

criação de três procedimentos que melhoraram o desempenho do AG proposto. Foram

realizados vários experimentos com as instâncias de Taillard (1993), Reeves (1995) e

Heller (1960). Os resultados foram comparados com outros métodos encontrados na

literatura. Foram construídos polinômios com a utilização de Interpolação Lagrangeana

para determinar o tempo execução do AG proposto. Por fim, o método foi aplicado num

problema real. Os resultados mostraram que o AG proposto é o melhor método para o

CPFSP e que fica muito próximo do melhor AG encontrado na literatura com inicialização

eficiente para o PFSP.

Palavras-Chaves: Problema de Sequenciamento Permutacional Flowshop, Problema de

Sequenciamento Permutacional Contínuo Flowshop, Algoritmo Genético, Diversificação e

Intensificação.

 viii

ABSTRACT

In this work two problems were solved: the first is Continuous Permutation Flowshop

Scheduling Problem (CPFSP) it possesses the constraint that no job can wait for processing

among serial machines; the second is Permutation Flowshop Scheduling Problem (PFSP),

in that the previous restriction does not exist. The metaheuristic Genetic Algorithm (GA)

has been applied with success for solving the PFSP, but up to now it was not found in the

literature something that shows that GA is a good method for CPFSP. The objective of this

work was to develop an efficient GA for both problems, but that does not need to use an

initialization efficient and/or hybridization allied with other search technique. The

development of proposed GA took in consideration the characteristics, diversification and

the intensification, that inspired the creation of three procedures that further improved the

proposed GA. Several experiments were accomplished with the instances of Taillard

(1993), Reeves (1995) and Heller (1960). The results were compared with other methods

found in the literature. Polynomials were built with Lagrangeana's Interpolation use to

determine the time execution of proposed GA. Finally, the method was applied in a real

problem. The results showed that proposed GA is the best method for CPFSP and that is

very close of best GA found in the literature with efficient initialization for PFSP.

Keywords: Permutacional Flowshop Scheduling Problem, Continuous Permutacional

Flowshop Scheduling Problem, Genetic Algorithm, Diversification and Intensification.

 ix

LISTA DE FIGURAS

Figura 2.1 Ilustração do PFSP ..8

Figura 2.2 Procedimento para calcular g (s) ...13

Figura 2.3 One-point crossover ..19

Figura 2.4 Two-point crossover (versão 1) ...21

Figura 2.5 Primeiro passo do crossover SJOX ...25

Figura 2.6 Segundo passo do crossover SJOX ...25

Figura 2.7 Terceiro passo do crossover SJOX ..25

Figura 3.1 Gráfico de Gantt de um CPFSP com n trabalhos e m máquinas28

Figura 3.2 Movimentos swap e shift ...34

Figura 4.1 Pseudocódigo de um AG básico ..52

Figura 4.2 Representação do fenótipo, cromossomo, alelo e gene54

Figura 4.3 Representação da seleção pelo método da roleta ..56

Figura 4.4 Segunda etapa do crossover OX ...62

Figura 4.5 Terceira etapa do crossover OX ..63

Figura 4.6 Exemplo da aplicação do operador mutação (swap)63

Figura 4.7 Pseudocódigo do rAG ...69

Figura 5.1 Evolução das soluções do rAG para o problema tai021 (20x20)101

Figura 5.2 Evolução das soluções do rAG para o problema tai051 (50x20)101

Figura 5.3 Evolução das soluções do rAG para o problema tai081 (100x20)101

Figura 5.4 Evolução das soluções do rAG para o problema tai101 (200x20)101

Figura 5.5 Evolução das soluções do rAG para o problema rec17 (20x15)102

Figura 5.6 Evolução das soluções do rAG para o problema rec31 (50x10)102

Figura 5.7 Evolução das soluções do rAG para o problema rec37 (75x20)102

Figura 5.8 Evolução das soluções do rAG para o problema hel1 (100x10)102

Figura 5.9 Evolução das soluções do rAG para o problema tai021 (20x20)103

Figura 5.10 Evolução das soluções do rAG para o problema tai051 (50x20)103

Figura 5.11 Evolução das soluções do rAG para o problema tai081 (100x20)103

Figura 5.12 Evolução das soluções do rAG para o problema tai101 (200x20)103

Figura 5.13 Descrição das máquinas do problema prático ..108

Figura 5.14 Gráfico de Gantt para a solução do problema prático encontrada pelo rAG

..110

 x

LISTA DE TABELAS

Tabela 2.1 Tempos de processamento para valores de n considerando o número de

soluções de S ..14

Tabela 2.2 Valores experimentados para os parâmetros do AG de Murata et al. (1996) .22

Tabela 3.1 Resumo dos resultados dos experimentos de Aldowaisan e Allahverdi (2003)

...38

Tabela 3.2 Tempos em segundos usados nos experimentos de Aldowaisan e Allahverdi

(2004) ..42

Tabela 3.3 Resumo dos resultados dos experimentos de Aldowaisan e Allahverdi (2004)

...43

Tabela 3.4 Resultados dos experimentos com o GASA ...45

Tabela 3.5 Resumo dos resultados dos experimentos de Grabowski e Pempera (2005) ..50

Tabela 4.1 Alguns valores obtidos para o problema tai031 por uma versão inicial do rAG

..65

Tabela 4.2 Diferença entre os AG apresentados para o PFSP e o rAG70

Tabela 5.1 Resumo da comparação das várias etapas de melhoria do rAG73

Tabela 5.2 Comparação das várias etapas de melhoria do rAG para as classes com n = 20

..75

Tabela 5.3 Comparação das várias etapas de melhoria do rAG para as classes com n = 50

..76

Tabela 5.4 Comparação das várias etapas de melhoria do rAG para as classes com n = 100

...77

Tabela 5.5 Comparação das várias etapas de melhoria do rAG para as classes com n = 200

...78

Tabela 5.6 Comparação do rAG com a heurística Pilot-10-Chins78

Tabela 5.7 Resumo da comparação do rAG com o FV ...82

Tabela 5.8 Resultados da comparação do rAG com o FV para a classe n = 2084

Tabela 5.9 Resultados da comparação do rAG com o FV para a classe n = 5085

 xi

Tabela 5.10 Resultados da comparação do rAG com o FV para a classe n = 10086

Tabela 5.11 Resultados da comparação do rAG com o FV para a classe n = 20087

Tabela 5.12 Comparação do rAG com o GASA ...89

Tabela 5.13 Comparação do rAG com o TS-M ..90

Tabela 5.14 Comparação do rAG com o TS-M utilizando tempo maior de execução92

Tabela 5.15 Tempos de execução utilizados nos testes com os outros AGs94

Tabela 5.16 Resultados dos experimentos com p = 30 ...96

Tabela 5.17 Resultados dos experimentos com p = 60 ...96

Tabela 5.18 Resultados dos experimentos com p = 90 ...97

Tabela 5.19 Evolução das soluções do CPFSP com o tempo total de fluxo como critério

de desempenho ..99

Tabela 5.20 Evolução das soluções do CPFSP com o makespan como critério de

desempenho ...99

Tabela 5.21 Evolução das soluções do PFSP com o makespan como critério de

desempenho ...100

Tabela 5.22 Valores usados para construir os polinômios do segundo grau106

Tabela 5.23 Polinômios do segundo grau para o problema PFSP106

Tabela 5.24 Tempos de execução em horas das tarefas do problema real108

Tabela 5.25 Resultados obtidos pelo rAG para o problema real109

 xii

LISTA DE QUADROS

Quadro 3.1 Descrição do método IT ...36

Quadro 3.2 Os pseudo-códigos das buscas locais SA-1, SA-2, GEN-1 e GEN-237

Quadro 3.3 Descrição do algoritmo ASI ...39

Quadro 3.4 Descrição das heurísticas PH1 e PH2 ..40

Quadro 3.5 Descrição das heurísticas PH3 e PH4 ..41

 xiii

LISTA DE ABREVIATURAS E SIGLAS

AG Algoritmo Genético

FV Fink e Voβ

SP Scheduling Problem

FSP Flowshop Scheduling Problem

CPFSP Continuous Permutation Flowshop Scheduling

PFSP Permutation Flowshop Scheduling Problem

POCP Problemas de Otimização Combinatorial Permutacional

TTF Tempo total de fluxo

PMX Partially Mapped

SJOX Similar Job Order Crossover

SBOX Similar Block Order Crossover

SJ2OX Similar Job 2-Point Order Crossover

SB2OX Similar Block 2-Point Order Crossover

NN Nearest Neighbor

Chins Cheapest Insertion

SD Steepest Descent

ISD Iterated steepest descent

IT Insertion technique

JSSP Job Shop Scheduling Problem

TS Tabu Search

OX Order Crossover

 xiv

SUMÁRIO

Resumo ..vii

Abstract ..viii

Lista de Figuras ..ix

Lista de Tabelas ...x

Lista de Quadros ...xii

Lista de Abreviaturas e Siglas ...xiii

1. INTRODUÇÃO...1

1.1. Considerações Iniciais ..1

2. O PROBLEMA DE SEQÜENCIAMENTO PERMUTACIONAL FLOWSHOP7

2.1. Definição do PFSP ...7

2.2. O Modelo Matemático do PFSP ..10

2.3. O Modelo Combinatorial Permutacional do PFSP ..12

2.4. Estado da Arte do PFSP ...14

2.5. Algoritmos Genéticos para a Resolução do PFSP ...15

2.5.1. AG de Chen et al. (1995) ..15

2.5.2. AG de Reeves (1995) ...18

2.5.3. AG de Murata et al. (1996) ..20

2.5.4. AG de Ruiz et al. (2006) ..23

3. O PROBLEMA DE SEQÜENCIAMENTO PERMUTACIONAL CONTÍNUO

FLOWSHOP ..28

3.1. Definição do CPFSP ..28

3.2. O CPFSP como um POCP ...29

3.3. Métodos de Resolução para o CPFSP ..30

3.3.1. AG de Chen et al. ..30

3.3.2. Metaheurísticas de Fink e Voβ ..33

3.3.3. Algoritmo Genético e Simulated Annealing de Aldowaisan e Allahverdi

..35

3.3.4. As Heurísticas de Aldowaisan e Allahverdi ..38

3.3.5. GASA de Shuster e Framinan ...43

3.3.6. Os Algoritmos de Grabowski e Pempera ..46

4. ALGORITMO GENÉTICO ...51

4.1. Introdução ..51

 xv

4.2. Os Elementos de um AG ...53

4.2.1. Representação para o AG ...53

4.2.2. Função de Aptidão ...54

4.2.3. População Inicial ..55

4.2.4. Métodos de Seleção ..55

4.2.5. Operadores Genéticos ...57

4.2.6. Estratégia Geracional ..58

4.2.7. Critério de Parada ...59

4.2.8. Parametrização do AG ..59

4.3. Descrição do rAG ..60

4.3.1. Escolha da Representação ...60

4.3.2. Função de Aptidão ..60

4.3.3. População Inicial ..61

4.3.4. Método de Seleção ...61

4.3.5. Operadores genéticos ...62

4.3.6. Estratégia Geracional ...66

4.3.7. Critério de Parada ...67

4.3.8. Parametrização do rAG ..67

4.3.9. Resumo do rAG ..68

5. EXPERIMENTOS COMPUTACIONAIS..71

5.1. Experimento 1 – Etapas de melhoria do rAG ..71

5.2. Experimento 2 – rAG x FV ..80

5.3. Experimento 3 – rAG x GASA e TS-M ...88

5.4. Experimento 4 – rAG x TS-M ...91

5.5. Experimento 5 - rAG x outros AG ...93

5.6. Evolução das Soluções do rAG ..98

5.7. Interpolação ..104

5.8. Aplicação Prática ...107

5.9. Conclusão dos Experimentos Computacionais ..110

6. CONCLUSÕES...114

REFERÊNCIAS BIBLIOGRÁFICAS ..117

ANEXO I – As melhores seqüências de trabalho obtidas pelo rAG no segundo

experimento com o CPFSP para as instâncias de Taillard (1993)122

 xvi

ANEXO II – As melhores seqüências de trabalhos obtidas pelo rAG no quarto experimento

com o CPFSP para as instâncias de Reeves (1995) e Heller (1960)

..139

 1

CAPÍTULO 1 – INTRODUÇÃO

1.1. Considerações Iniciais

As empresas de manufatura enfrentam a difícil tarefa de determinar a melhor seqüência de

processamento de seus produtos em suas máquinas que atenda aos objetivos competitivos

do negócio. A Pesquisa Operacional denomina este problema como Scheduling Problem

(SP), na Literatura, e o define como: dado um conjunto de tarefas e um conjunto de

máquinas determinar uma seqüência específica que otimize uma função objetivo. Existem

vários tipos de SP, por exemplo, o single machine scheduling problem, multiple machine

scheduling problem e manpower scheduling problem. Este trabalho trata do multiple

machine scheduling problem chamada de Flowshop Scheduling Problem (FSP). O

primeiro artigo publicado sobre este problema foi de Johnson (1954) que formulou e

resolveu o two-machine flowshop problem. Segundo Gupta e Stafford Jr. (2006) de 1954 a

2004 mais de 1.200 artigos foram publicados abordando diferentes aspectos do FSP.

O FSP é definido como um fluxo unidirecional de n tarefas em m máquinas, i.e., a ordem

de processamento de todas as tarefas nas m máquinas é a mesma. Considerando o caso

geral do FSP o número de seqüências possíveis e distintas é igual a (n!)m, mesmo para

problemas com n e m pequenos a enumeração completa de todas as soluções possíveis e

distintas torna-se impossível.

Neste trabalho foram tratados dois problemas da classe FSP. O primeiro problema é uma

simplificação do FSP geral, que assume que a seqüência de operações das tarefas

processadas em cada máquina é a mesma, por isso, o número de soluções possíveis é

reduzido para n!, neste caso o problema é denominado Permutation Flowshop Scheduling

Problem (PFSP). Uma das suposições necessárias para definir o PFSP é que cada tarefa

pode esperar pelo processamento entre máquinas consecutivas, i.e., estoque em processo é

permitido. Existem processos produtivos onde a suposição anterior não se aplica, i.e., as

tarefas não podem parar o processamento entre máquinas consecutivas e, por isso,

precisam ser processados continuamente do início ao fim, isto origina um outro problema

chamado de Continuous Permutation Flowshop Scheduling Problem (CPFSP). O segundo

problema e o principal é o CPFSP, dado a sua importância prática e as poucas pesquisas

realizadas sobre ele encontradas na literatura.

 2

Ainda sobre o CPFSP, segundo Hall e Sriskandarajah (1994) existem duas razões para a

ocorrência de um ambiente de produção contínua. A primeira razão é a tecnologia de

produção empregada, por exemplo, a temperatura ou outra característica de um material

requer que cada operação siga imediatamente para a próxima etapa. Essas situações são

comuns nas indústrias siderúrgica, química, farmacêutica, alimentícia e plástica.

Ambientes de manufatura moderna como just-in-time, sistemas flexíveis de manufatura e

células robóticas exigem uma complexa coordenação no processo de manufatura. Isto

também pode ocorrer em empresas de serviço onde o custo de atendimento do cliente é

alto. A segunda razão de ocorrência é a falta de espaço de estocagem intermediária, isto

ocorre geralmente em linhas de produção automáticas e em sistemas de estoque gerenciado

por kanbans (cartões informando a quantidade de produtos a serem produzidos), pois

nestes casos o estoque em processo tem uma quantidade fixa limitada.

As aplicações futuras do CPFSP seriam principalmente nas indústrias de manufatura

moderna, especialmente por causa da automação do manuseio de materiais, segundo Hall e

Sriskandarajah (1994).

Este trabalho indica uma boa contribuição científica para o CPFSP principalmente. Além

de outros estudos realizados nas resoluções dos problemas.

A metaheurística Algoritmo Genético (AG) baseada na evolução das espécies, tem sido

aplicada com sucesso no PFSP (Chen et al. (1995), Reeves (1995), Murata et al. (1996) e

Ruiz et al. (2006)). Ruiz et al. (2006) desenvolveram um AG que teve um bom

desempenho quando aplicado no PFSP. Alguns AGs foram desenvolvidos e aplicados no

CPFSP, tais como Chen et al. (1996), Aldowaisan e Allahverdi (2003) e Schuster e

Framinan (2003). Os AGs de Chen et al. (1996) e Aldowaisan e Allahverdi (2003) foram

testados em problemas gerados aleatoriamente o que torna difícil a comparação com outros

métodos que usaram dados da OR-Library, somente o AG de Schuster e Framinan (2003)

foi testado em instâncias conhecidas. Testar um algoritmo em problemas conhecidos e

disponíveis na literatura é uma forma de permitir que o método possa ser comparado com

outros métodos. Fink e Voβ (2003) desenvolveram várias heurísticas e alguns métodos

baseados nas metaheurísticas Simulated Anneling e Tabu Search para o CPFSP que foram

testados nas instâncias de Taillard (1993). Grabowski e Pempera (2005) desenvolveram um

 3

método baseado na metaheurística Tabu Search para o CPFSP que obteve um melhor

resultado que o AG de Schuster e Framinan (2003). Até o momento não foi encontrado na

literatura um trabalho que mostre que o AG é um bom método para o CPFSP devido a este

fato escolhemos atacar o CPFSP desenvolvendo um AG que tivesse um bom desempenho.

A primeira justificativa para a escolha do AG é a possibilidade de mostrar que ele pode ser

um bom método de resolução quanto ao uso de recursos computacionais. A segunda

justificativa é baseada na hipótese de Silva e Soma (2006) que métodos de resolução exata

para problemas da classe FSP geralmente só são aplicados em problemas com n≤20 e que

mesmo assim o tempo computacional ainda é muito alto, por isso a importância de

desenvolver métodos que encontrem boas soluções em tempo computacional aceitável. A

terceira justificativa é que se trata de uma técnica generalista, i.e., pode ser aplicada em

vários problemas necessitando somente de poucas modificações. E finalmente, a quarta

justificativa é o fato de que o AG está sendo usado no setor produtivo, onde se constatou

que em setembro de 1998 através do site EvoWeb, especializado em notícias relacionadas

a computação evolucionária, noticiou que em 1997 uma empresa de manufatura foi

comprada por US$ 53 milhões por uma empresa de software, o alto valor pago foi

justificado pelo interesse em adquirir um programa de computador baseado em AG

desenvolvido pela empresa de manufatura para fazer o seqüenciamento das ordens de

produção da fábrica (EvoWeb, 2007).

O AG foi criado por John Holland durante as décadas de 1960 e 1970 (Holland, 1975).

Segundo Haupt e Haupt (2004), o AG é uma técnica baseada nos princípios da genética e

seleção natural das espécies. A técnica é formada por uma população de indivíduos que

representam as soluções do problema. Cada indivíduo da população é avaliado segundo

sua qualidade em relação aos outros indivíduos da população. Os indivíduos são escolhidos

por um procedimento inspirado na seleção natural para passarem por operações genéticas

que resultam em descendentes que comporão a nova população. Os estudos mostram que a

nova população tem a tendência de ter indivíduos com aptidões melhores que os indivíduos

da população anterior. Este processo de gerar novas populações é chamado de geração. O

melhor indivíduo da última população associado a uma solução do problema é selecionado

como a melhor solução encontrada para o problema.

 4

Verificou-se na literatura, que os AGs usados nos problemas da classe FSP apresentam

como principais características: a utilização de uma heurística eficiente para criar a

população inicial; e uma etapa de hibridização com outra técnica de busca. A inicialização

eficiente reduz o tempo necessário para encontrar boas soluções. A etapa de hibridização é

usada para melhorar a qualidade da solução obtida. Com estes dois novos componentes

fica difícil determinar o quanto da qualidade da solução obtida se deve as características

originais do AG criado por Holland. Sendo assim, este trabalho também tem como objetivo

desenvolver um AG eficiente para os problemas da classe FSP, principalmente o CPFSP,

que não utilize inicialização eficiente e hibridização. Este objetivo se justifica do ponto de

vista teórico porque verificará e analisará se um AG sem inicialização eficiente ou

hibridização pode ser competitivo com os AGs que usam estas estratégias. Além disso, um

AG com estas características pode ser útil quando as heurísticas disponíveis não forem tão

eficientes em termos de qualidade das soluções e o tempo computacional ou a hibridização

comprometer o custo computacional.

O desenvolvimento do AG proposto levou em consideração as características que fazem a

evolução da qualidade das soluções agirem de forma melhor e por mais tempo, as soluções

obtidas seriam boas, mesmo sem inicialização eficiente e hibridização. Para isso foram

usados dois princípios para guiar a construção do AG. Mitchell (1998) afirmou que no AG

a evolução das soluções depende da variação nas aptidões dos indivíduos da população.

Outra característica importante é a intensificação no processo de busca (Silva e Soma,

2001; Grabowski e Pempera, 2005; Dréo et al., 2006). Daí se escolheu a diversificação e a

intensificação como características importantes para a qualidade de um AG.

Definida a diversidade e a intensificação como as características que atribuiriam qualidade

ao AG desenvolvido, tratou-se de encontrar formas de implementar estas características.

Depois do desenvolvimento do primeiro AG, seguindo o modelo tradicional, foram

desenvolvidos e testados três procedimentos baseados nos princípios da diversificação e

intensificação para melhorar o desempenho do AG. O primeiro procedimento é baseado no

princípio da diversificação e consiste em permitir, na etapa da formação da nova população

do AG, que indivíduos de aptidão menor, mas com características diferentes de todos os

outros indivíduos da população tenham chance de serem escolhidos para a nova população.

O segundo procedimento é baseado no princípio da intensificação e consiste em fazer o

 5

melhor indivíduo da população passar por um processo genético com outros indivíduos da

população mais vezes que o comum. Por fim, o terceiro procedimento é baseado no

princípio da diversificação e consiste em realizar uma perturbação em todos os indivíduos

da população depois que um estado de estagnação é identificado. Todos estes

procedimentos serão detalhados mais adiante.

O objetivo principal deste trabalho é desenvolver um AG eficiente que não utilize

inicialização eficiente e hibridização para resolver os problemas CPFSP e PFSP. O AG

desenvolvido foi chamado de rAG para diferenciar dos outros AGs existentes.

Os seguintes objetivos específicos precisam ser realizados para que o objetivo principal

seja cumprido:

1. Caracterizar de forma clara o PFSP e o CPFSP;

2. Apresentar os modelos matemáticos e combinatorial do PFSP e do CPFSP;

3. Descrever os AGs mais relevantes encontrados na literatura desenvolvidos para

resolver o PFSP;

4. Analisar os principais métodos desenvolvidos para resolver o CPFSP;

5. Desenvolver os novos procedimentos que melhorarão a diversidade da população e

o processo de intensificação do rAG como forma de o tornar mais eficiente;

6. Realizar experimentos com o rAG para os problemas CPFSP com as instâncias de

Taillard (1993), Reeves (1995) e Heller (1960) e para o PFSP com as instâncias de

Taillard (1993);

7. Comparar os resultados obtidos pelo rAG com os métodos que foram testados em

problemas conhecidos encontrados na revisão bibliográfica para o CPFSP com o

critério de desempenho sendo o tempo total de fluxo e o makespan;

8. Comparar o rAG com os melhores AG encontrados na revisão bibliográfica para o

PFSP com o critério de desempenho sendo o makespan;

9. Usar interpolação para construir funções que possam ser usadas para determinar o

tempo de execução necessário para o rAG encontrar uma solução de qualidade

desejada para o PFSP; e

10. Aplicar o rAG num problema prático analisando seus resultados.

 6

Este trabalho foi dividido em seis capítulos, sendo o Capítulo 1 a introdução. O Capítulo 2

apresenta o PFSP com suas principais características e quatro AGs, os mais relevantes

encontrados na literatura aplicados ao problema. O Capítulo 3 trata do CPFSP, onde são

apresentados os modelos matemático e combinatorial e os métodos de resolução mais

recentes. O Capítulo 4 aborda a técnica AG, onde são descritas as principais características

de um AG e do rAG, com suas particularidades. O Capítulo 5 aborda para o rAG: os

experimentos com o método, uma aplicação real e o desenvolvimento de funções

polinomiais (interpolação) que possam ser usadas para determinar o tempo de execução

necessário para o rAG encontrar uma solução de qualidade desejada para o PFSP. O

Capítulo 6 apresenta às conclusões e as propostas para futuros trabalhos na área. Por fim,

são apresentados a revisão bibliográfica do trabalho e os Anexos I e II, o primeiro anexo

apresenta as melhores seqüências de tarefas obtidas pelo rAG para o CPFSP com as

instâncias de Taillard (1993) e o segundo as melhores seqüências para as instâncias de

Reeves (1995) e Heller (1960).

 7

CAPÍTULO 2 – O PROBLEMA DE SEQÜENCIAMENTO PERMUTACIONAL

FLOWSHOP

Este capítulo é composto de cinco seções que tratam do PFSP: a primeira seção apresenta a

definição do PFSP; a segunda seção apresenta o modelo matemático em Programação

Linear Inteiro e Mista do PFSP, com sua complexidade; a terceira seção mostra outra

forma de representar o PFSP, baseada na modelagem de Problemas de Otimização

Combinatorial Permutacional (POCP); a quarta seção apresenta um histórico da evolução

das técnicas aplicadas na solução do PFSP; e finalmente, a quinta seção onde são

apresentados os AGs mais relevantes encontrados na literatura aplicados ao PFSP.

2.1. Definição do PFSP

Antes de definir o PFSP é importante esclarecer que flowshop não é sinônimo de linha de

montagem, mesmo que a característica do flowshop seja um fluxo que pareça ser constante

de trabalhos através de um conjunto de máquinas em série, conforme Gupta e Stafford Jr.

(2006). A seguir são apresentadas três diferenças entre estes dois tipos de modelo de

sistema de produção.

a) No ambiente flowshop existe uma variedade de produtos e na linha de montagem

existe um produto padrão;

b) No ambiente flowshop as tarefas não são obrigadas a passarem em todas as

máquinas dependendo das necessidades tecnológicas e na linha de montagem todas

as tarefas têm que passar por todas as estações de trabalho; e

c) No ambiente flowshop cada tarefa tem seu próprio tempo de processamento em

cada máquina e na linha de montagem todas as unidades dos produtos têm o mesmo

tempo padrão em cada estação de trabalho.

 8

Assim o PFSP pode ser definido como sendo: um conjunto de n tarefas J1, J2,..., Jn, onde

cada tarefa tem para ser processada m máquinas M1, M2, ..., Mm. Cada tarefa demanda m

operações, com uma operação representando o tempo de processamento da tarefa por

máquina. As tarefas seguem o mesmo fluxo de operações nas máquinas, i.e., para qualquer

j =1, 2, ..., n, a tarefa Jj deve ser processada primeira na máquina M1, depois na máquina

M2, e assim por diante até a última máquina, no caso a máquina Mm, conforme mostra a

Figura 2.1. Caso a tarefa Jj não utilize todas as máquinas, o seu fluxo continua sendo o

mesmo, todavia com o tempo de operação sendo igual a zero. Uma máquina pode

processar somente uma operação de cada vez, e iniciada uma operação, ela deve ser

processada até a sua conclusão. O número de seqüências distintas possíveis para realização

das tarefas nas máquinas é grande, i.e., O (n!). O problema consiste em realizar todas as n

tarefas no menor tempo possível (Silva e Soma, 2006).

Figura 2.1 – Ilustração do PFSP.

Conforme Silva e Soma (2006) um input do PFSP é dado por n, m e uma matriz P(n x m)

de elementos não negativos, onde Pij denota o tempo de processamento da tarefa Jj na

máquina Mi. Seguindo os 4 parâmetros da notação A/B/C/D adotada por Conway et al.

(1967), o problema é classificado como n/m/P/Fmax. Na menos antiga notação paramétrica

α/β/γ, proposta por Graham et al. (1979), o problema é denotado como sendo

F/prmu/Cmax. O PFSP pertence à classe dos problemas NP-completo, no sentido forte,

quando m≥3, conforme Garey e Johnson (1979), no caso em que m=2, o problema pode ser

solucionado através de um algoritmo em tempo polinomial.

M1

J1

J2

J3

...
Jn

M2 M3 Mm

...

 9

Suposições relacionadas às tarefas:

J1 – Cada tarefa é liberada para a fábrica no começo do período de programação.

J2 – Cada tarefa pode ter sua própria data de entrega fixa e não sujeita a mudança.

J3 – Cada tarefa é independente das demais.

J4 – Cada tarefa consiste de operações específicas que são realizadas por somente uma

máquina.

J5 – Cada tarefa tem uma seqüência tecnológica preestabelecida fixa e que é igual para

todas as demais tarefas.

J6 – Cada operação de uma tarefa requer um tempo de processamento finito e conhecido

para ser processada nas várias máquinas. Nesse tempo de processamento estão incluídos

tempos de transporte, setup e outros. O tempo de processamento é independente dos

tempos de processamento das tarefas anteriores e posteriores.

J7 – Cada tarefa é processada não mais que uma vez em cada máquina.

J8 – Cada tarefa pode esperar entre máquinas consecutivas, ou seja, estoque em processo é

permitido.

Suposições em relação às máquinas:

M1 – Cada setor é composto de somente uma máquina e a fábrica tem somente uma

máquina de cada tipo.

M2 – Cada máquina está inicialmente desocupada no início do período de programação.

M3 – Cada máquina na fábrica opera independentemente das outras e, por isso, pode

operar na taxa de produção máxima.

M4 – Cada máquina só pode processar uma tarefa por vez.

M5 – Cada máquina está continuamente disponível para processar tarefas durante o

período de programação e não há interrupções devido a quebras, manutenção ou outras

causas.

Suposições relacionadas às políticas de operação

P1 – Cada tarefa é processada tão logo seja possível. Por isso, não há intenção de fazer a

tarefa ficar esperando ou fazer a máquina ficar ociosa.

 10

P2 – Cada tarefa é considerada uma entidade individual mesmo que possa ser composta

por um conjunto de unidades.

P3 – Cada tarefa uma vez iniciada é processada até o fim, ou seja, o cancelamento de

tarefas não é permitido.

P4 – Cada operação de uma tarefa uma vez iniciada numa máquina é completada antes que

outra tarefa possa começar na mesma máquina, ou seja, nenhuma preempção é permitida.

P5 – Cada tarefa é processada somente uma vez em cada máquina. Essa suposição é

resultado das suposições J5 e P2.

P6 – Cada máquina possui área de estoque suficiente para acomodar as tarefas em espera

para serem processadas.

P7 – Cada máquina está completamente alocada às tarefas consideradas durante todo o

período de programação, ou seja, as máquinas não são usadas para nenhum outro plano de

produção.

P8 – Cada máquina processa as tarefas na mesma ordem.

É importante conhecer estas suposições já que os outros problemas da classe FSP foram

criados a partir de alguma modificação nelas. Este é o caso do sequence dependent setup

time Flowshop Scheduling Problem que foi criado a partir da alteração da suposição J6 que

deixa de considerar o tempo de setup como fazendo parte do tempo de processamento e

passa a considerar os dois tempos separadamente.

2.2. O Modelo Matemático do PFSP

A seguir são apresentados a notação necessária e o modelo matemático em Programação

Linear Inteiro e Mista do PFSP.

Notação:

a) Tij é uma variável do modelo que representa o tempo para iniciar o processamento da

tarefa j na máquina i, com 1≤ j ≤n e 1≤ i ≤m; e

b) W é um número bastante grande;

c) Xijk, é uma variável binária definida por:





=

contrário. caso 0,

. máquina na tarefaa precede tarefaa se ,1 ikj
Xijk ,

com i = 1, 2, 3, ..., m, j = 1, 2, 3,..., (n-1) e k = (j+1), (j+2),..., n.

 11

Observações:

i) São dados do problema: n, m e a matriz P (cf. pág. 8);

ii) Em (c), j e k não variam de 1 até n, porque iriam comparar as tarefas j e k na mesma

máquina duas vezes; e

iii) As variáveis do tipo Xijk estabelecem a seqüência de processamento das tarefas em cada

uma das m máquinas.

∑
=

=
n

1j

mj ZMinimizar T 2.1

sujeito a:

Trj ≥ Tr-1,j + pr-1,j , ∀ r = 2,3,...,m e j = 1, 2,..., n. 2.2









∈

+≥

+≥

{0,1}

* -

)-(1* -

ijkikikij

ijkij

 x

XWpTT

XWpTT

ijk

ijik

 ∀ 1 ≤ i ≤ m, j = 1, 2,..., n-1 e k = j+1, j+2,...n

5.2

4.2

3.2

Tij ≥ 0, ∀ 1 ≤ i ≤ m e 1 ≤ j ≤ n 2.6

Onde:

a) A função objetivo 2.1 tenta minimizar o tempo para a conclusão das n tarefas nas m

máquinas através da obtenção do menor tempo para iniciar cada tarefa na última

máquina. Para o caso da tarefa j não utilizar a máquina m substitui-se Tmj por Trj,

onde r é a última máquina a ser utilizada pela tarefa j com tempo maior de zero;

b) O grupo de restrições 2.2 representa o fluxo que as tarefas devem seguir para serem

concluídas. Cada equação do tipo 2.2 determina que a (i+1)-ésima operação da

tarefa j não pode iniciar até que a i-ésima operação da tarefa j na máquina i seja

concluída.

c) Os grupos de restrições 2.3 e 2.4 comparam a relação de precedência das n tarefas

nas m máquinas. Estes grupos de restrições também não permitem que uma

máquina processe duas tarefas ao mesmo tempo;

d) As restrições do grupo 2.5 representam o atendimento à definição da variável Xijk

como sendo binária;

 12

e) As restrições do grupo 2.6 definem a não-negatividade dos tempos de

processamento; e

f) O valor de W faz com que uma das restrições do grupo 2.3 se torne coerente com a

definição da variável Xijk da seguinte forma:

i) Se Xijk = 1, então 2.3 fica Tik ≥ Tij + pij, coerente com a definição de Xijk, enquanto

2.4 fica Tij ≥ Tik + pik – W, ou seja, Tij maior ou igual que um número negativo, logo

Tij ≥ Tik + pik – W se torna verdadeiro devido ao grupo de restrição 2.6.

ii) Se Xijk = 0, então 2.4 fica Tij ≥ Tik + pik, coerente com a definição de Xijk,

enquanto 2.3 fica Tik ≥ Tij + pij – W, ou seja, Tik maior ou igual que um número

negativo, logo Tik ≥ Tij + pij – W se torna verdadeiro devido ao grupo de restrições

2.6.

iii) Podemos adotar W sendo 1000*Max{pij}, ∀ 1 ≤ i ≤ m e 1 ≤ j ≤ n.

Complexidade do modelo:

a) Variáveis do tipo Xijk: m x n x (n - 1) / 2;

b) Variáveis do tipo Tij: m x n;

c) Restrições do grupo 2.2: n x (m - 1);

d) Restrições do grupo 2.3 e 2.4: m x n x (n - 1);

e) Número total de variáveis: m x n (n + 1) / 2; e

f) Número total de restrições: n x (m x n -1).

2.3. O Modelo Combinatorial Permutacional do PFSP

Um POCP pode ser definido por um terno (S, g, n), onde S é o conjunto de todas as

soluções do problema, g é sua função ou procedimento que aplica a cada solução viável s

∈S um número real e n é uma instância do problema. O número de soluções existentes

para um POCP é representado por |S| (cardinalidade de S) e igual a n! (fatorial de n). O

objetivo é encontrar uma solução s* ∈ S que otimize a um dado critério de desempenho

representado pela função g. Representa-se s como uma permutação de n elementos, ou

seja, s= naaa ,...,, 21 , com ai ≠ aj, ∀ 1 ≤ i, j ≤ n e i ≠ j.

 13

Segundo Silva e Soma (2006) o PFSP pode ser modelado como um POCP da seguinte

forma:

a) Um elemento s= nJJJ ,...,, 21 do conjunto de soluções viáveis S é representado por uma

permutação das n tarefas, com a ordem de s determinando a seqüência na qual as tarefas

serão processadas; e

b) O procedimento g, dado a seguir, determina o valor do tempo gasto (tg) para processar a

seqüência s, mais precisamente tem-se que tg é o tempo utilizado no processamento da

última tarefa de s na última máquina Mm.

 Entrada: m, n, permutação s, Matrizes T(m x n)* e P(m x n).
 Saída: g (tempo gasto para processar todas as n tarefas usando a seqüência s)

 for(i=1; i<=m; i++)
 for(j=1; j<=n; j++) t[i][j]=0;
 for(j=1; j<=n; j++) {
 for(i=1; i<=m; i++) {
 if (i==1) {
 if (j>=2) t[1][s[j]]=t[1][s[j-1]]+p[1][s[j-1]];
 } else {
 if (j==1)
 {t[i][s[1]]=t[i-1][s[1]]+p[i-1][s[1]];
 } else {
 x=t[i][s[j-1]]+p[i][s[j-1]];
 y=t[i-1][s[j-1]]+p[i-1][s[j-1]];
 if (x>=y) t[i][s[j]]=x; else t[i][s[j]]=y;
 }
 }
 }
 }
 g=t[m][s[n]] + p[m][s[n]];

* O elemento tij representa o tempo para iniciar a tarefa Jj na máquina Mi.

Figura 2.2 – Procedimento para calcular g (s). Fonte: Silva e Soma (2006).

Para determinar a seqüência s com menor valor de g seria necessário enumerar e avaliar

todas as n! seqüências distintas de S. A Tabela 2.1 abaixo mostra para alguns valores de n a

quantidade de soluções distintas de S e o tempo computacional, caso o tempo de

processamento do procedimento g para cada seqüência fosse igual 0,001 segundos. Os

resultados da Tabela 2.1 demonstram que para valores de n maiores que 20 fica

inviabilizada a enumeração completa de todas as soluções.

 14

Tabela 2.1 – Tempos de processamento para valores de n considerando o número de soluções de S.

n Quant. Soluções Tempo computacional

5 1,20 x 102 0,12 seg

10 3,63 x 106 3.628,80 seg

20 2,43 x 1018 7,71 x 107 anos

2.4. Estado da Arte do PFSP

A análise do histórico do progresso das técnicas utilizadas na resolução dos problemas da

classe PFSP serve para situar o método proposto neste trabalho. Gupta e Stafford Jr. (2006)

analisaram o desenvolvimento da pesquisa em relação ao PFSP desde o trabalho de

Johnson (1954) até 2004. Esse período foi dividido em cinco décadas (1955-1964, 1965-

1974, 1974-1984, 1985-1994 e 1995-2004) e para cada período as suposições, as

formulações para o problema e as abordagens de solução foram analisadas.

A primeira década tratou o PFSP principalmente do ponto de vista teórico. Além da

formulação de Johnson (1954) para duas máquinas foi desenvolvido o m-machine flowshop

para a minimização do makespan. Foram desenvolvidas poucas técnicas para a solução do

PFSP. As duas técnicas que mais se destacaram foram à programação matemática

(Wagner, 1959; Manne, 1960) e a simulação de Monte Carlo (Sisson, 1959; Muth e

Thompson, 1963). O tamanho dos problemas resolvidos eram pequenos por três motivos: i)

falta de capacidade computacional; ii) falta de eficientes programas de computador; e iii) a

maioria das variações do two-machine flowshop problem eram NP-hard.

A segunda década apresentou um maior número de técnicas de solução e outras funções

objetivo além do makespan. Os primeiros a proporem a abordagem combinatorial foram

Dudek e Teuton (1964). A técnica branch and bound para o PFSP foi desenvolvida por

Lomnicki (1965). Nessa época também começou o desenvolvimento das primeiras

heurísticas para encontrar boas soluções para o PFSP de grandes dimensões.

Na terceira década com a publicação da teoria do NP-Completeness por Garey e Johnson

(1979) a pesquisa em relação ao PFSP passou a ter duas direções. Uma direção na tentativa

de identificar a complexidade de vários PFSP (Brucker, 1998; Lawler et al. 1993) e a outra

no desenvolvimento de novas heurísticas. Nessa década também ocorreu a proposição de

 15

vários novos PFSP como o que separa o tempo de setup do tempo de processamento, que

considera a data de entrega na função objetivo e que considera o tempo de processamento

estocástico.

Na quarta década surgiu o hybrid flowshop que consiste em cada centro de trabalho poder

ser constituído de múltiplas máquinas em paralelo. Nessa década iniciou-se o uso das

metaheurísticas (Aarts e Lenstra, 1997): Tabu Search; Simulated Annealing; e Algoritmo

Genético. Também foram desenvolvidas técnicas baseadas em inteligência artificial,

sistemas de apoio à decisão e sistemas especialistas (sistemas que utilizam o conhecimento

empírico acumulado da resolução de problemas que já ocorreram para ajudar a resolução

de novos problemas).

Na quinta década continuou o crescimento na criação de novos problemas, funções

objetivo e abordagens de resolução. A principal novidade foi o aumento das pesquisas

considerando funções multi-objetivo (T’Kindt e Billaut, 1993).

2.5. Algoritmos Genéticos para a Resolução do PFSP

Os conceitos sobre o AG são apresentados no capítulo 4.

2.5.1. AG de Chen et al. (1995)

Chen et al. (1995) desenvolveram um AG para o PFSP com o makespan como critério de

desempenho. O AG foi testado em problemas cujos dados foram extraídos de seqüências

de números gerados de maneira pseudo-aleatória. O AG desenvolvido é composto das

seguintes partes:

a) Representação dos indivíduos;

b) Geração da população inicial e tamanho da população;

c) Avaliação da aptidão e método de seleção;

d) Operadores genéticos; e

e) Critério de parada.

 16

A representação genética adotada foi a permutacional. Por exemplo, para uma instância

com n = 8, o indivíduo pode ser representado por qualquer seqüência de oito tarefas como

2 1 7 8 5 3 6 4.

A população inicial é gerada a partir dos métodos CDS desenvolvido por Campbell et al.

(1970) e de Dannenbring (1977). Os m - 1 primeiros membros da população são gerados

pelo método CDS, o elemento de número m é gerado pelo método Dannenbring e do

elemento m + 1 até o último elemento da população é gerado a partir do primeiro elemento

da população, segundo e sucessivamente mediante a troca de posições de duas tarefas

escolhidas aleatoriamente.

Segundo Chen et al. (1995), depois de vários experimentos que não foram explicitados no

artigo, conclui-se que 60 indivíduos era o melhor tamanho para a população.

A forma como é calculada a aptidão de cada indivíduo é descrita a seguir. O primeiro

passo é calcular o valor do makespan de todos os indivíduos da população. O segundo

passo é selecionar o Cmáx que é o makespan de maior valor da população. O terceiro passo

calcula a aptidão que é igual a diferença entre o valor do makespan do indivíduo e o Cmáx.

O método de seleção não foi explicitado, a única informação dada foi que a seleção é

baseada na aptidão do indivíduo.

O operador de crossover utilizado foi o Partially Mapped (PMX) desenvolvido por

Goldberg (1989). A seguir são apresentados os procedimentos do operador PMX

juntamente com uma ilustração para n = 8.

1 – Escolher aleatoriamente um intervalo comum aos dois pais. Por exemplo, as posições

de quatro a seis.

P1 4 3 7 8 1 2 5 6

P2 1 4 6 5 3 7 8 2

 17

2 – Armazenar relacionadamente os elementos dos dois intervalos selecionados. Na

ilustração o armazenamento relacionado é o seguinte:

3 – Trocar os dois intervalos. Na maioria das vezes os indivíduos resultantes não são

viáveis porque ocorrem tarefas repetidas. O passo 4 corrige esse problema.

4 – Trocar os elementos repetidos e que não estão dentro dos intervalos selecionados pelas

tarefas armazenadas de P1 relacionados às tarefas de P2 e vice-versa. Depois desse passo

os indivíduos são totalmente viáveis.

Chen et al. (1995) realizaram testes com problemas gerados aleatoriamente para

determinar a melhor combinação para as taxas de crossover e mutação. Foram usadas para

a taxa de crossover os valores 1, 0.95 e 0.90 e para a taxa de mutação os valores 0.01,

0.005 e 0. O resultado do experimento mostrou que a melhor combinação foi uma taxa de

crossover igual a 1 e uma taxa de mutação igual a 0. O significado destes valores é que

sempre os indivíduos escolhidos para reprodução passam pelo processo de crossover e

nunca um indivíduo da população sofre mutação.

P1’ 4 3 7 5 3 7 5 6

 4 1 2 5 3 7 8 6

P2’ 1 4 6 8 1 2 8 2

 3 4 6 8 1 2 5 7

P1’ 4 3 7 5 3 7 5 6

P2’ 1 4 6 8 1 2 8 2

P1 P2

 8 5
 1 3
 2 7

 18

O critério de parada do método foi o número de gerações. Após alguns experimentos Chen

et al. (1995) chegaram à conclusão que depois de 20 gerações a população do AG

estagnava e não havia mais melhoria.

2.5.2. AG de Reeves (1995)

Reeves (1995) desenvolveu um AG para o PFSP com o makespan sendo o critério de

desempenho. O AG tem como principal diferença uma probabilidade de mutação

adaptativa e foi testado nas instâncias desenvolvidas pelo próprio autor e de Taillard

(1993).

A representação genética utilizada foi a permutacional que é sempre a opção natural para

este tipo de problema.

A aptidão de cada indivíduo na população é igual a vmáx – v, onde vmáx é o valor do maior

makespan da população e v é o valor do makespan do indivíduo.

A seleção do método de geração da população inicial deu-se com dois experimentos: i)

gerada aleatoriamente; e ii) com um indivíduo gerado pela heurística NEH de Nawaz et al.

(1983) e o restante da população gerada aleatoriamente. O segundo método obteve

soluções tão boas quanto o primeiro método, mas com um tempo computacional menor,

por isso, foi o método selecionado.

O método de seleção é composto por dois tipos de seleção. O primeiro pai é selecionado

usando o tipo de seleção por ranking com probabilidade Pi dada pela Equação 2.6 e o

segundo pai é selecionado com probabilidade uniforme de acordo com a aptidão.

) M x (M

k
 Pi

1+
= 2.6

onde:

- i : é um indivíduo da população, i = 1, 2, ..., M;

- k : é a posição do indivíduo na população em ordem descendente com relação ao

makespan; e

- M : é o tamanho da população.

 19

Foram utilizados operadores genéticos de crossover e mutação. O operador de crossover

foi o one-point crossover que consiste em escolher um mesmo ponto de corte em cada um

dos pais, copiar as tarefas à esquerda do ponto de corte de cada pai para cada um dos

descendentes e copiar as tarefas que faltam do outro pai na mesma ordem relativa. A

Figura 2.3 ilustra o funcionamento do one-point crossover.

Figura 2.3 – One-point crossover.

O operador de mutação utilizado foi o shift que consiste em escolher uma tarefa

aleatoriamente e colocar numa posição da seqüência escolhida aleatoriamente. Também é

utilizada uma estratégia geracional que consiste em inserir os novos indivíduos no lugar

dos indivíduos com aptidão menor que a média da aptidão da população. Esta estratégia

garante a sobrevivência dos indivíduos com melhor aptidão, mas por outro lado, diminui a

diversidade da população.

O critério de parada utilizada foi o tempo de execução, dada a facilidade no momento de

realizar os experimentos para comparar com outros métodos.

Durante os experimentos preliminares Reeves (1995) notou que a população convergia

prematuramente. Por isso, implementou uma probabilidade de mutação Pm adaptativa. Um

parâmetro D é estabelecido para controlar a diversidade da população. A razão vmin/vmed

Pai 1 4 5 8 | 7 3 2 1 6

Descendente 1 4 5 8 |

Descendente 2 1 4 7 |

Pai 2 1 4 7 | 3 2 8 5 6

Pai 1 4 5 8 | 7 3 2 1 6

Descendente 2 1 4 7 | 5 8 3 2 6

Descendente 1 4 5 8 | 1 7 3 2 6

Pai 2 1 4 7 | 3 2 8 5 6

 20

que mede a diversidade da população é calculada ao fim de cada geração, onde vmin é o

valor do menor makespan da população e vmed é o valor do makespan médio da população.

Se está razão é maior ou igual a D, a probabilidade de mutação é multiplicada por um fator

de decréscimo θ (0 < θ <1), caso contrário esta probabilidade retorna ao valor inicial Pm
ini.

A probabilidade Pm
ini é alta no início da busca e diminui durante o processo de evolução.

Ela retorna a crescer quando a diversidade da população está baixa.

Os valores dos parâmetros usados por Reeves (1995) foram:

� Tamanho da população (M) : 30;

� Probabilidade de crossover (Pc) : 1,0;

� Probabilidade inicial de mutação (Pm
ini) : 0,8;

� Taxa de decréscimo da probabilidade de mutação (θ) : 0,99; e

� Parâmetro de controle de diversidade (D) : 0,95.

Reeves (1995) também adotou a estratégia de fazer todos os pais passarem pelo processo

de crossover, já que usou uma taxa de 100%.

2.5.3. AG de Murata et al. (1996)

Murata et al. (1996) desenvolveram três tipos de estudos com AG para o PFSP com o

makespan sendo o critério de desempenho. Foram realizados estudos para os operadores

genéticos, os valores dos parâmetros e as opções de hibridização.

Neste AG, permutações foram usadas para representar as soluções do problema.

Foram testadas duas formas para calcular a probabilidade de seleção. A Equação 2.7 foi

escolhida porque conseguiu a maior pressão de seleção, e assim obteve os melhores

resultados. A probabilidade de seleção é representada por Ps, t representa a geração atual, o

tamanho da população é representado por Npop, x
i representa um indivíduo e a população

atual é representada por Ψt = {xt
1, xt

2, ..., xt
Npop}.

 21

 Ps (xt
i) =

∑
∈ t

i
t x

2i
ttM

2i
ttM

)](f -) ([f

)](f -) ([f

ψ

ψ

ψ

x

x
 2.7

Onde:

- f (xt
i) é o valor do makespan do indivíduo i, i = 1, ..., Npop.

- fM (Ψt) = max { f (xt
i) ∈ Ψt}.

Quanto aos operadores genéticos de crossover e mutação foram testados dez operadores de

crossover para determinar o melhor para o PFSP. O two-point crossover (versão 1) foi o

que obteve o melhor desempenho: dois pontos da seqüência são escolhidos aleatoriamente

de um dos pais. As tarefas que ficam desses pontos para as extremidades são copiados para

o descendente. As tarefas que faltam na seqüência do descendente são copiadas na mesma

ordem relativa do outro pai como mostra a Figura 2.4. Foram testados quatro operadores de

mutação para determinar o melhor para o PFSP. A mutação shift foi a que obteve o melhor

desempenho.

Figura 2.4 – Two-point crossover (versão 1).

Estudos também foram realizados para quantificar os parâmetros do AG. A Tabela 2.2

mostra os valores que foram testados. A melhor combinação foi Npop = 10, Pc = 1.0 e Pm =

1.0, tamanho da população, taxa de crossover e taxa de mutação, respectivamente. Estes

valores significam que todos os indivíduos da população são substituídos por indivíduos

gerados no processo de crossover e todos os indivíduos da população sofrem mutação. O

melhor indivíduo da população anterior é copiado para a nova população no lugar de um

indivíduo escolhido aleatoriamente.

Pai 1 2 3 | 5 7 8 1 | 4 6

Descendente 2 3 | 7 5 1 8 | 4 6

Pai 2 6 7 3 5 4 1 8 2

 22

Tabela 2.2 – Valores experimentados para os parâmetros do AG de Murata et al. (1996). Fonte:

Murata et al. (1996).

Npop Pc Pm

5 0,5 0,5

10 0,6 0,6

20 0,7 0,7

30 0,8 0,8

40 0,9 0,9

50 1,0 1,0

O último estudo realizado foi testar qual o melhor método para hibridizar com o AG.

Foram testados duas opções, um algoritmo simulated annealing e um algoritmo de busca

local. A hibridização do AG com o algoritmo de busca local foi o que obteve o melhor

desempenho. Para reduzir o custo computacional da busca local usou-se a estratégia de

avaliar só uma parte α da vizinhança de uma solução, por exemplo, α = 10% significa que

10% das soluções da vizinhança são escolhidas aleatoriamente. Não foi mencionada que

tipo de estrutura de vizinhança foi utilizada. Para verificar qual seria o melhor valor para o

parâmetro α foram feitos testes com os seguintes valores: 100%, 75%, 50%, 10% e 5%. O

melhor valor para α foi 75%.

O AG com busca local (α = 75%) é o melhor algoritmo para o PFSP desenvolvido por

Murata et al. (1996). Ele é composto de sete passos que são descritos a seguir.

1 – Inicialização : gera uma população inicial de indivíduos de forma aleatória de tamanho

Npop.

2 – Busca local : aplica a busca local em todos os indivíduos da população se um critério

de parada é satisfeito a busca é encerrada senão o processo continua e as novas soluções

comporão a população atual. O critério de parada é o seguinte: se depois dos α vizinhos

avaliados tiver havido melhoria em algum indivíduo a busca é encerrada, senão, são

avaliados todos os vizinhos de todos os indivíduos da população.

3 – Seleção : seleciona Npop pares de pais da população atual de acordo com a

probabilidade de seleção.

 23

4 – Crossover : Aplica o operador crossover a cada par de pais escolhidos com uma

probabilidade Pc. Se o operador não for aplicado é escolhido um dos pais para compor a

nova população.

5 – Mutação : aplica o operador de mutação a cada indivíduo com a probabilidade Pm, esta

probabilidade é referente a cada indivíduo e não a cada tarefa como na representação

binária.

6 – Estratégia elitista : adiciona o indivíduo de melhor aptidão da população atual na nova

população no lugar de um indivíduo escolhido aleatoriamente.

7 – Critério de parada : finaliza a execução do algoritmo se a condição de parada (tempo de

execução) é satisfeita, caso contrário, retorna ao passo 2.

2.5.4. AG de Ruiz et al. (2006)

Ruiz et al. (2006) desenvolveram dois novos AG para o PFSP sendo também o makespan o

critério de desempenho. Os AGs têm: inicialização eficiente; estratégia geracional que só

aceita indivíduos melhores e com seqüência única; quatro novos operadores de crossover

que foram desenvolvidos; um procedimento para evitar a convergência prematura; e

proposta de uma busca local para a hibridização com o primeiro AG. Foi realizado um

projeto de experimento para determinar a melhor combinação de operadores genéticos e

valores dos parâmetros dos AGs desenvolvidos.

A representação da solução utilizada foi permutacional, onde a ordem relativa das tarefas

na permutação indica a ordem de processamento das mesmas.

Para gerar a população inicial Ruiz et al. (2006) desenvolveram uma modificação na

heurística NEH de Nawaz et al. (1983). A modificação foi a seguinte: depois de ordenar

todas as tarefas em ordem decrescente do tempo total de processamento, são escolhidas

duas tarefas aleatoriamente e colocadas nas duas primeiras posições, depois disso o

procedimento continua igual ao NEH original. A população inicial é composta por um

indivíduo gerado pela heurística NEH, (Bi% - 1) indivíduos gerados pela heurística NEH

 24

modificada e os (100 – Bi)% indivíduos restantes são gerados aleatoriamente. O parâmetro

Bi indica o percentual de indivíduos gerados eficientemente.

Duas condições foram desenvolvidas para controlar como os indivíduos gerados

substituem os indivíduos da população atual. A primeira é que um indivíduo gerado só

substitui o indivíduo da população atual com o pior makespan se o seu makespan for

menor e a segunda condição é que a seqüência do novo indivíduo seja única em relação a

população atual. Isto ajuda a manter a diversidade na população.

Ruiz et al. (2006) desenvolveram quatro novos operadores de crossover para o PFSP que

são baseados na idéia de identificar e manter os bons blocos construídos. O primeiro

operador foi chamado de Similar Job Order Crossover (SJOX) que funciona da seguinte

maneira. Os dois pais são examinados posição por posição. Quando as tarefas são idênticas

na mesma posição elas são copiadas para os dois descendentes (Figura 2.5), depois é

escolhido um ponto de corte aleatoriamente e cada um dos descendentes herda todas as

tarefas a esquerda do ponto de corte de um dos pais (Figura 2.6) e finalmente as tarefas que

faltam em um dos descendentes são copiados em ordem relativa do outro pai (Figura 2.7).

O segundo operador de crossover foi resultado da constatação de que algumas vezes

muitas tarefas iguais isoladas apareciam, por isso, desenvolveram outro operador de

crossover chamado Similar Block Order Crossover (SBOX). A única diferença do SBOX

em relação ao SJOX é que no primeiro passo só são copiados blocos idênticos de ao menos

duas tarefas. O terceiro operador de crossover é chamado de Similar Job 2-Point Order

Crossover (SJ2OX) que é similar ao operador SJOX com a diferença que são dois pontos

de corte, ao invés de um. As tarefas entre dois pontos de corte são copiadas de um dos pais,

enquanto os trabalhos dos dois extremos são preenchidos em ordem relativa pelas tarefas

dos extremos do outro pai. O quarto operador de crossover é chamado de Similar Block 2-

Point Order Crossover (SB2OX) que é similar ao operador SBOX só que utiliza dois

pontos de corte.

 25

Pai 1 3 15 17 8 14 11 13 16 19 6 1 9 18 5 4 2 10 7 20 12

Desc. 1 3 14 11 13 16 4 2 20 12

Desc. 2 3 14 11 13 16 4 2 20 12

Pai 2 3 17 9 15 14 11 13 16 6 18 5 19 7 8 4 2 1 10 20 12

Figura 2.5 – Primeiro passo do crossover SJOX. Fonte: Ruiz et al. (2006).

Pai 1 3 15 17 8 14 11 13 16 19 6 1 9 18 5 4 2 10 7 20 12

Desc. 1 3 15 17 8 14 11 13 16 4 2 20 12

Desc. 2 3 17 9 15 14 11 13 16 4 2 20 12

Pai 2 3 17 9 15 14 11 13 16 6 18 5 19 7 8 4 2 1 10 20 12

Figura 2.6 – Segundo passo do crossover SJOX. Fonte: Ruiz et al. (2006).

Pai 1 3 15 17 8 14 11 13 16 19 6 1 9 18 5 4 2 10 7 20 12

Desc. 2 3 17 9 15 14 11 13 16 8 19 6 1 18 5 4 2 10 7 20 12

Desc. 1 3 15 17 8 14 11 13 16 9 6 18 5 19 7 4 2 1 10 20 12

Pai 2 3 17 9 15 14 11 13 16 6 18 5 19 7 8 4 2 1 10 20 12

Figura 2.7 – Terceiro passo do crossover SJOX. Fonte: Ruiz et al. (2006).

O tipo de mutação implementada foi a shift que consiste em escolher uma tarefa

aleatoriamente para ser colocado numa posição escolhida também aleatoriamente.

Ponto de corte

Ponto de corte

 26

O procedimento restart scheme foi desenvolvido com o objetivo de evitar a convergência

prematura do AG. Este procedimento é executado toda vez que um número de gerações

sucessivas Gr são executadas e não é gerado um indivíduo melhor. Este procedimento é

descrito a seguir.

1 - Colocar a população em ordem crescente em relação ao makespan;

2 - Manter os 20% dos melhores indivíduos;

3 - Gerar 40% de novos indivíduos a partir da mutação shift dos 20% melhores indivíduos;

4 - Gerar 20% dos indivíduos a partir da modificação da heurística NEH; e

5 - Gerar os 20% restantes dos indivíduos de forma aleatória.

A hibridização consiste da aplicação de uma busca local baseada na técnica insertion

neighborhood que realiza todas as possíveis inserções e armazena a melhor seqüência. Se o

resultado for melhor do que a seqüência atual a busca é repetida, senão a busca é

encerrada. A busca local é realizada a cada geração em cada indivíduo com a probabilidade

Penh.

O primeiro AG não tem a etapa de busca local, ou seja, Penh = 0 o segundo AG tem a etapa

de hibridização, ou seja, Penh > 0.

O projeto de experimentos consiste da comparação de todas as possíveis combinações de

operadores genéticos e valores dos parâmetros. A seguir são apresentadas as combinações

avaliadas.

� Tipo de seleção : ranking e torneio;

� Tipo de crossover : OP, OX, PMX, SB2OX, SBOX, SJ2OX, SJOX e TP;

� Probabilidade de crossover (Pc) : 0,0 – 0,1 – 0,2 – 0,3 e 0,4;

� Probabilidade de mutação (Pm) : 0,0 – 0,05 – 0,01 e 0,015;

� Tamanho da população (Psize) : 20, 30, 40, e 50;

� Restart (GR) : 25, 50 e 75; e

� Probabilidade de melhoria local (Penh) : 0,025 – 0,05 – 0,075 e 0,1.

 27

O total de combinações avaliadas foram 2 x 8 x 5 x 4 x 4 x 3 x 4 = 15.360. Criou-se 68

instâncias combinando os valores de n e m, n = {20, 50, 80, ..., 440, 470, 500} e m = {5,

10, 15, 20}, seguindo a metodologia de Taillard (1993).

Os operadores utilizados e os valores finais dos parâmetros dos AG de Ruiz et al. (2006)

foram os seguintes: tipo de seleção: torneio; tipo de crossover: SBOX; Pc : 40%; Pm : 1%;

Psize : 20; Gr : 25; Penh = 5% e Bi = 25%.

O resultado interessante foi que em comparação com os limites inferiores dos problemas

gerados, a melhor combinação de operadores e valores dos parâmetros obteve um desvio

de 3,22%, enquanto a pior combinação obteve 3,85%. Como a diferença não foi tão

significativa Ruiz et al. (2006) afirmaram que isto se deveu a robustez dos AG

desenvolvidos.

 28

CAPÍTULO 3 – O PROBLEMA DE SEQÜENCIAMENTO PERMUTACIONAL

CONTÍNUO FLOWSHOP

Este capítulo é composto de três seções que tratam do CPFSP. A primeira seção apresenta

a definição do CPFSP. A segunda seção mostra o CPFSP modelado como um POCP.

Finalmente, a terceira seção apresenta a descrição e análise de seis artigos recentes

referente a métodos de resolução do CPFSP.

3.1. Definição do CPFSP

O CPFSP é um problema da classe FSP originado por pelo menos uma alteração em uma

das suposições J8 ou P6, dadas na Seção 2.1. A suposição J8 permite que os trabalhos

esperem entre máquinas consecutivas pelo processamento e a suposição P6 garante que

existe área suficiente para armazenar os trabalhos em espera. A definição do CPFSP é

semelhante ao do PFSP com o acréscimo da restrição de que os trabalhos não podem

esperar entre máquinas consecutivas. Dado um conjunto de n tarefas para serem

processadas num conjunto de m máquinas, onde todas as tarefas usam a mesma ordem de

processamento nas máquinas e depois de iniciada uma tarefa, ela não deve esperar por

processamento entre duas máquinas consecutivas, i.e., as tarefas devem ser processadas

continuamente, o tempo de processamento da tarefa i na máquina j é dado por pij, i = 1, 2,

3,..., m e j = 1, 2, 3,..., n. O CPFSP consiste em determinar uma seqüência específica das n

tarefas que otimize um critério de desempenho estabelecido. Esta definição só é válida na

prática se as demais suposições apresentadas na Seção 2.1 forem verdadeiras. A Figura 3.1

apresenta o gráfico de Gantt de um CPFSP. Nota-se no gráfico de Gantt que não existe

folga entre o processamento de cada uma das tarefas.

Máq.

Mm J1 ... Jn-k Jn-k+1 ... Jn

Mm-1 J1 ... Jn-k Jn-k+1 ... Jn

..
.

 ..
.

 ..
.

 ..
.

 ..
.

M3 J1 ... Jn-k Jn-k+1 ... Jn

M2 J1 ... Jn-k Jn-k+1 ... Jn

M1 J1 ... Jn-k Jn-k+1 ... Jn

 Tempo

Figura 3.1 – Gráfico de Gantt de um CPFSP com n trabalhos e m máquinas.

 29

3.2. O CPFSP como um POCP

O modelo matemático para o CPFSP não foi apresentado neste capítulo devido sua

semelhança com o modelo matemático descrito para o PFSP, apresentado na seção 2.2,

com a alteração apenas das restrições do grupo 2 que devem ser de igualdade.

Também é pequena a diferença do modelo POCP para o CPFSP em relação ao PFSP. Esta

diferença está somente no cálculo da função g. Fink e Voβ (2003) apresentam uma fórmula

para calcular o valor da função g. A seguir são apresentadas as duas fórmulas para calcular

o valor de g de uma permutação s com critério de desempenho o tempo total de fluxo ou

makespan.

Tempo total de fluxo (TTF) : gCPFSP(TTF) = ∑∑∑
===

− +−+
m

j

ij

n

i

n

i

isis pdin
112

)(),1()1(3.1

 Makespan : gCPFSP(makespan) = ∑∑
==

− +−+
m

j

js

n

i

isis npdin
12

)(),1()()1(3.2

A incógnita dik consiste no tempo de espera na primeira máquina entre o começo da tarefa i

e o começo da tarefa k, quando k é processado posteriormente a i, em que 1≤ i ≤n e 1 ≤ k ≤

n, com i ≠ k. A Equação 3.3 mostra como se calcula o valor de dik.

 ∑∑
=

−

=
≤≤

−=
j

h

hk

j

h

ih
mj

ik ppd
2

1,

1
1

}{max 3.3

Segundo Röck (1984) os primeiros a analisarem a complexidade do CPFSP para m>2

foram Lenstra et al. (1977), seguidos por Papadimitriou e Kanellakis (1980) em que

ambos provaram que o problema é NP-hard em sentido forte para m≥4. Existem casos que

podem ser tratados polinomialmente, desde que os tempos de processamento satisfaçam

uma estrutura especial dada por Panwalkar e Woollam (1980). Por fim, Röck (1984)

provou para m≥3 que o CPFSP com o critério de minimização sendo o makespan é NP-

hard em sentido forte.

 30

3.3. Métodos de Resolução para o CPFSP

Foram avaliados seis artigos com propostas de métodos para a resolução do CPFSP. Os

dois primeiros artigos usaram o critério de desempenho como sendo o tempo total de fluxo

e os outros quatro artigos restantes usaram o makespan. Um dos artigos com o critério de

desempenho sendo o tempo total de fluxo usou as instâncias de Taillard (1993) para testar

os métodos propostos. Dois dos artigos com o critério de desempenho sendo o makespan

usaram as instâncias de Reeves (1995) e Heller (1960) para testar os métodos propostos.

Os conceitos sobre o AG são apresentados no capítulo 4.

3.3.1. AG de Chen et al.

Chen et al. (1996) proporam dois AGs para o CPFSP com o tempo total de fluxo sendo o

critério de desempenho. Um dos AGs foi implementado com população inicial eficiente e o

outro com população inicial gerada aleatoriamente. A proposta principal do trabalho foi

analisar a influência dos elementos do AG e os valores dos parâmetros de controle no

desempenho do mesmo. Os AGs foram testados com problemas gerados aleatoriamente.

O trabalho foi dividido em duas partes, a primeira relacionada à escolha dos elementos do

AG e a segunda relacionada à otimização dos parâmetros de controle. A seguir são

apresentados os elementos que compõem o AG de Chen et al. (1996).

a) Representação do AG;

b) População inicial;

c) Tamanho da população;

d) Método de seleção;

e) Operadores genéticos; e

f) Critério de parada.

A representação genética adotada foi a permutacional. Por exemplo, para uma instância

com n = 8 a estrutura pode ser representada por qualquer seqüência de oito trabalhos como

 31

4 7 3 1 8 6 2 5. Segundo Cleveland e Smith (1989) apud Chen et al. (1996) vários

operadores genéticos eficientes têm sido desenvolvidos para esse tipo de representação.

A população inicial é gerada a partir de diferentes procedimentos, com dois objetivos,

melhorar a aptidão média e a diversificação da população inicial. O primeiro objetivo está

relacionado com a redução do tempo computacional e o segundo objetivo com uma busca

mais eficiente. No primeiro AG metade da população inicial é gerada aleatoriamente e a

outra metade usando algumas heurísticas conhecidas. Nas heurísticas utilizadas existem

duas para o PFSP, os métodos CDS e de Danninbring e uma para o CPFSP, o método Job

Insertion Based (JIB) de Rajendran e Chaudhuri (1990). O procedimento que gera a

população inicial é o seguinte: o primeiro membro é gerado pelo método JIB, os m-1

membros seguintes são gerados pelo método CDS, onde m é o número de máquinas, o

membro m + 1 é gerado pelo método de Danninbring; se o número de membros gerados é

menor que a metade do tamanho da população, então um membro é selecionada

aleatoriamente e duas tarefas são escolhidas aleatoriamente e trocadas suas posições, dando

origem a um novo membro. Esse procedimento é repetido até o número de membros ser

igual à metade do tamanho da população. Para analisar o efeito da população inicial no

desempenho do AG, foi implementado um segundo AG com a população inicial gerada

totalmente de forma aleatória e comparado com o primeiro AG.

O procedimento apresentado a seguir é utilizado para determinar o valor da aptidão e da

probabilidade de seleção de cada indivíduo da população.

1 – Calcular o tempo total de fluxo de cada indivíduo da população;

2 – Determinar o Fmax que é o tempo total de fluxo máximo encontrado na população;

3 – Calcular o valor da aptidão de cada indivíduo, que é igual à diferença entre o Fmax e o

tempo total de fluxo do indivíduo; e

4 – Calcular a probabilidade de seleção de cada indivíduo, igual à divisão do valor da

aptidão do indivíduo pela soma do valor das aptidões de todos os indivíduos da população.

A probabilidade de seleção de cada membro é usada como critério de seleção para os dois

pais que participarão do processo de reprodução. O procedimento de seleção adotado foi o

método de seleção por roleta.

 32

Os operadores de crossover e mutação foram os operadores genéticos escolhidos para

compor os AGs. O operador de crossover utilizado foi o PMX desenvolvido por Goldberg

(1989) e descrito na seção 2.5.1. O operador de mutação adotado foi o swap, que troca dois

trabalhos de posição aleatoriamente.

Existem dois fatores conflitantes a considerar no critério de parada: a intensidade da busca

e o tempo computacional. Se a intensidade da busca é grande o tempo computacional é alto

e a qualidade da solução é melhor, caso contrário, uma intensidade de busca menor exige

menos tempo computacional, mas a qualidade da solução final pode ser pior. Por isso,

foram usados dois critérios de parada para a busca: se o número de estruturas na população

com o menor tempo de fluxo é maior que 60% da população ou o número de gerações é

igual a 60.

A segunda parte da metodologia de Chen et al. (1996) foi otimizar os parâmetros de

controle do AG. Foram adotados os mesmos parâmetros de Grefenstette (1986): tamanho

da população (N), taxa de crossover (C), taxa de mutação (M), gap geracional (G), scaling

window (W) e estratégia de seleção (Se). Assim, os parâmetros do AG são representados da

seguinte forma AG (N, C, M, G, W, Se).

O gap geracional é o percentual da população que é trocada a cada geração. O scaling

window é o número de gerações durante o qual o valor de f’ é atualizado, onde f’ é usado

como uma base para calcular o valor de aptidão da cada estrutura. Para um problema de

minimização o valor de f’ é definido como o valor do objetivo máximo do indivíduo

avaliado e o valor da aptidão de um indivíduo é definido como a diferença entre f’ e o valor

objetivo do indivíduo. O valor de W é definido para estar entre 0 e 7. Existem duas

estratégias de seleção (Se): o indivíduo com a melhor aptidão é copiado para a próxima

população (Se = E) ou todos os indivíduos da população são substituídos por novos

indivíduos (Se = P).

DeJong (1980) apud Chen et al. (1996) depois de realizar experimentos para diversas

combinações de valores dos parâmetros chegou aos seguintes valores para os parâmetros

AG (50; 0.6; 0.001; 1.0; 7; E). Grefenstette (1986) apud Chen et al. (1996) desenvolveu

 33

um AG para otimizar os parâmetros de outro AG e encontrou os seguintes valores AG (30;

0.95; 0.01; 1.0; 1; E).

Chen et al. (1996) testaram os valores ótimos dos parâmetros de DeJong (1980) e

Grefenstette (1986). Eles observaram que ambos os conjuntos não se comportaram bem

para o CPFSP. Por isso, Chen et al. (1996) modificaram o AG de Grefenstette (1986) e

depois o utilizou para determinar os valores ótimos dos parâmetros de controle para o AG

do CPFSP. Os novos valores encontrados foram N = 95, C = 0.725 e M = 0.009.

3.3.2. Metaheurísticas de Fink e Voβ

Fink e Voβ (2003) desenvolveram e analisaram vários métodos de resolução para o CPFSP

com o critério de desempenho sendo o tempo total de fluxo. A implementação foi realizada

com o software HotFrame (Heuristic OpTimization FRAMEwork) sem a preocupação de

calibrar otimamente os parâmetros dos métodos. Para avaliar o desempenho dos métodos

foram usadas as instâncias desenvolvidas por Taillard (1993).

Os métodos construtivos nearest neighbor (NN) e cheapest insertion (Chins) foram os

primeiros a serem descritos por Fink e Voβ (2003). A heurística NN consiste em inserir em

cada passo do método uma tarefa ainda não incluída com o mínimo tempo de espera para a

última tarefa da seqüência em construção. A heurística Chins considera todas as possíveis

inserções de todas as tarefas ainda não incluídas enquanto constrói uma seqüência

completa, i.e, escolhendo uma tarefa inicial, em cada passo k, k= 2,..., n, a melhor

combinação das n-k+1 tarefas em todas as k posições de inserção é determinada. A

complexidade da heurística Chins é O(n3). A eficácia desses dois métodos construtivos

depende da escolha da tarefa inicial.

Para melhorar a eficiência dos métodos construtivos foi utilizado o método Pilot

desenvolvido por Duin e Voβ (1999) apud Fink e Voβ (2003) que consiste em considerar

as conseqüências para o valor da função objetivo devido a escolha da inserção de uma

nova tarefa, memorizando o melhor resultado e realizando todos os movimentos possíveis.

Dessa forma consegue-se superar os usuais métodos míopes. O método pilot tem um

parâmetro chamado extensão que define quantas posições da seqüência serão avaliadas

 34

para todas as possíveis combinações, por exemplo, pilot-1 significa que para a primeira

posição da seqüência as n tarefas são testadas com todas as possíveis inserções para as

outras posições. O método pilot possui complexidade O(n6), por isso, para n grande o

tempo computacional aumenta muito.

São descritos os movimentos swap e shift com complexidades O(n2) para gerar as

vizinhanças. O movimento swap consiste na troca de pares de tarefa e o movimento shift

consiste em inserir alguma tarefa numa nova posição. Esses dois movimentos são

ilustrados na Figura 3.2.

Figura 3.2 – Movimentos swap e shift. Fink e Voβ (2003)

As estratégias gulosas steepest descent (SD) e iterated steepest descent (ISD) são

implementadas com o objetivo de avaliar a qualidade dos movimentos swap e shift. O

método SD consiste em selecionar e realizar em cada iteração o melhor movimento, a

busca se encerra no ótimo local. Como a solução do ótimo local pode ser insatisfatória, o

método ISD depois de encontrar um ótimo local utiliza algum esquema de perturbação

para gerar uma nova solução inicial e recomeçar a busca.

Foram escolhidas as metaheurísticas Tabu Search (Glover e Laguna, 1997 apud Fink e

Voβ, 2003) e Simulated Annealing (Kirkpatrick et al., 1983 apud Fink e Voβ, 2003)

porque são do tipo busca local e poderiam aproveitar os métodos construtivos e os tipos de

movimentos.

A implementação dos métodos desenvolvidos também usou o software HotFrame. Os

conceitos como problemas, soluções, vizinhanças e estratégias de diversificação são

tratadas como objetos ou classes. O HotFrame gera estruturas para busca local e com a

seleção de diferentes regras de vizinhança constrói os métodos SD e ISD. Do mesmo

swap shift

p1 p2 p1 p2

 35

modo, pode ser modificado para dar os métodos simulated annealing e tabu search.

Também fornece componentes para representar os espaços de busca como estruturas de

permutação. Fica a cargo do usuário, essencialmente, implementar a função objetivo. Para

reduzir o tempo de execução, a avaliação dos movimentos swap e shift só é calculada a

mudança realizada na seqüência. Por exemplo, usando um Pentium II (266 MHz) e um

problema com n = 200, avaliou-se que o claculo de um movimento da forma direta se gasta

0.9 segundos, enquanto fazendo essa adaptação se gasta 0.05 segundos.

Os experimentos de Fink e Voβ (2003) mostram que o simulated annealing provê

resultados com alta qualidade e baixo tempo de execução. Os métodos baseados no tabu

search estático e estrito provêm resultados insatisfatórios. O tabu search reativo com

solução inicial gerada pelo método pilot-10-Chins apresentou os melhores resultados entre

todos os métodos avaliados.

3.3.3. Algoritmo Genético e Simulated Annealing de Aldowaisan e Allahverdi

Aldowaisan e Allahverdi (2003) desenvolveram quatro algoritmos de busca local para o

CPFSP com o makespan como critério de desempenho. Dois desses algoritmos têm a

solução básica inicial obtida pelo algoritmo simulated annealing (SA) de Chakravarthy e

Rajendran (1999) e os outros dois têm a solução básica inicial obtida pelo AG de Chen et

al. (1996). Para o processo de busca local foi desenvolvida uma nova heurística chamada

de insertion technique (IT). Os algoritmos foram testados com problemas gerados

aleatoriamente.

O método IT foi inspirado na heurística NEH criada por Nawaz et al. (1983). O método IT

consiste em considerar dois trabalhos consecutivos como um bloco e o inserir em todas as

posições ainda disponíveis na seqüência. O Quadro 3.1 apresenta a descrição do método

IT.

 36

Quadro 3.1 – Descrição do método IT.

Segundo Aldowaisan e Allahverdi (2003) até aquele momento a metaheurística simulated

annealing ainda não tinha sido aplicada ao CPFSP. Eles optaram por adaptar o algoritmo

SA desenvolvido por Chakravarthy e Rajendran (1999) para outro tipo de problema de

scheduling. O AG usado por Aldowaisan e Allahverdi (2003) é o mesmo desenvolvido por

Chen et al. (1996) para o CPFSP.

O Quadro 3.2 apresenta os pseudo-códigos das quatro buscas locais desenvolvidas por

Aldowaisan e Allahverdi (2003). As buscas locais SA-1 e GEN-1 têm as soluções básicas

iniciais obtidas pelos algoritmos SA e GEN, respectivamente. A busca local é

implementada através da aplicação dos métodos NEH e IT alternadamente cinco vezes

cada. Os experimentos realizados mostraram que dessa forma a qualidade da solução final

era melhor que se os métodos fossem aplicados sucessivamente. Os experimentos também

mostraram que a aplicação desses métodos mais de cinco vezes não proporcionava

melhoria significativa na qualidade da solução final. As buscas locais SA-2 e GEN-2 têm

as soluções básicas iniciais obtidas pelos algoritmos SA-1 e GEN-1, respectivamente. A

busca local foi implementada através da aplicação do procedimento pairwise três vezes. O

procedimento pairwise consiste em examinar cada possível troca de pares de uma tarefa

numa posição com todas as outras tarefas. Os experimentos também mostraram que não

havia melhoria significativa na qualidade da solução final quando o procedimento pairwise

era aplicado mais de três vezes.

Passo 1: Escolher uma seqüência s, onde os elementos são representados por

s (i), i é a posição na seqüência e varia de 1 a n. k := 0.

Passo 2: k := k + 1. Selecionar s (k) e s (k + 1) para formar o bloco. Colocar

o bloco nas posições de k a n. Para cada seqüência criada, trocar as posições

de s (k) e s (k + 1) dentro do bloco e calcular o valor do makespan.

Selecionar para a seqüência corrente a com menor makespan.

Passo 3: Repetir o passo 2 até k = n - 1.

 37

Quadro 3.2 – Os pseudo-códigos das buscas locais SA-1, SA-2, GEN-1 e GEN-2.

Aldowaisan e Allahverdi (2003) testaram os seus quatro algoritmos, o SA de Chakravarthy

e Rajendran (1999), o AG de Chen et al. (1996) denominado de GEN, a melhor heurística

desenvolvida por Gangadharan e Rajendran (1993) denominado de GAN-RAJ e a

heurística desenvolvida por Rajendran (1994) denominada de RAJ. Para os testes foram

usados 1.000 problemas gerados aleatoriamente com 20 combinações diferentes de 40 a

120 tarefas e 5 a 20 máquinas. Os algoritmos foram implementados em linguagem

FORTRAN e os testes realizados num SUN SPARC Station 20. Os tempos de execução

foram omitidos, mas segundo os autores o maior tempo de execução foi 10 segundos. O

resumo dos resultados dos testes está apresentado na Tabela 3.1, na qual vê-se que os

algoritmos propostos (SA-1, SA-2, GEN-1 e GEN-2) têm melhores desempenhos, já que as

soluções iniciais são geradas a partir de heurísticas eficientes. O desempenho na média é

semelhante para: SA-1 e GEN-1; e SA-2 e GEN-2.

Algoritmo SA-1 (GEN-1)

Passo 1: Executar o algoritmo SA (GEN).

Passo 2: Fazer s0 = s*, onde s* é a solução final obtida pelo algoritmo SA
(GEN) e s0 é a solução básica.

Passo 3: Aplicar sobre s0 os métodos NEH e IT alternadamente cinco
vezes cada.

Passo 4: A solução final é a melhor seqüência obtida no passo 3.

Algoritmo SA-2 (GEN-2)

Passo 1: Executar o algoritmo SA-1 (GEN-1).

Passo 2: Fazer s0 = s*, onde s* é a solução final obtida pelo algoritmo SA-
1 (GEN-1) e s0 é a solução básica.

Passo 3: Aplicar sobre s0 o procedimento pairwise três vezes.

Passo 4: A solução final é a melhor seqüência obtida no passo 3.

 38

Tabela 3.1 – Resumo dos resultados dos experimentos de Aldowaisan e Allahverdi (2003). Fonte:

Aldowaisan e Allahverdi (2003).

 Problemas GAN-RAJ (%) RAJ (%) SA (%) SA-1 (%) SA-2 (%) GEN (%) GEN-1 (%) GEN-2 (%)
40 x 5 4,97 6,15 3,29 0,96 0,42 6,18 0,75 0,31
40 x 10 4,91 5,24 2,66 0,63 0,44 6,32 0,60 0,26
40 x 15 5,41 4,79 2,56 0,46 0,18 5,78 0,88 0,58
40 x 20 5,09 4,42 2,87 0,57 0,30 6,04 0,57 0,34
60 x 5 5,26 6,52 2,98 1,09 0,35 6,22 1,12 0,26
60 x 10 5,64 4,50 2,15 0,79 0,53 5,70 0,56 0,20
60 x 15 5,85 4,66 2,32 0,50 0,18 6,01 0,65 0,41
60 x 20 5,99 5,06 2,44 0,54 0,23 5,76 0,74 0,39
80 x 5 5,48 7,04 3,26 1,15 0,29 6,20 1,17 0,18
80 x 10 6,32 4,78 2,28 0,58 0,25 5,63 0,50 0,21
80 x 15 6,99 4,81 2,18 0,42 0,18 5,82 0,50 0,19
80 x 20 7,04 4,83 2,14 0,61 0,28 5,33 0,57 0,23
100 x 5 5,83 6,99 3,37 1,20 0,22 5,69 1,41 0,48
100 x 10 6,51 4,73 2,10 0,78 0,40 5,17 0,59 0,27
100 x 15 7,37 4,83 1,91 0,66 0,33 5,39 0,46 0,19
100 x 20 8,00 4,31 1,84 0,48 0,16 5,22 0,43 0,20
120 x 5 6,61 7,77 3,52 1,40 0,30 5,61 1,39 0,20
120 x 10 6,76 4,56 2,09 0,65 0,31 4,67 0,52 0,16
120 x 15 7,54 4,34 1,50 0,44 0,18 4,84 0,41 0,21
120 x 20 7,64 4,31 1,75 0,57 0,27 4,93 0,48 0,19
Média 6,26 5,23 2,46 0,72 0,29 5,63 0,72 0,27

3.3.4. As Heurísticas de Aldowaisan e Allahverdi

Aldowaisan e Allahverdi (2004) desenvolveram também oito heurísticas para o CPFSP

com o makespan como critério de desempenho. As heurísticas diferem em três aspectos:

primeiro, a escolha entre os dois métodos de inserção; segundo, a escolha entre os dois

critérios de parada; e finalmente, em usar ou não o procedimento de troca pairwise. As

heurísticas propostas são comparadas às duas heurísticas de Rajendran e Chaudhuri (1990)

e ao AG de Chen et al. (1996). As heurísticas foram testadas com problemas gerados

aleatoriamente.

As heurísticas propostas por Aldowaisan e Allahverdi (2004) denotadas por PHi (Proposed

Heuristic), onde i= 1, 2, 3 e 4, fazem uso da seqüência gerada pelo algoritmo ASI

(Algoritmo de Seqüência Inicial), descrito no Quadro 3.3.

 39

Quadro 3.3 – Descrição do algoritmo ASI.

Passo 1 : Para k = 2, s1= {1,..., n} e s2= φ .

Passo 2 : Escolher a tarefa i, tal que, 1

11

 r , spp
m

j

rj

m

j

ij ∈∀≤∑∑
==

, onde pij é o tempo de

processamento da tarefa i na máquina j. Remover a tarefa i de s1 e colocar na primeira

posição de s2.

Passo 3 : Se k = n ir para o passo 5, se não, calcular TTC1k (tempo total de completação,

considerando as tarefas da primeira posição até a k posição), para cada tarefa i ∈ s1, depois

de ser inserida na posição k. Remover a tarefa i ∈ s1 que gerar o menor TTC1k e inserir em

s2 na posição k. Atualizar k = k+1.

Passo 4 : Ir para o passo 3.

Passo 5 : Parar a iteração. A seqüência inicial é s2.

As duas primeiras heurísticas propostas se diferenciam apenas pelo método de inserção

utilizado no passo 3. A primeira heurística, PH1, usa o método de inserção NEH,

desenvolvido por Nawaz et al. (1983). A segunda heurística, PH2, usa o método de

inserção, RAZ, proposto por Rajendran e Ziegler (1997) apud Aldowaisan e Allahverdi

(2004). O Quadro 3.4 apresenta a descrição das heurísticas PH1 e PH2.

 40

Quadro 3.4 – Descrição das heurísticas PH1 e PH2.

Passo 1 : Gerar a seqüência inicial s0 usando o algoritmo ASI. Determinar o valor da

função objetivo T0 da seqüência s0, onde T é o valor do makespan da seqüência de tarefas.

Passo 2 : Atribuir Tb = T0, sb = s0 e r = 1.

Passo 3 : Aplicar o método de inserção NEH (alternativamente, RAZ) para a seqüência sr-1

para obter sr e calcular Tr.

Passo 4 : Se Tr < Tb, então, Tb = T0 e sb = s0.

Passo 5 : Atualizar r = r + 1. Se r > 10 ir para o passo 6, caso contrário, ir para o passo 3.

Passo 6 : A seqüência do método PH1 (PH2) é sb e o valor da função objetivo é Tb.

Os dois próximos métodos se diferenciam entre si pelo método de inserção e em relação

aos dois primeiros métodos pelo procedimento de parada. A finalização nas duas primeiras

heurísticas ocorre quando r > 10 e nos dois próximos métodos quando r > 10 ou k = 2. O

Quadro 3.5 apresenta a descrição das heurísticas PH3 e PH4.

 41

Quadro 3.5 – Descrição das heurísticas PH3 e PH4.

Passo 1 : Gerar a seqüência inicial s0 usando o algoritmo ASI. Determinar o valor da

função objetivo T0 da seqüência s0.

Passo 2 : Atribuir Tb = T0, sb = s0, r = 1 e k = 0.

Passo 3 : Aplicar o método de inserção NEH (alternativamente, RAZ) para a seqüência sr-1

para obter sr e calcular Tr.

Passo 4 : Se Tr < Tb, então, Tb = T0, sb = s0 e k = 0.

Passo 5 : Se Tr ≥ Tb, então, k = k + 1.

Passo 6 : Atualizar r = r + 1. Se r > 10 ou k = 2 ir para o passo 7, caso contrário, ir para o

passo 3.

Passo 7 : A seqüência do método PH3 (PH4) é sb e o valor da função objetivo é Tb.

A partir da incorporação do procedimento de troca pairwise às heurísticas anteriores,

obtêm-se novas heurísticas denotadas por PHi(p), onde i= 1, 2, 3 e 4. O procedimento

pairwise consiste em examinar cada possível troca de pares de uma tarefa numa posição

com todas as outras tarefas.

Entre as oito heurísticas desenvolvidas por Aldowaisan e Allahverdi (2004) foram

apresentados os resultados dos testes das heurísticas PH1, PH1(p), PH3, PH3(p), PH4 e

PH4(p) e comparadas com as duas heurísticas de Rajendran e Chaudhuri (1990)

denominadas de R-C1 e R-C2 e o AGChen desenvolvido por Chen et al. (1996). Os

experimentos computacionais foram realizados com 750 problemas, gerados

aleatoriamente com 5 combinações diferentes de 50 a 400 tarefas e 5 a 25 máquinas com

30 replicações em cada classe. Os algoritmos foram implementados em linguagem

FORTRAN e os experimentos realizados num SUN SPARC Station 20. Os tempos de

execução em segundos são apresentados na Tabela 3.2, enquanto um resumo dos

resultados dos testes é apresentado na Tabela 3.3.

 42

Através da Tabela 3.2 percebe-se que os tempos usados pelos métodos de Aldowaisan e

Allahverdi (2004) foram muito maiores que os tempos usados pelos métodos comparados.

Analisando a Tabela 3.3 vê-se que a heurística PH1(p) foi a que teve o melhor

desempenho, devido à qualidade da solução inicial obtida pelo método PH1, que entre os

métodos sem a etapa de melhoria foi o que obteve o melhor desempenho. A conclusão de

Aldowaisan e Allahverdi (2004) foi que seus métodos são melhores que as heurísticas

existentes para o CPFSP, entretanto foram usados tempos de execução muito grandes.

Tabela 3.2 – Tempos em segundos usados nos experimentos de Aldowaisan e Allahverdi (2004). Fonte:

Aldowaisan e Allahverdi (2004)

 Instâncias R-C 1 R-C 2 AGChen PH1 PH1(p) PH3 PH3(p) PH4 PH4(p)
50 X 5 0,002 0,001 0,076 0,125 0,169 0,245 0,287 0,779 0,824
50 X 10 0,003 0,006 0,177 0,336 0,416 0,514 0,591 1,409 1,468
50 X 15 0,004 0,004 0,283 0,351 0,480 0,562 0,660 1,761 1,831
50 X 20 0,006 0,004 0,200 0,249 0,319 0,397 0,449 1,163 1,234
50 X 25 0,003 0,005 0,193 0,289 0,367 0,486 0,584 1,494 1,553
100 X 5 0,006 0,005 0,116 0,450 0,661 0,690 0,879 1,979 2,156
100 X 10 0,008 0,008 0,149 0,926 1,301 1,463 1,803 4,325 4,704
100 X 15 0,009 0,013 0,280 1,300 1,774 2,289 2,723 6,693 7,167
100 X 20 0,010 0,013 0,325 1,893 2,366 2,681 3,192 7,704 8,229
100 X 25 0,011 0,016 0,404 2,851 3,518 4,092 4,759 12,049 12,690
200 X 5 0,030 0,032 0,279 3,800 5,427 5,756 7,360 16,843 18,444
200 X 10 0,020 0,039 0,539 6,906 10,033 12,291 15,303 36,413 39,444
200 X 15 0,050 0,066 0,713 12,576 16,553 19,163 23,099 55,752 59,713
200 X 20 0,050 0,054 0,887 11,519 15,749 21,810 25,999 64,252 68,424
200 X 25 0,057 0,061 1,007 19,572 25,182 32,587 38,107 95,903 101,502
300 X 5 0,082 0,082 0,603 12,640 17,995 18,790 24,153 56,301 61,636
300 X 10 0,086 0,128 0,989 31,625 41,927 42,396 52,745 126,214 136,519
300 X 15 0,163 0,130 1,278 42,280 56,824 68,449 82,772 202,780 217,018
300 X 20 0,134 0,155 1,461 56,244 71,401 77,191 92,499 228,679 243,898
300 X 25 0,135 0,154 1,864 67,604 91,099 126,488 147,363 344,600 365,291
400 X 5 0,138 0,178 0,930 12,440 20,896 21,421 29,677 63,181 71,620
400 X 10 0,209 0,174 1,518 47,918 66,250 74,861 93,013 225,292 243,747
400 X 15 0,219 0,199 2,024 86,691 113,899 122,128 149,299 366,211 393,371
400 X 20 0,211 0,251 2,186 99,298 129,642 143,791 174,137 428,389 458,337
400 X 25 0,237 0,234 2,907 126,053 167,323 199,553 240,660 685,406 727,642
Média 0,075 0,080 0,855 25,837 34,463 40,004 48,485 121,423 129,938

 43

Tabela 3.3 – Resumo dos resultados dos experimentos de Aldowaisan e Allahverdi (2004). Fonte:

Aldowaisan e Allahverdi (2004).

 Instâncias R-C 1 R-C 2 AGChen PH1 PH1(p) PH3 PH3(p) PH4 PH4(p)
50 X 5 4,532 2,739 2,635 1,034 0,407 1,110 0,469 1,721 0,973
50 X 10 2,932 2,016 1,624 0,250 0,108 0,325 0,147 1,202 1,003
50 X 15 3,272 2,414 1,936 0,188 0,053 0,301 0,142 1,857 1,589
50 X 20 2,782 2,698 2,040 0,261 0,090 0,357 0,199 1,455 1,331
50 X 25 3,576 2,980 2,323 0,323 0,078 0,442 0,183 1,572 1,445
100 X 5 5,366 3,496 3,484 1,127 0,358 1,486 0,601 1,550 0,661
100 X 10 3,853 2,606 2,404 0,320 0,103 0,557 0,295 1,465 1,152
100 X 15 3,903 3,072 2,827 0,260 0,011 0,498 0,251 1,944 1,797
100 X 20 4,294 3,147 2,930 0,149 0,012 0,629 0,409 2,184 1,988
100 X 25 3,941 3,380 3,008 0,169 0,021 0,451 0,267 2,222 2,116
200 X 5 6,484 3,596 3,593 1,563 0,383 1,928 0,571 1,683 0,359
200 X 10 4,361 2,635 2,627 0,300 0,036 0,555 0,209 1,499 1,113
200 X 15 3,667 2,455 2,442 0,251 0,032 0,575 0,294 1,972 1,754
200 X 20 3,819 2,843 2,806 0,166 0,000 0,585 0,416 1,980 1,855
200 X 25 3,888 3,161 3,054 0,217 0,003 0,557 0,334 2,288 2,129
300 X 5 6,995 3,678 3,673 1,631 0,215 1,949 0,344 1,796 0,222
300 X 10 4,300 2,475 2,474 0,343 0,039 0,667 0,293 1,571 1,173
300 X 15 3,914 2,493 2,492 0,212 0,000 0,614 0,366 2,137 1,934
300 X 20 3,698 2,734 2,717 0,172 0,003 0,398 0,197 2,186 2,023
300 X 25 3,880 2,862 2,841 0,212 0,002 0,572 0,335 2,133 1,999
400 X 5 7,065 3,832 3,829 2,051 0,248 2,289 0,389 2,168 0,322
400 X 10 4,163 2,325 2,323 0,385 0,027 0,675 0,253 1,247 0,786
400 X 15 3,635 2,273 2,266 0,209 0,005 0,515 0,268 1,934 1,717
400 X 20 3,788 2,585 2,554 0,191 0,003 0,558 0,321 2,158 2,004
400 X 25 3,635 2,814 2,764 0,225 0,006 0,418 0,257 2,196 2,037
Média 4,230 2,852 2,707 0,488 0,090 0,760 0,312 1,845 1,419

3.3.5. GASA de Shuster e Framinan

Wang e Zeng (2001) desenvolveram um método híbrido chamado de GASA para resolver

o Job Shop Scheduling Problem (JSSP). O GASA é uma combinação das técnicas AG e

Simulated Annealing (SA). Schuster e Framinan (2003) adaptaram o GASA para o CPFSP

com o critério de desempenho sendo o makespan, e usaram as instâncias de Reeves (1995)

e Heller (1960) para os testes.

Wang e Zheng (2001) criaram um novo operador de crossover para ser usado no GASA.

Neste operador primeiramente um conjunto {1, 2, ..., n} é dividido em dois sub-conjuntos

A1 e A2 aleatoriamente, sendo que cada sub-conjunto tem que possuir ao menos um

elemento. Cada elemento contido num sub-conjunto é copiado para um descendente na

mesma posição que ocupava no indivíduo pai. Depois são escolhidos aleatoriamente dois

 44

indivíduos da população atual para serem os pais s1 e s2. Os descendentes s’1 e s’2 são

criados da seguinte forma: s’1 herda os elementos de s1 pertencentes a A1 e os elementos de

s2 pertencentes a A2; s’2 herda os elementos de s1 pertencentes a A2 e os elementos de s2

pertencentes a A1.

O GASA inicia com uma população inicial de tamanho Psize gerada aleatoriamente, uma

temperatura inicial t0 e o critério de parada é o número L de iterações sem melhoria. A

cada iteração os procedimentos de crossover, mutação e SA são aplicados. Estes três

procedimentos são descritos a seguir:

1 – Crossover: O melhor indivíduo da população e um indivíduo escolhido aleatoriamente

são submetidos ao novo operador de crossover. Este procedimento é repetido Psize/2 vezes,

gerando Psize novos indivíduos. Os novos indivíduos e a população corrente somam um

total de 2*Psize indivíduos que são avaliados e os Psize indivíduos com melhores aptidões

são submetidos ao processo de mutação.

2 – Mutação : A mutação consiste em escolher um intervalo entre {1, ..., n} e inverter a

ordem das tarefas no intervalo. Os Psize indivíduos gerados são avaliados juntamente com

os Psize indivíduos originais, então os Psize indivíduos com as melhores aptidões são

submetidos ao procedimento SA.

3 – Procedimento SA : O objetivo deste procedimento é realizar uma busca local em cada

indivíduo da população. O SA é implementado da seguinte forma: são escolhidas duas

posições aleatoriamente na seqüência do indivíduo e as respectivas tarefas são trocadas de

posição, os valores dos makespan antes e depois da troca são armazenados, a nova solução

é aceita com uma certa probabilidade dependendo da diferença entre os makespan antes e

depois da modificação e a temperatura atual. Este procedimento é repetido n * m vezes. A

temperatura t decresce seguindo uma função de resfriamento exponencial tk = λ * tk-1, λ ∈

{0, 1}.

 45

Os valores dos parâmetros do GASA foram:

- Tamanho da população (Psize) : 40;

- Fator de resfriamento (λ) : 0,9;

- Temperatura inicial (t0) : - (Cworst – Cbest) / ln(0,1), onde: Cworst é o pior makespan da

população e Cbest é o melhor makespan da população;

- Número de iterações sem melhoria (L) : 30;

Para comparar o desempenho do GASA, Schuster e Framinan (2003) o testaram nas

instâncias de Reeves (1995) e Heller (1960) e compararam com os resultados obtidos pela

heurística RAJ de Rajendran (1994). O GASA foi implementado em linguagem C++ e os

experimentos foram realizados num computador Athlon 1.400 MHz. Os resultados dos

testes e os tempos utilizados pelo GASA são apresentados na Tabela 3.4, onde se verifica

que de modo geral o GASA obtém melhores resultados do que o método RAJ, só que para

isso precisa usar uma grande quantidade de tempo de execução. Além disto para as

instâncias com maior número de tarefas e máquinas o GASA fica abaixo do método RAJ.

Tabela 3.4 – Resultados dos experimentos com o GASA. Fonte: Schuster e Framinan (2003).

Instância n x m RAJ GASA t (s) Desvio (%)
rec01 20x5 1590 1527 6 -3,96
rec03 20x5 1457 1392 6 -4,46
rec05 20x5 1637 1524 7 -6,90
rec07 20x10 2119 2046 12 -3,45
rec09 20x10 2141 2045 11 -4,48
rec11 20x10 1946 1881 10 -3,34
hel2 20x10 189 180 10 -4,76
rec13 20x15 2709 2556 17 -5,65
rec15 20x15 2691 2529 17 -6,02
rec17 20x15 2740 2590 16 -5,47
rec19 30x10 3157 2985 34 -5,45
rec21 30x10 3015 2948 35 -2,22
rec23 30x10 3030 2827 35 -6,70
rec25 30x15 3835 3732 55 -2,69
rec27 30x15 3655 3560 51 -2,60
rec29 30x15 3583 3440 54 -3,99
rec31 50x10 4631 4757 147 2,72
rec33 50x10 4770 4998 145 4,78
rec35 50x10 4718 4891 146 3,67
rec37 75x20 8979 9508 907 5,89
rec39 75x20 9158 9964 890 8,80
rec41 75x20 9344 9978 904 6,79
hel1 100x10 780 877 1088 12,44
Média 200,13 -1,18

 46

3.3.6. Os Algoritmos de Grabowski e Pempera

Grabowski e Pempera (2005) propuseram cinco algoritmos de busca local, dois deles

baseados na técnica Descending Search (DS) e três baseados na metaheurística Tabu

Search (TS), para resolver o CPFSP com o makespan sendo o critério de desempenho. As

características mais importantes desses algoritmos são: o emprego de multimovimento e

lista tabu dinâmica. A solução inicial de todos os algoritmos é obtida pelo método NEH de

Nawaz et al. (1983). As instâncias de Reeves (1995) e Heller (1960) foram utilizadas nos

experimentos computacionais para avaliar o desempenho dos métodos.

O tipo de movimento e a estrutura de vizinhança são componentes importantes dos

algoritmos propostos. Um movimento é definido pelo par v = (x, y) que são duas posições

da permutação s, com x, y ∈{1, 2, ..., n} e x ≠ y. Segundo Grabowski e Pempera (2005),

baseados na literatura e em experimentos realizados, o movimento shift é o que melhor se

adapta ao CPFSP, por isso, é adotado pelos algoritmos. A vizinhança da permutação s

consiste das permutações sv obtidas pela execução de todos os movimentos de um dado

conjunto de movimentos Z e denotada por N(Z, s) = { sv | v ∈Z}. Os algoritmos propostos

geram vizinhanças através de movimentos Z = { (x,y) | x, y ∈{1, 2, ..., n}, y ∉ {x, x-1}}

de cardinalidade (n - 1)2, onde a condição y ∉ {x, x-1} evita a redundância de

movimentos.

Para acelerar a convergência às boas soluções os algoritmos utilizam um procedimento

chamado multimovimento, que tem o propósito de guiar a busca para regiões mais

promissoras onde boas soluções podem ser encontradas. O multimovimento consiste de um

conjunto de vários movimentos individuais que são executados simultaneamente numa

única iteração do algoritmo. A execução do multimovimento gera permutações que

diferem significativamente daquelas obtidas pela execução de um único movimento e

conduz o processo de busca para regiões até o momento não visitadas do espaço de

soluções. Segundo Grabowski e Pempera (2005) a aplicação de multimovimento em

algoritmos de busca local é uma forma de adotar as estratégias de intensificação e

diversificação no processo de busca. O multimovimento é composto de um conjunto de

movimentos individuais proveitosos e independentes.

 47

O subconjunto PZ = { v ∈Z | Cmax(sv) < Cmax(s)} é chamado de conjunto de movimentos

proveitosos e contêm todos os movimentos do conjunto Z que geram permutações sv com

menores makespan que s. Dois movimentos v1 = (x1, y1) ∈PZ e v2 = (x2, y2) ∈PZ são

chamados independentes em relação a permutação s se cada uma das posições x1 e y1 estão

separadas de cada uma das posições x2 e y2 por pelo menos uma tarefa. Mais precisamente

os movimentos v1 e v2 são independentes se alguma das condições 3.4 a 3.6 é satisfeita.









<+

<+

)y ,(xmin 1)y ,(xmax

ou

)y ,(xmin 1)y ,(xmax

1122

2211

 3.4









>+<+

>+<+

)y ,(xmax 1)y ,(xmax e)y ,(xmin 1)y ,(xmin

ou

)y ,(xmax 1)y ,(xmax e)y ,(xmin 1)y ,(xmin

22111122

11222211

 3.5














<+

<+<+

<+

<+<+

)y ,(xmin 1)y ,(xmax

e)y ,(xmax 1)y ,(xmin e)y ,(xmin 1)y ,(xmin

ou

)y ,(xmax 1)y ,(xmax

e)y ,(xmax 1)y ,(xmin e)y ,(xmin 1)y ,(xmin

1122

22111122

2211

11222211

 3.6

A Condição 3.4 indica que os movimentos v1 e v2 operam em série em relação a

permutação s e separados por pelo menos uma tarefa. A Condição 3.5 indica que v1 opera

do lado de dentro de v2, ou vice-versa, com as posições x1 e y1 separadas de x2 e y2, por

pelo menos uma tarefa. Finalmente a Condição 3.6 indica que v1 e v2 são interseccionados,

com cada uma das posições x1 e y1 e separadas de x2 e y2 por pelo menos uma tarefa.

Define-se IPZ como sendo o subconjunto de PZ que contêm todos os movimentos

independentes de PZ, isto significa que para cada par v1 e v2∈IPZ, v1 ≠ v2, é satisfeita

alguma das condições (3.4) a (3.6). O multimovimento então, consiste em executar todos

os movimentos de IPZ simultaneamente, gerando uma permutação sv’, onde V’ ∈ IPZ. A

permutação sv’ não pertence a N(Z, s), a menos que |V’| = 1. A seguir é apresentado o

procedimento para criar o multimovimento V’.

 48

Passo 1: Para uma dada permutação s, criar o conjunto PZ e atribuir V’ := φ .

Passo 2: Encontrar o melhor movimento v*, i.e., Cmax(sv*) = min PZ ∈v Cmax(sv) e atribuir PZ

:= PZ – {v*} e V’ := V’ U {v*}.

Passo 3: Encontrar o melhor movimento v*, i.e., Cmax(sv*) = min PZ ∈v Cmax(sv) e para cada

movimento v ∈V’ verificar as condições (3.4) a (3.6) para os movimentos v* e v. Se há

um movimento v ∈V’ tal que para v* e v alguma condição não é satisfeita, então PZ := PZ

– {v*}, caso contrário, PZ := PZ – {v*} e V’ := V’ U {v*}.

Passo 4: Repetir o passo 3 até PZ := φ .

Por intuição, sv’ deveria ser significativamente melhor que sv gerado pelo melhor

movimento individual v ∈V’, desde que a melhoria total de Cmax(sv’) seja obtida pela

adição de todos os melhoramentos produzidos pelos movimentos individuais de V’.

Segundo Grabowski e Pempera (2005) essa é uma propriedade específica, conseqüência da

restrição não espera da qual se utilizam os movimentos proveitosos e independentes e que

não tem sido aplicado por outros métodos.

O primeiro algoritmo proposto foi um DS que consiste em pesquisar a vizinhança N até

encontrar um movimento v* ∈ Z que gere uma permutação sv* ∈ N com menor makespan

que s, uma solução inicial. Dessa forma a permutação sv* se torna a nova solução, i.e., s :=

sv* e o algoritmo é repetido até que nenhuma permutação melhor seja encontrada.

O segundo algoritmo proposto é uma combinação de DS e multimovimento (DS+M). O

DS+M começa de uma solução inicial s e uma vizinhança N(Z, s). Para a vizinhança N o

conjunto de multimovimentos V’ é criado de acordo com o procedimento descrito

anteriormente. O multimovimento V’ é realizado e a permutação resultante sv’ se torna a

nova solução, i.e., s := sv’, o algoritmo é repetido até que V’ = φ .

Segundo Grabowski e Pempera (2005) a metaheurística Tabu Search (TS) não tinha sido

aplicada até então no CPFSP. Assim foram desenvolvidos três algoritmos baseados em TS

que têm como principal característica à utilização de lista tabu dinâmica com o propósito

de evitar que o processo de busca fique preso a um ótimo local.

 49

O comprimento da lista T é alterado quando o número de iterações (iter) do TS atinge um

valor específico chamado de pick. Esse tipo de lista foi empregado primeiramente no very

fast TS, proposto por Grabowski e Wodecki (2004).

Em relação a permutação s, um movimento (x, y) ∈ Z é proibido: se A(s(x)) ∩ {s(x+1),

s(x+2), ..., s(y)} ≠ φ , se x < y; ou B(s(x)) ∩ {s(y), s(y+1), ..., s(x-1)} ≠ φ se x > y. Onde:

A(j) = { i ∈ J | (j, i) ∈ T} e B(j) = { i ∈ J | (i, j) ∈ T}. O conjunto A(j) (ou B(j)) indica

quais tarefas são processadas depois (ou antes) da tarefa j em relação ao conteúdo atual da

lista tabu T.

O TS começa de uma solução básica inicial s a qual é aplicada à vizinhança N(Z, s).

Primeiramente, o melhor movimento v* ∈ Z que gera a permutação sv* ∈N(Z, s) com o

menor makespan é escolhido. Se Cmax(sv*) < C*, então o movimento v* é selecionado para

o processo de busca. Caso contrário (Cmax(sv*) ≥ C*), então é criado o conjunto UZ de

movimentos não proibidos (UF) que não tem o status tabu e definido como UZ = { v ∈ Z |

movimento v é UF}. No próximo passo, sv* ∈ N(UZ, s) com o menor makespan é

escolhido para o processo de busca. Se o movimento v* é selecionado, então o par de

tarefas correspondentes ao movimento v* é adicionado à lista tabu T e a permutação

resultante sv* é criada. No passo seguinte, a permutação se torna a nova solução, i.e., s :=

sv* e o algoritmo começa a próxima iteração. Se todos os movimentos de Z são proibidos,

um caso muito raro, i.e., UZ = φ , então o elemento mais velho da lista tabu T é retirado

dela e a busca é repetida até que um movimento UF possa ser encontrado.

O quarto algoritmo proposto é uma combinação de TS e multimovimento (TS+M). O

algoritmo TS+M é similar ao TS exceto que em cada iteração um multimovimento V’, que

contém vários movimentos simples, é realizado, ao contrário de um movimento simples

v*. Se numa iteração do TS+M, o multimovimento V’ contêm não mais que um

movimento, i.e., |V’| ≤ 1, então o TS+M se transforma em TS.

O quinto e último algoritmo é uma combinação de TS e multimovimento (TS+MP) que é

realizado somente em situações específicas. O multimovimento é realizado a cada vez que

um número de iterações (Piter) onde não ocorre melhoria no makespan é atingido. Se Piter

 50

é um número suficientemente grande o multimovimento nunca será criado e TS+MP se

transforma em TS. O parâmetro Piter foi calibrado experimentalmente.

Para comparar o desempenho dos seus algoritmos, Grabowski e Pempera (2005)

realizaram testes nas instâncias de Reeves (1995) e Heller (1960) e compararam com os

resultados obtidos pela heurística RAJ de Rajendran (1994) e o GASA de Shuster e

Framinan (2003). Os algoritmos foram implementados em linguagem C++ e os

experimentos foram realizados em um Pentium 1000. O resumo dos resultados dos

experimentos computacionais é apresentado na Tabela 3.5. Analisando esta tabela verifica-

se que o melhor desempenho foi obtido pelo algoritmo TS-M.

Tabela 3.5 – Resumo dos resultados dos experimentos de Grabowski e Pempera (2005). Fonte:

Grabowski e Pempera (2005).

Métodos Desvio (%) Tempo (s)
RAJ 0,00 -
GASA -1,18 200,13
DS -4,51 0,02
DS-M -4,53 0,00
TS -6,50 0,86
TS-M -6,59 0,87
TS-MP -6,56 0,87

 51

CAPÍTULO 4 – ALGORITMO GENÉTICO

Este capítulo é composto de três seções. A primeira seção faz uma introdução sobre AG. A

segunda seção apresenta os principais componentes de um AG. E finalmente, a terceira

seção descreve o rAG.

4.1. Introdução

Segundo Dréo et al. (2006) o AG tem características como: diversificação que é explorar

regiões do espaço de busca raramente visitadas; intensificação que é verificar quase

completamente regiões do espaço de busca promissoras; e a memorização da melhor

solução encontrada até o momento. Uma desvantagem está no processo de calibração dos

seus parâmetros. Resultados teóricos disponíveis não são suficientes para ajudar no ajuste

da calibração.

O AG foi criado por Jonh Holland durante as décadas de 1960 e 1970 (Holland, 1975),

para simular computacionalmente o fenômeno da seleção natural. Foi um aluno de

Holland, Goldberg, o primeiro a aplicar o AG num problema de otimização, na área de

projeto de gasodutos (Haupt e Haupt, 2004). Depois desta aplicação o AG passou a ser

considerado uma técnica de busca baseada nos princípios da genética e seleção natural. O

AG é formado por uma população de indivíduos que representam as soluções do problema.

Os indivíduos são avaliados por uma função que atribui um valor chamado aptidão a cada

indivíduo da população segundo sua qualidade em relação à função objetivo do problema.

Os indivíduos são escolhidos por um procedimento inspirado na seleção natural para

passarem por operações genéticas que resultam em descendentes que comporão a nova

população. A Figura 4.1 mostra o fluxograma de um AG, segundo Reeves e Rowe (2002).

Os estudos mostram que a nova população tem a tendência de ter indivíduos com aptidões

melhores do que a população anterior (Mitchell, 1998; Haupt e Haupt, 2004). Este

processo de gerar novas populações é chamado de geração. O melhor indivíduo da última

população é a solução a ser apresentada para o problema.

 52

É importante salientar que o AG trabalha com uma população de soluções. Pode-se

considerar isso como várias buscas locais sendo feitas ao mesmo tempo, que é chamada de

paralelismo implícito (Holland, 1975). A vantagem deste paralelismo é que o processo de

busca melhora a capacidade de sair de mínimos locais, devido a uma pesquisa mais

abrangente do espaço de busca. Porém, trabalhar com várias soluções ao mesmo tempo

traz a desvantagem de precisar de mais tempo computacional para avaliar as funções que

calculam a aptidão das soluções, que às vezes tornam o AG mais lento que os métodos de

busca em vizinhança que só trabalham com uma solução de cada vez.

Figura 4.1 – Pseudocódigo de um AG básico. Fonte: Reeves e Rowe (2002).

Escolha de uma população inicial

enquanto o critério de parada não é satisfeito faça

 repita

 se a condição do crossover é satisfeira então

 início

 seleciona os cromossomos pais;

 escolhe os parâmetros do crossover;

 executa o crossover;

 fim

 se a condição da mutação é satisfeita então

 início

 seleciona o(s) cromossomo(s) para a mutação;

 escolhe os parâmetros da mutação;

 executa a mutação;

 fim

 avalia a aptidão dos descendentes;

 até a quantidade de descendentes necessária;

 atualiza nova população;

fim_enquanto

 53

4.2. Os Elementos de um AG

Através da revisão bibliográfica foram escolhidos oito componentes como sendo os mais

importantes num projeto de AG. Os oito componentes são elicitados a seguir e descritos no

decorrer desta seção.

a) Escolha da representação para o AG;

b) Definição da função de aptidão;

c) Definição da população inicial;

d) Escolha do método de seleção;

e) Escolha dos operadores genéticos;

f) Escolha da estratégia geracional;

g) Escolha do critério de parada; e

h) Escolha dos valores dos parâmetros.

4.2.1. Representação para o AG

A representação para o AG é a forma como as soluções potenciais são codificadas para ser

possível a aplicação dos operadores genéticos. Na representação para o AG os conceitos de

genótipo, fenótipo, cromossomo, alelo e gene são importantes (Rothlauf, 2006). O

genótipo representa toda a informação armazenada no cromossomo. O fenótipo é a

aparência de um indivíduo que é resultado da informação contida no genótipo. Um

cromossomo é uma string de certo comprimento onde toda a informação genética de um

indivíduo está armazenada, cada cromossomo é constituído de muitos alelos. Alelo é a

menor unidade de informação num cromossomo. Um gene é uma região do cromossomo

constituído por um ou mais alelos que devem ser interpretados conjuntamente e que é

responsável por uma propriedade específica do fenótipo. Estes conceitos estão ilustrados

na Figura 4.2.

 54

Figura 4.2 - Representação do fenótipo, cromossomo, alelo e gene.

A representação adotada num AG está diretamente relacionada ao tipo de problema. A

primeira representação criada foi a binária onde os alelos podem assumir os valores 0 ou 1.

Para muitos problemas de otimização combinatoria onde as variáveis do problema são

binárias esta representação é ideal. Quando as variáveis do problema são contínuas a

precisão depende do tamanho da string de alelos, quanto maior a string, maior o uso de

recursos computacionais. Outro tipo de representação é a permutacional, onde os alelos

podem assumir valores inteiros positivos e o cromossomo representa uma solução baseada

na ordem dos alelos. Este tipo de representação é usado principalmente em problemas

como o caixeiro viajante, seqüenciamento, entre outros.

4.2.2. Função de Aptidão

A aptidão corresponde ao grau de qualidade do fenótipo em relação ao seu habitat, i.e.,

significa o quanto o indivíduo está adaptado ao meio-ambiente. Para os problemas de

otimização a aptidão significa a qualidade da solução em relação ao objetivo do problema.

O valor da aptidão de cada indivíduo é muito importante, pois é usado para diferenciar os

indivíduos na população e no processo de seleção. Se a aptidão não conseguir representar

adequadamente a diferença entre os indivíduos, a eficácia do AG fica comprometida. A

aptidão é calculada pela função de aptidão que pode ser uma função matemática, um

experimento ou um jogo (Haupt e Haupt, 2004). Algumas vezes é usada a própria função

objetivo como função de aptidão, esta estratégia pode ser ineficiente quando os valores da

função objetivo dos indivíduos são muito próximos (Mitchell, 1998). Por isso, deve-se ter

muito cuidado em se escolher a função de aptidão. Além disso, a função objetivo depende

do problema abordado.

1 0 1 1 1 0 1 0
fenótipo é 186
que é o valor
decimal da string
binária cromossomo alelo gene

 55

4.2.3. População Inicial

Segundo Reeves e Rowe (2002) as duas principais questões a considerar em relação a

população inicial são o tamanho da população e o método usado para criar os primeiros

indivíduos.

A principal idéia em relação à escolha do tamanho da população é a existência de um

trade-off entre eficiência e eficácia. Parece lógico supor que para um certo comprimento de

string que representa o indivíduo, exista um valor ótimo para o tamanho da população, não

tão pequeno que não explore todo o espaço de busca e nem tão grande que comprometa o

tempo de execução. Mas baseado no levantamento feito por Reeves e Rowe (2002) ainda

não se determinou uma função que represente este suposto trade-off.

Em relação à escolha do método para gerar a população inicial as duas principais formas

são a aleatória e a baseada em boas soluções conhecidas. A forma aleatória na prática é

pseudo-aleatória, pois é gerada por software usando funções matemáticas. Neste tipo existe

a possibilidade da população inicial não explorar todas as regiões do espaço de busca e, por

isso, precisar de uma população maior. A população inicial gerada baseada em boas

soluções conhecidas tem o objetivo de fazer o AG obter melhores soluções em um tempo

de execução menor em comparação a inicialização aleatória. Neste método existe a

possibilidade de convergência prematura para uma solução de baixa qualidade. Surry e

Radcliffe (1996) apud Reeves e Rowe (2002) fizeram uma revisão das idéias sobre o

processo de criação da população inicial e concluíram que havia uma tendência na

inicialização eficiente de reduzir a qualidade da solução obtida em comparação com a

inicialização aleatória.

4.2.4. Métodos de Seleção

Depois da criação da população inicial e atribuída uma aptidão a cada indivíduo, a próxima

decisão é escolher o método de selecionar os indivíduos que darão origem à próxima

geração. A principal característica de qualquer método de seleção é preferir os indivíduos

com maior aptidão com o objetivo que a próxima população tenha uma aptidão maior

(Mitchell, 1998). No processo de seleção existe uma relação de compensação, quanto

 56

maior a pressão de seleção, ou seja, quanto maior a preferência por indivíduos de alta

aptidão mais rapidamente a população converge para um ótimo local, do contrário quanto

menor a pressão de seleção, mais lentamente a população evolui para boas soluções.

O primeiro método de seleção criado foi o método de seleção por roleta (Holland, 1975).

Neste método cada indivíduo tem a probabilidade de seleção proporcional a sua aptidão em

relação à população. A maneira mais comum de implementar este método de seleção é

atribuir um número real a cada indivíduo igual a sua aptidão dividida pela aptidão total da

população. Isto implica que cada indivíduo recebe um número maior que 0 e menor que 1,

representando uma probabilidade e o somatório da probabilidade de todos os indivíduos

sendo igual a 1. Depois que estes indivíduos são ordenados numa lista que pode ser

representada graficamente como um disco, onde cada setor angular é proporcional a

probabilidade do indivíduo ser selecionado. O processo de seleção consiste em gerar N

números aleatórios entre 0 e 1, onde N é o tamanho da população. O intervalo que este

número estiver contido na lista de probabilidades acumuladas indica que aquele indivíduo

foi selecionado. Isto é como se uma roleta fosse girada e onde ela parasse indicasse o

indivíduo selecionado. A Figura 4.3 ilustra este tipo de seleção, onde são mostrados cinco

indivíduos com suas respectivas representações e aptidões. O gráfico de setor ao lado

representa a probabilidade 1 e conseqüentemente cada setor circular representa a

probabilidade do indivíduo correspondente ser selecionado.

N º Indivíduo Aptidão
1 010010011 3,651
2 010110110 0,544
3 011010001 0,239
4 110110011 1,463
5 100111011 2,987

Figura 4.3 - Representação da seleção pelo método da roleta.

1

2

3

4

5

 57

É comum ocorrer numa população uma pequena quantidade de indivíduos com alta

aptidão, isto prejudica os métodos de seleção proporcionais porque a probabilidade destes

indivíduos serem selecionadas é bem maior que do resto da população e, por isso, provoca

a convergência prematura. Para evitar este problema outros métodos de seleção foram

criados.

Outro método de seleção é o de seleção por torneio, mais resistente a convergência

prematura. Na seleção por torneio um sub-conjunto d da população é escolhido

aleatoriamente, um parâmetro predefinido k representa a probabilidade do melhor

indivíduo do sub-conjunto ser escolhido. Neste método é gerado um número aleatório entre

0 e 1, se for menor que k o melhor indivíduo do sub-conjunto é escolhido, caso contrário

outro indivíduo é escolhido (Mitchell, 1998). Este método tem a vantagem de usar pouco

recurso computacional.

4.2.5. Operadores Genéticos

A função dos operadores genéticos é transformar a população atual numa nova população

com aptidão melhor, ou seja, para problemas de otimização encontrar soluções melhores

que as atuais (Mitchell, 1998). Um conceito importante neste processo é o bom bloco

construído que é uma parte contínua do cromossomo que confere ao indivíduo uma alta

aptidão. Acredita-se que durante a aplicação dos operadores genéticos os bons blocos

construídos são formados e preservados, garantindo assim a qualidade das soluções. Os

operadores genéticos dependem do tipo de representação adotada. Os principais operadores

genéticos são o crossover e a mutação.

O operador mais utilizado é o crossover. Através do crossover são criados novos

indivíduos misturando os alelos dos pais. O objetivo é que a mistura de bons blocos

construídos dêem origem a indivíduos de aptidão melhor que os pais. Outro operador

usado é o de mutação que consiste em trocar dois alelos de valor ou posição. A mutação

tem o objetivo de manter a diversidade da população e evitar a convergência prematura

para ótimos locais. A mutação assegura que a probabilidade de se chegar a qualquer ponto

do espaço de busca não seja zero.

 58

A implementação do operador crossover é feita normalmente com uma regra aleatória

baseada numa distribuição uniforme. É definida uma probabilidade de ocorrência para o

crossover chamada taxa de crossover. A forma mais comum de implementar a mutação é

escolher um número de perturbações por string que é chamada de taxa de mutação.

O mais comum é que estas duas taxas sejam constantes durante todo o tempo de execução

do AG. Mas Davis (1991) argumenta que se estas taxas variassem durante o processo de

busca, melhores soluções seriam encontradas. Neste ponto de vista diferentes taxas seriam

apropriadas em diferentes fases do processo de busca. No início seria usada uma taxa de

crossover alta para fazer uma pesquisa maior no espaço de busca, enquanto que no fim

uma taxa de mutação alta seria usada para diminuir a convergência da população. Outra

sugestão é que as taxas dos operadores se adaptem instantaneamente em concordância com

a evolução das soluções encontradas.

Ainda em Reeves e Rowe (2002), baseados no trabalho de Holland (1975), o operador de

crossover sempre deveria ser usado. Mas existem na literatura duas estratégias para gerar a

próxima população: crossover-e-mutação e crossover-ou-mutação. Na primeira estratégia

o operador de crossover é aplicado com uma probabilidade normalmente menor que 1 e a

mutação pode ser realizada se o seu critério for verdadeiro. Nesta estratégia existe a

possibilidade dos filhos serem apenas clones dos pais devido a probabilidade de nem um

dos operadores serem aplicados. Na segunda estratégia sempre um dos operadores é

aplicado, ou crossover ou mutação, mas não ambos. Nesta estratégia não existe a

possibilidade dos filhos serem clones dos pais.

4.2.6. Estratégia Geracional

A estratégia geracional é responsável por controlar a substituição de indivíduos de uma

geração para a outra. A estratégia geracional proposta por Holland (1975) cria um conjunto

do tamanho da população de indivíduos gerados a partir da população atual, usando os

operadores de crossover e mutação. No final este conjunto substitui a população atual.

Neste tipo de estratégia existe a possibilidade de que bons indivíduos desapareçam de uma

geração para a outra. Por isso, surgiram outras estratégias como a elitista, a population

overlaps e a steady-state. Na estratégia elitista o melhor indivíduo é preservado para a

 59

próxima população, enquanto o restante da população é substituída por novos indivíduos.

Na estratégia population overlaps uma fração da população G (generation gap) é

substituída por novos indivíduos, enquanto a outra fração é preservada para a próxima

população. Na estratégia steady-state só o melhor indivíduo gerado é copiado para a

próxima população.

4.2.7. Critério de Parada

Nesta seção será feita a descrição da escolha de qual critério será usado para finalizar a

execução do AG. Nos métodos de busca em vizinhança, que trabalham com somente uma

solução, uma alternativa é encerrar a execução quando um ótimo local é obtido, mas no

AG isso não é possível. As três estratégias mais comuns para encerrar a execução de um

AG são:

i) O número de gerações;

ii) O tempo de execução; e

iii) A diversidade da população. Quando a semelhança entre os indivíduos começa

a se repetir, então é definido o momento de parar, por exemplo, quando 90% dos

indivíduos são semelhantes.

4.2.8. Parametrização do AG

A última decisão num projeto de AG é a definição dos valores dos seus parâmetros, como

tamanho da população, taxa de crossover e taxa de mutação. Segundo Mitchell (1998) os

parâmetros dos AG interagem entre si de forma não-linear. Sendo assim, não podem ser

otimizados ao mesmo tempo. Muitos trabalhos têm sido realizados nesta área, entretanto

nenhuma função matemática foi apresentada e que forneça os melhores valores para esses

parâmetros (DeJong, 1980; Grefenstette, 1986 e Ruiz et al., 2006). Como já mencionada

anteriormente uma desvantagem do AG é a dificuldade do processo de calibração dos seus

parâmetros (Dréo et al., 2006). Diante disso, foi criado até um AG que utiliza poucos

parâmetros por Lobo e Goldberg (2004), denominado de AG com menos parâmetros.

 60

4.3. Descrição do rAG

Nesta seção é descrito o projeto do rAG. Para guiar a descrição foi usado o modelo visto na

seção anterior.

4.3.1. Escolha da Representação

Devido aos dois problemas abordados neste trabalho, a representação mais adequada é a

permutacional, onde os alelos são representados pelos números das tarefas e a ordem

relativa das tarefas na permutação indica a ordem de processamento das mesmas nas

máquinas.

4.3.2. Função de Aptidão

Para calcular a aptidão dos indivíduos da população foi adotado o valor da função objetivo

de cada problema. Para o CPFSP foram adotadas duas aptidões porque foram testados

problemas com duas funções objetivo diferentes. O rAG usou no CPFSP com o tempo total

de fluxo como critério de desempenho a Equação 3.1, Seção 3.2. O rAG também usou com

o makespan como critério de desempenho a Equação 3.2, Seção 3.2. E finalmente, o rAG

utilizou no PFSP, o makespan como critério de desempenho, o procedimento g descrito na

seção 2.3 para calcular a aptidão dos indivíduos da população. Usar o mesmo valor da

função objetivo sem fazer nenhuma conversão, como outros AG fazem, para representar a

aptidão dos indivíduos da população, foi uma das formas encontradas para diminuir o

tempo computacional utilizado pelo rAG. Diante disso é possível diminuir a diferença, em

tempo de execução, com relação aos métodos que trabalham sobre uma solução de cada

vez. Mas esta estratégia não comprometeu a qualidade na diferenciação dos indivíduos que

é o propósito da aptidão. Os métodos usados para calcular a aptidão dos indivíduos foi a

única modificação na estrutura do rAG para permitir sua aplicação nos dois problemas

deste trabalho. Isto mostra a generalização do uso do rAG na classe de problemas de

sequenciamento permutacional.

 61

4.3.3. População Inicial

Como uma das propostas do trabalho é a geração da população inicial completamente

aleatória esta foi a forma escolhida. Além da aleatoriedade, evitar que indivíduos com a

mesma seqüência de tarefas estejam presentes na população inicial também foi tratado.

Esta prática melhora a diversidade, pois um indivíduo repetido agora gera um novo

indivíduo para a população. Para eliminar os indivíduos repetidos da população inicial, foi

implementado um procedimento que é executado depois da geração de todos os indivíduos

da população. Este procedimento consiste em analisar todos os indivíduos da população e

em encontrando um indivíduo repetido fazer ele passar pelo processo de mutação até que

se torne um indivíduo único na população.

4.3.4. Método de Seleção

O tipo de seleção implementada no rAG foi a seleção por torneio porque é resistente a

convergência prematura e tem custo computacional baixo. É escolhido um sub-conjunto

com d (parâmetro descrito na seção 4.2.4) indivíduos e gerado um número aleatório entre 0

e 1, quando esse número for maior que k (parâmetro descrito na seção 4.2.4), o segundo

melhor indivíduo do sub-conjunto d é escolhido. Nesta etapa, assim como também no

processo de cálculo da aptidão dos indivíduos da população, foi levado em consideração a

importância de reduzir o tempo computacional do rAG. A escolha deste método de seleção

contribui para reduzir o consumo de tempo de execução do rAG e não comprometeu a

eficácia na obtenção de boas soluções.

Nesta etapa, o segundo procedimento proposto para melhorar o desempenho do rAG foi

implementado. O procedimento consiste em fazer que só um dos pais seja escolhido pelo

método de seleção por torneio, o outro pai será o melhor indivíduo da população. Este

procedimento foi denominado de crossover elistista e, a probabilidade de ocorrência é

controlada pelo parâmetro Pce. O objetivo deste procedimento é favorecer o processo de

intensificação, já que o processo de crossover realizado com o melhor indivíduo da

população tem grandes chances de gerar descendentes com alta aptidão.

 62

4.3.5. Operadores genéticos

Nesta seção são descritos os operadores genéticos implementados no rAG. O operador

crossover implementado foi o Order Crossover (OX) (Goldberg, 1989). O operador de

mutação implementado foi o movimento swap. Nesta etapa foi implementado o terceiro

procedimento, proposto para melhorar o desempenho do rAG. O novo operador genético é

chamado de mutação populacional. Estes três operadores genéticos são descritos a seguir.

Na aplicação dos operadores genéticos foi adotada a estratégia crossover-ou-mutação, i.e.,

sempre um dos operadores é aplicado, ou crossover ou mutação, mas não ambos.

Crossover

O operador crossover OX foi criado baseado na idéia dos bons blocos construídos. Por

isso, baseia-se nas posições relativa e absoluta das tarefas na seqüência. Este procedimento

é descrito a seguir.

1 – São escolhidos dois pais através do método de seleção;

2 – É escolhido aleatoriamente o mesmo fragmento de cada um dos pais e copiado nos

respectivos filhos (Figura 4.4). Esta etapa preserva as posições absoluta e relativa das

tarefas na seqüência; e

3 – As posições não-preenchidas de cada filho são copiadas das tarefas do outro pai no

sentido da esquerda para a direita (Figura 4.5). Este procedimento faz com que seja

preservada a ordem relativa das tarefas na seqüência.

2 3 4 5 6 1 7 8

 4 5 6 1

 5 4 2 1

3 8 5 4 2 1 7 6

Figura 4.4 – Segunda etapa do crossover OX.

Pai 1

Filho 1

Filho 2

Pai 2

 63

2 3 4 5 6 1 7 8

3 6 5 4 2 1 7 8

3 8 4 5 6 1 2 7

3 8 5 4 2 1 7 6

Figura 4.5 – Terceira etapa do crossover OX.

Mutação

O operador mutação swap consiste em realizar uma única alteração na estrutura do

indivíduo. Este operador é implementado da seguinte forma: são escolhidos aleatoriamente

duas posições na estrutura do indivíduo e o valor dos alelos dessas posições são trocados.

Nesta etapa também existe a preocupação de evitar que surja na população um indivíduo

repetido, por isso, quando o indivíduo gerado já existe na população o procedimento é

repetido até a sua estrutura ser a única. A Figura 4.6 mostra um exemplo da aplicação deste

operador para um problema com n = 8.

Figura 4.6 – Exemplo da aplicação do operador mutação (swap).

Mutação Populacional

A mutação populacional baseada no princípio da diversificação foi o terceiro procedimento

proposto para melhorar o desempenho do rAG. A idéia deste operador surgiu na análise

dos resultados do rAG, que demonstram que à medida que a qualidade da melhor solução

aumenta mais gerações são necessárias para haver outra melhoria, isto prova, que o

1 4 5 6 7 3 8 2 antes da mutação

Posições escolhidas: 3 e 6

1 4 3 6 7 5 8 2 depois da mutação

Pai 1

Filho 2

Filho 1

Pai 2

 64

processo de busca estava estagnando. A idéia foi executar uma perturbação em todos os

indivíduos da população para reativar o processo de evolução, aproveitando a quantidade

de gerações em que a melhor solução não se alterava. Para exemplificar a Tabela 4.1

mostra alguns valores dos resultados obtidos para a instância tai031 (Taillard, 1993), com

50 tarefas e 5 máquinas, pela versão do AG sem o procedimento criado. O tempo de

execução do experimento foi de 3,75 segundos. Durante todo o processo de busca houve

174 melhorias. Os significados das colunas da Tabela 4.1 são: a coluna um representa o

número da melhoria (NM); a coluna dois representa a aptidão do melhor indivíduo; a

coluna três representa o número de gerações; a coluna quatro representa o número de

gerações entre as melhorias (GEM); a coluna cinco representa o desvio |(z – z*)/z*| (z :

solução encontrada pelo rAG; z* : melhor solução conhecida para a instância) à solução

final; e finalmente a coluna seis representa o percentual de gerações realizadas (P).

Analisando os dados desta tabela se verifica que depois de 20,84% das gerações realizadas

o valor de GEM pela primeira vez é maior que 100 e continua assim na maioria das vezes.

Isso quer dizer que são centenas de gerações onde não ocorre melhoria da solução

encontrada pelo rAG, por isso, desenvolveu-se um procedimento para reativar o processo

de evolução da melhor solução encontrada, denominado mutação populacional.

 65

Tabela 4.1 – Alguns valores obtidos para o problema tai031 por uma versão inicial do rAG.

NM Aptidão Geração GEM D (%) P (%)
1 118932 0 0 54,77 0,00
5 108173 8 8 40,77 0,22

10 105199 19 11 36,90 0,53
15 99063 27 8 28,92 0,75
20 96612 42 15 25,73 1,17
25 94917 60 18 23,52 1,67
30 93790 85 25 22,06 2,37
35 91836 104 19 19,51 2,90
40 90859 126 22 18,24 3,51
45 89294 143 17 16,20 3,99
50 88469 191 48 15,13 5,33
55 87634 229 38 14,04 6,39
60 86805 248 19 12,97 6,92
65 86060 277 29 12,00 7,73
70 84948 324 47 10,55 9,04
75 84198 356 32 9,57 9,93
80 84115 441 85 9,46 12,30
85 83796 495 54 9,05 13,81
90 83184 554 59 8,25 15,45
95 82959 594 40 7,96 16,57

100 81861 654 60 6,53 18,24
110 81151 747 93 5,61 20,84
120 80044 1041 294 4,17 29,04
130 79346 1417 376 3,26 39,53
140 78349 1684 267 1,96 46,97
150 77860 2108 424 1,32 58,80
160 77104 2644 536 0,34 73,75
170 76883 3114 470 0,05 86,86
171 76875 3253 139 0,04 90,74
172 76854 3529 276 0,02 98,44
173 76842 3575 46 0,00 99,72
174 76842 3585 10 0,00 100,00

A mutação populacional consiste em realizar a mutação swap em todos os indivíduos da

população depois de um determinado número de gerações sucessivas sem melhoria ter sido

atingido. Ainda nesta etapa, quando um indivíduo gerado é repetido ele sofre mutação

novamente até sua seqüência ser única na população. Este procedimento é descrito a

seguir.

Passo 1 : Se f0i = f0(i-1), então c := c+1, caso contrário c := 0;

Passo 2 : Se c = Ge, então:

- Se f0i < f*, então s* := s0i e f* := f0i, caso contrário s0i := s* e todos os

indivíduos da população sofrem mutação swap e c := 0;

 66

Onde: f* : é o valor da melhor aptidão em todas as gerações já realizadas;

 s* : é o melhor indivíduo em todas as gerações já realizadas;

 f0i : é o valor da melhor aptidão na população i;

 s0i : é o melhor indivíduo da população i;

 c : é o número de gerações sucessivas sem melhoria de f0i;

 i : é o número da i-ésima geração; e

 Ge : número de gerações sucessivas sem melhoria.

O segundo passo armazena o melhor indivíduo de todas as gerações e faz com que ele

sempre esteja na população antes da mutação de todos os indivíduos.

4.3.6. Estratégia Geracional

A estratégia geracional implementada no rAG é inspirada na estratégia population

overlaps. Para evitar que existam indivíduos repetidos na população, um indivíduo só é

aceito para ser incorporado na população se a sua estrutura não é repetida. A outra

condição depende da aptidão do indivíduo. Se a aptidão do novo indivíduo f é melhor do

que a pior aptidão da população fp, então este indivíduo substitui o indivíduo de pior

aptidão e o valor da pior aptidão é atualizado.

Nesta etapa o primeiro procedimento proposto, baseado no princípio da diversificação,

para melhorar o desempenho do rAG foi implementado. A estratégia de só aceitar um

indivíduo com aptidão melhor que a pior aptidão diminuía a diversidade da população e,

por isso, foi implementada a possibilidade controlada por um parâmetro de um indivíduo

com aptidão inferior a pior aptidão existente na população ser aceito, deste que tenha

seqüência única. Este procedimento é descrito a seguir:

Passo 1 : Execução do operador crossover;

Passo 2 : Se f < fp e s ≠ si (∀ i = 1, 2, ..., N), então: sp := s e atualiza fp;

Passo 3 : Se f ≥ fp e s ≠ si (∀ i = 1, 2, ..., N), então:

- gera-se um número aleatório r entre 0 e 1:

- se r < Pa, então: sp := s e atualiza fp;

 67

Onde:

N : é o tamanho da população;

Pa : probabilidade de aceitar um indivíduo;

s : é um dos indivíduos gerado pelo operador crossover;

f : é a aptidão de s;

sp : é o indivíduo de pior aptidão; e

fp : é a aptidão de sp.

4.3.7. Critério de Parada

O critério de parada utilizado foi o tempo de execução, devido o rAG ter uma característica

de manter a diversidade. Em comparação ao número de gerações, o tempo de execução é

mais adequado tanto para o planejamento dos experimentos como para a facilidade da

implementação computacional.

4.3.8. Parametrização do rAG

Ruiz et al. (2006) realizou um projeto de experimentos para encontrar a melhor

combinação entre componentes e valores para os parâmetros do seu AG, o resultado foi um

desvio de 3,22% e 3,85% para a melhor e a pior combinação de operadores e valores dos

parâmetros, respectivamente. Segundo os autores está diferença não era muito

significativa, o que demonstrava a robustez do AG desenvolvido, i.e., a qualidade das

soluções obtidas pelo AG eram pouco dependente dos valores dos parâmetros. Devido a

dificuldade da calibração dos valores dos parâmetros e a possibilidade de conseguir uma

melhoria pequena, optou-se por não acrescentar aos objetivos deste trabalho realizar uma

calibração otimizada dos parâmetros do rAG. Considerou-se mais importante construir um

bom projeto para o AG que lhe atribuísse robustez.

Os valores dos parâmetros do rAG foram determinados durante a implementação

computacional e os primeiros experimentos. Durante os experimentos se percebeu que o

rAG se comportava melhor para o CPFSP com o critério de desempenho sendo o tempo

total de fluxo, com o tamanho da população e o parâmetro Ge maiores que os outros dois

 68

problemas testados. Assim, foram usados dois conjuntos de valores para os parâmetros do

rAG, apresentados a seguir.

Os parâmetros do rAG e seus respectivos valores para o CPFSP com o tempo total de fluxo

sendo o critério de desempenho:

� Tamanho da população (N) : 75;

� Tamanho do sub-conjunto de seleção (d) : 3;

� Parâmetro da seleção por torneio (k) : 0,7;

� Taxa de crossover (Pc) : 0,70;

� Taxa de aceitação (Pa) : 0,30;

� Taxa de crossover elitista (Pce): 0,30;

� Taxa de mutação (Pm) : 0,05; e

� Gerações de estagnação (Ge) : 50.

Os parâmetros do rAG e seus respectivos valores para o CPFSP e o PFSP com o makespan

sendo o critério de desempenho:

� Tamanho da população (N) : 30;

� Tamanho do sub-conjunto de seleção (d) : 3;

� Parâmetro da seleção por torneio (k) : 0,7;

� Taxa de crossover (Pc) : 0,70;

� Taxa de aceitação (Pa) : 0,30;

� Taxa de crossover elitista (Pce): 0,30;

� Taxa de mutação (Pm) : 0,05; e

� Gerações de estagnação (Ge) : 25.

4.3.9. Resumo do rAG

Um resumo do rAG pode ser dado da seguinte forma: primeiro é gerada uma população

inicial totalmente aleatória de tamanho N; em seguida é verificado se há algum indivíduo

com seqüência repetida, se houver, este indivíduo sofre mutação até sua seqüência ser a

única da população; depois todos os indivíduos da população são avaliados, i.e., recebem

sua aptidão; o procedimento crossover é executado N vezes: é gerado um número aleatório

entre 0 e 1, se for menor ou igual a Pc é realizado o crossover OX, se for maior é realizado

 69

o crossover elitista. Para cada um dos indivíduos gerados no processo de crossover são

testadas as condições do procedimento de estratégia geracional; então é executado o

procedimento de mutação, realizado i vezes, de 1 a N, onde é gerado um número aleatório

entre 0 e 1, se for menor ou igual a Pm então o indivíduo i sofre mutação; depois é

determinada a aptidão do melhor indivíduo, se ela for igual ou menor que a melhor aptidão

da população anterior um contador c é acrescentado de uma unidade, caso contrário, o

contador c recebe zero; depois do contador ter sido atualizado, se o seu valor atingir o

valor de Ge, então a mutação populacional é executada e o contador c recebe zero. O tempo

de execução decorrido é comparado com o tempo de execução estabelecido no critério de

parada, se for menor, os procedimentos anteriores deste o crossover são realizados

novamente, caso contrário, a execução do algoritmo é encerrada. Percebe-se que numa

mesma população nunca existem dois indivíduos com a mesma seqüência. O pseudocódigo

do rAG é apresentado na Figura 4.7.

Figura 4.7 – Pseudocódigo do rAG.

Depois da descrição do rAG faz-se uma abordagem explicitando a diferença em relação

aos outros AGs apresentados neste trabalho. Os AGs apresentados neste trabalho para o

CPFSP foram o GAChen de Chen et al. (1996), o GASA de Shuster e Framinan (2003) e o

GA_AA de Aldowaisan e Allahverdi (2003). Já para o PFSP foram o GAChen de Chen et

al. (1995), o GAMIT de Murata et al. (1996), o GAReev de Reeves (1995) e o GA_RMA

Gera a população inicial

Identifica e corrige indivíduos repetidos

Avalia a população

Enquanto o critério de parada é falso faça

Escolhe o tipo de crossover

Executa a seleção

Executa o operador de crossover

Executa o operador de mutação

Se c = Ge, então

Executa a mutação populacional

Fim do enquanto

 70

de Ruiz et al. (2006). A Tabela 4.2 mostra as diferenças entre os outros AGs e o rAG. Na

Tabela 4.2: a coluna um mostra o nome do AG; a coluna dois mostra se a inicialização foi

eficiente e qual heurística utilizada eficientemente ou não; a coluna três mostra se foi

utilizada hibridização e qual o método usado; a coluna quatro mostra que tipo de operador

crossover foi utilizado; a coluna cinco mostra se foi utilizado o operador de mutação com

que procedimento; a coluna seis mostra a taxa de crossover utilizada; e a coluna sete

mostra a taxa de mutação utilizada.

A análise da tabela 4.2 mostra que o rAG foi o único a não usar inicialização eficiente e/ou

hibridização. Nota-se que quando os outros AG não têm inicialização eficiente, usam

hibridização, isso é uma forma de melhorar a qualidade das soluções obtidas já que as

soluções iniciais aleatórias são de baixa qualidade, ou quando tem inicialização eficiente

não usam hibridização. Só um o GA_AA usou inicialização eficiente e hibridização ao

mesmo tempo. Metade dos AGs comparados usou ao menos o valor de 100% para alguma

das taxas dos operadores genéticos. Os resultados dos experimentos serão apresentados no

próximo capítulo e mostrará se o rAG consegue ser competitivo mesmo sem usar

inicialização eficiente ou hibridização.

Tabela 4.2 – Diferença entre os AG apresentados para o PFSP e o rAG.
AG Inic. eficiente Hibridização Crossover Mutação Taxa

Crossover

Taxa

Mutação

GAChen

(CPFSP)

CDS e

Dannenbring

Não PMX Swap 0,95 0,01

GASA Não Simulated

annealing

DPA* DPA* 1,00 1,00

GA_AA CDS e

Dannenbring

Busca local PMX Swap 0,95 0,01

GAChen

(PFSP)

CDS e

Dannenbring

Não PMX Não 1,00 0

GAMIT Não Busca local Two-point Shift 1,00 1,00

GA_Reev NEH Não One-point Shift 1,00 0,80

GA_RMA NEH Não SBOX Shift 0,40 0,01

rAG Não Não OX Swap 0,70 0,05

* Desenvolvido pelo próprio autor.

 71

CAPÍTULO 5 – EXPERIMENTOS COMPUTACIONAIS

Os resultados dos experimentos computacionais realizados com o rAG e as comparações

com os outros métodos são apresentados neste capítulo. O código do rAG foi

implementado em Delphi 7. Os experimentos foram realizados em um computador PC-

AMD (2.2 GHz e 512 MB de RAM). Devido a natureza probabilística dos AGs

tradicionais, o rAG foi executado cinco vezes para cada problema e escolhido o melhor

resultado.

O principal indicador utilizado nas comparações entre os métodos é o percentual de desvio

das soluções, dado por ((s* - s’) / s*)x100, onde s* é a melhor solução do problema e s’ é a

melhor solução encontrada pelo método de resolução aplicado ao problema.

Um conjunto de experimentos foi programado para ser realizado e os resultados obtidos

são apresentados nas seções 5.1 a 5.5, dados adiante.

Além disso, é apresentado um conjunto de polinômios do segundo grau construídos a partir

dos resultados obtidos com o rAG aplicado ao PFSP, com o objetivo de determinar a priori

o tempo de execução necessário a ser gasto na aplicação do método a partir da qualidade

da solução desejada.

Por fim, descrevemos como foi o desempenho do rAG aplicado num caso real.

5.1. Experimento 1 – Etapas de melhoria do rAG

O primeiro experimento tem o objetivo de demonstrar e analisar a melhoria obtida pelo

rAG com a utilização dos procedimentos propostos baseados nos princípios da diversidade

e intensificação no CPFSP. Nesta etapa foram realizados 4 tipos de experimentos. O

primeiro experimento foi realizado com o chamado rAG-1 que não tem implementado

nenhum dos três procedimentos propostos. O segundo experimento foi realizado com o

rAG-1 acrescido do procedimento que permite que indivíduos com aptidão menor que a

pior aptidão da população tenham probabilidade de serem aceitos na população, e foi

denominado de rAG-2. O terceiro experimento foi realizado com o rAG-2 acrescido do

 72

procedimento crossover elitista, e foi denominado de rAG-3. O quarto e último

experimento nesta etapa foi realizado com o rAG-3 acrescido do procedimento mutação

populacional, e foi denominado de rAG-4. Todos os experimentos foram realizados com as

instâncias de Taillard (1993).

O resumo dos resultados desses experimentos com os tempos de execução usados são

mostrados na Tabela 5.1. Nesta tabela a coluna um mostra as classes das instâncias de

Taillard (1993), as colunas dois a cinco mostram o percentual de desvio para o rAG-1,

rAG-2, rAG-3 e rAG-4, respectivamente, e a coluna seis mostra o tempo de execução

usado em cada classe de problemas.

A análise dos dados da Tabela 5.1 produz as seguintes observações:

a) O primeiro procedimento (rAG-2) passou o desvio do rAG de 1,710% para

0,517%, o segundo procedimento (rAG-3) passou o desvio de 0,517% para 0,174%

e o terceiro procedimento (rAG-4) passou o desvio de 0,174% para 0,171%;

b) O acréscimo do último procedimento melhorou o desempenho do rAG em apenas

0,003%, isto se explica pelos baixos tempos de execução utilizados, pois a

característica deste procedimento é agir quando a população se encontra em estado

de estagnação e o que não ocorre com poucas gerações executadas;

c) A eficiência do terceiro procedimento é sentida nas instâncias com 20 tarefas

porque estes problemas são menos complexos e, por isso, rapidamente o rAG

encontra boas soluções e, por isso, a população entra em estado de estagnação e a

mutação populacional passa a ter um papel ativo; e

d) O resultado do rAG-4 ter sido inferior ao resultado do rAG-3 para a classe 100x5 se

deve a utilização dos números aleatórios gerados pelo Delphi 7, e como esses dois

algoritmos têm quantidades de execuções de números aleatórios diferentes, isso

influenciou no resultado.

Estes resultados mostram que foi proveitosa a implementação dos procedimentos propostos

para o desempenho do rAG. O rAG-4 foi o que obteve os melhores resultados, por isso,

passará a ser chamado apenas de rAG e será o algoritmo usado daqui para frente.

 73

Tabela 5.1 – Resumo da comparação das várias etapas de melhoria do rAG.

Instâncias rAG-1 rAG-2 rAG-3 rAG-4 Tempo (s)

20 x 5 0,55 0,15 0,12 0,04 0,08
20 x 10 0,39 0,11 0,04 0,02 0,08
20 x 20 0,51 0,11 0,08 0,05 0,08
50 x 5 0,67 0,22 0,15 0,14 3,75
50 x 10 0,70 0,29 0,18 0,15 3,75
50 x 20 1,01 0,40 0,21 0,12 3,75
100 x 5 1,83 0,59 -0,10 -0,01 10,00
100 x 10 2,68 0,71 0,18 0,18 10,00
100 x 20 2,86 1,03 0,51 0,34 10,00
200 x 10 3,28 0,79 0,00 0,16 50,00
200 x 20 4,33 1,28 0,53 0,68 50,00
Média 1,710 0,517 0,174 0,171 15,96

As Tabelas 5.2 a 5.5 mostram os resultados dos quatro métodos avaliados para cada um

dos 110 problemas de Taillard (1993). A especificação de cada coluna dessas tabelas é a

seguinte: a coluna um mostra a descrição dos problemas, a coluna dois mostra o melhor

resultado obtido por Fink e Voβ (2003) referenciado como FV, a coluna três mostra o

resultado obtido pelo rAG-1, a coluna quatro mostra desvio do rAG-1 em relação a FV, a

coluna cinco mostra o resultado obtido pelo rAG-2, a coluna seis mostra o desvio do rAG-

2 em relação a FV, a coluna sete mostra o resultado obtido pelo rAG-3, a coluna oito

mostra o desvio percentual do rAG-3 em relação a FV, a coluna nove mostra o resultado

obtido pelo rAG-4 e a coluna dez mostra o desvio percentual do rAG-4 em relação a FV.

A análise das informações contidas nas Tabelas 5.2 a 5.5 trás as seguintes observações:

a) Na Tabela 5.2 sabendo-se que as soluções FV para as classes com 20 tarefas são as

soluções ótimas dos problemas, o rAG-1 só obteve 3 soluções ótimas, o rAG-2

obteve 13 soluções ótimas, o rAG-3 alcançou 19 soluções ótimas e o rAG-4 obteve

24 soluções ótimas;

b) Na Tabela 5.3 para as classes com 50 tarefas o rAG-1 não obteve nenhuma solução

melhor que FV, já o rAG-2 conseguiu 5 soluções melhores que FV, o rAG-3 e o

rAG-4 obtiveram, cada um, 7 soluções melhores que FV;

c) Na Tabela 5.4 para as classes com 100 tarefas o rAG-1 e o rAG-2 não obtiveram

nenhuma solução melhor que FV, já o rAG-3 obteve 7 soluções melhores que FV e

o rAG-4 também obteve 7 soluções melhores que FV; e

 74

d) Na Tabela 5.5 Para as classes com 200 tarefas o rAG-1 não obteve nenhuma

solução melhor que FV, já o rAG-2 conseguiu 1 solução melhor que FV, o rAG-3

obteve 6 soluções melhores que FV e o rAG-4 obteve 4 soluções melhores que FV.

Estes resultados demonstram mais uma vez que as incorporações dos procedimentos

propostos ao rAG melhoram cada vez mais a capacidade deste algoritmo de obter soluções

melhores. Prova disso foi a mutação populacional que fez o algoritmo passar de 19

soluções ótimas obtidas pelo rAG-3 para as classes com 20 tarefas para 24 soluções ótimas

obtidas.

 75

Tabela 5.2 – Comparação das várias etapas de melhoria do rAG para as classes com n = 20.

Instâncias FV rAG-1 D (%) rAG-2 D (%) rAG-3 D (%) rAG-4 D (%)
20x5
tai001 15674 15698 0,15 15674 0,00 15674 0,00 15674 0,00
tai002 17250 17368 0,68 17297 0,27 17250 0,00 17250 0,00
tai003 15821 16062 1,52 15969 0,94 15821 0,00 15877 0,35
tai004 17970 18043 0,41 17999 0,16 17970 0,00 17970 0,00
tai005 15317 15490 1,13 15331 0,09 15317 0,00 15317 0,00
tai006 15501 15527 0,17 15501 0,00 15673 1,11 15501 0,00
tai007 15693 15767 0,47 15696 0,02 15706 0,08 15693 0,00
tai008 15955 16015 0,38 15965 0,06 15957 0,01 15963 0,05
tai009 16385 16394 0,05 16385 0,00 16385 0,00 16385 0,00
tai010 15329 15413 0,55 15329 0,00 15329 0,00 15329 0,00
Média 0,55 0,15 0,12 0,04

20x10
tai011 25205 25417 0,84 25290 0,34 25206 0,00 25205 0,00
tai012 26342 26540 0,75 26342 0,00 26342 0,00 26342 0,00
tai013 22910 22936 0,11 22936 0,11 22910 0,00 22910 0,00
tai014 22243 22315 0,32 22243 0,00 22243 0,00 22243 0,00
tai015 23150 23191 0,18 23191 0,18 23150 0,00 23150 0,00
tai016 22011 22179 0,76 22011 0,00 22048 0,17 22011 0,00
tai017 21939 21965 0,12 21939 0,00 21939 0,00 21939 0,00
tai018 24158 24158 0,00 24158 0,00 24205 0,19 24205 0,19
tai019 23501 23652 0,64 23503 0,01 23501 0,00 23501 0,00
tai020 24597 24633 0,15 24699 0,41 24597 0,00 24597 0,00
Média 0,39 0,11 0,04 0,02

20x20
tai021 38597 38597 0,00 38597 0,00 38597 0,00 38597 0,00
tai022 37571 37798 0,60 37643 0,19 37686 0,31 37571 0,00
tai023 38312 38530 0,57 38312 0,00 38312 0,00 38382 0,18
tai024 38802 39264 1,19 38802 0,00 38812 0,03 38802 0,00
tai025 39012 39296 0,73 39096 0,22 39012 0,00 39073 0,16
tai026 38562 38808 0,64 38620 0,15 38618 0,15 38562 0,00
tai027 39663 39697 0,09 39738 0,19 39730 0,17 39744 0,20
tai028 37000 37342 0,92 37027 0,07 37027 0,07 37000 0,00
tai029 39228 39228 0,00 39228 0,00 39267 0,10 39228 0,00
tai030 37931 38076 0,38 38024 0,25 37931 0,00 37931 0,00
Média 0,51 0,11 0,08 0,05

 76

Tabela 5.3 – Comparação das várias etapas de melhoria do rAG para as classes com n = 50.

Instâncias FV rAG-1 D (%) rAG-2 D (%) rAG-3 D (%) rAG-4 D (%)
50x5
tai031 76016 76318 0,40 75801 -0,28 75883 -0,17 75882 -0,18
tai032 83403 83733 0,40 83348 -0,07 83589 0,22 83240 -0,20
tai033 78282 78675 0,50 78732 0,57 78747 0,59 78467 0,24
tai034 82737 83059 0,39 82716 -0,03 82517 -0,27 82639 -0,12
tai035 83901 85400 1,79 84353 0,54 84338 0,52 83980 0,09
tai036 80924 81272 0,43 81319 0,49 80969 0,06 81471 0,68
tai037 78791 79071 0,36 79161 0,47 79172 0,48 79051 0,33
tai038 79007 79693 0,87 79220 0,27 79067 0,08 79263 0,32
tai039 75842 76308 0,61 76054 0,28 75892 0,07 75951 0,14
tai040 83829 84669 1,00 83787 -0,05 83785 -0,05 83882 0,06
Média 0,67 0,22 0,15 0,14

50x10
tai041 114398 115267 0,76 114552 0,13 114473 0,07 114412 0,01
tai042 112725 112988 0,23 112853 0,11 112821 0,09 112408 -0,28
tai043 105433 105890 0,43 105706 0,26 105786 0,33 105694 0,25
tai044 113540 113972 0,38 113809 0,24 113932 0,35 113994 0,40
tai045 115441 116552 0,96 115695 0,22 115896 0,39 115434 -0,01
tai046 112645 113080 0,39 113951 1,16 112522 -0,11 112904 0,23
tai047 116560 117339 0,67 116896 0,29 116890 0,28 116809 0,21
tai048 115056 115865 0,70 115042 -0,01 114995 -0,05 115166 0,10
tai049 110482 111906 1,29 110629 0,13 110814 0,30 110510 0,03
tai050 113462 114775 1,16 113922 0,41 113670 0,18 114145 0,60
Média 0,70 0,29 0,18 0,15

50x20
tai51 172845 173773 0,54 173856 0,58 173402 0,32 173154 0,18
tai52 161092 162001 0,56 161867 0,48 161442 0,22 161260 0,10
tai53 160213 162548 1,46 160891 0,42 160161 -0,03 160625 0,26
tai54 161557 163041 0,92 162217 0,41 161883 0,20 162382 0,51
tai55 167640 169667 1,21 167750 0,07 167397 -0,14 167140 -0,30
tai56 161784 163228 0,89 162525 0,46 162507 0,45 161939 0,10
tai57 167233 169459 1,33 167859 0,37 167291 0,03 167271 0,02
tai58 168100 170213 1,26 169047 0,56 168820 0,43 167822 -0,17
tai59 165292 167003 1,04 165895 0,36 165642 0,21 165292 0,00
tai60 168386 169912 0,91 168935 0,33 169148 0,45 169144 0,45
Média 1,01 0,40 0,21 0,12

 77

Tabela 5.4 – Comparação das várias etapas de melhoria do rAG para as classes com n = 100.

Instâncias FV rAG-1 D (%) rAG-2 D (%) rAG-3 D (%) rAG-4 D (%)
100x5
tai061 308052 315572 2,44 309755 0,55 309589 0,50 307853 -0,06
tai062 302386 307787 1,79 303039 0,22 300877 -0,50 300301 -0,69
tai063 295239 296411 0,40 295705 0,16 293781 -0,49 294746 -0,17
tai064 278811 283647 1,73 283291 1,61 279040 0,08 280520 0,61
tai065 292757 299463 2,29 294944 0,75 293554 0,27 293529 0,26
tai066 290819 297639 2,35 291495 0,23 289502 -0,45 291328 0,18
tai067 300068 307786 2,57 302814 0,92 300934 0,29 302754 0,90
tai068 291859 295408 1,22 292362 0,17 290175 -0,58 289477 -0,82
tai069 307650 312164 1,47 309988 0,76 307174 -0,15 307874 0,07
tai070 301942 308223 2,08 303687 0,58 302161 0,07 300921 -0,34
Média 1,83 0,59 -0,10 -0,01

100x10
tai071 412700 425317 3,06 415571 0,70 413587 0,21 410052 -0,64
tai072 394562 404554 2,53 394619 0,01 396092 0,39 393033 -0,39
tai073 405878 416555 2,63 406606 0,18 406166 0,07 407103 0,30
tai074 422301 434956 3,00 424781 0,59 422966 0,16 422508 0,05
tai075 400175 410467 2,57 405725 1,39 401531 0,34 402891 0,68
tai076 391359 398699 1,88 393526 0,55 392833 0,38 391755 0,10
tai077 394179 405388 2,84 397054 0,73 393455 -0,18 398792 1,17
tai078 402025 415212 3,28 405845 0,95 402134 0,03 402541 0,13
tai079 416833 426680 2,36 420429 0,86 416521 -0,07 417296 0,11
tai080 410372 421285 2,66 414894 1,10 412277 0,46 411741 0,33
Média 2,68 0,71 0,18 0,18

100x20
tai081 562150 578291 2,87 568276 1,09 566299 0,74 563576 0,25
tai082 563923 576738 2,27 572882 1,59 567295 0,60 566027 0,37
tai083 562404 579826 3,10 570003 1,35 564884 0,44 565168 0,49
tai084 562918 582030 3,40 568895 1,06 566140 0,57 564664 0,31
tai085 556311 569888 2,44 560124 0,69 558504 0,39 557451 0,20
tai086 562253 582624 3,62 567371 0,91 565028 0,49 566607 0,77
tai087 574102 589156 2,62 575352 0,22 575047 0,16 574813 0,12
tai088 578119 595341 2,98 586900 1,52 581522 0,59 580907 0,48
tai089 564803 581740 3,00 570992 1,10 568157 0,59 565182 0,07
tai090 572798 585800 2,27 577125 0,76 575738 0,51 574652 0,32
Média 2,86 1,03 0,51 0,34

 78

Tabela 5.5 – Comparação das várias etapas de melhoria do rAG para as classes com n = 200.

Instâncias FV rAG-1 D (%) rAG-2 D (%) rAG-3 D (%) rAG-4 D (%)
200x10
tai091 1521201 1575895 3,60 1531594 0,68 1527482 0,41 1526609 0,36
tai092 1516009 1559616 2,88 1529300 0,88 1506553 -0,62 1512508 -0,23
tai093 1515535 1580957 4,32 1539853 1,60 1522691 0,47 1515614 0,01
tai094 1489457 1533010 2,92 1508382 1,27 1500234 0,72 1499035 0,64
tai095 1513281 1561600 3,19 1508947 -0,29 1510513 -0,18 1511402 -0,12
tai096 1508331 1547496 2,60 1514446 0,41 1508429 0,01 1513766 0,36
tai097 1541419 1593727 3,39 1553749 0,80 1538915 -0,16 1554570 0,85
tai098 1533397 1578312 2,93 1546345 0,84 1526500 -0,45 1526915 -0,42
tai099 1507422 1559530 3,46 1519648 0,81 1507978 0,04 1504755 -0,18
tai100 1520800 1573829 3,49 1534494 0,90 1517887 -0,19 1525728 0,32
Média 3,28 0,79 0,00 0,16

200x20
tai101 2012785 2104986 4,58 2041445 1,42 2032113 0,96 2032802 0,99
tai102 2057409 2143591 4,19 2081288 1,16 2055025 -0,12 2070359 0,63
tai103 2050169 2128363 3,81 2072699 1,10 2053455 0,16 2057855 0,37
tai104 2040946 2128780 4,30 2075877 1,71 2048040 0,35 2053048 0,59
tai105 2027138 2112664 4,22 2062773 1,76 2041657 0,72 2047943 1,03
tai106 2046542 2132140 4,18 2064979 0,90 2059528 0,63 2057600 0,54
tai107 2045906 2149991 5,09 2072585 1,30 2061357 0,76 2063947 0,88
tai108 2044218 2130926 4,24 2070443 1,28 2061633 0,85 2055332 0,54
tai109 2037040 2129088 4,52 2050343 0,65 2038011 0,05 2042594 0,27
tai110 2046966 2132272 4,17 2077830 1,51 2066081 0,93 2066217 0,94
Média 4,33 1,28 0,53 0,68

Aproveitando os resultados do rAG-4 construiu-se a Tabela 5.6 para verificar se depois de

todos os processos de melhoria o rAG tinha se tornado tão eficiente quanto a melhor

heurística para o CPFSP com o critério de desempenho sendo o tempo total de fluxo.

Tabela 5.6 – Comparação do rAG com a heurística Pilot-10-Chins.

Desvio (%) Tempo (s)
Instâncias

(n)
Pilot-10-

Chins
rAG DIFdesvio

Pilot-10-

Chins
rAG DIFtempo

20 0,27 0,04 -0,23 0,8 0,08 0,80

50 0,85 0,14 -0,71 37,5 3,75 0,80

100 1,30 0,17 -1,13 879,0 10,00 0,09

200 0,57 0,42 -0,15 7.612,4 50,00 0,05

Média 0,75 0,19 -0,56 2.132,4 15,96 0,44

 79

A Tabela 5.6, dada acima, mostra o resumo dos resultados do rAG e a comparação com a

heurística Pilot-10-Chins. Nesta tabela a coluna um mostra o número de tarefas das

instâncias, cada linha representa a agregação dos problemas com 5, 10 e 20 máquinas, a

coluna dois mostra a média do desvio da heurística Pilot-10-Chins em relação as melhores

soluções encontradas por FV, a coluna três mostra o desvio dos resultados do rAG em

relação a FV, a coluna quatro (DIFdesvio) mostra a diferença entre os desvios do rAG e da

heurística Pilo-10-Chins, a coluna cinco mostra os tempos de execução usados pela

heurística Pilot-10-Chins, a coluna seis mostra os tempos de execução usados pelo rAG, a

coluna sete (DIFtempo) mostra a razão entre o tempo de execução usado pela heurística

Pilot-10-Chins e pelo rAG já multiplicado por 8 que é a razão entre as velocidades dos dois

computadores (2.200/266).

Sobre a Tabela 5.6 descrevemos as seguintes observações.

a) Nas quatro classes de problemas o rAG foi superior a heurística Pilot-10-Chins. Na

média o rAG foi 0,56 % superior a heurística Pilot-10-Chins;

b) O tempo de execução do rAG para as quatro classes de problemas sempre foi

inferior ao utilizado pela heurística Pilot-10-Chins. A média da razão entre os

tempos usados pela heurística Pilot-10-Chins e pelo rAG foi 0,44 o que significa

que o rAG foi mais rápido que a heurística Pilot-10-Chins;

c) A menor razão entre os tempos usados pela heurística Pilot-10-Chins e pelo rAG

foi 0,05 e a maior razão foi 0,80;

d) O melhor resultado do rAG em comparação com a heurísta Pilot-10-Chins foi

-1,13% na classe com 100 tarefas; e

e) A menor diferença entre o rAG em comparação com a heurística Pilot-10-Chins foi

-0,15% na classe com 200 tarefas.

Estes resultados demonstram que o rAG é mais eficiente e eficaz que a heurística Pilot-10-

Chins, o que contradiz a opinião de alguns autores (Reeves e Rowe, 2002; Dréo et al.,

2006) que afirmam que um AG que é uma técnica de busca global não consegue ser

melhor que uma técnica que usa o conhecimento específico do problema para guiar a busca

nas mesmas condições de tempo de execução.

 80

5.2. Experimento 2 – rAG x FV

O objetivo deste segundo tipo de experimento é analisar a capacidade do rAG em obter

soluções tão boas ou melhores que as soluções encontradas por Fink e Voβ (2003) para o

CPFSP com o tempo total de fluxo como critério de desempenho. Os experimentos do FV

foram realizados num computador Pentium II (266 MHz). Então a razão entre as

velocidades dos dois computadores utilizados nos experimentos é 2.200/266, ou seja, 8,27.

Por isso, os tempos de execução do rAG foram adotados para serem menores que esta

razão. Os problemas de testes utilizados foram às instâncias de Taillard (1993). O resumo

dos resultados do rAG e a comparação com o FV são mostrados na Tabela 5.7. Na Tabela

5.7 a coluna um mostra as classes de problemas das instâncias de Taillard (1993), a coluna

dois mostra os tempos usados pelo FV, a coluna três mostra os tempos usados pelo rAG, a

coluna quatro mostra a razão do tempo usado pelo rAG e pelo FV já multiplicado por 8

que é a diferença entre as velocidades dos computadores utilizados nos testes e a coluna

cinco mostra o desvio percentual do rAG em relação ao FV.

Como o CPFSP é o problema principal deste trabalho e as instâncias de Taillard (1993) são

as mais utilizadas nas comparações entre os métodos propostos para os problemas da

classe FSP, decidiu-se fazer uma análise mais profunda nos experimentos realizados. Para

isso, foram criados alguns indicadores que são definidos a seguir. Os resultados para os

testes com os 110 problemas de Taillard (1993) com os valores dos indicadores são

apresentados nas Tabelas 5.8 a 5.11.

a) FV : é o melhor resultado obtido por Fink e Voβ (2003);

b) rAG* : é o melhor resultado obtido pelo rAG nas cinco execuções de cada

problema;

c) rAGP : é o pior resultado obtido pelo rAG nas cinco execuções de cada problema;

d) D (rAGP e rAG*) : é o desvio percentual entre o pior e o melhor resultado obtido

pelo rAG e calculado desta forma: ((rAG* - rAGp)/rAG*)x100;

e) GT : é o total de gerações executadas na obtenção de rAG*;

f) G* : é a geração na qual foi obtido o valor rAG*;

g) t* : é o tempo decorrido até obter rAG*; e

 81

h) D (rAG* e FV) : é o desvio percentual entre o valor rAG* e o valor FV, calculado

desta forma: ((FV – rAG*)/FV)x100.

A análise da tabela 5.7 produz os seguintes resultados.

a) Nas classes com 20 tarefas onde as soluções de FV são ótimas o rAG também

obteve todas as soluções ótimas;

b) Nas instâncias restantes o rAG foi sempre melhor que os resultados de FV. Na

média o rAG foi 0,34 % superior ao FV;

c) Os tempos de execução do rAG foram sempre inferiores aos tempos usados pelo

FV considerando a conversão. A razão entre os tempos de execução do rAG e do

FV foi 0,18 o que significa que o rAG é mais rápido que o FV;

d) A menor razão entre os tempos usados pelo rAG e o FV foi 0,006 o que significa

que o rAG foi 166 vezes mais rápido que o FV e a maior razão foi 0,463 o que

significa que o rAG foi 2 vezes mais rápido que o FV;

e) O melhor resultado do rAG em comparação com o FV foi -1,13 % na classe

200x10; e

f) Quando o rAG foi melhor que o FV a menor diferença foi -0,01 % na classe 50x20.

Estes resultados mostram claramente que o rAG é ao mesmo tempo mais eficaz e eficiente

que o FV. É mais eficaz porque obtem os melhores resultados e mais eficiente porque faz

isso em menos tempo.

 82

Tabela 5.7 – Resumo da comparação do rAG com o FV.

Tempo (s) Instância
(n x m) FV rAG* (rAG* / FV) x 8

Desvio (FV e
rAG*) (%)

20 x 5 1.000,80 0,75 0,006 0,00
20 x 10 1.000,80 1,50 0,012 0,00
20 x 20 1.000,80 3,00 0,024 0,00
50 x 5 1.037,50 15,00 0,116 -0,14
50 x 10 1.037,50 30,00 0,231 -0,11
50 x 20 1.037,50 60,00 0,463 -0,01
100 x 5 1.879,00 25,00 0,106 -0,53
100 x 10 1.879,00 50,00 0,213 -0,56
100 x 20 1.879,00 100,00 0,426 -0,46
200 x 10 8.612,40 150,00 0,139 -1,13
200 x 20 8.612,40 300,00 0,279 -0,82
Média 2.634,25 66,84 0,18 -0,34

A análise das Tabelas 5.8 a 5.11 produz os seguintes resultados.

a) Na Tabela 5.8 oito problemas das classes com 20 tarefas o rAG obteve a mesma

solução nas cinco execuções (tai005, tai017, tai022, tai024, tai027, tai028, tai029 e

tai030), sendo que estas são as soluções ótimas dos problemas. Também no

problema tai053 da classe 50x20 o rAG obteve a mesma solução nas cinco

execuções, sendo que a solução é melhor que a solução de FV;

b) A maior diferença entre a melhor solução encontrada pelo rAG e a pior solução foi

de 2,66 % no problema tai006;

c) A menor média entre a diferença da melhor e pior solução encontrada pelo rAG foi

de 0,09 % para a classe 20x20;

d) A maior média entre a diferença da melhor e pior solução encontrada pelo rAG foi

de 0,99 % para a classe 100x10;

e) Considerando apenas os 80 problemas que não tem solução ótima definida que são

os problemas com 50, 100 e 200 tarefas o rAG obteve 69 soluções melhores que o

FV, 1 solução igual e 10 soluções inferiores ao FV. Nove problemas que o FV foi

melhor são das classes com 50 tarefas e um da classe com 100 tarefas. Todos os

problemas das classes com 200 tarefas o rAG foi melhor que o FV. Isto mostra uma

tendência do rAG ser melhor quando o número de tarefas aumenta;

f) A melhor solução mais rápida obtida pelo rAG foi no problema tai008 com o tempo

de 0,02s em 29 gerações;

 83

g) A maior diferença entre os desvios percentuais do rAG e do FV favorável ao rAG

foi de -1,68 % para o problema tai098;

h) A maior diferença entre os desvios percentuais do rAG e do FV favorável ao FV foi

de 0,22 % para o problema tai058;

A análise dos resultados dos indicadores mostra a influência das cinco execuções para cada

problema nos resultados do rAG. As cinco execuções são justificadas pela natureza

aleatória do AG. Mesmo se o tempo de execução fosse contado como o tempo das cinco

execuções o rAG ainda estaria usando tempo de execução equivalente ao FV já que

atualmente cada execução usa em média 20% do tempo de FV e passaria a 100%. Mesmo

considerando este detalhe o rAG ainda é um método melhor que o FV porque consegue

obter soluções melhores.

 84

Tabela 5.8 – Resultados da comparação do rAG com o FV para a classe n = 20.

Instâncias FV rAG* rAGP
D (rAGP e
rAG*) % GT G* t* (s)

D (rAG* e
FV) %

20x5
tai001 15674 15674 15754 0,51 1159 250 0,16 0,00
tai002 17250 17250 17393 0,82 1266 197 0,12 0,00
tai003 15821 15821 15886 0,41 1312 473 0,27 0,00
tai004 17970 17970 18026 0,31 1275 212 0,12 0,00
tai005 15317 15317 15317 0,00 1265 117 0,07 0,00
tai006 15501 15501 15924 2,66 1241 103 0,06 0,00
tai007 15693 15693 15789 0,61 1293 424 0,25 0,00
tai008 15955 15955 15968 0,08 1273 29 0,02 0,00
tai009 16385 16385 16489 0,63 1252 915 0,55 0,00
tai010 15329 15329 15486 1,01 1292 1192 0,69 0,00
Média 0,70 0,23 0,00

20x10
tai011 25205 25206 25292 0,34 2412 2252 1,40 0,00
tai012 26342 26342 26388 0,17 2460 1010 0,62 0,00
tai013 22910 22910 23043 0,58 2442 82 0,05 0,00
tai014 22243 22243 22314 0,32 2576 183 0,11 0,00
tai015 23150 23150 23269 0,51 2427 778 0,48 0,00
tai016 22011 22011 22185 0,78 2466 958 0,58 0,00
tai017 21939 21939 21939 0,00 2435 198 0,12 0,00
tai018 24158 24158 24205 0,19 2502 303 0,18 0,00
tai019 23501 23501 23651 0,63 2496 37 0,02 0,00
tai020 24597 24597 24715 0,48 2380 69 0,04 0,00
Média 0,40 0,36 0,00

20x20
tai021 38597 38597 38855 0,66 4970 1673 1,01 0,00
tai022 37571 37571 37571 0,00 4931 101 0,06 0,00
tai023 38312 38312 38337 0,07 4973 444 0,27 0,00
tai024 38802 38802 38802 0,00 5161 571 0,33 0,00
tai025 39012 39012 39038 0,07 5033 160 0,10 0,00
tai026 38562 38562 38612 0,13 4845 943 0,58 0,00
tai027 39663 39663 39663 0,00 5034 1919 1,14 0,00
tai028 37000 37000 37000 0,00 5034 3634 2,17 0,00
tai029 39228 39228 39228 0,00 4850 543 0,34 0,00
tai030 37931 37931 37931 0,00 4990 3883 2,33 0,00
Média 0,09 0,83 0,00

 85

Tabela 5.9 – Resultados da comparação do rAG com o FV para a classe n = 50.

Instâncias FV rAG* rAGP
D (rAGP e
rAG*) % GT G* t* (s)

D (rAG* e
FV) %

50x5
tai031 76016 76148 76492 0,45 13078 2171 2,49 0,17
tai032 83403 83172 83566 0,47 12552 7851 9,38 -0,28
tai033 78282 78416 79621 1,51 13030 10776 12,41 0,17
tai034 82737 82483 83185 0,84 12876 11330 13,20 -0,31
tai035 83901 83514 84280 0,91 12568 7692 9,18 -0,46
tai036 80924 80763 81523 0,93 13061 7671 8,81 -0,20
tai037 78791 78669 78964 0,37 12979 9030 10,44 -0,15
tai038 79007 79046 79449 0,51 13068 9154 10,51 0,05
tai039 75842 75830 76502 0,88 13190 13101 14,90 -0,02
tai040 83829 83550 84710 1,37 13161 3755 4,28 -0,33
Média 0,82 9,56 -0,14

50x10
tai041 114398 114177 114731 0,48 26516 7777 8,80 -0,19
tai042 112725 112116 113429 1,16 25804 24534 28,52 -0,54
tai043 105433 105345 105854 0,48 26238 19988 22,85 -0,08
tai044 113540 113387 113733 0,30 25973 24568 28,38 -0,13
tai045 115441 115425 115781 0,31 26163 23082 26,47 -0,01
tai046 112645 112489 113343 0,75 25859 8631 10,01 -0,14
tai047 116560 116617 117272 0,56 25994 20307 23,44 0,05
tai048 115056 115097 116042 0,81 26110 16205 18,62 0,04
tai049 110482 110451 111184 0,66 24991 4856 5,83 -0,03
tai050 113462 113427 113792 0,32 26017 13813 15,93 -0,03
Média 0,58 18,88 -0,11

50x20
tai051 172845 172740 174301 0,90 53980 27555 30,63 -0,06
tai052 161092 160980 161517 0,33 53904 15726 17,50 -0,07
tai053 160213 160104 160104 0,00 53284 22133 24,92 -0,07
tai054 161557 161678 162382 0,43 53072 33605 37,99 0,07
tai055 167640 167081 167410 0,20 50458 18719 22,26 -0,33
tai056 161784 162027 162347 0,20 53452 28936 32,48 0,15
tai057 167233 167098 167658 0,33 54438 19991 22,03 -0,08
tai058 168100 168462 168828 0,22 53174 38976 43,98 0,22
tai059 165292 165292 167012 1,03 52896 50384 57,15 0,00
tai060 168386 168560 169643 0,64 54052 32681 36,28 0,10
Média 0,43 32,52 -0,01

 86

Tabela 5.10 – Resultados da comparação do rAG com o FV para a classe n = 100.

Instâncias FV rAG* rAGP
D (rAGP e
rAG*) % GT G* t* (s)

D (rAG* e
FV) %

100x5
tai061 308052 307329 309689 0,76 12290 11653 23,70 -0,23
tai062 302386 299602 301866 0,75 12129 8416 17,35 -0,92
tai063 295239 292693 294230 0,52 12310 10891 22,12 -0,86
tai064 278811 278860 281998 1,11 12327 10887 22,08 0,02
tai065 292757 291803 293955 0,73 12269 5569 11,35 -0,33
tai066 290819 288486 291211 0,94 12010 10986 22,87 -0,80
tai067 300068 299353 303267 1,29 12059 10729 22,24 -0,24
tai068 291859 289262 293328 1,39 12176 11058 22,70 -0,89
tai069 307650 306259 307417 0,38 12137 10201 21,01 -0,45
tai070 301942 300154 304206 1,33 12326 12162 24,67 -0,59
Média 0,92 21,01 -0,53

100x10
tai071 412700 410289 415227 1,19 24472 17599 35,96 -0,58
tai072 394562 392032 395106 0,78 24769 22584 45,59 -0,64
tai073 405878 403399 405472 0,51 24437 20542 42,03 -0,61
tai074 422301 419582 422681 0,73 24125 14239 29,51 -0,64
tai075 400175 399019 400056 0,26 24406 24096 49,36 -0,29
tai076 391359 389123 393616 1,14 24883 19959 40,11 -0,57
tai077 394179 393034 397527 1,13 24431 21610 44,23 -0,29
tai078 402025 398617 403488 1,21 24302 23752 48,87 -0,85
tai079 416833 414093 418748 1,11 24625 20556 41,74 -0,66
tai080 410372 408580 416365 1,87 24111 20787 43,11 -0,44
Média 0,99 42,05 -0,56

100x20
tai081 562150 559459 562639 0,57 50026 45144 90,24 -0,48
tai082 563923 563649 568368 0,83 49717 47577 95,70 -0,05
tai083 562404 560260 563821 0,63 49708 42297 85,09 -0,38
tai084 562918 561826 565257 0,61 48850 46424 95,03 -0,19
tai085 556311 552584 557465 0,88 49571 45582 91,95 -0,67
tai086 562253 560120 561869 0,31 48996 46362 94,62 -0,38
tai087 574102 570282 573831 0,62 48448 26977 55,68 -0,67
tai088 578119 575843 581755 1,02 49565 18913 38,16 -0,39
tai089 564803 562473 564726 0,40 49455 40550 81,99 -0,41
tai090 572798 567060 576671 1,67 48778 34967 71,69 -1,00
Média 0,75 80,02 -0,46

 87

Tabela 5.11 – Resultados da comparação do rAG com o FV para a classe n = 200.

Instâncias FV rAG* rAGP
D (rAGP e
rAG*) % GT G* t* (s)

D (rAG* e
FV) %

200x10
tai091 1521201 1508293 1517798 0,63 38587 34374 133,62 -0,85
tai092 1516009 1498266 1506730 0,56 38437 32743 127,78 -1,17
tai093 1515535 1500991 1510431 0,62 38577 36208 140,79 -0,96
tai094 1489457 1477786 1500640 1,52 38674 37874 146,90 -0,78
tai095 1513281 1490851 1505283 0,96 38662 38649 149,95 -1,48
tai096 1508331 1490569 1506499 1,06 38810 38704 149,59 -1,18
tai097 1541419 1524555 1548666 1,56 38475 38459 149,94 -1,09
tai098 1533397 1507573 1529827 1,45 38569 38042 147,95 -1,68
tai099 1507422 1487669 1504042 1,09 39122 38697 148,37 -1,31
tai100 1520800 1509447 1511636 0,14 38110 35964 141,55 -0,75
Média 0,96 143,64 -1,13

200x20
tai101 2012785 1997368 2010384 0,65 78700 78579 299,54 -0,77
tai102 2057409 2023201 2061397 1,85 77835 70313 271,01 -1,66
tai103 2050169 2024717 2034127 0,46 78075 70630 271,39 -1,24
tai104 2040946 2031515 2044056 0,61 77664 77020 297,51 -0,46
tai105 2027138 2020412 2031261 0,53 78554 64871 247,74 -0,33
tai106 2046542 2041153 2045448 0,21 78313 56412 216,10 -0,26
tai107 2045906 2025808 2043081 0,85 77732 77602 299,50 -0,98
tai108 2044218 2031402 2046303 0,73 77283 76874 298,41 -0,63
tai109 2037040 2010645 2034183 1,16 77866 77846 299,92 -1,30
tai110 2046966 2035128 2047852 0,62 77831 75553 291,22 -0,58
Média 0,77 279,24 -0,82

 88

5.3. Experimento 3 – rAG x GASA e TS-M

Este experimento tem como objetivo analisar o desempenho do rAG no CPFSP, sendo o

makespan o critério de desempenho, com os métodos de Grabowski e Pempera (2005), o

TS-M descrito na Seção 3.3.6, e com o algoritmo híbrido desenvolvido por Shuster e

Framinan (2003), GASA descrito na Seção 3.3.5. Os resultados do TS-M foram obtidos

num computador Pentium 1.000 MHz. Os resultados do GASA foram obtidos num

computador Athlon 1.400 MHz. Daí, os experimentos com o rAG utilizaram metade do

tempo utilizado pelo TS-M para tornar a comparação justa.

Estes dois métodos foram escolhidos para serem comparados com o rAG devido aos seus

testes terem sido realizados com as instâncias de Reeves (1995) e Heller (1960). A Tabela

5.12 mostra os resultados do rAG e a comparação com o GASA, enquanto a Tabela 5.13

mostra a comparação com o TS-M. Nas Tabelas 5.12 e 5.13 a coluna um mostra o nome

das instâncias, a coluna dois mostra o número de tarefas e máquinas das instâncias, a

coluna três mostra os resultados do GASA ou do TS-M, a coluna quatro mostra os tempos

usados pelo GASA ou pelo TS-M, a coluna cinco mostra os resultados do rAG, a coluna

seis mostra o tempo de execução usado pelo rAG, a coluna sete mostra a razão entre o

tempo de execução do rAG e do GASA ou do TS-M multiplicado por dois, devido a

consideração do computador utilizado nos experimentos do rAG ser duas vezes mais

rápido do que os computadores utilizados pelos outros métodos, e a coluna oito mostra a

diferença do desvio entre o rAG e o GASA ou o TS-M.

A análise da Tabela 5.12 produz as seguintes observações:

a) Nos 23 problemas testados o rAG obteve melhor resultado em 21 problemas e em 2

problemas obteve resultado igual ao GASA. Na média o rAG foi 4,99 % superior

ao GASA;

b) O tempo de execução do rAG para os 23 problemas sempre foi inferior ao utilizado

pelo GASA. A média da razão entre os tempos usados pelo rAG e pelo GASA foi

0,014 o que significa que o rAG é mais rápido do que o GASA;

 89

c) A menor razão entre os tempos usados pelo rAG e o GASA foi de 0,003 o que

significa que o rAG foi 333 vezes mais rápido que o GASA e, a maior razão foi

0,033 o que significa que o rAG foi 30 vezes mais rápido que o GASA;

d) O melhor resultado do rAG em comparação com o GASA foi -16,76% no problema

hel1;

e) Quando o rAG foi melhor que o GASA a menor diferença ficou em -0,07%, no

problema rec01; e

f) Os resultados do rAG tendem a serem melhores que o GASA quando o número de

tarefas e máquinas é grande.

Estes resultados mostram claramente que o rAG é ao mesmo tempo mais eficaz e eficiente

que o GASA, é mais eficaz porque obtém os melhores resultados e mais eficiente porque

faz isso em menos tempo.

Tabela 5.12 – Comparação do rAG com o GASA.

Instância n x m GASA* t GASA (s) rAG* t rAG (s) (t rAG/t GASA) x 2 Desvio (%)
rec01 20x5 1527 6,00 1526 0,10 0,033 -0,07
rec03 20x5 1392 6,00 1361 0,10 0,033 -2,23
rec05 20x5 1524 7,00 1514 0,10 0,029 -0,66
rec07 20x10 2046 12,00 2043 0,10 0,017 -0,15
rec09 20x10 2045 11,00 2042 0,10 0,018 -0,15
rec11 20x10 1881 10,00 1881 0,10 0,020 0,00
hel2 20x10 180 10,00 179 0,10 0,020 -0,56
rec13 20x15 2556 17,00 2545 0,15 0,018 -0,43
rec15 20x15 2529 17,00 2529 0,15 0,018 0,00
rec17 20x15 2590 16,00 2588 0,15 0,019 -0,08
rec19 30x10 2985 34,00 2850 0,20 0,012 -4,52
rec21 30x10 2948 35,00 2827 0,20 0,011 -4,10
rec23 30x10 2827 35,00 2703 0,20 0,011 -4,39
rec25 30x15 3732 55,00 3593 0,25 0,009 -3,72
rec27 30x15 3560 51,00 3431 0,25 0,010 -3,62
rec29 30x15 3440 54,00 3303 0,25 0,009 -3,98
rec31 50x10 4757 147,00 4343 0,55 0,007 -8,70
rec33 50x10 4998 145,00 4510 0,55 0,008 -9,76
rec35 50x10 4891 146,00 4420 0,55 0,008 -9,63
rec37 75x20 9508 907,00 8203 1,30 0,003 -13,73
rec39 75x20 9964 890,00 8554 1,30 0,003 -14,15
rec41 75x20 9978 904,00 8647 1,30 0,003 -13,34
hel1 100x10 877 1088,00 730 1,95 0,004 -16,76
Média 200,13 0,43 0,014 -4,99

 90

Analisando os dados da Tabela 5.13 se descreve as seguintes observações:

a) Nos 23 problemas testados o rAG obteve melhor desempenho que o TS-M em 7

problemas, enquanto em 6 o desempenho foi idêntico e em 10 problemas o TS-M

foi melhor. Na média o rAG foi 0,22% inferior ao desempenho do TS-M;

b) O tempo de execução do rAG para os 23 problemas foi comparativamente o mesmo

usado pelo TS-M;

c) O melhor resultado do rAG, em comparação com o TS-M, foi -0,52% no problema

rec19; e

d) O pior resultado do rAG em comparação com o TS-M foi 1,96%, no problema

hel1.

Estes resultados mostram que o rAG é inferior ao TS-M quando as condições de tempo de

execução são equivalentes. Porém a diferença é muito pequena de 0,22% e lembrando que

o TS-M começa de uma solução boa.

Tabela 5.13 – Comparação do rAG com o TS-M.

Instância n x m TS-M* t TS-M (s) rAG* t rAG (s) (t rAG/ t TS-M) x 2 Desvio (%)
rec01 20x5 1527 0,20 1526 0,10 1,00 -0,07
rec03 20x5 1361 0,20 1361 0,10 1,00 0,00
rec05 20x5 1512 0,20 1514 0,10 1,00 0,13
rec07 20x10 2042 0,20 2043 0,10 1,00 0,05
rec09 20x10 2043 0,20 2042 0,10 1,00 -0,05
rec11 20x10 1881 0,20 1881 0,10 1,00 0,00
hel2 20x10 179 0,20 179 0,10 1,00 0,00
rec13 20x15 2545 0,30 2545 0,15 1,00 0,00
rec15 20x15 2529 0,30 2529 0,15 1,00 0,00
rec17 20x15 2587 0,30 2588 0,15 1,00 0,04
rec19 30x10 2865 0,40 2850 0,20 1,00 -0,52
rec21 30x10 2825 0,40 2827 0,20 1,00 0,07
rec23 30x10 2705 0,40 2703 0,20 1,00 -0,07
rec25 30x15 3593 0,50 3593 0,25 1,00 0,00
rec27 30x15 3432 0,50 3431 0,25 1,00 -0,03
rec29 30x15 3291 0,50 3303 0,25 1,00 0,36
rec31 50x10 4347 1,10 4343 0,55 1,00 -0,09
rec33 50x10 4469 1,10 4510 0,55 1,00 0,92
rec35 50x10 4427 1,10 4420 0,55 1,00 -0,16
rec37 75x20 8127 2,60 8203 1,30 1,00 0,94
rec39 75x20 8518 2,60 8554 1,30 1,00 0,42
rec41 75x20 8543 2,60 8647 1,30 1,00 1,22
hel1 100x10 716 3,90 730 1,95 1,00 1,96
Média 0,87 0,43 1,00 0,22

 91

5.4. Experimento 4 – rAG x TS-M

O quarto tipo de experimento tem o objetivo de analisar a capacidade do rAG obter

soluções melhores do que o TS-M. Por isso, foram utilizados tempos de execução maiores

do que no experimento anterior. A Tabela 5.14 mostra os resultados do rAG e os compara

com o TS-M. Na Tabela 5.14 a coluna um mostra o nome das instâncias, a coluna dois

mostra o número de tarefas e máquinas das instâncias, a coluna três mostra os resultados

do TS-M, a coluna quatro mostra os tempos usados pelo TS-M, a coluna cinco mostra os

resultados do rAG, a coluna seis mostra o tempo de execução usado pelo rAG, a coluna

sete mostra a razão entre o tempo de execução do rAG e do TS-M multiplicado por dois,

porque se considera o computador utilizado no experimento do rAG duas vezes mais

rápido do que o computador utilizado pelo TS-M, e a coluna oito mostra o desvio

percentual entre o rAG e o TS-M.

Analisando as informações contidas na Tabela 5.14 tem-se que:

a) Nos 23 problemas testados o rAG obteve melhor resultado em 14 problemas,

enquanto em 9 problemas obteve resultado igual ao TS-M. Na média o rAG foi

0,16% superior ao TS-M;

b) O tempo de execução do rAG para os 23 problemas sempre foi superior ao

utilizado pelo TS-M. A média da razão entre os tempos usados pelo rAG e pelo TS-

M foi 4,46 o que significa que o rAG foi mais lento que o TS-M;

c) A menor razão entre os tempos usados pelo rAG e o TS-M foi 2,00 e a maior razão

foi 8,00;

d) O melhor resultado do rAG em comparação com o TS-M foi -0,71% no problema

rec39; e

e) Quando o rAG foi melhor que o TS-M a menor diferença foi -0,05% no problema

rec09.

Estes resultados mostram que o rAG é mais eficaz que o TS-M, porque obteve as melhores

soluções quando comparadas com as soluções apresentadas pelo TS-M.

 92

Tabela 5.14 – Comparação do rAG com o TS-M utilizando tempo maior de execução.

Instância n x m TS-M* t TS-M (s) rAG* t rAG (s) (t rAG/ t TS-M) x 2 Desvio (%)
rec01 20x5 1527 0,20 1526 0,20 2,00 -0,07
rec03 20x5 1361 0,20 1361 0,20 2,00 0,00
rec05 20x5 1512 0,20 1511 0,20 2,00 -0,07
rec07 20x10 2042 0,20 2042 0,20 2,00 0,00
rec09 20x10 2043 0,20 2042 0,20 2,00 -0,05
rec11 20x10 1881 0,20 1881 0,20 2,00 0,00
hel2 20x10 179 0,20 179 0,20 2,00 0,00
rec13 20x15 2545 0,30 2545 0,50 3,33 0,00
rec15 20x15 2529 0,30 2529 0,50 3,33 0,00
rec17 20x15 2587 0,30 2587 0,50 3,33 0,00
rec19 30x10 2865 0,40 2850 1,50 7,50 -0,52
rec21 30x10 2825 0,40 2821 1,50 7,50 -0,14
rec23 30x10 2705 0,40 2700 1,50 7,50 -0,18
rec25 30x15 3593 0,50 3593 2,00 8,00 0,00
rec27 30x15 3432 0,50 3431 2,00 8,00 -0,03
rec29 30x15 3291 0,50 3291 2,00 8,00 0,00
rec31 50x10 4347 1,10 4320 2,00 3,64 -0,62
rec33 50x10 4469 1,10 4458 2,00 3,64 -0,25
rec35 50x10 4427 1,10 4409 2,00 3,64 -0,41
rec37 75x20 8127 2,60 8069 7,00 5,38 -0,71
rec39 75x20 8518 2,60 8501 7,00 5,38 -0,20
rec41 75x20 8543 2,60 8514 7,00 5,38 -0,34
hel1 100x10 716 3,90 715 10,00 5,13 -0,14
Média 0,87 2,19 4,46 -0,16

 93

5.5. Experimento 5 - rAG x outros AG

Neste tipo de experimento o objetivo é analisar o desempenho do rAG em relação a outros

AGs quando aplicado no PFSP com o makespan sendo o critério de desempenho. Os

resultados obtidos para a comparação foram retirados de Ruiz et al. (2006). Os

experimentos com os outros AG foram realizados num computador Pentium IV (2,8 GHz e

512 MB de RAM). Os tempos de execução utilizados nos experimentos possuem três

níveis representados pelos valores de p, são fornecidos em milissegundos e calculados por

n*(m/2)*p, onde p = 30, 60 e 90. Considerou-se a velocidade do computador utilizado por

Ruiz et al. (2006) como sendo a mesma do usado pelo rAG. Os problemas de teste

utilizados foram às instâncias de Taillard (1993). Os AGs usados na comparação foram o

GAChen de Chen et al. (1995), o GAMIT de Murata et al. (1996), o GAReev de Reeves

(1995) e o GA_RMA de Ruiz et al. (2006), considerado o melhor AG sem hibridização

encontrado na literatura. Estes AGs estão descritos na Seção 2.5 sendo que o quinto AG é o

GA_AA de Aldowaisan e Allahverdi (2003), descrito na Seção 3.3.3 que foi desenvolvido

para o CPFSP, mas que Ruiz et al. (2006) adaptaram para o PFSP.

A Tabela 5.15 mostra os tempos de execução para as 12 classes de problemas e os três

valores de p utilizado. As Tabelas 5.16 a 5.18 mostram o resumo dos resultados do rAG e a

comparação com os outros AGs. Nestas tabelas, a coluna um mostra a classe da instância, a

coluna dois mostra o desvio do rAG em relação as melhores soluções encontradas nos

problemas de Taillard (1993), as colunas seguintes mostram o desvio das soluções dos

outros AGs e as diferenças dos seus desvios em relação ao desvio do rAG.

 94

Tabela 5.15 – Tempos de execução utilizados nos testes com os outros AGs.

p = 30 p = 60 p = 90 Instâncias
t (s) t (s) t (s)

20 x 5 1,50 3,00 4,50
20 x 10 3,00 6,00 9,00
20 x 20 6,00 12,00 18,00
50 x 5 3,75 7,50 11,25
50 x 10 7,50 15,00 22,50
50 x 20 15,00 30,00 45,00
100 x 5 7,50 15,00 22,50
100 x 10 15,00 30,00 45,00
100 x 20 30,00 60,00 90,00
200 x 10 30,00 60,00 90,00
200 x 20 60,00 120,00 180,00
500 x 20 150,00 300,00 450,00

Analisando as Tabelas 5.16 a 5.18 tem-se que:

a) No primeiro nível de tempo de execução (p= 30) o rAG foi superior ao GAChen, ao

GAMIT e ao GA_AA e inferior ao GAReev e ao GA_RMA;

b) Nos segundo (p= 60) e terceiro (p= 90) níveis de tempo de execução o rAG só foi

inferior ao GA_RMA;

c) O rAG em relação ao GAMIT só foi inferior na classe 100x5 em todos os níveis de

tempo de execução;

d) O rAG em relação ao GA_AA só foi inferior na classe 100x5 em todos os níveis de

tempo de execução e na classe 500x20 nos dois primeiros níveis de tempo de

execução;

e) O rAG em relação ao GAReev foi superior nas classes 20x5, 20x10, 20x20 e 50x10

em todos os níveis de tempo de execução e na classe 50x5 no segundo nível de

tempo de execução. Os resultados do rAG em relação ao GAReev são no segundo e

terceiro níveis de tempo de execução tão melhores nas primeiras classes de

problemas que fazem na média o rAG ser superior;

f) O rAG em relação ao GA_RMA foi superior nas classes 20x5, 20x10 e 20x20 em

todos os níveis de tempo de execução e na classe 50x10 no segundo e terceiro

níveis de tempo de execução. Diferente do GAReev estes resultados não são

suficientes para fazer o rAG ser superior ao GA_RMA em qualquer um dos níveis

de tempo de execução; e

 95

g) Em comparação com os outros AGs o rAG tende a ser melhor quando o número de

tarefas e máquinas é pequeno.

Estes resultados mostram que o rAG mesmo sem inicialização eficiente e hibridização

consegue ser competitivo em relação aos outros AGs, sendo as vezes até melhor. Como já

mencionado o GA_RMA é o melhor AG encontrado na literatura e mesmo assim o rAG

em algumas instâncias conseguiu superá-lo. A média da diferença entre o rAG e o

GA_RMA no terceiro nível de tempo de execução foi de 0,29%. Está diferença mostra que

o rAG consegue ser competitivo em relação ao melhor AG encontrado na literatura.

 96

Tabela 5.16 – Resultados dos experimentos com p = 30.

Instância
(n x m) rAG GAChen

Difer
rAG (%)

GAMIT

Difer
rAG (%) GA_AA

Difer
rAG (%)

GAReev

Difer
rAG (%)

GA_RMA

Difer
rAG (%)

20 x 5 0,06 3,65 -3,59 0,84 -0,78 0,94 -0,88 0,54 -0,48 0,24 -0,18
20 x 10 0,33 5,00 -4,67 1,96 -1,63 1,70 -1,37 1,78 -1,45 0,62 -0,29
20 x 20 0,18 3,90 -3,72 1,66 -1,48 1,31 -1,13 1,39 -1,21 0,37 -0,19
50 x 5 0,22 1,89 -1,67 0,30 -0,08 0,37 -0,15 0,17 0,05 0,06 0,16
50 x 10 1,90 6,37 -4,47 3,50 -1,60 3,60 -1,70 2,23 -0,33 1,79 0,11
50 x 20 4,31 7,88 -3,57 5,07 -0,76 4,66 -0,35 3,74 0,57 2,67 1,64
100 x 5 0,35 1,34 -0,99 0,25 0,10 0,26 0,09 0,14 0,21 0,07 0,28
100 x 10 1,28 3,90 -2,62 1,54 -0,26 1,65 -0,37 0,82 0,46 0,65 0,63
100 x 20 4,30 8,06 -3,76 4,99 -0,69 4,92 -0,62 3,36 0,94 2,78 1,52
200 x 10 0,98 2,80 -1,82 1,14 -0,16 1,08 -0,10 0,59 0,39 0,43 0,55
200 x 20 3,87 6,94 -3,07 4,19 -0,32 3,95 -0,08 2,71 1,16 2,35 1,52
500 x 20 2,60 4,79 -2,19 2,68 -0,08 2,06 0,54 1,47 1,13 1,43 1,17
Média 1,70 4,71 -3,01 2,34 -0,65 2,21 -0,51 1,58 0,12 1,12 0,58

Tabela 5.17 – Resultados dos experimentos com p = 60.

Instância
(n x m) rAG GAChen

Difer
rAG (%)

GAMIT

Difer
rAG (%) GA_AA

Difer
rAG (%)

GAReev

Difer
rAG (%)

GA_RMA

Difer
rAG (%)

20 x 5 0,04 4,02 -3,98 0,74 -0,70 0,80 -0,76 0,51 -0,47 0,23 -0,19
20 x 10 0,08 5,14 -5,06 1,72 -1,64 1,41 -1,33 1,67 -1,59 0,60 -0,52
20 x 20 0,08 3,93 -3,85 1,66 -1,58 1,37 -1,29 1,41 -1,33 0,34 -0,26
50 x 5 0,16 2,02 -1,86 0,26 -0,10 0,37 -0,21 0,20 -0,04 0,06 0,10
50 x 10 1,32 6,83 -5,51 3,20 -1,88 3,35 -2,03 2,26 -0,94 1,86 -0,54
50 x 20 4,11 7,98 -3,87 4,88 -0,77 4,52 -0,41 3,71 0,40 2,62 1,49
100 x 5 0,36 1,44 -1,08 0,25 0,11 0,24 0,12 0,12 0,24 0,08 0,28
100 x 10 0,89 3,78 -2,89 1,46 -0,57 1,61 -0,72 0,74 0,15 0,62 0,27
100 x 20 3,89 8,18 -4,29 4,77 -0,88 4,73 -0,84 3,25 0,64 2,68 1,21
200 x 10 0,88 2,75 -1,87 1,04 -0,16 1,10 -0,22 0,50 0,38 0,41 0,47
200 x 20 3,39 7,24 -3,85 4,14 -0,75 4,02 -0,63 2,65 0,74 2,22 1,17
500 x 20 2,19 4,79 -2,60 2,48 -0,29 1,98 0,21 1,38 0,81 1,40 0,79
Média 1,45 4,84 -3,39 2,22 -0,77 2,13 -0,68 1,53 -0,08 1,09 0,36

96

 97

Tabela 5.18 – Resultados dos experimentos com p = 90.

Instância
(n x m) rAG GAChen

Difer
rAG (%)

GAMIT

Difer
rAG (%) GA_AA

Difer
rAG (%)

GAReev

Difer
rAG (%)

GA_RMA

Difer
rAG (%)

20 x 5 0,10 3,51 -3,41 0,53 -0,43 0,84 -0,74 0,62 -0,52 0,25 -0,15
20 x 10 0,12 4,99 -4,87 1,61 -1,49 1,42 -1,30 1,71 -1,59 0,64 -0,52
20 x 20 0,04 4,24 -4,20 1,36 -1,32 1,23 -1,19 1,31 -1,27 0,40 -0,36
50 x 5 0,17 2,34 -2,17 0,23 -0,06 0,34 -0,17 0,16 0,01 0,06 0,11
50 x10 1,21 6,92 -5,71 3,27 -2,06 3,30 -2,09 2,00 -0,79 1,46 -0,25
50 x 20 3,67 7,77 -4,10 4,75 -1,08 4,69 -1,02 3,58 0,09 2,47 1,20
100 x 5 0,30 1,36 -1,06 0,22 0,08 0,22 0,08 0,11 0,19 0,06 0,24
100 x 10 0,84 3,87 -3,03 1,34 -0,50 1,55 -0,71 0,67 0,17 0,52 0,32
100 x 20 3,58 8,11 -4,53 4,68 -1,10 4,64 -1,06 3,12 0,46 2,54 1,04
200 x 10 0,72 2,81 -2,09 0,98 -0,26 0,99 -0,27 0,41 0,31 0,41 0,31
200 x 20 3,00 7,37 -4,37 3,95 -0,95 3,86 -0,86 2,54 0,46 2,11 0,89
500 x 20 2,00 4,62 -2,62 2,36 -0,36 2,08 -0,08 1,33 0,67 1,36 0,64
Média 1,31 4,83 -3,51 2,11 -0,79 2,10 -0,78 1,46 -0,15 1,02 0,29

 97

 98

5.6. Evolução das Soluções do rAG

Esta seção tem o objetivo de analisar a evolução das soluções obtidas pelo rAG nos

problemas testados nos experimentos anteriores. Para isso é comparada a melhor solução

obtida na população inicial com a solução final. A Tabela 5.19 mostra a média dos desvios

entre a melhor solução obtida na população inicial e a solução final, do segundo tipo de

experimento que foi realizado para o CPFSP, com o tempo total de fluxo como critério de

desempenho. A Tabela 5.20 mostra a média dos desvios entre a melhor solução obtida na

população inicial e a solução final, do quarto tipo de experimento que foi realizado para o

CPFSP, como makespan sendo o critério de desempenho. A Tabela 5.21 mostra a média

dos desvios entre a melhor solução obtida na população inicial e a solução final, do quinto

tipo de experimento no terceiro nível de tempo de execução que foi realizado para o PFSP,

com makespan como critério de desempenho.

Para mostrar a evolução das soluções foram construídos gráficos que mostram a melhoria

do desvio em relação ao número de gerações. Foram escolhidas quatro instâncias de cada

um dos três problemas avaliados. As Figuras 5.1 a 5.4 são referentes ao CPFSP, com o

tempo total de fluxo como critério de desempenho. As Figuras 5.5 a 5.8 são referentes ao

CPFSP, com o makespan como critério de desempenho. As Figuras 5.9 a 5.12 são

referentes ao PFSP, com o makespan como critério de desempenho.

Desses experimentos foram observados que:

a) O rAG consegue melhorar bastante a qualidade da solução inicial. Deve-se levar

em conta neste resultado que é mais fácil melhorar uma solução ruim que uma

solução boa; e

b) Para os dois problemas CPFSP as melhores médias obtidas a partir da solução

inicial foram 31,31% e 27,98%, respectivamente, maiores que a melhoria média

obtida no PFSP que foi de 12,98%. Isto pode indicar uma característica diferente do

espaço de soluções destes dois problemas.

 99

As Figuras 5.1 a 5.12 mostram a evolução do desempenho do método a partir da solução

inicial, mesmo quando o número de soluções já é bastante grande. Isto demonstra que o

rAG consegue aproveitar todo o tempo de execução em prol da melhoria das soluções, ao

invés de ficar em estado de estagnação.

Tabela 5.19 – Evolução das soluções do CPFSP com o tempo total de fluxo como critério de

desempenho.

Instâncias (n x m) D (rAGini e rAG*) (%)
20 x 5 -20,55
20 x 10 -19,43
20 x 20 -18,00
50 x 5 -31,95
50 x 10 -32,14
50 x 20 -30,68
100 x 5 -37,07
100 x 10 -36,95
100 x 20 -36,51
200 x 10 -40,45
200 x 20 -40,71
Média -31,31

Tabela 5.20 – Evolução das soluções do CPFSP com o makespan como critério de desempenho.

Instâncias n x m D (rAGini e rAG*) (%)
rec01 20x5 -23,47
rec03 20x5 -28,33
rec05 20x5 -16,89
rec07 20x10 -24,03
rec09 20x10 -18,39
rec11 20x10 -23,35
hel2 20x10 -23,18
rec13 20x15 -26,38
rec15 20x15 -22,38
rec17 20x15 -21,39
rec19 30x10 -28,96
rec21 30x10 -27,91
rec23 30x10 -28,55
rec25 30x15 -29,09
rec27 30x15 -27,29
rec29 30x15 -32,89
rec31 50x10 -31,29
rec33 50x10 -32,82
rec35 50x10 -34,76
rec37 75x20 -35,32
rec39 75x20 -36,00
rec41 75x20 -35,08
hel1 100x10 -35,82
Média -27,98

 100

Tabela 5.21 – Evolução das soluções do PFSP com o makespan como critério de desempenho.

Instâncias (n x m) D (rAGini e rAG*) (%)
20 x 5 -12,10
20 x 10 -14,79
20 x 20 -12,69
50 x 5 -8,74
50 x 10 -15,46
50 x 20 -15,81
100 x 5 -6,87
100 x 10 -12,71
100 x 20 -14,65
200 x 10 -9,92
200 x 20 -13,31
500 x 20 -10,34
Média -12,28

 101

Figura 5.1 – Evolução das soluções do rAG para o problema tai021 (20x20). Figura 5.2 – Evolução das soluções do rAG para o problema tai051 (50x20).

Figura 5.3 – Evolução das soluções do rAG para o problema tai081 (100x20). Figura 5.4 – Evolução das soluções do rAG para o problema tai101 (200x20).

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 34 81 151 258 471 776 1407 3855 39321

Geração

D
e
s
v
io

 p
a
ra

 a
 m

e
lh

o
r

s
o
lu

ç
ã
o

0%

2%

4%

6%

8%

10%

12%

14%

16%

0 3 6 9 13 16 20 26 37 10
0

12
1

97
0

16
65

49
70

Geração

D
e
s
v
io

 p
a
ra

 a
 m

e
lh

o
r

s
o

lu
ç
ã
o

0%

5%

10%

15%

20%

25%

30%

35%

40%

0

4
5

9
5

1
5
7

2
2
0

3
2
1

4
1
5

5
6
4

7
5
3

1
0
2
9

1
4
2
2

2
6
4
6

4
9
3
3

7
4
0
9

2
0
8
9
6

3
8
0
5
2

5
8
3
6
1

Geração

D
e
s
v
io

 p
a
ra

 a
 m

e
lh

o
r

s
o

lu
ç
ã
o

0%

4%

8%

12%

16%

20%

24%

28%

32%

0 26 62 104 217 696 1555 16894

Geração

D
e

s
v

io
 p

a
ra

 a
 m

e
lh

o
r

s
o

lu
ç
ã

o

101

 102

Figura 5.5 – Evolução das soluções do rAG para o problema rec17 (20x15). Figura 5.6 – Evolução das soluções do rAG para o problema rec31 (50x10).

Figura 5.7 – Evolução das soluções do rAG para o problema rec37 (75x20). Figura 5.8 – Evolução das soluções do rAG para o problema hel1 (100x10).

0%

5%

10%

15%

20%

25%

0 4 11 18 23 65 116 181 2202

Geração

D
e
s
v
io

 p
a
ra

 a
 m

e
lh

o
r

s
o
lu

ç
ã
o

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0 8 17 27 45 55 73 94 12
8

21
7

31
6

53
8

93
9

13
13

54
54

Geração

D
e
s
v
io

 p
a
ra

 a
 m

e
lh

o
r

s
o

lu
ç
ã
o

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

0 14 29 47 66 93 14
1

19
1

29
4

37
9

70
2

16
37

29
74

90
56

Geração

D
e
s
v
io

 p
a
ra

 a
 m

e
lh

o
r

s
o

lu
ç
ã
o

0%

5%

10%
15%

20%

25%

30%
35%

40%

45%

50%
55%

60%
0 11 23 33 48 63 81 11
8

14
5

19
0

27
4

33
0

46
9

70
2

16
11

22
08

Geração

D
e
s
v
io

 p
a
ra

 a
 m

e
lh

o
r

s
o

lu
ç
ã
o

102

 103

Figura 5.9 – Evolução das soluções do rAG para o problema tai021 (20x20). Figura 5.10 – Evolução das soluções do rAG para o problema tai051 (50x20).

Figura 5.11 – Evolução das soluções do rAG para o problema tai081 (100x20). Figura 5.12 – Evolução das soluções do rAG para o problema tai101 (200x20).

0%

2%

4%

6%

8%

10%

12%

14%

0 5 21 32 49 23
8

24
8

11
43

21
37

22
20

12
90

5

Geração

D
e
s
v
io

 p
a
ra

 a
 m

e
lh

o
r

s
o

lu
ç
ã
o

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

0 10 21 45 90 11
8

17
9

30
2

53
0

77
6

19
11

24
69

12
42

1

Geração

D
e
s
v
io

 p
a
ra

 a
 m

e
lh

o
r

s
o

lu
ç
ã
o

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

0 20 55 93 13
9

29
7

48
3

64
8

81
0

10
06

22
71

36
37

78
73

16
24

5

Geração

D
e
s
v
io

 p
a
ra

 a
 m

e
lh

o
r

s
o

lu
ç
ã
o

0%

2%

4%

6%

8%

10%

12%

14%

16%
0 28 68 94 13
4

24
6

40
6

66
4

10
26

16
36

28
85

82
49

17
85

7

Geração
D

e
s
v
io

 p
a
ra

 a
 m

e
lh

o
r

s
o

lu
ç
ã
o

103

 104

5.7. Interpolação

Uma dificuldade de usar o rAG numa situação real é aquela em que o tempo de execução é

um dado de entrada e a qualidade da solução é um dado de saída. Em termos práticos isso

só é conhecido depois de decorrido o tempo de execução, quando a intenção seria obter a

qualidade da solução com base no dado de entrada, sendo o tempo de execução. Para

ajudar a enfrentar esta dificuldade foi construído um conjunto de funções para calcular o

tempo de execução do rAG para o PFSP, a partir do número de tarefas, do número de

máquinas e da qualidade desejada da solução. A interpolação polinomial foi à técnica

usada para construir este conjunto de funções. A interpolação é usada quando não se

conhece a expressão que define a função, mas só alguns valores da função que em geral

são obtidos por experimentos previamente estabelecidos.

Segundo Cláudio e Marins (1994) o problema de interpolação pode ser definido da

seguinte forma: fornecido um conjunto de dados (xi, yi), i = 1, 2, ...n, correspondentes aos

valores de argumentos e valores de uma função f, tal que y = f (x), deseja-se obter os

valores f (x’), x’ ≠ xi, utilizando os pontos dados. Assim, o objetivo da interpolação é obter

o valor de f (x’) aproximadamente. Para isso é construído, a partir do conjunto de dados,

uma nova função F que interpola a função f, tal que:

 ∀ xi, x0 ≤ xi ≤ xn; F(xi) = f (xi) 5.1

 ∀ x ∈ [x0, xn]; F(xi) ≅ f (xi) 5.2

Para construir o conjunto de funções F(xi) foi escolhida a interpolação pelos polinômios de

Lagrange. Dados n+1 pontos o polinômio de interpolação de Lagrange é dado pela

Equação 5.3.

 (x) La P
n

0i

i in ∑
=

= , 5.3

 onde:
 x- x

 x-x
 (x) L

n

i k 0, i ik

i
k ∏

≠=

= 5.4

 105

A priori foi escolhido construir polinômios do segundo grau, onde são necessários três

valores de x e f (x) para construir cada um dos polinômios. Estes valores são retirados dos

resultados obtidos pelo rAG segundo os dados das Tabelas 5.16 a 5.18 onde são

apresentados três valores obtidos para cada uma das 12 classes das instâncias de Taillard

(1993). Na Tabela 5.22 a coluna um mostra o número de conjuntos de valores de x e f (x),

a coluna dois mostra o número de tarefas, a coluna três mostra o número de máquinas, as

colunas quatro a seis mostram os pontos x e f (x), onde x é o desvio e f (x) é o tempo de

execução utilizado.

A Tabela 5.23 mostra os 12 polinômios construídos com os valores da Tabela 5.22. Na

Tabela 5.23 a coluna um mostra o número do polinômio do segundo grau, a coluna dois

mostra o intervalo de tarefas para o polinômio, a coluna três mostra o intervalo de

máquinas para o polinômio, a coluna quatro mostra o intervalo de desvios para o

polinômio e a coluna cinco mostra o polinômio do segundo grau.

A partir dos 12 polinômios do segundo grau mostrados na Tabela 5.23 é possível calcular o

tempo de execução aproximado necessário para o rAG obter qualquer valor de qualidade

de solução mostrado no intervalo. Podem-se calcular tempos de execução para problemas a

partir de 1 tarefa e até 500 tarefas, processados em 1 máquina ou até 20 máquinas.

Para exemplificar a utilização dos polinômios, considere um problema com 18 máquinas e

25 tarefas para seqüenciar, o procedimento seria o seguinte:

i. Qual o intervalo de tarefas: 20 < n ≤ 50;

ii. Qual o intervalo de máquinas: 10 < m ≤ 20;

iii. Verifica-se na Tabela 5.22 qual é o polinômio que corresponde a esses dois

intervalos: polinômio de número 6;

iv. Escolhe-se um desvio dentro do intervalo correspondente: por exemplo, 4%;

v. Aplica-se x= 4 no polinômio de número 6: -63,920x(4)2 + 463,210x(4) – 794,043 =

36,077; e

vi. O Resultado é interpretado da seguinte forma: para um desvio de 4% são

necessários 36,077 segundos de tempo de execução do rAG.

 106

Tabela 5.22 – Valores usados para construir os polinômios do segundo grau.

Nº n m P1 (x, f(x)) P2 (x, f(x)) P3 (x, f(x))

1 20 5 (0,06% ; 1,5s) (0,04% ; 3,0s) (0,10% ; 4,5s)

2 20 10 (0,33% ; 3,0s) (0,08% ; 6,0s) (0,12% ; 9,0s)

3 20 20 (0,18% ; 6,0s) (0,08% ; 12,0s) (0,04% ; 18,0s)

4 50 5 (0,22% ; 3,75s) (0,16% ; 7,5s) (0,17% ; 11,25s)

5 50 10 (1,90% ; 7,5s) (1,32% ; 15,0s) (1,21% ; 22,5s)

6 50 20 (4,31% ; 15,0s) (4,11% ; 30,0s) (3,67% ; 45,0s)

7 100 5 (0,35% ; 7,5s) (0,36% ; 15,0s) (0,30% ; 22,5s)

8 100 10 (1,28% ; 15,0s) (0,89% ; 30,0s) (0,84% ; 45,0s)

9 100 20 (4,30% ; 30,0s) (3,89% ; 60,0s) (3,58% ; 90,0s)

10 200 10 (0,98% ; 30,0s) (0,88% ; 60,0s) (0,72% ; 90,0s)

11 200 20 (3,87% ; 60,0s) (3,39% ; 120,0s) (3,00% ; 180,0s)

12 500 20 (2,60% ; 150,0s) (2,19% ; 300,0s) (2,00% ; 450,0s)

Tabela 5.23 – Polinômios do segundo grau para o problema PFSP.

Nº n m x Polinômio

1 1 ≤ n ≤ 20 1 ≤ m ≤ 5 (0,04%; 0,10%) 2.500x2 - 325x + 12

2 1 ≤ n ≤ 20 5 < m ≤ 10 (0,08%; 0,33%) -414,286x2 + 157,857x – 3,977

3 1 ≤ n ≤ 20 10 < m ≤ 20 (0,04%; 0,18%) 642,857x2 – 227,143x + 26,057

4 20 < n ≤ 50 1 ≤ m ≤ 5 (0,16%; 0,22%) -8.750x2 + 3.262,5x – 290,5

5 20 < n ≤ 50 5 < m ≤ 10 (1,21%; 1,90%) 80,074x2 – 270,768x + 232,894

6 20 < n ≤ 50 10 < m ≤ 20 (3,67%; 4,31%) -63,920x2 + 463,210x - 794,043

7 50 < n ≤ 100 1 ≤ m ≤ 5 (0,30%; 0,36%) 17.500x2 – 11.675x + 1.950

8 50 < n ≤ 100 5 < m ≤ 10 (0,84%; 1,28%) 594,406x2 – 1.328,322x + 741,378

9 50 < n ≤ 100 10 < m ≤ 20 (3,58%; 4,30%) 32,783x2 – 341,660x + 892,988

10 100 < n ≤ 200 1 ≤ m ≤ 10 (0,72%; 0,98%) -432,692x2 + 504,808x – 49,154

11 100 < n ≤ 200 10 < m ≤ 20 (3,00%; 3,87%) 33,156x2 – 365,716x + 978,740

12 200 < n ≤ 500 1 ≤ m ≤ 20 (2,00%; 2,60%) 706,033x2 – 3.747,754x – 5.121,374

 107

5.8. Aplicação Prática

Silva (1996) desenvolveu um algoritmo para resolver o modelo matemático linear inteiro

misto do PFSP. Silva (1996) aplicou este algoritmo num PFSP real de uma indústria têxtil

do estado do Ceará. Os dados levantados por Silva (1996) foram da produção de fios do

mês de novembro de 1991.

De acordo com Silva (1996) as principais informações do problema prático são:

a) Tipos de fios a serem produzidos: AP30/1M, AP40/1T, AP40/1M, AP57/1,

LAP20/1, LAP24/1, LAP30/1, LAP40/1, LPP43/1 e LCY43/1; e

b) Tipos e quantidades de máquinas a serem utilizadas na produção dos fios: Carda de

algodão (18), Carda de poliéster (1), Pré-passador (1), Penteadeira (36), Passador1

(12), Passador2 (12), Maçarroqueira (8), Filatório (58) e Conicaleira (8).

Dessas informações Silva (1996) definiu os dados de entrada do problema:

a) Tarefas: a quantidade em ton/mês de cada tipo de fio que tem que ser produzido;

b) Máquinas: a quantidade de tipos de máquinas disponíveis para a produção de fio e

que no total são 9. A Figura 5.13 apresenta a descrição dos 9 tipos de máquinas; e

c) Matriz Pij: calculada de acordo com a Equação 5.5 com seu valor dado em horas.

Pij = (MNj x 8 x 30) / TMEi, ∀ i = 1, 2, ..., 9 e j = 1, 2, ..., 10 5.5

Onde:

MNj: é a quantidade de máquinas necessária diariamente por turno para cada

tipo de fio j; e

TMEi: é a quantidade de máquinas existentes de cada tipo i.

 108

Figura 5.13 – Descrição das máquinas do problema prático. Fonte: Silva (1996).

A tabela 5.24 apresenta todos os valores de Pij calculados a partir da Equação 5.6.

Tabela 5.24 – Tempos de execução em horas das tarefas do problema real. Fonte: Silva (1996).

Tarefas Máq.

AP30/1

M

AP40/

1T

AP40/

1M

AP57/ 1 LAP20/

1

LAP

24/1

LAP

30/1

LAP40/

1

LPP43/

1

LCY43

/1

M1 127.44 10.35 22.44 25.08 1.70 0.70 1.25 4.19 0.00 4.15

M2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 229.68 0.00

M3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 47.76 0.00

M4 53.12 4.31 9.35 9.95 0.72 0.29 0.54 1.80 0.00 1.69

M5 34.24 2.78 6.02 10.36 0.70 0.28 0.52 1.72 3.96 1.62

M6 36.14 2.94 6.36 10.30 0.68 0.28 0.52 1.72 3.96 1.62

M7 111.15 13.53 29.34 42.24 1.20 0.48 2.10 7.05 9.18 6.63

M8 95.43 15.50 29.90 53.88 0.87 0.41 1.10 7.40 15.39 16.19

M9 112.86 10.86 25.47 45.87 1.32 0.60 1.29 5.07 14.19 17.04

 109

O problema era formado por 10 tarefas e 9 máquinas. O número de soluções possíveis para

este problema (n= 10) é 10! = 3.628.800. Silva (1996) encontrou a solução ótima que é

igual a 654 horas.

Usou-se um dos polinômios do segundo grau, construídos na Seção 5.7 para calcular o

tempo de execução do rAG para resolver o problema apresentado em Silva (1996). Foi

usado o segundo polinômio da Tabela 5.23 dado que n=10 e m=9. O polinômio é definido

no intervalo (0,08%; 0,33%). Foi escolhido para o valor do desvio 0,10%, i.e., x=0,10.

Com isso o tempo de execução calculado foi de 11,39 segundos, mostrado na Equação 5.6.

F (0,10%) = - 414,286 x (0,10)2 + 157,857 x (0,10) – 3,977 = 11,39 5.6

A Tabela 5.25 mostra os resultados obtidos pelo rAG nas cinco execuções realizadas.

Nesta tabela mostra que o rAG obteve a solução ótima do problema que é 653,95h em

todas as cinco execuções, a diferença em relação a solução de Silva (1996) deve-se ao

arredondamento. A seqüência de tarefas obtidas na primeira execução foi 7 8 10 4 3 2 1

6 9 5 e está ilustrada na Figura 5.14. A melhor solução da população inicial obtida pelo

rAG na primeira execução foi 654,05h e já na primeira geração o rAG obteve a solução

ótima de 653,95 horas, ou seja, uma melhoria de 0,015%.

Tabela 5.25 – Resultados obtidos pelo rAG para o problema real.

Nº da execução Nº de gerações Tempo (s) Solução

1 41.541 11,391 653,95

2 41.578 11,390 653,95

3 41.547 11,391 653,95

4 41.430 11,391 653,95

5 41.572 11,390 653,95

 110

Figura 5.14 – Gráfico de Gantt para a solução do problema prático encontrada pelo rAG.

5.9. Conclusão dos Experimentos Computacionais

A comparação dos resultados do rAG com os resultados da heurística Pilot-10-Chins de

Fink e Voβ (2003) para o CPFSP com o tempo total de fluxo como critério de desempenho

demonstrou que o rAG foi 0,56% melhor, caso raro quando as condições de tempo de

execução são equivalentes, porque normalmente as heurísticas são mais rápidas que o AG

porque usam o conhecimento do problema para construir as suas soluções, enquanto o AG

trabalha apenas sobre as estruturas da população, sem nenhuma hipótese definida a priori

sobre o problema. Neste caso não seria vantajoso usar a heurística Pilot-10-Chins para

gerar a população inicial do rAG. Este resultado também serve como uma sugestão prática:

antes de usar uma heurística para gerar a população inicial de um AG, comparar o

desempenho do AG com a população inicial gerada aleatoriamente e com a população

gerada pela heurística escolhida. Usar a população inicial aleatória neste trabalho foi uma

forma de melhorar a eficiência do AG sem depender de uma boa heurística para gerar a

população inicial.

O rAG foi 0,34% melhor que o Tabu Search com solução inicial obtida pela heurística

Pilot-10-Chins que é o melhor método de Fink e Voβ (2003) para o CPFSP como tempo

total de fluxo como critério de desempenho. O rAG usou 20% do tempo de execução que

Fink e Voβ (2003) usaram. Este resultado reforça a qualidade do rAG porque a

comparação foi com um método que além de usar uma solução inicial boa só trabalha com

uma solução de cada vez e, por isso, normalmente deveria ser mais rápido que um AG.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Tarefas

 111

A única comparação possível entre o rAG e outro AG para o CPFSP é com o GASA,

desenvolvido por Shuster e Framinan (2003). O rAG foi 4,99% melhor que o GASA,

utilizando apenas 1,4% do tempo de execução utilizado pelo GASA. Este resultado mostra

a diferença de qualidade entre os projetos dos dois AGs, sem esquecer que o GASA usa

uma etapa de hibridização com a metaheurística Simulated Annealing, isto mostra que

quando o projeto do AG não consegue aproveitar as suas qualidades teóricas uma etapa de

hibridização não torna o desempenho do AG satisfatório.

No primeiro experimento do rAG comparado ao Tabu Search com multimovimento (TS-

M) de Grabowski e Pempera (2005) para o CPFSP com o makespan como critério de

desempenho, o rAG foi 0,22% inferior. Mesmo sendo uma diferença pequena este

resultado mostra que realmente é difícil para um AG superar um método de busca em

vizinhança. Mas este resultado também serve para mostrar que o AG pode ficar muito

próximo a estes métodos, o que o resultado do GASA não mostrava.

Foram realizados mais experimentos com o rAG para o CPFSP com o makespan como

critério de desempenho e dessa vez foram utilizados tempos de execução maiores. Nesta

condição o rAG foi 0,16% melhor que o TS-M, utilizando 4,46 vezes mais tempo de

execução. Este resultado mostra que o rAG consegue obter soluções cada vez melhores

quando mais tempo de execução é utilizado, ao invés da busca tornar-se ineficaz por causa

da convergência prematura.

Como o rAG obteve bons resultados para o CPFSP decidiu-se compará-lo com outros bons

AG para saber qual a sua situação em relação a eles. Existem muitos bons AGs para

problemas permutacionais aplicados ao PFSP, por isso, foi necessário fazer experimentos

com este problema. Isto demonstra a característica generalista do AG, porque com uma

pequena modificação foi possível testar o rAG em outro problema. Os experimentos foram

realizados em três níveis de tempo de execução.

O rAG foi melhor que o GAChen de Chen et al. (1995) em todos os três níveis de tempo

de execução. O melhor desempenho comparativo do rAG em relação a outro AG foi de -

3,51% com o GAChen no terceiro nível de tempo de execução, a suposição para esta

diferença é a utilização pelo GAChen das heurísticas CDS (Campbell et al., 1970) e

 112

Dannembing (Dannembring, 1977) para gerar a população inicial, que encontram soluções

inferiores a heurística NEH de Nawaz et al. (1983) que é usada por outros dois AGs e não

usar hibridização que é utilizada por outros dois AGs. Este resultado mostra a dependência

que um AG pode ter da heurística que gera a população inicial ou de uma etapa de

hibridização e que o rAG consegue ser eficiente sem usar dessas duas estratégias.

O rAG foi melhor que o GAMIT de Murata et al. (1996) nos três níveis de tempo de

execução. A maior diferença entre o rAG e o GAMIT foi de 0,79%. O GAMIT utiliza

população inicial gerada aleatoriamente, mas em compensação utiliza uma etapa de

hibridização com busca local para aumentar a qualidade da solução final, mesmo assim, o

rAG conseguiu obter soluções melhores que o GAMIT. Este resultado mostra que o rAG

conseguiu ser mais eficiente mesmo sem utilizar uma etapa de hibridização.

O rAG foi melhor que o GA_AA de Aldowaisan e Allahverdi (2003) nos três níveis de

tempo de execução. A maior diferença entre o rAG e o GA_AA foi de 0,78%. O GA_AA

utilizou inicialização eficiente e uma etapa de hibridização com busca local. Este resultado

mostra que o rAG conseguiu ser mais eficiente mesmo sem usar inicialização eficiente e

uma etapa de hibridização.

O rAG foi melhor que o GAReev de Reeves (1995) em dois níveis de tempo de execução.

No primeiro nível de tempo de execução o GAReev foi 0,12 melhor que o rAG. No

segundo nível de tempo de execução o rAG foi 0,08% melhor que o GAReev e no terceiro

nível foi 0,15% melhor. Não se pode afirmar com certeza, mas talvez o fato do GAReev

ser o primeiro AG a ser melhor que o rAG na comparação com o PFSP seja porque é o

primeiro AG nessa comparação a usar a heurística NEH de Nawaz et al. (1983) para gerar

a população inicial. Este resultado comprova a teoria que a inicialização eficiente acelera a

obtenção de boas soluções, mas pode comprometer a qualidade da solução final quando a

eficiência do algoritmo é especialmente dependente da solução inicial. O rAG conseguiu

melhorar a qualidade da solução obtida a medida que o tempo de execução aumentava o

que o GAReev não conseguiu fazer na mesma intensidade.

O rAG foi inferior ao GA_RMA de Ruiz et al. (2006) nos três níveis de tempo de

execução. A menor diferença entre o rAG e o GA_RMA foi de 0,29% no terceiro nível de

 113

tempo de execução e a maior diferença foi de 0,58% no primeiro nível de tempo de

execução. O GA_RMA é o segundo AG nesta comparação a usar a heurística NEH de

Nawaz et al. (1983) para gerar a população inicial. A comparação do rAG com o

GA_RMA comprova que esse é melhor que o rAG para o PFSP. Mesmo assim o rAG foi

melhor que o GA_RMA nas classes 20x5, 20x10 e 20x20 em todos os níveis de tempo de

execução e na classe 50x10 nos segundo e terceiro níveis de tempo de execução. Este

resultado significa que para os problemas com até 20 tarefas e 20 máquinas o rAG é

melhor que o GA_RMA para o PFSP.

 114

CAPÍTULO 6 – CONCLUSÕES

O rAG mostrou que um AG que utiliza os seus princípios originais, diversificação e

intensificação, de forma eficiente consegue obter bons resultados. Isto ficou comprovado

com a implementação dos três procedimentos inspirados nesses princípios, que no primeiro

experimento diminuiu o desvio das soluções do rAG de 1,710% para 0,171%, uma

melhoria de 10 vezes. Este resultado aponta a importância de um bom projeto para os

componentes originais do AG, antes de recorrer a inicialização eficiente e hibridização

para tornar o AG competitivo em relação a outros métodos de otimização.

O rAG mostrou também que é possível um AG ser mais eficiente que uma heurística para

o CPFSP sendo o tempo total de fluxo o critério de desempenho, pois foi 0,56% melhor

que a heurística Pilot-10-Chins usando apenas 44% do tempo de execução utilizado por

essa heurística. Mostrando que pelo menos para esse problema a opinião de alguns autores

(Reeves e Rowe, 2002; Dréo et al., 2006) que afirmam que um AG não consegue ser

melhor que uma heurística nas mesmas condições de tempo de execução está equivocada.

O rAG mostrou ser o melhor método para o CPFSP sendo o tempo total de fluxo o critério

de desempenho, porque seus resultados na média foram 0,34% superiores ao melhor

método encontrado na literatura para esse problema que é o Tabu Search de Fink e Voβ

(2003).

O rAG mostrou ser o melhor AG para o CPFSP sendo o makespan o critério de

desempenho, porque foi 4,99% melhor que o AG de Shuster e Framinan (2003). Quando se

trata da comparação com o melhor método para esse problema, o rAG, nas mesmas

condições de tempo de execução foi 0,22% inferior ao TS-M de Grabowski e Pempera

(2005). Mas o rAG se torna o melhor método para esse problema quando usa 4,46 vezes

mais tempo de execução, porque apresenta um desvio médio 0,16% melhor que o TS-M.

O rAG em comparação aos outros cinco AG para o PFSP mostrou-se ser bem competitivo,

sendo superado apenas pelo GA_RMA de Ruiz et al. (2006). A menor diferença média dos

desvios entre o GA_RMA e o rAG foi de 0,29%. Vale salientar que o GA_RMA tem

inicialização eficiente e um processo chamado de restart que realiza uma busca local.

 115

A análise da evolução das soluções do rAG desde a solução inicial até a solução final

mostrou que ele tem a capacidade de melhorar bastante a qualidade das soluções, mesmo

depois que a solução já ter atingido uma boa qualidade. Esta análise também mostrou que

para os problemas avaliados, rapidamente o rAG obtém boas soluções, motivo pelo qual o

rAG ser mais eficiente que a heurística Pilot-10-Chins para o CPFSP sendo o tempo total

de fluxo o critério de desempenho.

Por tudo isso o objetivo de construir um AG eficiente para os dois problemas sem

população inicial gerada por uma boa heurística e nem hibridização foi cumprido. Este

sucesso é atribuído aos três procedimentos propostos que foram capazes de manter a

diversidade na população e ao mesmo tempo intensificar o processo de busca.

Além disso, apresentamos 12 polinômios de grau 2 que ajudam no processo de calcular o

tempo de execução necessário para o rAG obter uma solução de determinada qualidade

para o PFSP, a partir do número de tarefas, do número de máquinas e do desvio da solução

dentro de um intervalo pré-definido. Estes polinômios podem ser usados para apoiar a

decisão de quanto tempo de execução utilizar para o rAG em problemas reais.

O rAG foi testado num problema PFSP real de uma indústria têxtil cearense. O tempo de

execução foi calculado a partir de um dos polinômios de grau 2 construído. O resultado do

rAG no problema real foi muito satisfatório, pois na primeira geração já foi encontrada a

solução ótima. Este resultado mostrou a qualidade do rAG, pois entre mais de 3 milhões de

soluções possíveis rapidamente encontrou aquela que era a ótima.

Outro resultado da aplicação do rAG no problema prático foi mostrar que compensa

desenvolver um algoritmo testando-o em problemas teóricos, pois quando é aplicado em

um problema prático se mostra bastante eficiente.

 116

Propostas para futuros trabalhos:

� Incorporar o atributo reativo à mutação populacional. Pois a mutação realiza apenas

uma perturbação e sempre no mesmo intervalo de gerações sem melhoria. Uma

sugestão é poder realizar mais de uma perturbação de cada vez e em intervalos de

geração diferentes, dependendo da quantidade de tarefas e máquinas do problema;

� Como o rAG obteve bons resultados para o PFSP mesmo sem inicialização

eficiente, uma proposta para melhorar o rAG seria implementar uma inicialização

eficiente que não comprometa a diversidade da população;

� Poderia ser testados outros valores para os parâmetros do rAG;

� Aplicar o rAG em outros problemas reais de maior tamanho para verificar o seu

desempenho; e

� Aplicar o rAG em outros problemas POCP e comparar o seu resultado com os

melhores métodos desses problemas.

 117

REFERÊNCIAS BIBLIOGRÁFICAS

AARTS, E.; LENSTRA, J.K. Local search in combinatorial optimization. Wiley
Interscience, Chichester, England. 1997.

ALDOWAISAN, T; ALLHVERDI, A. (2003). New heuristics for no-wait flowshops to
minimize makespan. Computers and Operations Research, v.30, p.1219-1231.

ALDOWAISAN, T; ALLHVERDI, A. (2004). New heuristics for m-machine no-wait
flowshop to minimize total completion time. The International Journal of Management
Science - Omega, v.32, p.345-352.

BATTITI, R. (1996). Reactive search: toward self-tunning heuristics. In: RAYWARD-
SMITH, V.; OSMAN, I.; REEVES, C.; SMITH, G.. Modern Heuristic Search Methods.
Wiley, Chichester, p.61-83.

BRUCKER, P. Scheduling Algorithms. Springer-Verlag, Berlin. 1998.

CAMPBELL, H.G.; DUDEK, R.A.; SMITH, M.L. (1970). An heuristic algorithm for n job
m machine sequencing problem. Management Science, v.16, p.630-637.

CHEN, C.-L.; VEMPATI, V.S.; ALJABER, N. (1995). An application of genetic
algorithms for flow shop problems. European Journal of Operational Research, v.80,
p.389-396.

CHEN, C.-L.; NEPPALLI, R.V; ALJABER, N. (1996). Genetic algorithms applied to the
continuous flow shop problem. Computers and Industrial Engineering, v.30, p.919-929.

CHAKRAVARTHY, K.; RAJENDRAN, C. (1999). A heuristic for scheduling in a
flowshop with the bicriteria of makespan and maximum tardiness minimization.
Production Planning and Control, v.10, p.707-714.

CLÁUDIO, D.M.; MARINS, J.M. Cálculo numérico computacional : teoria e prática.
Atlas, São Paulo, 464 pp., 1994.

CLEVELAND, G.A.; SMITH, F. (1989). Using genetic algorithms to schedule flow shop
release. Proc. 3rd Int. Conf. on Genetic Algorithms Aplications, 160-169.

CONWAY, R.W.; MAXWELL, W.L.; MILLER, L.W. Theory of scheduling. Reading,
MA: Addison-Wesley; 1967.

DANNENBRING, D.G. (1977). An evaluation of flow shop sequencing heuristics.
Management Science, v.23, p.1174-1182.

DAVIS, L. Handbook of genetic algorithms. Van Nostrand Reinhold, New York, 1991.

DEJONG, K.A. (1980). Adaptive systems design: a genetic approach. IEEE Trans. Syst.,
Man, Cyber. SMC-16, p.566-574.

 118

DRÉO, J.; PÉTROWSKI, A.; SIARRY, P.; TAILLARD, E. Metaheuristics for Hard
Optimization: Methods and Case Studies. Springer, New York, 369 pp., 2006.

DUDEK, R.A.; TEUTON Jr., O.F. (1964). Development of m-stage decision rule for
scheduling n jobs through m machines. Operations Research, v.12, p.471-497.

DUIN, C.W.; VOβ, S. (1999). The pilot method: a strategy for heuristic repetition with
application to the Steiner problem in graphs. Networks, v.34, p.181-191.

EVOWEB. Success breeds success. Disponível em :
<http://evonet.lri.fr/evoweb/news_events/news_features/article.php?id=59>. Acesso em 4
de junho de 2007.

FINK, A.; VOβ, S. (2002). HotFrame: A Heuristic Optimization Framework. In: Voβ,
S., Woodruff, D. Optimization Software Class Libraries. Kluwer, Boston, p.81-154.

FINK, A.; VOβ, S. (2003). Solving the continuous flow-shop scheduling problem by
metaheuristics. European Journal of Operational Research, v.151, p.400-414.

GANGADHARAN, R.; RAJENDRAN, C. (1993). Heuristic algorithms for scheduling in
the no-wait flowshop. International Journal of Production Economics, v.32, p.285-290.

GAREY, M.R.; JOHNSON, D.S. Computers and Intractability: a Guide to the Theory
of NP-completeness. W.H. Freeman and Company, San Francisco, CA, 338 pp., 1979.

GLOVER, F.; LAGUNA, M. Tabu Search. Kluwer Academic Publishers, Dordrecht, 382
pp., 1997.

GOLDBERG, D.E. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison Wesley, Reading, MA, 372 pp., 1989.

GRABOWSKI, J.; PEMPERA, J. (2000). Sequencing of jobs in some production system.
European Journal of Operational Research, v.125, p.535-550.

GRABOWSKI, J.; PEMPERA, J. (2005). Some local search algorithms for no-wait flow-
shop problem with makespan criterion. Computers and Operations Research, v.32,
p.2197-2212.

GRABOWSKI, J.; WODECKI, M. (2004). A very fast tabu search algorithm for the flow
shop problem with makespan criterion. Computers and Operations Research, v.11,
p.1891-1909.

GRAHAM, R.L.; LAWLER, E.L.; LENSTRA, J.K.; KAN, A.H.G.R. (1979). Optimization
and approximation in deterministic sequencing and scheduling: a survey. Annals of
Discrete Mathematics, 5:287–326.

GREFENSTETTE, J.J. (1986). Optimized control of parameters for genetic algorithms.
IEEE Trans. Syst., Man, Cyber. SMC-16, p.122-128.

 119

GUPTA, J.N.D. (1979). A review of flowshop scheduling research. In: RITZMAN, L.P.;
KRAJEWSKI, L.J.; BERRY, W.L.; GOODMAN, S.T.; HARDY, S.T.; VITT, L.D. (Eds.)
Disaggregation Problems in Manufacturing and Service Organizations. Martinus Nijhoff,
The Hague, pp. 363–388.

GUPTA, J.N.D.; STAFFORD Jr, E.F. (2006). Flowshop scheduling research after five
decades. European Journal of Operational Research, v.169, p.699–711.

HALL, N.G.; SRISKANDARAJAH, C. (1994). A survey of machine scheduling problems
with blocking and no-wait in process. Operations Research, v.44, p.510-525.

HAUPT, R.L; HAUPT, S.E. Pratical genetic algorithms. John Wiley & Sons Inc.,
Hoboken, New Jersey, USA, 2ª ed., 253 pp., 2004.

HELLER, J. (1960). Some experiments for an M x J flow shop and its decision-theoretical
aspects. Operations Research, v.8, p.178-184.

HOLLAND, J.H. Adaptation in natural artificial systems. University of Michigan Press,
Michigan, 211 pp., 1975.

JOHNSON, D.S.; ARAGON, C.R.; McGREOCH, L.A.; SCHEVON, C. (1989).
Optimization by simulated annealing: an experimental evaluation; part 1, graph
partitioning. Operations Research, v.37, p.865-892.

JOHNSON, S.M. (1954). Optimal two- and three-stage production schedules with setup
times included. Naval Research logistics Quarterly 1, p.61–68.

KIRKPATRICK, S.; GELATT Jr., C; VECCHI, M. (1983). Optimization by simulated
annealing. Science, v.220, p.671-680.

LAWLER, E.L.; LENSTRAS, J.K.; RINNOOY KAN, A.H.G.; SHMOYS, D.B., 1993.
Sequencing and scheduling: Algorithms and complexity. In: Graves, S.C. (Ed.),
Handbooks in Operations Research and Management Science, Vol. 4. Elsevier Science
Publishers, Amsterdam, pp. 445–552.

LENSTRA, J.K.; RINNOOY KAN, A.H.G.; BRUCKER, P. (1977). Complexity of
machine scheduling problems. Annals of Discrete Mathematics 1, p.343-362.

LOBO, F.G.; GOLDBERG, D.E. (2004). The parameter-less genetic algorithm in practice.
Information Sciences, v.167, p.217-232.

LOMNICKI, Z.A. (1965). A branch and bound algorithm for the exact solution of the three
machine scheduling problem. Operational Research Quarterly, v.16, p.89-100.

MANNE, A. (1960). On the job-shop scheduling problem. Operations Research, v.8,
p.219–223.

MITCHELL, M. An introduction to genetic algorithms. MIT Press, Cambridge,
Massachusetts, USA, 158 pp., 1998.

 120

MURATA, T.; ISHIBUCHI, H.; TANAKA, H. (1996). Genetic algorithms for flowshop
scheduling problems. Computers & Industrial Engineering, v.30, p.1061-1071.

MUTH, J.; THOMPSON, G.L. Industrial Scheduling. Prentice-Hall, Englewood Cliffs,
New Jersey, 1963.

NAWAZ, M.; ENSCORE, E.; HAM, I. (1983). A heuristic algorithm for the m-machine,
n-job flowshop sequencing problem. OMEGA. The International Journal of
Management Sciences, v.11, p.91-95.

PANWALKAR, S.S.; WOOLLAM, C.R. (1980). Ordered flow shop problem with no in-
process waiting: further results. Journal of the Operational Research Society, v.31,
p.1039-1043.

PAPADIMITRIOU, C.H.; KANELLAKIS, P.C. (1980). Flowshop scheduling with limited
temporary storage. Journal of the Association for Computing Machinery, v.27, p.533-
549.

PICARD, J.-C; QUEYRANNE, M. (1978). The time-dependent traveling salesman
problem and its application to the tardiness problem in one-machine scheduling.
Operations Research, v.26, p.86-110.

RAJENDRAN, C. (1994). A no-wait flowshop scheduling heuristic to minimize makespan.
Journal of the Operational Research Society, v.45, p.472-478.

RAJENDRAN, C.; CHAUDHURI, D. (1990). Heuristic algorithms for continuous flow-
shop problem. Naval Research Logistics, v.37, p.695-705.

RAJENDRAN, C.; ZIEGLER, H. (1997). An efficient heuristic for scheduling in a
flowshop to minimize total weighted flowtime of jobs. European Journal of Operational
Research, v.103, p.129-138.

REEVES, C.R. (1995). A genetic algorithm for flow shop sequencing. Computers and
Operations Research, v.22, p.5-13.

REEVES, C.R.; ROWE, J.E. Genetic Algorithms: Principles and Perspectives : a
Guide to GA Theory. Kluwer Academic Publishers, New York, 332 pp., 2002.

RÖCK, H. (1984). The three-machine no-wait flowshop problem is NP-complete. Journal
of the Association for Computing Machinery, v.31, p.336-345.

ROTHLAUF, F. Representations for genetic and evolutionary algorithms. Spring-
Verlag, Berlim, 325 pp., 2006.

RUIZ, R.; MAROTO, C.; ALCARAZ, J. (2006). Two newrobust genetic algorithms for
the flowshop scheduling problem. The International Journal the Management Science
(Omega), v.34, p.461-476.

 121

SCHUSTER, C.J.; FRAMINAN, J.M. (2003). Approximative procedures for no-wait job
shop scheduling. Operations Research Letters, v.31, p.308-318.

SILVA, J.L.C. O problema de sequenciamento aplicado na indústria téxtil. Ceará,
1996. Dissertação – Programa de Mestrado em Matemática, Universidade Federal do
Ceará, Fortaleza-Ceará, 1996.

SILVA, J.L.C.; SOMA, N.Y. Uma heurística para problemas de otimização combinatória
permutacional. In: XXXIII Simpósio Brasileiro de Pesquisa Operacional, 2001, Camposdo
Jordão-SP. XXXIII SBPO, 2001. p. 1298-1306.

SILVA, J.L.C.; SOMA, N.Y. Um método heurístico aplicado no problema de programação
flow shop permutacional. In: XXXVIII Simpósio Brasileiro de Pesquisa Operacional,
2006, Goiânia. Anais do XXXVIII SBPO, 2006.

SILVA, J.L.C.; SOMA, N.Y. Um algoritmo genético híbrido construtivo polinomial
aplicado ao flowshop scheduling problem. In: XIII Conferencia Latino-Ibero-Americana
de Investigación de Operaciones, 2006, Montevideo. Anais do XIII CLAIO.

SISSON, R.L. (1959). Methods of sequencing in job shops - a review. Operations
Research, v.7, p.10–29.

SURRY, P.D.; RADCLIFFE, N.J. (1996) Inoculation to initialise evolutionary search.
In T.C.Fogarty (Ed.) (1996) Evolutionary Computing: AISB Workshop, Brighton, UK,
April 1996; Selected Papers, Springer- Verlag, Berlin, 269-285.

TAILLARD, E. (1993). Benchmarks for basic scheduling problems. European Journal of
Operational Research, v.64, p.278-285.

T’KINDT, V.; BILLAUT, J.-C. Multi-criteria scheduling. Springer-Verlag, Berlin. 1993.

WAGNER, H.M. (1959). An integer linear-programming model for machine scheduling.
Naval Research Logistics Quarterly, v.6, p.131–140.

WANG, L.; ZENG,D.-Z. (2001). An effective hybrid optimization strategy for job-shop
scheduling problemas. Computers and Operations Research, v.28, p.585-596.

 122

ANEXO I – As melhores seqüências de trabalho obtidas pelo rAG no segundo

experimento com o CPFSP para as instâncias de Taillard (1993).

tai001

3 17 9 15 14 8 16 13 1 2 6 10 7 20 12 11 19 4 5 18

tai002

14 10 6 20 12 2 8 18 4 3 7 9 11 16 19 15 1 13 5 17

tai003

3 19 11 6 2 4 13 16 9 8 1 15 10 14 17 18 7 20 5 12

tai004

9 16 8 14 4 18 13 17 12 19 3 6 11 15 10 2 1 5 7 20

tai005

3 12 20 1 8 5 10 13 9 7 15 19 18 4 17 16 11 2 14 6

tai006

2 20 14 17 13 5 3 8 1 11 6 12 7 16 18 10 15 9 19 4

tai007

10 2 15 16 1 14 18 17 13 7 4 20 19 5 12 9 11 3 8 6

tai008

12 6 2 14 4 3 1 17 16 9 7 13 20 11 10 18 15 5 19 8

tai009

4 8 16 7 12 10 14 5 13 15 2 20 1 19 3 9 6 11 18 17

tai010

7 19 15 13 5 9 11 12 1 2 18 20 17 16 6 10 3 14 8 4

tai011

18 5 12 20 11 15 4 1 2 16 10 7 6 14 9 3 17 19 13 8

tai012

9 13 4 6 17 19 3 20 14 12 18 8 10 16 11 15 1 7 2 5

tai013

4 19 17 3 15 1 18 5 6 7 9 2 12 10 11 13 20 16 14 8

tai014

18 4 17 19 11 5 6 13 20 10 9 1 3 12 16 2 15 7 14 8

tai015

16 17 14 10 3 9 11 18 13 6 1 12 4 15 7 5 19 2 20 8

 123

tai016

18 16 11 12 20 15 10 9 8 3 7 4 2 1 5 14 6 13 19 17

tai017

4 7 10 11 19 6 15 5 3 16 20 8 17 13 18 1 9 12 14 2

tai018

7 8 16 13 20 10 4 17 3 5 19 15 14 2 9 6 11 18 12 1

tai019

14 6 8 11 12 20 1 16 7 10 9 13 3 18 17 4 2 19 5 15

tai020

12 16 6 3 14 19 5 2 9 11 18 20 17 4 13 15 1 10 7 8

tai021

19 3 5 10 16 14 7 9 15 1 6 18 4 17 2 11 12 13 8 20

tai022

8 5 9 13 17 19 11 20 18 1 10 4 7 6 14 2 15 12 16 3

tai023

2 8 20 17 6 3 14 19 7 11 1 12 9 16 15 18 10 5 13 4

tai024

14 4 11 18 2 6 8 5 20 1 7 15 9 19 10 3 17 16 13 12

tai025

18 9 7 15 12 8 6 14 4 13 19 16 17 20 11 5 2 1 10 3

tai026

11 13 1 20 2 16 3 4 14 8 19 18 15 6 5 17 9 7 10 12

tai027

14 4 15 17 9 7 3 20 10 11 6 12 5 8 18 16 1 2 19 13

tai028

2 16 1 15 9 6 13 12 8 19 18 5 11 7 20 4 17 3 10 14

tai029

7 13 19 8 4 15 6 14 12 11 18 17 20 10 16 1 5 9 2 3

tai030

7 9 14 6 2 16 4 20 13 11 8 5 17 19 18 1 3 15 12 10

tai031

10 24 36 37 17 39 49 20 38 46 3 12 31 50 40 42 48 23 32 41 44 7 6 18 16

13 2 26 22 33 35 19 30 1 11 21 25 43 8 4 47 34 5 28 15 29 27 45 14 9

 124

tai032

50 49 38 15 23 47 42 18 3 6 34 36 10 5 2 14 11 8 44 29 7 41 21 33 37 22

45 13 30 12 16 43 20 32 39 26 1 28 19 9 17 4 31 25 27 40 46 48 24 35

tai033

8 22 15 23 12 18 27 37 21 36 49 2 3 28 25 35 39 26 1 29 48 30 31 6 14 34

16 19 10 45 9 17 43 7 11 46 41 24 40 5 42 33 20 4 38 47 32 13 50 44

tai034

42 22 12 6 49 9 46 43 31 30 28 2 27 37 44 50 23 15 18 14 47 21 35 16 24

25 41 45 40 13 3 36 19 39 32 7 4 1 34 38 26 11 10 29 5 20 48 8 17 33

tai035

46 48 5 45 50 32 7 34 13 9 42 44 27 10 3 30 19 4 22 37 6 33 29 28 18 40

14 1 43 24 23 21 8 49 31 16 39 35 12 25 36 11 15 26 17 38 20 41 2 47

tai036

4 21 1 29 22 12 31 5 25 9 47 32 41 46 27 33 24 40 28 19 43 34 20 36 6 50

3 37 26 8 48 42 11 39 44 10 2 14 16 30 15 23 18 35 38 49 7 17 13 45

tai037

27 28 22 16 25 5 34 30 40 15 4 50 19 38 47 43 45 42 41 8 36 13 37 14 24

23 1 49 21 39 6 12 17 26 7 20 18 44 2 10 32 31 3 29 46 48 9 35 11 33

tai038

34 17 4 21 7 23 40 35 47 30 22 13 38 2 36 10 31 46 37 3 15 26 9 20 1 33

27 50 14 25 18 24 29 43 41 49 5 8 19 39 12 32 11 16 42 48 6 28 44 45

tai039

17 29 14 13 10 46 9 24 50 8 12 45 1 3 16 21 44 47 36 31 28 7 34 32 4 26

40 37 38 39 6 27 18 22 41 2 49 5 35 11 20 15 23 30 48 25 33 19 42 43

tai040

50 44 30 19 43 23 31 6 20 36 21 18 33 49 42 7 17 12 45 1 34 48 3 26 37 29

28 35 39 47 9 22 25 32 27 8 11 16 13 41 24 38 46 40 15 10 4 2 5 14

tai041

42 44 33 20 34 6 10 1 43 7 19 17 8 47 18 22 48 39 32 35 26 24 13 30 37 14

31 36 46 21 41 28 49 2 12 4 38 3 25 29 16 11 9 40 15 23 5 45 50 27

tai042

35 47 40 5 29 7 17 49 1 22 46 10 26 3 24 48 42 33 28 23 14 11 50 31 44 18

2 30 45 15 9 38 32 13 6 37 20 19 36 43 41 27 34 21 8 25 12 39 16 4

 125

tai043

24 4 28 31 12 8 15 16 27 3 32 11 46 39 18 22 36 9 10 7 21 23 26 2 1 5 17

40 48 30 14 49 37 19 45 25 35 34 6 41 29 43 33 47 50 38 42 20 13 44

tai044

20 10 19 9 44 29 5 37 18 40 16 34 13 7 33 39 23 11 25 36 35 30 21 8 22 17

45 41 38 12 26 24 50 32 4 31 48 3 27 46 42 28 1 2 49 6 14 15 43 47

tai045

6 50 34 10 42 48 12 30 33 25 31 1 35 9 46 7 20 23 29 45 36 11 3 49 4 13

19 18 44 21 43 39 15 40 26 37 41 24 5 16 14 22 32 27 17 38 47 28 8 2

tai046

3 42 33 20 45 31 23 26 40 39 47 27 34 35 38 28 44 19 37 15 24 5 11 9 16

41 46 22 8 50 4 7 17 25 14 6 43 49 12 21 32 10 30 1 29 18 2 36 48 13

tai047

6 41 27 33 48 17 40 46 13 38 22 44 20 3 28 25 11 35 23 31 36 18 21 26 34

2 1 30 15 45 12 8 7 10 9 43 37 49 32 16 50 39 4 29 42 24 19 5 14 47

tai048

28 31 32 41 21 13 17 34 15 35 1 6 3 44 37 45 33 42 23 5 38 43 40 39 36 11

7 30 14 20 26 29 22 19 8 4 25 48 2 12 24 9 47 49 50 18 46 16 10 27

tai049

33 30 25 50 45 40 44 6 42 31 39 12 10 38 13 28 21 35 19 49 32 20 1 5 47 7

37 26 46 8 22 48 11 27 34 2 36 23 41 14 43 24 9 15 29 18 16 4 3 17

tai050

49 8 38 10 14 21 19 4 41 37 15 27 9 42 45 13 24 23 2 12 28 39 44 29 40 33

46 32 6 1 48 16 26 34 47 7 36 30 5 22 50 20 18 43 17 3 11 31 25 35

tai051

37 27 8 44 43 20 15 39 34 31 41 47 32 30 38 33 17 50 3 26 40 24 29 9 12

36 13 49 28 48 22 21 7 10 35 6 42 1 18 25 4 46 11 45 14 2 5 19 16 23

tai052

32 49 8 39 31 40 33 7 38 20 41 30 16 22 10 36 3 14 23 6 29 21 24 50 5 4

13 35 17 47 42 11 45 1 12 26 18 9 15 37 2 28 48 44 27 25 19 46 34 43

tai053

24 4 28 11 25 7 31 2 1 3 19 39 26 10 41 35 12 18 6 30 14 21 23 49 36 8 15

16 27 46 5 45 9 17 40 33 34 29 47 38 44 13 43 48 20 42 50 32 22 37

 126

tai054

1 19 47 14 8 13 34 38 9 44 48 40 25 37 46 39 11 24 50 27 18 12 45 5 20 43

42 7 30 4 21 15 35 31 17 16 41 32 2 33 6 10 26 22 3 49 28 29 23 36

tai055

23 25 11 7 36 43 49 46 37 28 40 20 15 50 21 3 39 38 10 34 44 24 48 45 32

17 30 47 16 35 13 1 33 19 42 9 29 27 41 22 6 14 12 18 8 2 4 31 5 26

tai056

14 33 5 49 37 11 25 42 4 39 29 12 47 26 6 24 9 15 38 3 13 27 17 35 2 19

31 46 8 1 18 50 45 21 41 36 44 32 48 16 40 23 7 34 22 28 30 20 43 10

tai057

4 35 5 15 42 48 17 9 23 38 13 45 2 30 44 27 36 19 31 11 46 28 1 20 24 6

25 37 22 32 41 14 34 12 10 40 16 26 43 18 21 47 33 8 29 7 3 49 50 39

tai058

33 39 1 7 19 42 28 12 2 29 32 30 8 48 27 26 35 9 3 20 14 40 11 13 31 6 50

23 22 37 45 38 15 36 18 16 5 41 49 21 47 43 25 34 24 46 10 17 44 4

tai059

44 29 35 15 11 31 9 14 50 1 27 37 43 45 3 38 23 47 5 20 12 16 22 41 30 21

28 8 2 24 17 19 34 42 26 33 36 40 25 4 48 6 13 10 32 46 18 39 7 49

tai060

38 11 18 10 1 16 39 43 15 48 49 20 42 12 3 23 2 5 28 30 31 19 46 22 29 21

37 50 27 13 26 25 17 45 4 33 6 35 41 14 8 32 40 7 44 36 34 24 47 9

tai061

10 93 46 5 40 16 66 55 84 19 59 24 65 12 82 72 56 62 7 14 77 26 96 33 34

88 83 71 58 15 92 61 35 20 60 29 30 50 42 80 78 3 36 64 95 23 68 1 85 39

28 21 97 99 11 63 79 47 87 74 8 13 44 2 98 76 69 53 32 49 38 37 6 51 94

31 45 89 4 75 17 27 43 91 73 67 90 41 81 52 54 18 86 22 25 57 48 9 70 100

tai062

69 79 33 46 45 99 10 15 83 88 98 77 65 16 86 92 25 53 93 8 20 6 61 100 39

1 60 90 75 56 26 34 58 52 89 5 80 67 82 19 76 29 31 37 68 78 14 57 81 43

66 24 70 36 97 91 54 48 38 72 17 42 40 12 85 47 96 7 22 55 73 28 50 51 32

27 95 63 84 64 30 41 13 9 59 23 94 62 35 21 18 71 3 87 4 74 11 49 2 44

 127

tai063

55 68 23 42 1 6 43 58 25 77 57 51 11 60 89 17 86 71 90 88 31 94 82 30 32

46 7 64 41 13 28 2 96 12 10 61 34 40 62 21 79 95 26 97 18 100 45 48 16 54

44 24 83 80 99 69 56 49 19 75 53 76 22 5 36 65 59 70 47 52 39 38 14 93 15

50 85 67 91 9 8 35 4 33 37 87 92 98 74 20 78 63 27 3 29 73 81 84 66 72

tai064

96 51 21 16 37 55 56 18 22 64 43 14 80 58 85 52 83 57 38 93 67 20 28 9 88

45 78 81 73 54 70 31 95 65 77 82 32 63 42 35 79 23 89 91 98 10 61 66 49

59 26 7 69 19 3 33 4 60 71 46 84 40 2 94 72 36 27 5 11 13 50 17 44 75 97

76 62 39 6 68 8 99 1 90 92 15 25 100 86 87 47 41 12 29 34 24 74 48 30 53

tai065

1 2 74 68 10 16 50 98 77 12 33 79 41 57 75 91 58 86 70 94 18 24 82 29 76

5 11 64 28 87 72 51 47 20 39 61 4 52 37 83 66 78 7 100 53 17 8 22 92 38

69 62 25 97 56 96 84 54 60 27 44 63 99 67 48 40 80 34 19 93 46 30 81 73

15 88 71 23 3 26 13 85 90 55 21 59 35 6 32 89 9 65 31 42 43 49 36 95 14

45

tai066

4 54 83 21 57 51 47 8 65 36 29 61 80 45 96 99 71 53 37 95 69 1 85 72 27

90 49 3 19 77 94 56 7 2 16 33 76 39 44 86 70 50 100 26 92 20 88 14 30 58

78 34 23 67 32 91 98 6 5 93 75 38 46 9 73 22 81 87 79 42 40 97 18 48 15

31 55 68 59 28 62 25 11 74 89 17 12 84 64 41 10 60 35 63 24 52 66 13 43

82

tai067

28 79 13 20 2 5 6 35 50 27 64 24 81 98 14 12 62 71 89 16 92 66 15 40 67

91 75 93 11 4 76 29 77 22 7 80 19 85 69 1 38 96 10 21 72 61 42 3 53 99

100 45 46 41 68 70 54 30 86 26 90 51 49 44 8 9 82 95 32 57 18 94 43 59 84

58 87 33 31 74 78 83 39 47 36 23 63 60 97 37 52 34 73 48 65 56 17 25 88

55

tai068

42 56 2 17 64 41 90 21 97 40 95 87 98 74 1 52 15 25 53 29 86 82 73 67 30

14 70 80 48 27 75 9 59 22 85 79 43 34 68 76 8 36 6 83 91 49 31 19 65 54

32 13 5 11 55 99 72 45 18 69 84 77 58 3 35 100 47 26 96 7 33 46 62 23 16

89 88 20 92 78 94 28 50 12 44 4 81 61 24 66 71 93 39 10 57 51 60 63 37 38

 128

tai069

70 24 72 47 60 21 40 97 4 73 9 29 28 58 90 48 63 6 43 100 95 75 98 82 10

84 57 2 53 8 17 19 51 81 56 49 44 59 52 34 79 78 80 12 33 42 15 69 36 16

1 32 99 85 68 66 35 23 22 45 65 50 5 71 93 39 11 83 54 20 92 67 31 13 46

87 18 86 61 55 96 74 14 3 27 88 38 94 62 7 37 91 30 76 64 77 89 26 41 25

tai070

2 20 27 46 70 74 62 83 31 68 47 92 75 37 10 90 23 57 1 58 11 28 88 54 7

32 50 12 65 26 29 94 67 76 51 42 15 55 93 5 80 49 69 72 22 16 38 81 35 18

60 100 98 44 9 48 43 45 95 82 33 87 4 79 64 6 99 53 13 66 56 77 34 91 97

61 19 85 25 73 71 21 84 40 39 63 30 52 8 36 14 59 41 78 86 89 96 3 17 24

tai071

58 64 70 21 15 29 26 45 72 12 36 77 40 74 49 2 5 61 28 82 17 14 81 62 78

69 30 59 87 95 91 24 98 53 99 47 19 83 96 34 56 94 71 46 63 13 27 43 93

84 39 60 8 31 90 18 51 7 88 100 16 86 89 11 20 33 9 79 42 80 55 38 35 25

54 73 92 32 66 97 48 50 6 85 3 4 76 41 67 10 57 68 22 1 23 75 65 52 44 37

tai072

24 99 73 64 3 16 75 28 81 76 51 4 21 80 8 46 12 66 10 78 11 91 36 43 15

69 49 54 98 18 83 40 7 38 56 2 72 87 95 39 6 31 61 60 62 9 19 47 63 13 35

77 1 53 26 44 68 79 71 86 23 89 58 74 25 41 52 82 5 20 57 34 37 65 27 50

33 30 84 97 85 14 42 70 55 17 59 96 92 94 88 93 48 45 90 67 32 22 29 100

tai073

45 25 87 23 58 64 4 16 99 57 39 94 12 42 74 96 72 66 97 20 80 29 63 92 56

34 27 93 50 48 40 9 38 83 32 13 44 41 81 6 61 21 55 73 51 65 15 18 28 5

89 24 54 88 76 14 2 37 62 52 1 36 85 98 70 67 86 91 17 35 31 11 79 10 100

33 60 19 8 69 46 82 26 75 77 59 53 22 78 90 3 43 95 7 84 30 68 47 71 49

tai074

24 76 85 95 46 61 2 90 77 62 30 79 63 98 68 23 97 80 39 55 28 19 14 56 32

99 52 69 26 94 64 83 81 12 5 40 7 58 13 72 8 22 33 15 6 35 75 70 20 78 59

31 34 10 50 37 65 74 60 53 21 71 49 82 47 67 42 27 41 29 9 3 84 44 1 43

17 54 18 16 51 100 11 86 93 96 92 48 25 88 73 66 91 57 45 36 89 38 87 4

tai075

83 79 65 95 80 90 66 25 93 50 100 19 33 46 5 9 75 56 45 47 26 78 91 55 76

7 21 40 94 71 59 11 72 92 62 31 52 28 99 20 63 51 88 36 70 1 48 53 86 17

 129

57 32 87 44 18 13 35 43 15 24 14 29 74 38 82 22 2 42 81 8 98 6 49 12 37

68 73 89 16 67 3 64 84 97 58 10 77 85 39 4 96 34 54 27 61 30 23 60 41 69

tai076

78 79 5 76 92 36 19 46 41 98 48 75 44 28 45 38 9 57 6 20 4 95 40 77 18 64

49 70 22 59 65 3 47 90 97 66 30 56 81 71 37 33 34 26 7 32 24 42 43 15 53

52 72 60 99 63 12 67 39 29 58 54 8 74 23 94 50 35 96 25 2 10 21 91 87 11

83 88 86 68 55 69 14 80 93 100 62 1 27 85 84 31 73 89 17 61 51 13 16 82

tai077

76 1 13 56 53 67 59 24 52 14 22 65 39 27 47 74 87 28 5 69 32 54 86 4 83

42 49 6 38 7 12 35 33 64 79 34 46 80 40 23 58 16 26 71 91 97 11 9 21 96

15 55 48 89 3 61 19 17 31 8 68 37 43 44 29 45 25 92 18 99 50 70 20 95 51

98 2 94 75 63 41 85 88 62 66 100 57 93 82 36 60 90 72 84 81 77 10 73 78

30

tai078

48 63 67 17 90 81 80 10 59 55 71 3 33 97 76 50 12 86 40 20 85 47 11 14 66

96 41 70 31 73 56 9 28 45 93 78 21 77 53 1 74 30 72 15 94 65 34 98 19 22

13 83 75 95 51 2 61 68 38 36 89 57 69 92 5 25 6 24 26 27 23 8 44 18 49 62

54 87 52 43 32 99 88 29 46 79 84 64 58 82 42 60 35 16 7 91 39 100 4 37

tai079

91 54 92 64 43 19 67 23 86 29 21 42 18 62 4 10 1 79 100 81 85 74 9 46 75

73 57 36 95 98 2 94 20 68 25 76 3 48 38 34 53 15 16 41 27 80 26 17 96 60

44 65 83 84 66 51 52 24 49 56 45 97 77 31 87 5 58 33 99 61 35 47 30 8 89

39 69 7 71 14 72 88 32 70 11 90 50 37 40 12 22 28 63 82 13 78 55 93 59 6

tai080

84 57 48 97 81 71 99 2 14 9 78 15 68 63 100 16 32 64 19 47 62 34 6 87 52

75 17 8 40 89 88 54 66 76 36 21 30 20 80 42 67 38 29 25 55 10 58 11 41 53

93 90 86 96 98 91 73 77 69 56 22 44 3 24 79 82 94 4 70 31 7 28 18 37 1 35

59 39 12 26 72 5 27 85 13 23 92 50 74 49 45 43 65 95 46 33 60 83 51 61

tai081

1 59 36 94 46 3 93 31 39 61 12 4 5 20 19 75 89 74 80 58 97 13 14 47 38 51

37 92 78 90 2 62 79 27 49 77 41 88 73 50 69 98 44 57 11 82 25 9 54 65 60

32 85 83 81 16 56 6 28 55 66 21 70 52 63 23 45 67 91 29 26 96 15 95 7 87

84 24 30 72 68 86 34 43 71 17 18 99 76 22 33 10 100 48 35 42 64 40 8 53

 130

tai082

50 76 14 29 98 5 6 15 65 24 38 90 48 9 99 23 72 40 26 83 81 51 16 4 44 62

30 46 55 73 28 63 87 92 58 64 96 27 13 97 61 89 34 54 22 84 95 43 75 70

20 80 56 74 57 94 39 12 42 25 66 49 100 69 82 91 35 31 3 36 2 37 32 52 10

47 79 68 19 78 88 67 86 85 17 18 1 60 7 93 71 11 33 8 77 41 21 53 59 45

tai083

83 37 97 82 75 30 55 62 14 65 45 95 2 96 74 21 28 19 94 87 10 4 9 86 63

22 20 39 76 78 31 48 81 85 47 70 88 58 17 16 3 52 89 69 60 93 8 49 71 12

27 79 18 100 15 38 99 92 64 41 40 56 90 11 23 91 53 46 25 36 26 73 1 13

59 32 34 43 80 77 84 67 54 61 24 42 51 44 66 98 7 29 50 33 57 35 72 68 6

5

tai084

36 80 33 57 89 84 52 21 12 58 25 67 51 26 43 91 66 77 30 7 100 79 15 61

62 27 14 34 11 45 41 17 82 48 39 6 40 73 90 3 2 29 37 74 42 78 4 99 72 10

35 94 18 65 49 5 44 98 23 63 60 68 93 81 19 55 47 28 22 46 86 38 95 50 85

20 9 24 96 92 59 64 83 97 1 32 16 76 8 70 71 13 31 87 75 54 56 69 88 53

tai085

51 49 33 91 36 67 13 15 71 30 99 38 93 7 19 61 54 77 79 9 44 27 23 39 75

98 72 10 12 83 5 26 100 17 60 11 3 81 74 73 22 18 68 20 55 66 85 76 87 58

32 2 16 95 4 31 34 48 24 56 45 28 50 94 90 21 84 80 62 86 78 43 52 37 8

97 64 14 96 42 69 65 53 35 57 70 40 82 1 46 88 92 29 41 6 89 63 25 59 47

tai086

31 12 83 32 96 73 33 89 92 1 78 27 80 65 29 94 54 50 67 70 6 61 63 30 88

79 43 60 36 47 51 59 93 42 90 24 44 18 87 2 45 15 4 38 76 21 22 58 84 23

39 7 66 48 5 69 82 37 56 19 62 75 91 55 71 11 34 97 64 14 10 17 16 99 57

98 3 20 40 85 77 26 86 41 25 28 49 52 8 95 74 9 68 46 53 13 72 100 35 81

tai087

95 50 41 33 28 25 75 27 88 85 94 62 93 14 21 9 1 45 16 32 49 52 44 20 79

26 19 64 60 5 80 78 22 35 76 38 92 83 3 100 65 18 56 71 15 86 96 30 2 57

66 37 68 13 53 12 72 24 84 23 29 82 36 40 59 43 51 34 98 39 4 74 87 89 61

7 11 73 6 67 58 97 8 42 55 99 54 77 90 47 91 46 17 70 31 48 63 10 81 69

 131

tai088

70 22 87 90 2 73 3 15 4 96 28 39 6 32 48 79 21 99 46 50 8 43 86 30 60 27

64 95 74 54 35 53 66 61 68 25 1 17 10 45 75 23 41 29 89 33 20 97 26 42 52

88 63 31 69 19 62 12 71 24 59 72 56 84 38 14 78 76 77 82 83 65 94 91 85

11 36 67 58 7 37 81 57 51 93 40 47 55 34 49 9 100 13 92 16 5 18 98 44 80

tai089

66 44 7 2 76 71 58 90 80 84 99 27 92 21 88 15 29 63 6 89 10 68 74 22 75

64 42 24 35 3 36 95 77 51 4 56 1 13 28 17 34 47 60 16 43 62 50 81 37 91

23 53 93 65 59 30 11 8 78 20 73 94 41 46 26 14 83 61 79 85 87 25 96 57

100 69 31 72 48 86 18 33 70 98 45 5 55 54 19 9 40 67 82 38 12 97 52 39 32

49

tai090

11 48 28 73 44 53 67 20 39 57 18 2 70 43 88 7 65 100 31 8 42 89 85 66 46

21 35 15 6 22 47 49 82 79 81 14 36 94 59 41 91 45 55 63 75 30 23 17 64 90

27 24 52 77 62 34 56 84 5 26 4 98 37 25 50 12 33 86 99 69 3 61 80 58 76

95 16 96 54 1 38 83 71 13 19 9 68 32 78 72 51 60 87 40 92 10 97 74 29 93

tai091

73 29 28 94 65 15 188 148 30 33 124 71 190 172 132 104 110 49 34 61 3 99

169 160 176 77 147 125 168 183 161 23 98 52 149 156 1 90 146 182 113 142

18 92 187 19 97 8 106 24 63 81 47 136 197 67 57 103 127 6 173 83 75 109

178 78 39 137 152 163 25 36 195 151 164 170 60 167 191 85 87 69 16 158

180 93 129 76 91 135 200 68 64 43 22 198 2 9 101 186 35 50 159 118 111 46

20 134 196 138 42 45 66 13 128 10 54 114 184 21 162 102 27 41 192 74 105

116 107 4 17 84 55 123 157 89 140 155 150 53 100 14 171 70 174 194 154 12

193 58 130 88 31 199 86 165 37 120 117 80 175 48 189 115 108 112 26 72 79

139 82 95 51 144 122 38 121 181 166 59 11 62 143 177 141 126 145 40 56

179 44 32 7 5 131 153 185 119 96 133

tai092

31 166 42 150 161 70 44 115 101 163 11 29 48 119 14 97 63 188 61 26 13

130 94 96 65 57 9 62 107 181 133 25 112 5 34 74 200 145 186 182 15 98 86

109 45 33 183 8 27 170 104 137 156 149 64 40 21 55 88 143 155 17 7 73 187

54 164 158 92 69 174 140 22 68 24 75 66 198 178 138 185 132 171 162 121

194 125 28 114 2 117 139 192 141 127 91 195 76 99 146 49 190 50 152 179

 132

59 4 41 53 38 103 144 32 77 47 71 30 78 82 111 175 122 134 39 191 58 3 89

147 142 37 126 124 18 46 189 19 148 87 129 157 60 131 167 23 196 10 93

128 16 118 20 84 67 105 136 123 173 1 83 160 110 197 165 135 102 120 6 79

199 56 172 168 81 12 113 106 193 36 51 180 85 80 52 184 108 90 159 153 95

151 72 154 169 116 35 43 176 177 100

tai093

97 52 95 83 92 32 2 39 133 166 157 62 183 72 93 147 42 102 187 57 159 129

134 104 43 135 25 189 128 192 46 148 146 96 49 36 103 58 153 154 78 89 18

91 119 180 15 44 1 126 198 191 173 29 20 51 84 8 68 100 186 179 101 94 41

16 53 82 176 69 184 64 60 150 174 61 3 24 50 88 4 140 14 10 86 70 143 188

145 116 163 19 113 48 110 155 17 118 121 108 33 98 28 125 66 34 123 181

27 115 77 141 85 38 73 182 162 99 87 12 47 71 142 136 190 160 120 22 21

131 164 5 63 106 90 23 9 59 132 199 74 31 151 124 144 65 193 194 112 169

171 6 56 107 117 158 80 40 137 200 149 35 54 7 172 196 161 67 177 26 114

197 30 75 195 138 185 167 122 76 168 139 79 156 105 152 81 175 170 111 55

165 127 130 109 45 11 13 37 178

tai094

160 196 90 192 161 56 131 158 147 71 144 136 11 187 50 130 120 61 134 133

92 103 195 176 128 142 24 80 118 86 74 36 189 111 69 163 32 5 115 184 116

105 145 199 173 76 10 125 15 23 137 82 21 106 30 197 112 165 96 13 64 99

17 75 59 55 153 25 35 156 200 27 151 126 178 119 188 194 38 180 58 174 67

185 170 91 132 42 3 179 78 190 44 43 198 181 183 108 19 100 127 94 104

157 45 29 57 124 33 51 140 16 39 9 149 97 162 123 98 155 41 8 150 117 62

159 83 182 186 110 89 65 20 146 88 79 121 102 68 66 193 4 177 122 47 107

168 26 37 40 84 52 70 167 139 135 54 77 28 73 154 169 6 63 129 46 171 1

101 12 143 113 7 191 138 34 166 93 22 164 53 2 18 81 87 14 48 141 60 72

95 85 109 148 175 114 152 172 49 31

tai095

198 46 189 90 86 186 188 124 32 73 14 101 172 193 108 181 58 92 132 105

11 111 29 106 33 52 84 22 131 149 174 74 89 144 96 95 161 165 80 71 42

109 48 57 168 91 175 17 72 3 98 93 117 195 55 125 26 126 63 35 157 185 51

192 61 37 171 70 128 103 40 164 67 60 64 127 79 135 12 110 155 2 50 182

154 7 25 5 76 143 147 153 123 194 4 178 114 83 75 104 170 47 15 139 184

 133

140 173 179 38 113 130 85 183 13 6 160 68 82 120 180 150 54 8 152 156 16

122 66 141 190 36 137 177 43 97 166 169 176 196 163 44 81 191 65 10 136

28 151 118 27 121 187 1 87 148 62 34 23 200 59 102 138 21 20 45 99 112

115 77 145 41 49 39 53 129 162 119 133 69 31 159 94 146 30 18 107 100 56

197 116 24 78 167 9 88 134 142 19 158 199

tai096

147 85 13 36 102 47 197 168 118 6 78 134 89 126 178 195 52 69 131 9 143

183 39 107 53 172 3 146 190 164 132 55 158 51 40 138 23 29 25 41 65 186

122 72 114 57 180 67 12 174 103 37 20 156 116 149 1 26 93 99 152 198 95

98 11 10 79 42 61 106 76 60 73 135 18 128 173 181 115 187 145 80 162 142

108 192 133 109 148 159 94 28 68 167 14 2 170 92 169 104 120 137 110 35

101 44 160 166 48 175 184 64 111 63 157 71 91 153 112 136 191 17 165 15

54 141 46 155 75 163 125 200 59 171 30 74 82 16 84 151 90 22 49 66 8 43

62 176 34 130 70 196 185 50 161 199 150 123 38 127 21 129 117 121 81 27

31 33 189 179 140 24 5 32 87 77 83 119 7 86 56 88 45 58 154 144 177 96 97

182 193 139 105 19 4 188 113 124 100 194

tai097

135 198 147 80 117 197 127 28 38 173 179 41 98 145 15 97 56 126 63 36 182

11 88 57 169 75 94 192 34 191 73 196 151 39 71 18 159 52 187 60 50 161

132 87 184 163 115 26 123 141 119 49 107 168 177 23 165 170 85 45 51 4 91

143 139 35 93 46 104 29 76 111 78 108 20 53 77 133 12 90 155 180 17 47 83

194 13 181 24 40 10 144 72 6 32 27 131 152 190 19 105 42 25 112 14 178

162 160 22 54 120 74 66 189 193 43 5 33 110 121 95 116 100 167 70 86 101

154 109 58 195 129 79 122 142 37 153 176 7 199 140 102 185 149 148 136 31

114 62 61 3 99 183 2 186 150 103 157 172 118 188 128 171 89 16 96 65 174

84 130 134 1 48 67 21 175 44 9 8 81 166 106 30 158 113 200 137 124 82 92

68 138 156 164 69 146 125 55 64 59

tai098

153 105 82 154 112 180 90 185 23 1 114 87 43 38 179 101 73 116 94 128 141

8 24 26 20 45 167 34 2 4 83 103 18 176 28 25 75 181 125 118 163 12 92 192

120 148 108 84 156 168 65 137 79 49 165 152 46 170 166 131 50 55 117 194

191 175 85 74 182 119 132 197 70 58 16 190 29 110 37 183 76 135 66 93 177

19 10 150 151 122 31 88 14 69 144 3 71 107 121 162 96 200 17 145 109 11

 134

143 106 80 7 61 52 98 99 104 59 97 89 102 169 47 91 184 9 195 44 178 139

155 67 62 173 22 146 27 129 51 147 63 186 54 95 13 158 123 78 172 81 196

30 193 53 130 36 134 56 68 188 111 60 174 199 35 72 64 40 33 100 187 142

86 32 161 42 41 159 15 77 140 133 126 5 189 48 149 115 6 164 124 160 157

39 198 171 127 57 138 136 113 21

tai099

97 42 20 65 144 177 180 39 165 18 78 91 3 168 19 145 22 138 175 151 188

73 125 30 119 191 46 158 187 126 71 157 156 174 100 26 141 186 195 24 17

189 76 28 58 184 88 5 45 37 77 142 133 148 9 159 143 69 154 196 15 111

149 40 176 118 12 178 110 137 198 161 72 199 62 127 49 112 128 106 164

181 48 68 81 89 35 116 132 101 59 122 136 34 82 194 115 84 107 93 105 64

121 56 67 55 21 74 83 200 163 124 86 113 103 170 185 95 51 53 135 44 104

70 11 123 167 146 61 60 130 169 4 140 25 129 171 57 13 109 33 54 2 99 102

152 147 172 94 160 90 6 50 16 179 29 197 85 31 8 108 23 190 162 134 47 7

150 32 38 87 80 36 10 173 63 66 92 41 183 139 1 27 166 75 43 193 52 114

182 79 96 192 98 155 117 131 14 153 120

tai100

148 177 85 143 138 149 46 87 43 103 180 174 188 94 101 1 199 135 89 76 14

69 127 109 57 81 132 38 97 52 182 28 164 168 12 65 152 58 51 2 155 157

184 140 123 83 24 74 3 145 197 193 178 116 158 130 31 119 63 5 66 108 139

196 195 50 9 92 48 141 166 8 136 95 40 111 60 23 176 19 121 39 73 86 190

181 18 22 170 25 147 172 104 131 165 10 186 29 53 4 179 106 154 133 162

187 151 6 134 98 198 161 32 68 77 107 120 45 146 173 82 169 79 21 36 100

72 102 67 80 167 7 142 64 11 117 47 96 124 71 126 153 112 62 20 105 122

90 93 113 35 200 192 54 88 194 128 185 16 42 61 183 150 55 163 33 84 41

70 15 175 34 110 75 114 49 13 144 137 56 159 78 59 129 125 37 27 99 189

156 115 17 26 160 118 44 91 191 30 171

tai101

83 95 151 198 76 170 29 21 193 138 20 190 174 23 40 90 75 86 183 128 60

65 97 92 62 82 49 88 22 195 162 140 167 131 89 107 194 78 192 96 61 10

159 185 109 166 163 43 145 64 19 152 33 142 155 63 28 24 47 143 26 160 17

50 91 99 146 39 113 132 69 187 120 46 122 25 31 153 171 45 41 141 154 164

32 53 175 55 14 66 67 6 12 77 196 112 15 197 30 44 181 124 121 94 8 9 178

 135

111 5 93 144 182 7 36 126 79 147 80 136 57 81 34 189 52 68 172 85 158 101

103 165 38 115 73 118 114 3 186 74 179 176 108 48 18 13 16 71 58 148 119

84 1 116 37 102 180 130 54 169 184 156 110 191 11 87 56 188 125 133 59

105 135 168 173 106 150 100 4 149 161 127 98 27 134 70 35 129 72 157 139

51 104 123 117 2 42 177 200 199 137

tai102

56 132 78 26 37 118 43 97 50 92 117 12 83 49 177 172 165 157 86 101 25 73

140 87 136 164 67 69 60 168 103 11 124 2 173 149 179 21 53 3 18 129 114

180 44 151 160 144 159 119 52 94 155 35 146 20 198 81 110 127 90 191 68

111 138 126 167 197 29 24 96 184 135 58 125 200 131 98 88 169 64 32 70 8

45 181 147 142 175 10 115 62 189 51 193 42 113 162 34 123 84 120 143 102

152 57 48 182 15 33 161 27 39 61 22 77 4 47 13 171 99 75 79 38 41 46 156

134 59 121 63 141 190 7 95 72 17 150 174 170 55 28 76 109 82 130 1 128 16

188 6 19 40 154 112 194 65 196 105 85 80 36 153 145 5 106 9 93 186 23 163

54 30 100 139 137 148 183 178 107 176 108 116 122 71 66 187 195 185 104

14 199 158 192 91 74 166 133 89 31

tai103

179 30 132 127 177 111 178 20 187 44 189 184 82 33 162 90 8 152 73 106 46

194 182 61 168 133 159 110 88 58 6 4 134 147 119 101 40 35 125 53 129 81

5 121 59 64 34 139 107 43 67 87 51 38 171 97 144 9 163 14 185 145 72 128

96 195 198 167 123 108 23 165 32 126 112 156 160 192 86 122 153 85 76 80

68 148 186 105 155 151 93 117 138 77 25 115 1 199 54 22 200 143 48 95 173

15 13 146 37 31 183 102 136 158 161 57 49 176 47 78 113 84 169 41 98 174

45 10 166 16 75 130 65 170 193 157 7 70 21 114 109 62 120 55 12 2 50 69

164 24 66 3 149 154 191 188 42 11 27 181 135 141 91 26 29 137 180 116 131

52 103 100 124 19 71 196 190 118 17 104 172 83 140 99 175 60 150 92 74 39

94 18 56 63 28 197 89 142 79 36

tai104

66 43 49 168 15 188 73 148 28 160 3 137 1 33 129 78 39 30 29 99 60 123

183 85 87 195 120 146 110 83 42 158 136 164 151 21 64 19 18 16 175 154 4

26 199 180 93 101 139 40 88 114 24 81 77 149 191 57 71 109 165 20 8 84

147 27 17 178 157 52 23 172 134 6 14 41 196 45 65 124 98 105 194 141 82

55 7 132 2 95 46 89 169 187 75 106 122 68 47 36 155 182 37 103 100 170

 136

186 35 91 54 70 128 143 31 72 5 63 92 50 193 200 184 127 90 173 171 38

104 69 107 130 118 53 140 163 190 176 67 167 142 34 125 152 198 150 96 74

189 48 12 177 166 112 179 44 145 86 144 59 174 116 121 117 80 192 9 10 13

11 108 32 102 181 153 185 56 62 126 159 79 76 25 161 113 197 51 58 162

135 97 94 156 61 138 115 22 111 133 131 119

tai105

162 83 31 86 168 27 70 112 193 110 8 53 71 172 23 46 17 165 127 148 195

131 41 145 36 149 67 137 196 101 55 6 156 45 128 50 5 37 105 98 100 134

11 97 56 38 3 63 142 40 194 118 25 72 28 43 77 135 10 190 133 102 130 74

117 129 61 66 186 185 158 107 163 29 132 178 85 76 180 174 120 106 124 22

138 52 2 1 154 175 95 68 93 199 99 26 103 150 4 147 116 155 123 125 44

111 80 87 58 167 200 82 69 59 157 113 164 152 64 136 139 108 19 47 9 177

114 30 176 104 51 18 32 141 169 34 24 144 159 160 75 187 48 151 91 88 35

49 79 90 189 197 78 119 84 140 153 181 33 81 15 183 166 57 126 146 96 14

192 89 12 188 182 20 73 7 16 115 60 143 184 122 62 198 191 54 92 39 171

173 13 121 94 21 42 65 109 179 170 161

tai106

152 170 78 163 190 121 98 195 39 81 142 101 141 178 11 76 99 119 160 157

117 88 198 97 16 62 51 94 103 87 3 126 33 82 29 127 32 23 38 60 145 96 75

92 175 185 107 122 128 44 34 192 139 110 159 80 200 137 115 196 169 13

179 21 151 158 84 42 35 85 172 149 40 164 45 95 77 104 168 197 12 74 56

72 58 90 79 129 156 43 50 146 30 10 183 116 31 15 61 52 68 83 194 109 176

53 171 177 47 89 18 138 123 165 130 199 113 24 186 106 65 131 41 91 111

132 136 14 155 57 63 112 144 118 64 182 27 148 93 184 1 187 17 49 19 37 2

71 180 59 67 4 140 5 102 20 86 9 150 54 191 181 154 147 153 70 173 7 36

125 105 8 108 46 174 188 124 120 28 100 25 6 189 73 193 135 48 133 66 69

167 114 143 55 162 22 26 161 166 134

tai107

200 190 168 29 146 126 59 173 64 27 35 68 181 164 14 154 176 7 69 15 71

46 103 30 199 192 28 12 131 175 9 182 17 91 98 162 52 179 21 45 105 3 186

196 48 22 122 10 44 65 23 101 194 166 153 90 156 111 198 177 133 160 42

36 92 152 25 1 41 119 169 67 31 112 76 114 72 147 130 6 100 75 83 47 163

138 165 155 49 5 50 115 106 104 18 124 110 125 193 74 143 88 158 4 195

 137

150 139 123 121 132 97 120 109 99 2 116 108 189 187 13 34 26 161 66 140

117 149 86 70 188 174 159 96 77 19 63 142 102 32 82 148 141 53 11 113 171

84 60 151 37 73 94 54 184 136 89 40 80 85 167 128 157 81 51 38 129 56 134

127 8 185 118 183 58 191 180 93 197 145 95 57 62 178 144 24 55 79 61 135

33 172 39 78 137 170 43 16 87 107 20

tai108

196 36 25 122 16 10 151 83 50 125 81 190 132 30 172 121 157 97 150 69 106

61 20 63 176 58 141 184 119 115 193 48 162 165 37 137 47 179 171 9 80 152

70 22 109 199 126 73 31 93 90 91 131 89 44 24 68 104 67 146 62 143 64 28

194 178 14 2 189 53 27 82 175 112 11 6 111 164 155 26 117 43 154 76 38

198 186 3 60 35 33 160 94 65 32 4 128 127 95 192 191 52 114 39 54 5 133

29 124 161 136 105 123 42 102 138 173 8 149 174 147 45 116 23 85 110 139

177 129 153 49 92 182 148 17 72 86 169 100 77 185 40 46 71 197 21 74 7 96

107 88 135 59 134 183 158 101 12 187 103 57 200 144 99 156 51 108 167 120

18 55 87 75 98 180 130 118 188 41 140 145 113 13 181 34 15 195 56 159 163

66 78 19 168 79 1 170 142 166 84

tai109

190 10 148 199 151 166 25 113 160 54 50 70 100 106 19 77 36 55 29 61 74

154 116 153 86 72 101 136 111 28 62 142 80 24 134 94 124 1 20 8 58 16 30

135 14 2 92 192 37 84 173 197 67 76 22 117 6 57 174 158 89 105 78 93 83

46 146 96 69 168 172 186 11 147 71 17 123 145 130 98 144 110 64 170 21

155 102 189 51 161 99 40 162 149 163 68 108 122 26 159 59 194 43 179 90

52 129 15 103 81 23 175 125 121 45 91 41 79 138 107 140 156 169 143 182

13 114 167 133 126 56 115 7 187 164 66 127 5 3 120 165 87 131 73 34 65

178 95 157 32 185 4 75 42 112 183 137 150 63 85 104 27 200 60 176 181 82

118 132 53 31 171 12 47 48 193 139 128 180 152 18 141 198 38 184 177 88

196 39 97 35 191 9 33 119 188 195 109 44 49

tai110

130 15 116 7 196 142 154 197 77 180 149 47 103 100 83 12 151 59 13 141 94

198 50 131 124 104 126 112 91 177 81 52 65 14 150 172 75 60 189 191 127

55 135 160 163 56 133 139 67 64 192 144 199 121 140 178 173 53 98 48 155

183 122 128 106 21 101 87 167 54 93 40 145 114 27 28 66 123 161 9 132 42

118 108 29 22 169 76 97 17 190 32 25 46 79 57 1 2 61 147 164 158 88 95 49

 138

38 200 153 43 34 111 31 51 20 119 102 99 134 69 181 62 115 73 92 187 113

35 194 4 174 8 175 18 159 157 120 162 10 86 109 74 68 6 11 182 85 23 170

184 82 129 138 90 44 195 45 71 166 165 156 117 19 168 179 125 33 5 39 37

96 105 3 41 80 30 137 152 136 143 63 26 78 148 176 89 24 72 107 171 36

110 193 58 186 188 185 146 84 70 16

 139

ANEXO II – As melhores seqüências de trabalhos obtidas pelo rAG no quarto

experimento com o CPFSP para as instâncias de Reeves (1995) e Heller (1960).

rec01

6 2 15 13 11 7 20 4 17 1 5 10 9 8 18 14 12 16 3 19

rec03

2 9 5 14 7 8 16 10 18 4 3 1 17 15 12 13 11 19 20 6

rec05

12 19 11 9 6 1 8 13 14 2 20 3 5 18 4 15 10 7 16 17

rec07

10 13 11 4 9 12 3 18 16 8 6 7 15 5 17 1 2 19 14 20

rec09

16 15 20 17 14 18 11 1 12 6 7 5 13 8 10 9 19 3 2 4

rec11

16 4 2 20 18 7 14 9 8 17 10 12 13 19 11 15 1 3 5 6

hel2

13 1 2 9 10 4 20 8 19 7 14 11 3 6 15 5 16 17 18 12

rec13

4 3 14 11 17 8 12 2 10 15 7 6 16 20 18 1 13 19 9 5

rec15

12 1 16 9 13 2 5 15 6 19 10 20 17 14 11 8 3 18 4 7

rec17

20 12 18 2 17 13 19 4 14 7 3 10 11 8 1 6 9 16 15 5

rec19

5 7 21 17 20 6 13 10 15 29 22 14 11 2 1 3 4 12 27 23 8 24 9 19 30 26 25

16 18 28

rec21

23 12 14 7 13 17 1 24 8 26 16 20 28 29 18 5 11 19 10 9 4 6 15 2 27 25 30

21 3 22

rec23

3 24 29 1 5 2 21 20 4 16 14 9 19 26 22 28 15 8 30 23 10 18 13 17 25 11 6

7 27 12

 140

rec25

29 3 24 20 23 6 16 21 11 2 28 30 14 15 22 25 10 4 5 7 12 1 9 19 8 18 27

17 26 13

rec27

17 19 25 24 1 9 5 30 27 14 29 18 10 4 11 3 23 16 22 20 13 7 12 15 6 8 28

2 21 26

rec29

15 29 25 26 2 7 11 4 23 6 10 12 30 1 22 8 9 20 16 17 14 24 13 5 27 28 3

21 18 19

re31

34 40 46 6 23 48 8 44 26 27 50 38 13 2 24 47 35 32 10 37 25 28 17 14 22

29 31 11 42 15 9 36 30 49 7 12 43 21 20 4 5 1 33 3 16 41 39 18 45 19

rec33

47 18 2 36 22 34 39 38 9 28 41 42 5 50 10 1 6 7 11 26 21 8 13 48 20 49 16

15 27 19 14 44 31 3 37 25 43 32 29 46 33 30 12 35 4 17 40 45 24 23

rec35

25 6 27 2 38 35 13 36 42 20 18 41 10 39 50 32 48 31 43 1 5 14 40 17 3 44

30 26 4 33 15 8 23 19 9 12 45 37 21 28 7 47 34 24 11 46 29 49 16 22

rec37

41 19 18 50 1 63 40 75 44 48 67 53 56 20 61 43 29 28 9 7 32 12 65 66 25

58 60 2 57 16 36 73 55 49 42 3 31 46 69 4 51 74 45 11 64 59 13 34 17 39

47 26 15 68 52 54 10 33 72 6 22 8 71 5 27 30 21 14 62 35 24 38 23 70 37

rec39

24 20 47 40 63 56 45 68 23 12 59 16 42 19 57 44 43 48 32 22 11 55 3 52 54

34 15 61 66 46 13 4 58 38 10 31 18 35 49 65 28 9 30 29 69 37 14 21 1 73

72 39 71 27 74 41 51 6 5 2 25 53 50 17 64 36 26 8 33 67 75 62 60 70 7

rec41

30 68 69 28 7 44 29 72 19 35 52 6 24 54 50 65 23 5 64 67 34 63 41 66 37

59 13 48 3 58 75 71 51 74 18 42 26 33 36 46 9 10 25 60 22 31 47 43 14 8

11 45 20 73 4 39 56 17 2 32 55 49 21 40 53 57 61 70 16 12 27 62 1 38 15

hel1

13 37 63 74 98 2 87 48 82 53 32 43 25 24 4 80 67 21 40 58 5 71 52 92 14

94 55 16 17 84 76 15 1 22 90 30 91 65 38 78 72 23 62 41 6 59 51 60 64 11

 141

33 3 26 9 93 42 68 27 95 46 86 35 44 75 99 79 97 49 88 47 73 70 57 50 96

10 77 29 66 100 89 20 8 85 39 61 36 34 19 28 7 31 12 45 69 54 81 18 83 56

