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Abstract. It is well-known that the analysis of flexible pavements is a difficult task, since 

the pavement system is multilayered and three-dimensional. To provide accurate 
displacements, strains and stresses, the system must consider the different characteristics of 
each layer. Granular layers, for example, present complex nonlinear stress-strain 
relationship, while the surface (asphalt) layer displays a time-dependent viscoelastic 
behavior. Furthermore, cracks and fatigue are some of the problems that the surface layer 
may present. This paper addresses techniques used in the finite element modeling of flexible 
pavements. Therefore, appropriate constitutive models and numerical algorithms to represent 
the nonlinear resilient behavior of the unbound layers and the viscoelastic characteristics of 
the HMA layer are thoroughly discussed. These techniques are implemented in a computer 
system developed using an Object-Oriented Programming (OOP) approach. Both 
axisymmetric and three-dimensional models are included. Several numerical examples will be 
analyzed in order to validate the implementation and assess the importance of the 
consideration of the nonlinear and time-dependent effects. The obtained results will be 
compared with available analytical and computational solutions. 
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1. INTRODUCTION 
 
 The mechanistic or mechanistic-empirical methods have been used in different 
activities related to the pavement design (Mota, 1991; Medina, 1997; NCHRP/TRB, 2004). It 
is already known that, in mechanistic methods, the values of stresses and strains calculated in 
laboratory tests are compared with the ones obtained on-service. The main parameters used 
for pavement design are tensile stresses/strains at the bottom of the asphalt concrete layer; 
compressive stresses/strains at the top of the subgrade; and maximum surface deflection. 
However, the calculation of stresses and strains in pavement structures is a very difficult task 
because of the complex geometry and boundary conditions inherent to the problem. 
 It also should be noted that surface and granular layers present a complex constitutive 
behavior, with nonlinear and time-dependent effects. Thus, a closed-form solution for this 
type of problem is extremely complicated or even impossible in the practical design 
situations. These difficulties restrained the use of mechanistic methods in flexible pavement 
design. 
 When linear elastic materials are considered, stresses and strains can be calculated 
using the Multilayer Elastic Theory (Huang, 2004). In this approach, the wheel load is circular 
and the pavements are considered infinite in horizontal extent. In this way, displacements, 
stresses and strains are axisymmetric in relation to the center of the load. The superposition 
principle can be used to determine the influence of all wheel loads because the problem is 
considered linear. 
 However, in practice materials are nonlinear, elastic, anisotropic, and inhomogeneous, 
and some are particulate; viscous and plastic deformations occur in addition to the elastic 
deformations; loadings are not usually circular or uniformly distributed, and so on 
(NCHRP/TRB, 2004). Thus, to model pavements correctly, it is necessary to use numerical 
methods, such as Finite Difference Method, Boundary Element Method and Finite Element 
Method. The Finite Element Method (FEM) is the most adopted in pavement analysis and 
will be considered in the following. 
 The objective of this work is to discuss the main issues involved in the finite element 
analysis of flexible pavements, such as the nonlinear behavior of the unbound layers, the 
time-dependent (viscoelastic) behavior of the asphalt layer, and the effect of the distance of 
the boundaries of the model. This work also presents a finite element system for 
Computational Analysis of Pavements (CAP3D). This system is currently in active 
development at the Pavement Mechanics Laboratory of the Federal University of Ceará 
(LMP/UFC). A set of pavements will be analyzed in order to validate the CAP3D system and 
to assess the influence of the aspects cited previously. 
 
 
2. FINITE ELEMENT MODELING 
 
 As it was mentioned previously, the calculation of displacements, stresses and strains 
caused by vehicle loads in pavements is a difficult task even when considering all layers 
formed by linear elastic materials. In reality, surface and granular layers present a complex 
constitutive behavior, with nonlinear and time-dependent effects. Such effects should be 
considered in mechanistic pavement design methodologies, which make use of the pavement 
structural response into specific distress models (Huang, 2004). Today, there is a trend in the 
pavement academic community to substitute pavement analysis based on the Multilayer 
Elastic Theory by analysis based on the Finite Element Method (NCHRP/TRB, 2004). 
 The basic idea of the FEM is to divide a complex domain into simple subdomains 
(called finite elements), as triangles and quadrilaterals (Bathe, 1996; Cook et. al., 2002). The 



displacements within each finite element are interpolated using the nodal displacements. On 
the other hand, the strain vector is obtained from the nodal displacements using appropriate 
cinematic relations that depend on the problem (e.g plane stress, plane strain, solid). In a 
matricial form, these relations are: 
 
 uBε =  (1) 
 
where B is the strain-displacement matrix that is independent of the nodal displacements for 
linear geometrically problems (small strain and displacements). Using the strain vector, 
stresses (σ) are obtained using the constitutive relation of the material: 
 
 )(εσσ = . (2) 
 
 Frequently, in the analysis of pavements, the layers are considered homogeneous 
presenting a linear elastic isotropic behavior. Thus, assuming the linear elastic behavior, Eq. 
(2) is written as: 
 
 εCσσ += 0  (3) 
 
where σ0 is the vector of initial stresses (e.g. geostatic stresses) and C is the elastic 
constitutive matrix that depends not only on the material properties (Young’s Modulus and 
Poisson’s ratio), but also on the type of the problem, such as plane stress, axisymmetric, and 
3D solid (Bathe, 1996). 
 Using the Virtual Work Principle and considering small strain (as usual for pavement 
problems), the internal force vector (ge) of a given finite element is given by: 
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that is valid for both linear and nonlinear materials. Considering the existence of proportional 
loads, the equilibrium equation of the finite element model can be written as: 
 
 fugr λ−= )(              (5) 
 
where is f the external force vector, r is the residual vector and λ is the load factor that 
controls the load application. 
 As this equation presents nonlinearities, it is necessary to use appropriate methods to 
find its solution (Crisfield, 1991). There are some methods used to perform this task, but the 
most used of them is the Newton-Raphson Method with Load Control. This method is 
obtained by the linearization of Eq. (5), considering a fixed load level, which yields: 
 
 ruK −=δ               (6) 
 
where K is the tangent stiffness matrix and δu is the increment of displacements that are used 
to update the total displacements (u = u + δu). This iterative process should continue until the 
residual (r) modulus is smaller than a prescribed tolerance. It should be noted that the tangent 
stiffness matrix can be calculated from the linearization of the internal force vector: 
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since uBCεCσ ddd tt == . In the above equation, Ct is the constitutive tangent matrix. 
 
2.1 Resilient Models 
 

 The linear elastic model is extensively used in pavement analysis, mainly due to its 
simplicity. However, it cannot adequately model the behavior of unbound pavement layers 
composed by soils and other granular materials (Huang, 2004; NCHRP/TRB, 2004). As a 
matter of fact, the stress-strain response of a granular soil sample under repeated loading 
initially presents plastic deformations. It is observed that the amount of plastic flow decreases 
with cycling until the response is essentially elastic. If the load level is increased above the 
shakedown level then additional plastic flow occurs, but for lower loads the shaken-down 
sample exhibits elastic response (Hjelmstad & Taciroglu, 2000). This behavior led the 
hypothesis that the granular materials composing the unbound pavement layers shake down to 
a resilient (nonlinear elastic) response under repeated loads. 

Due to its simplicity, capacity to fit the response data from cyclic triaxial tests and success 
in predicting the behavior observed in the field, constitutive equations based on stress 
dependent “resilient modulus” (Mr) are widely used in the pavement community to model the 
sublayers (Huang, 2004; NCHRP/TRB, 2004). The resilient modulus is generally defined as 
the ratio of the deviatoric stresses (σ1 - σ2) to the axial strain (ε1) in the shakedown regime of 
a triaxial test. Several expressions have been proposed to represent the stress dependence of 
the resilient modulus, as an example, the popular K-θ model assumes that 
 
 2

1
k

r kM θ=                (8) 
 
where k1 and k2 are parameters obtained fitting the results of cyclic triaxial tests and               
θ = σx + σy + σz is the first stress invariant. The 2002 Design Guide (NCHRP/TRB, 2004) 
recommends the expression  
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where pa is the atmospheric pressure (normalizing factor), τoct is the octahedral shear stress 
and k1, k2 and k3 are parameters obtained fitting results of cyclic triaxial tests. This expression 
can be used to represent the behavior of purely granular (k3 = 0), pure cohesive (k2 = 0) and 
mixed soils. In both Eq. (8) and (9) the geotechnical convention that a positive stress means 
compression should be used. 

The constitutive models based on the resilient modulus assume a nonlinear elastic 
relationship in the form of Eq. (3) with the stress-dependent Mr replacing the conventional 
Young’s modulus (E) and considering a constant Poisson’s ratio (v). Since Mr depends on the 
final stress state, these models effectively employ a secant C matrix. The stress computation 
can be easily implemented using this approach, but the same is not true for the computation of 
the tangent constitutive matrix (Ct) used in the computation of the tangent stiffness matrix, 
according to Eq. (7).  

The tangent stiffness matrix is required by the conventional implicit nonlinear algorithms 
based on Newton-Raphson iterations, as discussed previously, which are the most adequate to 
carry-out nonlinear static analyses. A fully consistent computation of the tangent constitutive 



matrix can be obtained, but it results in a non-symmetric matrix, which may not be efficient 
both in terms of memory and computer time. Therefore, the approximate approach resulting in 
a symmetric tangent matrix suggested in (NCHRP/TRB, 2004) was adopted here.  
 It is important to note that the Resilient Modulus given by Eq. (8) or (9) are equal to 
zero for a tension hydrostatic stress state or for a material without pre-compression due to the 
gravitational stresses. The first problem is solved here prescribing a small Mr (e.g. 0.1 kPa) 
whenever the invariant θ is negative. On the other hand, the effect of pre-compression due to 
the pavement self-weight is considered prescribed a initial stress field where the vertical 
stresses where (σv) are given by the weight of the superior layers and the horizontal stresses 
(σh) depend of the vertical stresses through the relation 
 
 vh K σσ 0=  (10) 
 
where K0 coefficient of lateral earth pressure at rest. It should be noted that this stress field is 
in equilibrium with the initial loads due to self-weight. 
 
2.2 Viscoelasticity 
 
 Viscoelastic materials present time and rate-dependent behavior. Thus, their responses 
do not depend only on the applied load (or displacement) in a specific instant, but of the 
whole load (or displacement) history (Christensen, 1982). The stress-strain relationship of a 
viscoelastic material can be given under the form of convolution integrals, which for a 
uniaxial stress state is written as: 
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where E is the relaxation modulus, t is the current time and τ is a time-like parameter starting 
from the beginning of the loading. The mathematical formulations commonly used in the 
representation of the viscoelastic behavior of solids are the Prony series 
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where E∞, Ei, and ρi are the coefficient of the Prony series and p is the number of terms of this 
series. In order to practically compute the convolution integrals a numerical integration 
scheme should be used (Zocher, 1995; Shen et al., 1995), in which the stress are only 
computed at prescribed time intervals: 
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where the subscripts indicates the associated steps, (∆t) is the time step and (∆σ) is the stress 
increment. Using Eqs. (11) and (12) and assuming a constant strain rate (ε ) in each time 
interval (Zocher, 1995), the stress increment can be written as: 
 
 σεσ ˆ∆+∆=∆ E . (14) 
 



 The first term of the r.h.s. represents the stress increment due to the strain increment 
(∆ε) between tn and tn+1, with the “tangent” Young’s modulus ( E ) given by 
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 On the other hand, the term ( σ̂∆ ) represents the stress increment due to the time 
elapsed since the beginning of the loading process until the current time. This term can be 
computed from 
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where the parameters n

iS  can be computed by the recursive expression 
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 In spite of the mathematical complexity of viscoelastic model, its implementation in a 
finite element is not very difficult. As a matter of fact, for isotropic materials, the computation 
of the stiffness matrix is rather simple, with the parameter E  replacing the conventional 
Young’s modulus in Eq. (3). On the other hand, the stress computeation is more involved, 
since it is necessary to store and update a set of variables (e.g., n

iS  and 1−nε ) at each Gauss 
point of a finite element mesh. 
 
 
3. CAP3D SYSTEM 
 
 CAP3D System (Computer Analysis of Pavements) is being developed by the 
Computer Modeling group of the Pavement Mechanics Laboratory (LMP/UFC) to be used in 
both pavement design and research. The system is based on the FEM and is implemented in 
C++ language using Object-Oriented Programming (OOP) techniques (Stroustrup, 1997). The 
major advantage of adopting this approach is that the program expansion is simpler and more 
natural, as new implementations have a minimum impact in the existing code. The OOP is 
particularly useful in the development of large and complex programs, as finite element 
systems that usually handle different element types, constitutive models and analysis 
algorithms. 
 Currently, CAP3D contains both 2D (axisymmetric, plane-strain and plane stress) and 
3D analysis models and works with different element shapes (triangular, quadrilateral, bricks, 
etc.) and interpolation orders (linear and quadratic). It also provides an efficient and accurate 
modeling of different loading types, including time varying loads. Finally, the system 
provides different numerical algorithms to nonlinear and time-dependent analysis, as well as a 
set of constitutive models. 
 This system conceptual design is largely based on the open source FEMOOP system, 
described in (Martha and Parente Jr, 2002), whose development team included the first two 
authors of the present paper. Figure 1 illustrates the overall class organization of the system. 
The main classes of the program are Control, Node, Element, Shape, Analysis Model, 



Material, Integration Point, Constitutive Model, and Load. These classes will be briefly 
discussed in this section. 

 
Figure 1 – The overall class organization. 

 
 The Control class provides a common interface for the global algorithms used to 
analyze a problem. Currently, it is composed of four subclasses: LinearStatic, 
EquilibriumPath, QuasiStatic and LinearNewmark. The Node class basically stores the nodal 
data read from the input file (coordinates, support conditions, etc.), as well as some variables 
computed during the program execution, as the nodal degree of freedom and the current 
displacements. It also provides a number of methods to query and to update the stored data. 
 The Element class defines the generic behavior of a finite element. The main tasks 
performed by an object of the Element class are the indication of the number and direction of 
the active nodal d.o.f., the computation of the element vectors (e.g., internal force) and 
matrices (e.g., stiffness matrix), and the computation of the element responses (e.g., strains 
and stresses). The Shape class holds the geometric and field interpolation aspects of the 
element (dimension, topology, number of nodes, nodal connectivity, and interpolation order). 
 On the other hand, Analysis Model class handles the aspects related to the differential 
equation that governs the problem to be solved. It defines the generic behavior of the different 
models implemented in the program, as the truss, frame, plane stress, plane strain, 
axisymmetric solid, and 3D solid models. The Integration Point class holds the parametric 
coordinates and the corresponding weight used for the numerical integration. There are 
several Integration Point subclasses dealing with different element topologies, as triangles, 
quadrilaterals, and bricks. 
 In order to model the material behavior in an efficient way, the system uses two 
classes: Material and Constitutive Model. Material is a base class that provides a generic 
interface to handle the data of different materials available in the program, which currently 
includes the linear elastic, the linear viscoelastic, and the resilient material for the unbound 
pavement layers. On the other hand, Constitutive Model is a base class that provides a 
common interface to the different constitutive relations implemented in the program. The 
main tasks of the Constitutive Model subclasses are the computation of the current stress 
vector (σ) for a given strain vector (ε) and the evaluation of the tangent constitutive matrix 
(Ct), to be used in Eq. (7), from the current stress/strain state. 
 Finally, the Load class was created to allow the generic consideration of natural 
boundary conditions and body forces. It is a class that provides a common interface for the 
different loading conditions considered in the program. 
 
4. NUMERICAL EXAMPLES 
 
 The validation of the system for Computational Analysis of Pavements (CAP3D) was 
performed using a series of numerical examples including well-known finite element 
benchmarks as well as some flexible pavement structures. In this section a set of pavement 
examples will be presented to show the capabilities of the program and evaluate its 
performance. 
 



 
4.1 Single layer flexible pavement 
 
 In order to validate CAP3D implementation, a single layer pavement structure is 
considered. This structure is composed only by a soft subgrade with Young´s modulus           
E = 100 MPa and Poisson´s coefficient ν = 0.40. A single wheel load was modeled as a 
uniform pressure of 550 kPa (p) over a circular area of 150 mm radius (r). The finite element 
analysis using CAP3D system was performed under linearly elastic axisymmetric conditions. 
The model used here and depicted in Figure 2 has a horizontal length of 2.1 m (14r) and a 
depth of 3.0 m (20r) resulting in boundaries at a sufficient distance from the load to represent 
the unbounded nature of the subgrade. The model was discretized using quadratic 
quadrilateral elements (Q8). 
 It should be noted that this example has a simple analytical solution given by Love 
equation: 
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where σv represents the vertical stresses in a given depth (z). The finite element results are 
presented in Table 1 and compared with Love´s solution. It can be noted that a very good 
agreement was obtained in all cases. 
 

 
 

Figure 2 - Finite element mesh. 
 

Table 1. Comparison of vertical stresses (kPa). 
 

Depth(mm) Analytical result CAP3D Error (%) 
0.00 -550.00 -550.85 0.15 

100.00 -456.13 -457.70 0.34 
300.00 -156.45 -156.56 0.07 

 



4.2 Three-layer pavement analysis 
 
 The stress in the natural subgrade computed in the previous example is very high. 
Therefore, two layers (asphalt surface and base) composed of more stiff and resistant 
materials will be used between the wheel load and the natural soil. These layers distribute the 
load in a larger area resulting in small stresses at the top of the subgrade. The pavement 
structure considered here consists of 100 mm of asphalt concrete (E = 3500 MPa e ν = 0.35) 
over 200 mm of crushed stone base (E = 350 MPa e ν = 0.30) over the same soft subgrade    
(E = 100 MPa e ν = 0.40) considered previously.  
 The analysis using CAP3D system was performed under linearly elastic axisymmetric 
conditions. A single wheel load was modeled as a uniform pressure of 550 kPa over a circular 
area of 150 mm radius. The same discretization of the previous example was used here. 
Vertical and horizontal stresses were computed in different depths of the pavement structure 
and the results were compared with the ones obtained using Everstress and MICHPAVE 
systems, mentioned previously.  
 Table 2 presents the results of vertical stresses (kPa) and it can be observed that they 
are very similar to the ones obtained using Everstress e MICHPAVE. It also should be noted 
that this agreement is even better with Everstress system. Probably, this difference is caused 
by the limitation of MICHPAVE system related to the mesh refinement. Moreover, 
MICHPAVE only uses quadrilateral linear elements. It is very interesting to compare the 
vertical stresses in the top of the natural subgrade (63.35 kPa) with the pressure applied at the 
top of the asphalt layer (550 kPa). These results show that the one of the most important 
functions of the pavement layers is to distribute the stress on a large area reducing the stresses 
that reach the natural soil which generally has a lower resistance. 
 

Table 2. Comparison of vertical stresses (kPa). 
 

Depth(mm) CAP3D Everstress MICHPAVE 
0.00 -555.34 -550.00 -550.00 
99.99 -244.31 -247.96 -277.29 
100.01 -248.10 -247.93 -277.29 
299.99 -63.35 -63.58 -61.57 
300.01 -61.41 -63.58 -61.57 

 
 Table 3 presents the results for horizontal stresses computed by CAP3D, Everstress 
and MICHPAVE. Once again, the results computed by the proposed system are in better 
agreement to the ones obtained by Everstress system. 

 
Table 3. Comparison of horizontal stresses (kPa). 

 
Depth(mm) CAP3D Everstress MICHPAVE 

0.00 -1602.33 -1610.19 -1464.37 
99.99 1012.81 1008.14 948.81 
100.01 0.703 -0.22 -7.03 
299.99 100.28 100.66 65.01 
300.01 0.112 0.25 -0.138 

 
 The displacements on the top of the asphalt concrete layer were also calculated and 
some discrepancies were found. It is well-known that the subgrade is infinitely deep. In a 
finite element approach, this can be simulated using infinite elements (Cook et al., 1989). 



However, as this implementation is not finished yet, the subgrade was modeled using 
conventional finite elements based on the recommendation that the horizontal lower boundary 
of the finite element mesh be located no closer than 18 tire radii for a homogeneous elastic 
system and no closer than 50 tire radii for a layered system (NCHRP/TRB, 2004). It is also 
recommended that the vertical side boundary of the finite element mesh be located at least 12 
tire radii from the center of the tire.  
 Table 4 illustrates the results obtained using these recommendations and it can be 
noticed that the results are in very good agreement with the ones calculated by Everstress and 
MICHPAVE. As it occurred with the stresses, the displacements are closer to the ones 
obtained by Everstress system. 
 

Table 4. Displacements (mm). 
 

Depth(mm) CAP3D Everstress MICHPAVE 
0.00 0.439 0.448 0.471 
99.99 0.433 0.442 0.465 
100.01 0.433 0.442 0.465 
299.99 0.341 0.350 0.376 
300.01 0.341 0.350 0.376 

 
4.3 Pavement with nonlinear behavior 
 
 In this example the influence of the nonlinear behavior of the granular base is taken 
into account using the Resilient Model described by Eq. (9). The geometry, loading, boundary 
conditions, mesh discretization, and material properties of asphalt and subgrade layers are the 
same ones used in Example 4.2, but the parameters used here to describe the behavior of the 
base layer are pa = 100 kPa, k1 = 2000.0, k3 = 0.0. A variable k2 was considered here since the 
aim of this example is to assess the influence of the nonlinear effects both pavement response 
and performance of the numerical algorithm used for nonlinear analysis.  
 

Table 5. Results of the nonlinear pavement analysis. 
 

k2 v (mm) σx (kPa) σy (kPa) 
0.0 0.44914 1405.3 -74.113 
0.1 0.45720 1409.0 -75.198 
0.2 0.46445 1410.7 -76.289 
0.3 0.47118 1410.9 -77.343 
0.4 0.47746 1409.3 -78.591 

 
 The displacements at the surface (v), the horizontal tensile stresses at the bottom of the 
asphalt layer (σx) and the vertical compressive stresses at the top of the subgrade (σy) 
computed by the CAP3D system are presented in Table 5. It shows that the consideration of 
the nonlinear effects leads to greater displacements and vertical stresses. This effect increases 
with the value of the k2 parameter.  
 The increase of the k2 parameter has also a serious impact on the convergence of the 
Newton-Raphson algorithm used to carry-out the nonlinear analysis of the model. The net 
effect of an increase of this parameter is an increase in the nonlinearity of the stress-strain 
behavior, which increases the required number of iterations required to achieve convergence. 
As a matter of fact, convergence was not achieved here for k2 greater than 0.4, probably due 
to the approximation used in the computation of the tangent constitutive matrix suggested in 



the 2002 Design Guide (NCHRP/TRB, 2004). Therefore, further studies are necessary to 
solve this problem in a more satisfactory way.  
 
4.4 Viscoelastic flexible pavement analysis 
 
 The geometry, loading, boundary conditions, mesh discretization, and material 
properties of asphalt and subgrade layers of this example are the same ones used in Example 
4.2. However, in order to evaluate the effects of the viscoelastic behavior of the asphalt layer  
in the mechanical response of the pavement the relaxation modulus is given behavior of the 
asphalt layer is described by the Prony series presented in Table 7. The Prony series 
coefficients were extracted from Lee (1996) for the creep compliance shown in Figure 5. This 
asphalt mixture is a HMA fabricated under SHRP (1994) specifications. 
 

Table 7. Prony series of the asphalt layer. 
 

i Ei (kPa) ρi 
∞ 1.172E+06 - 
1 3.10E+09 2.20E-05 
2 4.31E+09 2.20E-04 
3 3.46E+09 2.20E-03 
4 2.02E+09 2.20E-02 
5 1.27E+09 2.20E-01 
6 2.72E+08 2.20E+00 
7 6.59E+07 2.20E+01 
8 1.45E+07 2.20E+02 
9 1.52E+06 2.20E+03 
10 7.10E+05 2.20E+04 
11 5.88E+04 2.20E+05 

 
 When the time-dependent viscoelastic effects are included the duration and time 
variation of the applied load are of great importance. Therefore, it is important to relate 
vehicle speed with the loading time. According to Brown (1973) the relation between loading 
time t (s), depth beneath the pavement surface d (m), and vehicle speed v (km/h), is given by: 
 

log t = 0.5d - 0.2(1 - 4.7 log v)        (19) 
 
The loading time as defined by this equation is equal to the inverse of the angular frequency 
of the applied sinusoidal wave. In order to investigate the effect of the viscoelastic behavior 
under vehicle speed over the asphaltic surface layer, 3 sine half-wave pulses of 0.01 s, 0.015 s 
and 0.1 s equivalent to speeds of 100 km/h, 60 km/h and 10 km/h, were calculated by Eq. 
(19). The displacements at the surface (v), the horizontal tensile stresses at the bottom of the 
asphalt layer (σx) and the vertical compressive stresses at the top of the subgrade (σy) 
computed by the CAP3D system are presented in Table 5.  
 The results of an elastic analysis using the an equivalent Young´s Modulus      
(2555.16 MPa) determined based on a simulation of an uniaxial compression test with a 0.1 s 
loading pulse (the so-called Resilient Modulus or RM of the asphalt layer), as recommended 
by Brazilian (DNER, 1994) and international specifications (ASTM, 1982), are also included 
in this table for comparison purposes. 
 
 



Table 8. Results of the elastic and viscoelastic models. 
 

Behavior Pulse (s) v (mm) σx (kPa) σy (kPa) 
Viscoelastic 0.010 0.4184 1263.0 -57.400 
Viscoelastic 0.015 0.4278 1164.3 -59.217 
Viscoelastic 0.100 0.4743 714.29 -66.703 

Elastic All 0.4637 765.80 -66.003 
 

 The obtained results show that with respect to the displacements at the asphalt layer, 
the difference between the two considerations (elastic and viscoelastic) is more relevant when 
longer pulse durations are applied. As the equivalent elastic Young´s Modulus was 
determined at the 0.1 s pulse, the differences between the viscoelastic and elastic response for 
this time duration are small, except of the tensile horizontal stresses. However, the differences 
are significant for the other pulses. Decreasing differences are observed when pulse duration 
increases (until 0.1 s pulse). For these cases the viscoelastic calculated displacements are 
smaller than the elastic ones. Similar behavior is observed for vertical stresses (σyy) at the top 
of subgrade. On the other hand, large differences occur for the tensile stress at the bottom of 
the asphalt layer for all analyzed cases. 
 
5. CONCLUSIONS 
 
 This paper discussed some important aspects of the finite element analysis of flexible 
pavements, as the nonlinear resilient behavior of the granular layers and the time-dependent 
(viscoelastic) behavior of the asphalt. The theoretical aspects of these constitutive models 
were discussed and the finite element system (CAP3D) implementing these models was 
described. 
 This computational system was validated using analytical solution and computer results 
obtained by other pavement programs for pavement analysis. It was also verified that the 
position of the boundaries of the model has a greater influence over the displacements than 
over the stresses. This problem was solved using more distant boundaries and a course mesh 
in this region. With that a very good agreement was obtained for the available solutions.  
 The influence of the stress-dependent resilient modulus of the granular layers was also 
studied. The numerical example considered here, showed that the consideration of the 
nonlinear behavior affects the displacements at the top asphalt layer and the stresses at the top 
of the subgrade, both of them are important parameters in the mechanistic design of 
pavements. 
 The time-dependent analysis demonstrated that the use of the conventional Young´s 
Modulus based on the standard 0.1s pulse leads to acceptable results for the displacements at 
the top asphalt layer and vertical stresses at the top of the subgrade for this loading pulse. On 
the other hand, it leads to very poor results for the tensile horizontal stresses at the bottom of 
the asphalt layer, not only for this pulse but also for all the other loading pulses. 
 It is important to note that this paper describes an ongoing effort to develop an integrated 
computer system for the geometric modeling, finite element analysis and visualization of 
flexible pavements. The next steps of this effort include the research of better methods to 
compute the tangent constitutive matrix of nonlinear resilient models, the implementation of 
infinite elements to improve the models of the unbound pavement layers and the 
implementation of the pre and post-processing modules of the system to allow the use of 
three-dimensional finite element models. 
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