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Summary 
This paper introduces a technique for solving the flowshop 
scheduling problem. The major idea is to partition the set of 
feasible solutions into regions in order to diversify the search that 
is used on a Genetic Algorithm variation. The population is 
formed by every distinct subject and it is carried out 
constructively in such a way that any iteration guarantees a 
diversification on the search for a feasible solution. The problem 
is a very well known NP-Hard problem and it imposes great 
challenges for determining its optimal solution in the practice. 
Computational experiments are reported for the literature 
instances and the obtained results are compared with other 
techniques. 
Key words: 
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1. Introduction 

The Flowshop Scheduling Problem (FSP) is defined as 
given a set of n jobs, J1, J2, …, Jn, to be processed by m 
machines M1, M2, ..., Mm. Each job demands m operations 
and every job has to obey the same operation flow, i.e. job 
Jk for k =1,2,..., n is processed first in machine M1, then in 
machine M2 and so forth up to Mm. If job Jk does not use 
all the machines its processing flow continues to be the 
same but with time zero whenever that happens. A 
machine processes just a single job and once it is started it 
cannot be interrupted up to its completion. It is worth of 
mentioning that the total search space of possible 
sequences to be considered is very large and it is bounded 
by above by O(n!). A solution to the problem consists in 
processing all the n jobs in the least possible time. 

The FSP input is given by a matrix P with  m x n 
non-negative elements, where Pik is associated with job Jk 
processing time and machine Mi. Following the four 
parameters A/B/C/D [1] notation, the problem is classified 
as n/m/P/Fmax. The problem is F/prmu/Cmax within [2], 
suggested a classification α/β/γ. The FSP is also known to 
be NP-Complete in the strong sense for m ≥ 3 ([3]). 
However, for m = 2 it can be exactly solved in polynomial 
time. 

 
 

 
In [4] there is an extensive literature survey – for the last 
five decades – to the problem and the authors indicate the 
existence of more than 1,200 Operations Research papers 
on it, also containing a large diversity of aspects and 
applications.  

In the practice, the exact solution methods for the 
problem are still limited to small instances, n ≤ 20 and 
even to them the running time continues to be large. Ruiz 
et al. [5] summarize practical methods for solving the 
problem, not necessarily exact ones. The following 
heuristics that are cited in [5]: PAL ([6]), CDS ([7]); and 
the Simulated Annealing (SA) metaheuristics cited in [8], , 
since they will be form the comparison bases of the 
methodology suggested here. 

The FSP algorithmic approach introduced here is a 
new Genetic Algorithm (GA). It is based on practical 
observations that indicate that in some problems that rely 
on permutation of data diversification can supersede 
intensification. Moreover, under this hypothesis solutions 
evaluated by the technique are built up in such a way that 
repetitions are avoided and this is not always the case for 
the traditional genetic algorithm, since it has a random 
function that cannot give such a premise. This new method 
is called HCGA (Hybrid Constructive Genetic Algorithm) 
and it follows, therefore, all the usual steps of GA one, 
with the additions mentioned.  

Section 2 the FSP is formally stated as a Permutation 
Combinatorial Optimization problem and the major ideas 
of HCGA are also introduced. Section 3 presents the 
computational experiments, while in Section 4 some 
conclusions are established. 

2. The Genetic Algorithm 

A Combinatorial Optimization Problem (COP) is defined 
by a triple (S, g, n), where S is the set of all feasible 
solutions, g is the objective function that associates to 
every s ∈ S a real number and n is a problem instance. It is 
important to mention that to a COP, |S| = n! and any 
feasible solution s can be represented by a given 
permutation of n, such as s=< a1 a2 ... an >. A solution to 
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the problem needs to determine an instance s that 
minimizes g. A neighborhood N(s) is defined as a solution  
that can be reached by a single place exchange, also called 
as a move or movement, of aj and ak, where j, k ∈ {1, …, 
n} and j ≠ k. For instance, for n = 3 and s = {a1, a2, a3} a 
movement can be s’ = {a1, a3, a2}; s has s’ as a neighbor. 

Silva and Soma ([9]) suggested a technique to solve 
COP denoted by Permutation Heuristic (PH) and it 
induces diversification among the set of feasible solutions. 
The idea consists on partitioning S in n neighborhoods 
N(si). The permutation si that generates N(si) has element i 
in the first position and also to every other permutation s 
∈ N(si). The total quantity of permutations to any given 
neighborhood is set to 2(n-1)(n-2)+4 and this implies in 
2n(n-1)(n-2)+4n generated permutations for the problem. 

The FSP can also be stated as a COP in the format P 
= (S, g, n) with the following:  

a) An element s = {J1, J2, ..., Jn} from the set of feasible 
solutions S represents a permutation of the n jobs. 
Moreover, it also gives the order in which the jobs 
have to be processed.  

b) Procedure GenEstimate given next determines the 
total time to be spent to process sequence s. This 
evaluation is crucial since the overall computational 
requirements is directly associated with that 
generation. 
 

       Input: m, n, s, matrices T(m x n) and P(m x n). 
       Output: tg  (time necessary to process all the n jobs   
                         by using sequence s) 
       //Comment: matrix T has only zeroes initially. 
       for(j=1; j<=n; j++) {      

  for(i=1; i<=m; i++) { 
    if (i==1) { 
       if (j>=2) T[1][s[j]]=T[1][s[j-1]]+P[1][s[j-1]];  
    } else { 
       if (j==1)  
          {T[i][s[1]]=T[i-1][s[1]]+P[i-1][s[1]];  
       } else { 
           x=T[i][s[j-1]]+P[i][s[j-1]];  
           y=T[i-1][s[j-1]]+P[i-1][s[j-1]];  
           if (x>=y) T[i][s[j]]=x; else T[i][s[j]]=y; 
       } 
    } 
  } 

      } 
      tg=T[m][s[n]] + P[m][s[n]]; 

 
The HCGA follows the major steps of the usual 

Holland ([10]) Genetic Algorithms framework. In this way, 
it has initially a set of subjects (initial set of a problem), 
performs an evaluation for each one (determination of the 
objective function value), chooses the most well fitted, 
selects the best ones accordingly with a given metrics and 
by crossover and mutation (movements) generates new 
individuals.  

The initial and the following populations of HCGA 
are generated by N(si), from PH given above, and they aim 

good solutions from the diversification within S. In 
addition, HCGA uses the well known 3-Opt Lin and 
Kernighan [11] heuristic as the mutation operator, since it 
alters the order in which the jobs are processed and 
eventually there is intensification in the search. 

Since PH is a constructive method and 3-Opt is an 
intensive local search method, the two types of search are 
contemplated by HCGA. It is important to note that the 
choice for those constructive and intensive features stems 
for the avoidance of a premature and non-optimal 
convergence of the algorithm.  Accordingly with 
observations in [12], HCGA is defined as 
[YY]2_nvrY[YNgr]. More details on the theory and 
evolution of the AG approach are given among others in  
[13], [14], [15], [16], [17], [18], [19], and [20]. 

The procedures used in the HCGA for the FSP are:  
i. A chromosome (an individual of the population) 

is defined as a permutation of the n jobs. Every 
job consist a chromosome gene.The order (from 
left to the right) in which the jobs appear in it 
determine their processing order;  

ii. The individuals of the population are all 
evaluated by the same procedure GenEstimate 
stated before; 

iii.  A HCGA population has a fixed size of 52 
individuals, divided in four groups with 13 
individuals each. The algorithm uses a different 
population every iteration and in total n of them, 
P1, P2, …, Pn will be considered. An individual of 
population Pj, with 1≤j≤n has job j as its first 
chromosome element; 

iv. Let Pj1, Pj2, Pj3 and Pj4 be the four groups of 
population j. The size of 52 was determined 
experimentally. It was observed that to values 
lower than 52 the solutions quality were not good 
enough and to higher values there was no further 
significant improvements from the increase in the 
population; 

v. The reproduction occurs via the crossover for 
each individual from group Pj1 with those of Pj2 
and the same for Pj3 with Pj4. 

The crossover operator was derived with the idea of 
generating individuals that do not belong to their parents’ 
population. To obtain such a feature, admit that P1 and P2 
are vectors with n elements each. Their absolute 
differences are stored in O1=O2=| P1 – P2| and those 
zero values are set to n. Two auxiliary vectors R1 and R2 
with n components are created where R1j and R2j 1 ≤ j ≤ n 
indicate the quantity that job j appear in O1 and O2 
respectively. If R1j ≥ 2 the first job j found in O1 is 
replaced by the first job i of R1, such that R1i = 0, 1≤ i ≤ n. 
This implies that R1i = 1 and R1j = R1j-1. The same 
procedure is applied to O2 and R2, with the sole difference 
that j is changed to i just in the last determined job j of O2. 
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Finally, item k+1 will be in the first position both in O1 
and O2, where k is the population index that individuals 
P1 and P2 belong. With this exchange procedure that is 
quite evolving to describe but very easy to implement in a 
computer program, there is a guarantee that the resulting 
individuals’ generated chromosomes will differ from their 
ancestors. Two additional individuals are generated by 
doing O1’(j)=O2’(j)=|P1(j)+P2(j)–n| with the same 
procedure. An example of the suggested crossover 
operator is given by Figure 1 with n = 7. 

 
  k = 2 
  P1 = [ 2   1   3   5   4   6   7 ]               
  P2 = [ 2   5   7   6   3   1   4 ]   
  O1 = O2 = Abs(P1 – P2) = [ 7   4   4   1   1   5   3 ] 
  R1 = R2 = [ 2   0   1   2   1   0   1 ] 
 
                                                       ⇓ 
 
    O1 = [ 3   6   4   2   1   5   7 ]   
   O2 = [ 3   4   6   1   2   5   7 ] 

Fig. 1 Crossover operator for n =7. 
 
After the generation of all crossover of a given 

population the best fitted individual’s chromosome is 
selected, i.e. the one with the least objective function value. 
To modify the order in which the genes (jobs) appear in 
that chromosome the 3-Opt heuristic is used. This 
procedure configures the mutation operator of HCGA. 

The algorithm stopping criteria for the evolution 
process and therefore the search occurs only when all the 
n populations and their respective crossovers have been 
considered. 

Notice that HCGA has many features of a usual 
Genetic Algorithm but it also has other ones that 
distinguish it from them. The following steps do not have 
parallels in GA: 
• The population is not randomly generated in order to 

avoid individual repetitions. Every iteration also is 
different from their predecessors; 

• The crossover operator does not rely exclusively on 
the preservation of their predecessors’ characteristics. 
The assumption for this is such that the 
diversification tries to mimic some the results 
obtained by practical genetic experiments, such as  
[21], [22], [23], [24], [25], and [26]. In those 
experiments the authors deduced that individuals 
with perfect genetic characteristics did not appear 
from a mutation process but after a large number of 
crossovers (diversification). According to these 
practical approaches mutation has a very high 
operational cost to be effectively realized and being 
this not the case for crossovers.  
After the implementation and major ideas 

presentation, it is of vital importance to determine the 

algorithm complexity. To find the running time, notice 
that if η is the number of generations, μ the population 
size, n the quantity of genes of any chromosome (problem 
input) and as it is immediate to infer that O(n3) represents 
the mutation operator complexity, the overall time 
complexity of HCGA is bounded in the worst case by 
O(η.μ.n.O(n3)) = O(n4). To specific case, recall that μ is 
set to 52 while η = 2×2×13×13 = 676. Additionally, the 
total quantity of solutions to be evaluated by HCGA is (η 
+ μ + 1)n =  729 n = O(n) for any problem. 

3. Computational Experiments 

The computational experiments carried out to observe the 
performance of HCGA were executed in a PC-Asus with a 
clock of 1,8 GHz and 256 Mbytes of RAM and the source 
program is in ANSI C. Table 1 and 2 presents the mean 
deviation and CPU time of algorithms HCGA, PAL, CDS, 
SA, respectively. The 90 problem instances were stated as 
in Taillard [27] and were obtained in OR-Library [28]. 
Parameters m and n are also used to divide the 
experiments in classes. The mean deviation is given by 
100×(z – z*)/z*, z is the value determined by a heuristic 
and z* is the value of the optimal solution. The quantity of 
problems for each class is 10. HCGA, PAL and CDS had a 
standard termination while SA could not obtain a solution 
in some cases. The last three lines of the table give the 
mean, the miniminum and the maximum values of the 
standard deviation and CPU time (seconds). 

Some observations can be deduced from the 
experiments (Table 1 and 2): 

a) HCGA has the best mean deviation amidst the 
four methods evaluated, i.e. 8.82% and SA the 
worst one with 15.50%; 

b) PAL had the minimum deviation, 0.70%, for a 
problem of class (100 x 5). CDS and HCGA had 
5.17% and 2.23% respectively; 

c) The best deviation performance to HCGA was in 
class (20 x 5) with 1.77% while to PAL and CDS 
the values were respectively 5.89% and 4.87%; 

d) Problems of class (50 x 20) generated the worst 
performance for all methods; 

e) For small instances, n ≤ 50, HCGA had a good 
performance and with a relatively small mean 
running time of 1.43 seconds. For large problems, 
where n ≥ 100 there is a positive tradeoff 
between the acceptable running time and quality 
of the solutions. 
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Table1:  The mean deviation for HCGA, SA, PAL and CDS 
Class Mean Deviation (%) 

(n x m) HCGA SA PAL CDS 

1 (20 x 5) 6.71 9.40 10.82 9.49
2 (20 x 10) 10.64 18.60 15.28 12.13
3 (20 x 20) 8.19 32.60 16.34 9.64
4 (50 x 5) 4.79 3.00 5.34 6.10
5 (50 x 10) 12.39 17.00 14.03 12.98
6 (50 x 20) 18.05 28.00 17.94 15.77
7 (100 x 5) 3.77 4.00 2.51 5.13
8 (100 x 10) 4.53 11.00 9.13 9.15
9 (100 x 20) 10.32 15.00 15.55 14.19

Mean 8.82 15.40 11.88 10.51
Minimum 1.77 3.00 0.70 1.80
Maximum 20.86 36.00 24.75 18.42

 

Table2:  The mean running time for HCGA, SA, PAL and CDS 
Class  Time (CPU in seconds) 

(n x m) HCGA SA* PAL CDS 

1 (20 x 5) 0.2 390.0 0.0 0.0
2 (20 x 10) 0.3 408.0 0.0 0.0
3 (20 x 20) 0.7 588.0 0.0 0.0
4 (50 x 5) 1.4 2052.0 0.0 0.0
5 (50 x 10) 2.1 2784.0 0.0 0.1
6 (50 x 20) 3.9 3354.0 0.1 0.2
7 (100 x 5) 6.5 8802.0 0.1 0.2
8 (100 x 10) 10.0 11358.0 0.1 0.5
9 (100 x 20) 17.0 13092.0 0.1 0.6

Mean 4.7 4758.7 0.0 0.2
Minimum 0.1 390.0 0.0 0.0
Maximum 19.0 13092.0 0.1 0.6

* It was executed originally in a PC 486 with 33 MHz clock. 
 

4. Conclusion 
 
The suggested heuristic has many different features from a 
usual Genetic Algorithm such as the increase of the 
diversification and the diminishing of crossover operations. 
The reason to such an approach mimics the behavior of 
some species as mentioned in the literature. 

The computational experiments from the standard 
benchmarks of the area show that HCGA can be 
competitive if compared to other heuristic and 
metaheuristic approaches. It was applied successfully to 
the FSP and it seems reasonable to suppose, at least in a 
first moment, that it can solve other Permutation 
Combinatorial Optimization problems. This hypothesis, 
however, needs further studies on them.  

 An attempt to improve the HCGA performance 
would be the use of other greedy heuristics in order to 

obtain more focused criteria to activate new mutations, 
since it seems that the running time still lies within 
practical acceptable intervals. 

Acknowledgments 

The authors acknowledge partial financial support from 
UFC, ITA and CNPq under process number 302176/03-9.  
 
References 
[1] R.W. Conway, W.L. Maxwell, L.W. Miller. Theory of 

scheduling. Reading, MA: Addison-Wesley; 1967. 
[2] R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. R. Kan. 

Optimization and approximation in deterministic 
sequencing and scheduling: a survey. Annals of Discrete 
Mathematics, 5:287–326, 1979. 

[3] M.R. Garey, D.S. Johnson, R. Sethi. The complexity of 
flowshop and jobshop scheduling. Mathematics of 
Operations Research, 1(2):117–29, 1976. 

[4] J. N.D. Gupta, E. F. Stafford Jr. Flowshop scheduling 
research after five decades. European Journal of 
Operational Research 169, 699–711, 2006. 

[5] R. Ruiz, C. Maroto, J. Alcaraz. Two newrobust genetic 
algorithms for the flowshop scheduling problem. The 
International Journal the Management Science (Omega), 
34 : 461 – 476, 2006. 

[6] D.S. Palmer. Sequencing jobs through a multistage process 
in the minimum total time - a quick method of obtaining a 
near optimum. Operational Research Quartetly 16: 101-107, 
1965. 

[7] H.G. Campbell, R.A. Dudek, M.L. Smith. A heuristic 
algorithm for the n-job, m-machine sequencing problem. 
Management Science, 16: B630–B637, 1970. 

[8] M. B. Daya, M. Al-Fawzan. A tabu search approach for the 
flow shop scheduling problem. European Journal of 
Operational Research, l09: 88-95, 1998. 

[9] J.L.C. Silva, N.Y. Soma. A heristic for Permutation 
Combinatorial Optimization Problems. Proceedings of the 
XXXIII SBPO (in Portuguese), Campos do Jordão-SP, 
Brazil, 2001. 

[10] J.H. Holland. Adaptation in natural artificial systems. 
University of Michigan Press, 1975. 

[11] S. Lin, B.W. Kernighan. An Effective Heuristic Algorithm 
for the Traveling Salesman Problem. Operations Research, 
v.21, p.498-516, 1973. 

[12] Alain Hertz and Daniel Kobler. A framework for the 
description of evolutionary algorithms. European Journal 
Operational Research, 126: 1-12, 2000. 

[13] C. R.  Reeves (Ed.). Modern Heuristic Techniques for 
Combinatorial Problems. McGraw-Hill, London, 1995. 

[14] C.R. Reeves. A genetic algorithm for flowshop sequencing. 
Computers & Ops. Res., (in review), 1992. 

[15] D. E. Goldberg. Sizing populations for serial and parallel 
genetic algorithms. Proceedings of the 3rd International 
Conference on Genetic Algorithms. Morgan Kaufmann, Los 
Altos, CA, 70-79, 1989. 

[16] S. Michalewicz. Genetic algorithm + Data structure = 
Evolution programs. Springer-Verlag, USA, 1994. 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008 
 

 

223

[17] T. Murata, H. Ishibuchi and H. Tanaka. Genetic Algorithms 
for Flowshop Scheduling Problems. Computers ind. Engng, 
Vol. 30, No. 4, pp. 1061-1071, 1996. 

[18] I. M. Oliver, D. J. Smith and J.R.C. Holland. A study of 
permutation crossover operators on the travelling salesman 
problem. Proceedings of the 2nd International Conference 
on Genetics Algorithms. Lawrence Erlbaum Associates, 
Hillsdale-NJ, 224-230, 1987. 

[19] L. Davis. Handbook of Genetic Algorithms. Van Nostrand 
Reinhold, New York, 1991.  

[20] D. Whitley, T. Starkweather and D. Shaner. The traveling 
salesman and sequence scheduling: quality solutions using 
genetic edge recombination. Handbook of Genetic 
Algorithms. Van Nostrand Reinhold, New York, 350-372, 
1991.  

[21] P.K. Ingvarsson. Restoration of genetic variation lost - the 
genetic rescue hypothesis. TRENDS in Ecology & 
Evolution, Vol.16, 2: 62-63, 2001.  

[22] D. T. Pham and D. Karaboga. Cross breeding in genetic 
optimisation and its application to fuzzy logic controller 
design. Artificial Intelligence in Engineering, 12:15-20, 
1997.  

[23] A. P. Bentota, D. Senadhira and M. J. Lawrence. 
Quantitative genetics of rice: The potential of a pair of new 
plant type crosses. Field Crops Research, 55: 267-273, 1998.  

[24] A. K Kahi. et al.. Economic evaluation of crossbreeding for 
dairy production in a pasture based production system in 
Kenya. Livestock Production Science, 65: 167-184, 2000.  

[25] J.F. Hancock. Implications for plant evolutionary ecology. 
TRENDS in Plant Science, Vol. 6, 4: 185, 2001.  

[26] H. Michels, D. Vanmontfort, E. Dewil and E. Decuypere, E. 
Genetic variation of prenatal survival in relation to 
ovulation rate in sheep: A review. Small Ruminant Research, 
29: 129-142, 1998.  

[27] E. Taillard.  Benchmarks for basic scheduling problems. 
European Journal of Operational Research 64, 278-285, 
1993.  

[28] J.E. Beasley. OR-Library: Distributing Test Problems by 
Eletronic Mail. Journal of the Operations Research Society, 
41: 1069-1072, 1990. 

 
 
 

José Lassance de Castro Silva is 
Associate Professor at the Department 
of Applied Mathematic of the Federal 
University of Ceará (Brazil). He holds a 
B.Sc. and M.Sc. degree in Applied 
Mathematics at the Federal University 
of Ceará, in 1990 and 1996, respectively. 
D.Sc. degree in Eletronic and Computer 
Engineering at the Technologic Institute 
of Aeronautic, in 2002. His fields of 
interest are computer graphics, parallel 

computing, combinatorial optimization and numerical analysis. 
 
 
 
 
 

 
Nei Yoshihiro Soma received the 
B.E. degree from University of São 
Paulo (Brazil) in 1981, M. E. degree 
from Instituto Nacional de Pesquisa 
Espaciais (Brazil) in 1985 and PhD 
degree from University of Sheffield 
(England) in 1992, respectively. He 
has been a professor at Technologic 
Institute of Aeronautic since 1986 in 
the Dept. of Computer and 

Electrical Engineering. His fields of interest are computer 
graphics, parallel computing, combinatorial optimization 
and operational research. 
 
 
 
 


