
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

219

Manuscript received September 5, 2008.
Manuscript revised September 20, 2008.

A Constructive Hybrid Genetic Algorithm for the Flowshop
Scheduling Problem

José Lassance de Castro Silva1 and Nei Yoshihiro Soma2,

1Department of Applied Mathematics, Federal University of Ceará, Brazil
2Department of Computer and Eletronic Engineering, Technologic Institute of Aeronautic, Brazil

Summary
This paper introduces a technique for solving the flowshop
scheduling problem. The major idea is to partition the set of
feasible solutions into regions in order to diversify the search that
is used on a Genetic Algorithm variation. The population is
formed by every distinct subject and it is carried out
constructively in such a way that any iteration guarantees a
diversification on the search for a feasible solution. The problem
is a very well known NP-Hard problem and it imposes great
challenges for determining its optimal solution in the practice.
Computational experiments are reported for the literature
instances and the obtained results are compared with other
techniques.
Key words:
Scheduling Problem, Genetic Algorithm, Permutations.

1. Introduction

The Flowshop Scheduling Problem (FSP) is defined as
given a set of n jobs, J1, J2, …, Jn, to be processed by m
machines M1, M2, ..., Mm. Each job demands m operations
and every job has to obey the same operation flow, i.e. job
Jk for k =1,2,..., n is processed first in machine M1, then in
machine M2 and so forth up to Mm. If job Jk does not use
all the machines its processing flow continues to be the
same but with time zero whenever that happens. A
machine processes just a single job and once it is started it
cannot be interrupted up to its completion. It is worth of
mentioning that the total search space of possible
sequences to be considered is very large and it is bounded
by above by O(n!). A solution to the problem consists in
processing all the n jobs in the least possible time.

The FSP input is given by a matrix P with m x n
non-negative elements, where Pik is associated with job Jk
processing time and machine Mi. Following the four
parameters A/B/C/D [1] notation, the problem is classified
as n/m/P/Fmax. The problem is F/prmu/Cmax within [2],
suggested a classification α/β/γ. The FSP is also known to
be NP-Complete in the strong sense for m ≥ 3 ([3]).
However, for m = 2 it can be exactly solved in polynomial
time.

In [4] there is an extensive literature survey – for the last
five decades – to the problem and the authors indicate the
existence of more than 1,200 Operations Research papers
on it, also containing a large diversity of aspects and
applications.

In the practice, the exact solution methods for the
problem are still limited to small instances, n ≤ 20 and
even to them the running time continues to be large. Ruiz
et al. [5] summarize practical methods for solving the
problem, not necessarily exact ones. The following
heuristics that are cited in [5]: PAL ([6]), CDS ([7]); and
the Simulated Annealing (SA) metaheuristics cited in [8], ,
since they will be form the comparison bases of the
methodology suggested here.

The FSP algorithmic approach introduced here is a
new Genetic Algorithm (GA). It is based on practical
observations that indicate that in some problems that rely
on permutation of data diversification can supersede
intensification. Moreover, under this hypothesis solutions
evaluated by the technique are built up in such a way that
repetitions are avoided and this is not always the case for
the traditional genetic algorithm, since it has a random
function that cannot give such a premise. This new method
is called HCGA (Hybrid Constructive Genetic Algorithm)
and it follows, therefore, all the usual steps of GA one,
with the additions mentioned.

Section 2 the FSP is formally stated as a Permutation
Combinatorial Optimization problem and the major ideas
of HCGA are also introduced. Section 3 presents the
computational experiments, while in Section 4 some
conclusions are established.

2. The Genetic Algorithm

A Combinatorial Optimization Problem (COP) is defined
by a triple (S, g, n), where S is the set of all feasible
solutions, g is the objective function that associates to
every s ∈ S a real number and n is a problem instance. It is
important to mention that to a COP, |S| = n! and any
feasible solution s can be represented by a given
permutation of n, such as s=< a1 a2 ... an >. A solution to

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

220

the problem needs to determine an instance s that
minimizes g. A neighborhood N(s) is defined as a solution
that can be reached by a single place exchange, also called
as a move or movement, of aj and ak, where j, k ∈ {1, …,
n} and j ≠ k. For instance, for n = 3 and s = {a1, a2, a3} a
movement can be s’ = {a1, a3, a2}; s has s’ as a neighbor.

Silva and Soma ([9]) suggested a technique to solve
COP denoted by Permutation Heuristic (PH) and it
induces diversification among the set of feasible solutions.
The idea consists on partitioning S in n neighborhoods
N(si). The permutation si that generates N(si) has element i
in the first position and also to every other permutation s
∈ N(si). The total quantity of permutations to any given
neighborhood is set to 2(n-1)(n-2)+4 and this implies in
2n(n-1)(n-2)+4n generated permutations for the problem.

The FSP can also be stated as a COP in the format P
= (S, g, n) with the following:

a) An element s = {J1, J2, ..., Jn} from the set of feasible
solutions S represents a permutation of the n jobs.
Moreover, it also gives the order in which the jobs
have to be processed.

b) Procedure GenEstimate given next determines the
total time to be spent to process sequence s. This
evaluation is crucial since the overall computational
requirements is directly associated with that
generation.

 Input: m, n, s, matrices T(m x n) and P(m x n).
 Output: tg (time necessary to process all the n jobs
 by using sequence s)
 //Comment: matrix T has only zeroes initially.
 for(j=1; j<=n; j++) {

 for(i=1; i<=m; i++) {
 if (i==1) {
 if (j>=2) T[1][s[j]]=T[1][s[j-1]]+P[1][s[j-1]];
 } else {
 if (j==1)
 {T[i][s[1]]=T[i-1][s[1]]+P[i-1][s[1]];
 } else {
 x=T[i][s[j-1]]+P[i][s[j-1]];
 y=T[i-1][s[j-1]]+P[i-1][s[j-1]];
 if (x>=y) T[i][s[j]]=x; else T[i][s[j]]=y;
 }
 }
 }

 }
 tg=T[m][s[n]] + P[m][s[n]];

The HCGA follows the major steps of the usual

Holland ([10]) Genetic Algorithms framework. In this way,
it has initially a set of subjects (initial set of a problem),
performs an evaluation for each one (determination of the
objective function value), chooses the most well fitted,
selects the best ones accordingly with a given metrics and
by crossover and mutation (movements) generates new
individuals.

The initial and the following populations of HCGA
are generated by N(si), from PH given above, and they aim

good solutions from the diversification within S. In
addition, HCGA uses the well known 3-Opt Lin and
Kernighan [11] heuristic as the mutation operator, since it
alters the order in which the jobs are processed and
eventually there is intensification in the search.

Since PH is a constructive method and 3-Opt is an
intensive local search method, the two types of search are
contemplated by HCGA. It is important to note that the
choice for those constructive and intensive features stems
for the avoidance of a premature and non-optimal
convergence of the algorithm. Accordingly with
observations in [12], HCGA is defined as
[YY]2_nvrY[YNgr]. More details on the theory and
evolution of the AG approach are given among others in
[13], [14], [15], [16], [17], [18], [19], and [20].

The procedures used in the HCGA for the FSP are:
i. A chromosome (an individual of the population)

is defined as a permutation of the n jobs. Every
job consist a chromosome gene.The order (from
left to the right) in which the jobs appear in it
determine their processing order;

ii. The individuals of the population are all
evaluated by the same procedure GenEstimate
stated before;

iii. A HCGA population has a fixed size of 52
individuals, divided in four groups with 13
individuals each. The algorithm uses a different
population every iteration and in total n of them,
P1, P2, …, Pn will be considered. An individual of
population Pj, with 1≤j≤n has job j as its first
chromosome element;

iv. Let Pj1, Pj2, Pj3 and Pj4 be the four groups of
population j. The size of 52 was determined
experimentally. It was observed that to values
lower than 52 the solutions quality were not good
enough and to higher values there was no further
significant improvements from the increase in the
population;

v. The reproduction occurs via the crossover for
each individual from group Pj1 with those of Pj2
and the same for Pj3 with Pj4.

The crossover operator was derived with the idea of
generating individuals that do not belong to their parents’
population. To obtain such a feature, admit that P1 and P2
are vectors with n elements each. Their absolute
differences are stored in O1=O2=| P1 – P2| and those
zero values are set to n. Two auxiliary vectors R1 and R2
with n components are created where R1j and R2j 1 ≤ j ≤ n
indicate the quantity that job j appear in O1 and O2
respectively. If R1j ≥ 2 the first job j found in O1 is
replaced by the first job i of R1, such that R1i = 0, 1≤ i ≤ n.
This implies that R1i = 1 and R1j = R1j-1. The same
procedure is applied to O2 and R2, with the sole difference
that j is changed to i just in the last determined job j of O2.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

221

Finally, item k+1 will be in the first position both in O1
and O2, where k is the population index that individuals
P1 and P2 belong. With this exchange procedure that is
quite evolving to describe but very easy to implement in a
computer program, there is a guarantee that the resulting
individuals’ generated chromosomes will differ from their
ancestors. Two additional individuals are generated by
doing O1’(j)=O2’(j)=|P1(j)+P2(j)–n| with the same
procedure. An example of the suggested crossover
operator is given by Figure 1 with n = 7.

 k = 2
 P1 = [2 1 3 5 4 6 7]
 P2 = [2 5 7 6 3 1 4]
 O1 = O2 = Abs(P1 – P2) = [7 4 4 1 1 5 3]
 R1 = R2 = [2 0 1 2 1 0 1]

 ⇓

 O1 = [3 6 4 2 1 5 7]
 O2 = [3 4 6 1 2 5 7]

Fig. 1 Crossover operator for n =7.

After the generation of all crossover of a given

population the best fitted individual’s chromosome is
selected, i.e. the one with the least objective function value.
To modify the order in which the genes (jobs) appear in
that chromosome the 3-Opt heuristic is used. This
procedure configures the mutation operator of HCGA.

The algorithm stopping criteria for the evolution
process and therefore the search occurs only when all the
n populations and their respective crossovers have been
considered.

Notice that HCGA has many features of a usual
Genetic Algorithm but it also has other ones that
distinguish it from them. The following steps do not have
parallels in GA:
• The population is not randomly generated in order to

avoid individual repetitions. Every iteration also is
different from their predecessors;

• The crossover operator does not rely exclusively on
the preservation of their predecessors’ characteristics.
The assumption for this is such that the
diversification tries to mimic some the results
obtained by practical genetic experiments, such as
[21], [22], [23], [24], [25], and [26]. In those
experiments the authors deduced that individuals
with perfect genetic characteristics did not appear
from a mutation process but after a large number of
crossovers (diversification). According to these
practical approaches mutation has a very high
operational cost to be effectively realized and being
this not the case for crossovers.
After the implementation and major ideas

presentation, it is of vital importance to determine the

algorithm complexity. To find the running time, notice
that if η is the number of generations, μ the population
size, n the quantity of genes of any chromosome (problem
input) and as it is immediate to infer that O(n3) represents
the mutation operator complexity, the overall time
complexity of HCGA is bounded in the worst case by
O(η.μ.n.O(n3)) = O(n4). To specific case, recall that μ is
set to 52 while η = 2×2×13×13 = 676. Additionally, the
total quantity of solutions to be evaluated by HCGA is (η
+ μ + 1)n = 729 n = O(n) for any problem.

3. Computational Experiments

The computational experiments carried out to observe the
performance of HCGA were executed in a PC-Asus with a
clock of 1,8 GHz and 256 Mbytes of RAM and the source
program is in ANSI C. Table 1 and 2 presents the mean
deviation and CPU time of algorithms HCGA, PAL, CDS,
SA, respectively. The 90 problem instances were stated as
in Taillard [27] and were obtained in OR-Library [28].
Parameters m and n are also used to divide the
experiments in classes. The mean deviation is given by
100×(z – z*)/z*, z is the value determined by a heuristic
and z* is the value of the optimal solution. The quantity of
problems for each class is 10. HCGA, PAL and CDS had a
standard termination while SA could not obtain a solution
in some cases. The last three lines of the table give the
mean, the miniminum and the maximum values of the
standard deviation and CPU time (seconds).

Some observations can be deduced from the
experiments (Table 1 and 2):

a) HCGA has the best mean deviation amidst the
four methods evaluated, i.e. 8.82% and SA the
worst one with 15.50%;

b) PAL had the minimum deviation, 0.70%, for a
problem of class (100 x 5). CDS and HCGA had
5.17% and 2.23% respectively;

c) The best deviation performance to HCGA was in
class (20 x 5) with 1.77% while to PAL and CDS
the values were respectively 5.89% and 4.87%;

d) Problems of class (50 x 20) generated the worst
performance for all methods;

e) For small instances, n ≤ 50, HCGA had a good
performance and with a relatively small mean
running time of 1.43 seconds. For large problems,
where n ≥ 100 there is a positive tradeoff
between the acceptable running time and quality
of the solutions.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

222

Table1: The mean deviation for HCGA, SA, PAL and CDS
Class Mean Deviation (%)

(n x m) HCGA SA PAL CDS

1 (20 x 5) 6.71 9.40 10.82 9.49
2 (20 x 10) 10.64 18.60 15.28 12.13
3 (20 x 20) 8.19 32.60 16.34 9.64
4 (50 x 5) 4.79 3.00 5.34 6.10
5 (50 x 10) 12.39 17.00 14.03 12.98
6 (50 x 20) 18.05 28.00 17.94 15.77
7 (100 x 5) 3.77 4.00 2.51 5.13
8 (100 x 10) 4.53 11.00 9.13 9.15
9 (100 x 20) 10.32 15.00 15.55 14.19

Mean 8.82 15.40 11.88 10.51
Minimum 1.77 3.00 0.70 1.80
Maximum 20.86 36.00 24.75 18.42

Table2: The mean running time for HCGA, SA, PAL and CDS
Class Time (CPU in seconds)

(n x m) HCGA SA* PAL CDS

1 (20 x 5) 0.2 390.0 0.0 0.0
2 (20 x 10) 0.3 408.0 0.0 0.0
3 (20 x 20) 0.7 588.0 0.0 0.0
4 (50 x 5) 1.4 2052.0 0.0 0.0
5 (50 x 10) 2.1 2784.0 0.0 0.1
6 (50 x 20) 3.9 3354.0 0.1 0.2
7 (100 x 5) 6.5 8802.0 0.1 0.2
8 (100 x 10) 10.0 11358.0 0.1 0.5
9 (100 x 20) 17.0 13092.0 0.1 0.6

Mean 4.7 4758.7 0.0 0.2
Minimum 0.1 390.0 0.0 0.0
Maximum 19.0 13092.0 0.1 0.6

* It was executed originally in a PC 486 with 33 MHz clock.

4. Conclusion

The suggested heuristic has many different features from a
usual Genetic Algorithm such as the increase of the
diversification and the diminishing of crossover operations.
The reason to such an approach mimics the behavior of
some species as mentioned in the literature.

The computational experiments from the standard
benchmarks of the area show that HCGA can be
competitive if compared to other heuristic and
metaheuristic approaches. It was applied successfully to
the FSP and it seems reasonable to suppose, at least in a
first moment, that it can solve other Permutation
Combinatorial Optimization problems. This hypothesis,
however, needs further studies on them.

 An attempt to improve the HCGA performance
would be the use of other greedy heuristics in order to

obtain more focused criteria to activate new mutations,
since it seems that the running time still lies within
practical acceptable intervals.

Acknowledgments

The authors acknowledge partial financial support from
UFC, ITA and CNPq under process number 302176/03-9.

References
[1] R.W. Conway, W.L. Maxwell, L.W. Miller. Theory of

scheduling. Reading, MA: Addison-Wesley; 1967.
[2] R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. R. Kan.

Optimization and approximation in deterministic
sequencing and scheduling: a survey. Annals of Discrete
Mathematics, 5:287–326, 1979.

[3] M.R. Garey, D.S. Johnson, R. Sethi. The complexity of
flowshop and jobshop scheduling. Mathematics of
Operations Research, 1(2):117–29, 1976.

[4] J. N.D. Gupta, E. F. Stafford Jr. Flowshop scheduling
research after five decades. European Journal of
Operational Research 169, 699–711, 2006.

[5] R. Ruiz, C. Maroto, J. Alcaraz. Two newrobust genetic
algorithms for the flowshop scheduling problem. The
International Journal the Management Science (Omega),
34 : 461 – 476, 2006.

[6] D.S. Palmer. Sequencing jobs through a multistage process
in the minimum total time - a quick method of obtaining a
near optimum. Operational Research Quartetly 16: 101-107,
1965.

[7] H.G. Campbell, R.A. Dudek, M.L. Smith. A heuristic
algorithm for the n-job, m-machine sequencing problem.
Management Science, 16: B630–B637, 1970.

[8] M. B. Daya, M. Al-Fawzan. A tabu search approach for the
flow shop scheduling problem. European Journal of
Operational Research, l09: 88-95, 1998.

[9] J.L.C. Silva, N.Y. Soma. A heristic for Permutation
Combinatorial Optimization Problems. Proceedings of the
XXXIII SBPO (in Portuguese), Campos do Jordão-SP,
Brazil, 2001.

[10] J.H. Holland. Adaptation in natural artificial systems.
University of Michigan Press, 1975.

[11] S. Lin, B.W. Kernighan. An Effective Heuristic Algorithm
for the Traveling Salesman Problem. Operations Research,
v.21, p.498-516, 1973.

[12] Alain Hertz and Daniel Kobler. A framework for the
description of evolutionary algorithms. European Journal
Operational Research, 126: 1-12, 2000.

[13] C. R. Reeves (Ed.). Modern Heuristic Techniques for
Combinatorial Problems. McGraw-Hill, London, 1995.

[14] C.R. Reeves. A genetic algorithm for flowshop sequencing.
Computers & Ops. Res., (in review), 1992.

[15] D. E. Goldberg. Sizing populations for serial and parallel
genetic algorithms. Proceedings of the 3rd International
Conference on Genetic Algorithms. Morgan Kaufmann, Los
Altos, CA, 70-79, 1989.

[16] S. Michalewicz. Genetic algorithm + Data structure =
Evolution programs. Springer-Verlag, USA, 1994.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

223

[17] T. Murata, H. Ishibuchi and H. Tanaka. Genetic Algorithms
for Flowshop Scheduling Problems. Computers ind. Engng,
Vol. 30, No. 4, pp. 1061-1071, 1996.

[18] I. M. Oliver, D. J. Smith and J.R.C. Holland. A study of
permutation crossover operators on the travelling salesman
problem. Proceedings of the 2nd International Conference
on Genetics Algorithms. Lawrence Erlbaum Associates,
Hillsdale-NJ, 224-230, 1987.

[19] L. Davis. Handbook of Genetic Algorithms. Van Nostrand
Reinhold, New York, 1991.

[20] D. Whitley, T. Starkweather and D. Shaner. The traveling
salesman and sequence scheduling: quality solutions using
genetic edge recombination. Handbook of Genetic
Algorithms. Van Nostrand Reinhold, New York, 350-372,
1991.

[21] P.K. Ingvarsson. Restoration of genetic variation lost - the
genetic rescue hypothesis. TRENDS in Ecology &
Evolution, Vol.16, 2: 62-63, 2001.

[22] D. T. Pham and D. Karaboga. Cross breeding in genetic
optimisation and its application to fuzzy logic controller
design. Artificial Intelligence in Engineering, 12:15-20,
1997.

[23] A. P. Bentota, D. Senadhira and M. J. Lawrence.
Quantitative genetics of rice: The potential of a pair of new
plant type crosses. Field Crops Research, 55: 267-273, 1998.

[24] A. K Kahi. et al.. Economic evaluation of crossbreeding for
dairy production in a pasture based production system in
Kenya. Livestock Production Science, 65: 167-184, 2000.

[25] J.F. Hancock. Implications for plant evolutionary ecology.
TRENDS in Plant Science, Vol. 6, 4: 185, 2001.

[26] H. Michels, D. Vanmontfort, E. Dewil and E. Decuypere, E.
Genetic variation of prenatal survival in relation to
ovulation rate in sheep: A review. Small Ruminant Research,
29: 129-142, 1998.

[27] E. Taillard. Benchmarks for basic scheduling problems.
European Journal of Operational Research 64, 278-285,
1993.

[28] J.E. Beasley. OR-Library: Distributing Test Problems by
Eletronic Mail. Journal of the Operations Research Society,
41: 1069-1072, 1990.

José Lassance de Castro Silva is
Associate Professor at the Department
of Applied Mathematic of the Federal
University of Ceará (Brazil). He holds a
B.Sc. and M.Sc. degree in Applied
Mathematics at the Federal University
of Ceará, in 1990 and 1996, respectively.
D.Sc. degree in Eletronic and Computer
Engineering at the Technologic Institute
of Aeronautic, in 2002. His fields of
interest are computer graphics, parallel

computing, combinatorial optimization and numerical analysis.

Nei Yoshihiro Soma received the
B.E. degree from University of São
Paulo (Brazil) in 1981, M. E. degree
from Instituto Nacional de Pesquisa
Espaciais (Brazil) in 1985 and PhD
degree from University of Sheffield
(England) in 1992, respectively. He
has been a professor at Technologic
Institute of Aeronautic since 1986 in
the Dept. of Computer and

Electrical Engineering. His fields of interest are computer
graphics, parallel computing, combinatorial optimization
and operational research.

