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Abstract

A new generation of wireless networks, the 5th Generation (5G), is predicted for beyond

2020. For the 5G, it is foreseen an emerging huge number of services based on Machine-Type

Communications (MTCs) in different fields, such as, health care, smart metering and security.

Each one of them requiring different throughput rates, latency, processing capacity, energy

efficiency, etc.

Independently of the service type, the customers still need to get satisfied, which is

imposing a shift of paradigm towards incorporating the user as the most important factor

in wireless network management. This shift of paradigm drove the creation of the Quality of

Experience (QoE) concept, which describes the service quality subjectively perceived by the

users. QoE is generally evaluated by a Mean Opinion Score (MOS) ranging from 1 to 5.

In this context, QoE concepts can be considered with different objectives, such as,

increasing battery life, optimizing handover decision, enhancing access network selection

and improving Radio Resource Allocation (RRA). Regarding the RRA, in this master’s

thesis we consider QoE requirements when managing the limited available resources of a

communication system, such as frequency spectrum and transmit power. More specifically,

we study a radio resource assignment and power allocation problem that aims at maximizing

the minimum MOS of the users in a system subject to attaining a minimum number of

satisfied users.

Initially, we formulate a new optimization problem taking into account constraints on

the total transmit power and on the fraction of users that must be satisfied, which is an

important topic from an operator’s point of view. The referred problem is non-linear and

hard to solve. However, we get to transform it into a simpler form, a Mixed Integer Linear

Problem (MILP), that can be optimally solved using standard numerical optimization methods.

Due to the complexity of obtaining the optimal solution, we propose a heuristic solution to

this problem, called Power and Resource Allocation Based on Quality of Experience (PRABE).

We evaluate the proposed method by means of simulations and the obtained results show

that it outperforms some existing algorithms, as well as it performs close to the optimal

solution.

Keywords: Quality of Experience, Minimum Mean Opinion Score Maximization, Radio

Resource Allocation, Power Allocation.
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Resumo

Uma nova geração de sistemas de comunicações sem fio, 5a Geração (5G), é prevista para

2020. Para a 5G, é esperado o surgimento de diversos serviços baseados em comunicações

máquina à máquina em diferentes áreas, como assistência médica, segurança e redes de

medição inteligente. Cada um com diferentes requerimentos de taxa de transmissão, latência,

capacidade de processamento, eficiência energética, etc.

Independente do serviço, os clientes precisam ficar satisfeitos. Isto está impondo uma

mudança de paradigmas em direção à priorização do usuário como fator mais importante no

gerenciamento de redes sem fio. Com esta mudança, criou-se o conceito de qualidade de

experiência (do inglês, Quality of Experience (QoE)), que descreve de forma subjetiva como o

serviço é percebido pelo usuário. A QoE normalmente é avaliada por uma nota entre 1 e 5,

chamada nota média de opinião (do inglês, Mean Opinion Score (MOS)).

Neste contexto, conceitos de QoE podem ser considerados com diferentes objetivos, como:

aumentar a vida útil de baterias, melhorar a seleção para acesso à rede e aprimorar a alocação

dos recursos de rádio (do inglês, Radio Resource Allocation (RRA)). Com relação à RRA, nesta

dissertação consideram-se requerimentos de QoE na gestão dos recursos disponíveis em um

sistema de comunicações sem fio, como espectro de frequência e potência de transmissão.

Mais especificamente, estuda-se um problema de assinalamento de recursos de rádio e de

alocação de potência que objetiva maximizar a mínima MOS do sistema sujeito a satisfazer

um número mínimo de usuários pré-estabelecido.

Inicialmente, formula-se um novo problema de otimização considerando restrições quanto

à potência de transmissão e quanto à fração de usuários que deve ser satisfeita, o que é

um importante tópico do ponto de vista das operadoras. Este é um problema não linear e

de difícil solução. Ele é então reformulado como um problema linear inteiro e misto, que

pode ser resolvido de forma ótima usando algoritmos conhecidos de otimização. Devido à

complexidade da solução ótima obtida, propõe-se uma heurística chamada em inglês de

Power and Resource Allocation Based on Quality of Experience (PRABE). O método proposto

é avaliado por meio de simulações e os resultados obtidos mostram que sua performance é

superior à de outros existentes, sendo próxima à da ótima.

Palavras-Chave: Qualidade de Experiência, Maximização da Mínima MOS, Alocação de

Recursos de Rádio, Alocação de Potência.
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Notations

The following notation is used throughout this thesis. We use uppercase and lowercase

boldface to denote matrices and vectors, respectively. Plain letters are used for scalars. Other

notational conventions are summarized as follows:

| · | - Absolute value of a scalar or the cardinality of a set

A�B - Hadamard product between matrices A and B

A⊗B - Kronecker product between matrices A and B

A ∗B - Khatri-Rao product between matrices A and B⋃
s∈S Us - Set operation that represents the union of the sets Us,∀s ∈ S⋂
s∈S Us - Set operation that represents the intersection of the sets Us,∀s ∈ S

u(a, b) - Step function, which returns 1 if a ≥ b or 0 otherwise

vec {A} - Linear transformation which converts the matrix A into a column vector

0U - Column vector of length U composed of 0’s

1U - Column vector of length U composed of 1’s

IU - Identity matrix with dimension U × U

Symbols

We summarize here the symbols that are used in the considered system modeling of this

thesis.

f(·) - Link adaptation function

f−1(·) - Inverse of link adaptation function

hu,k - Complex channel coefficient between the eNB and the UE u over the RB k

ĥu,k - Estimated channel between the eNB and the UE u over the RB k
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mu,k - Selected MCS associated to UE u in RB k
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pu,k - Power used by the eNB to transmit to UE u through the RB k

pu,k,m - Minimum transmit power required by UE u to use RB k with MCS m

P - Multi-dimensional array arranging the elements pu,k,m
P(2) - Mode-2 unfolding of P

Pt - Total transmit power

qu,s - Binary operator assuming the value 1 if UE u subscribes the service plan s, or

0, otherwise

Q - Matrix arranging the elements qu,s
Ru - Total throughput of UE u

r̃u,k - Achievable throughput of UE u transmitting on RB k

R̃ - Matrix arranging the elements r̃u,k
ru,k,m - Achievable throughput of UE u transmitting on RB k and using MCS m

R - Multi-dimensional array arranging the elements ru,k,m
R(2) - Mode-2 unfolding of R

S - Total number of subscription plans

S - Set of subscription plans
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Chapter 1
Introduction

This is an introductory chapter where we present the motivation and scope of this master’s

thesis in Section 1.1. After that, we present the state of the art of Quality of Experience

(QoE)-aware Radio Resource Allocation (RRA) methods in Section 1.2. The studied open

problems and the main contributions are stated in Section 1.3. Finally, the thesis organization

and the main scientific production during the Master course are presented in Sections 1.4 and

1.5, respectively.

1.1 Thesis Scope and Motivation

Different forecasts predict for beyond 2020 a new generation of wireless communications,

the 5th Generation (5G) [1–3]. For the 5G, it is foreseen a 1000 times higher mobile data

volume per unit area and a 10 to 100 times higher user data rate [2], as well as an emerging

huge number of services based on Machine-Type Communications (MTCs) in different fields,

such as, health care, smart metering and security.

In terms of Quality of Service (QoS), this diverse set of devices will ask for the support of

an evenly diverse range of communication requirements related to throughput, latency, and

packet loss ratio, among others. In this context, it will be difficult to define optimal throughput

or latency values, because these will change from service to service. Therefore, the operators

will increasingly need to focus on delivering high-quality service experience, independently of

technical requirements.

This leads us to the concept of QoE, which is defined in [4] as the overall acceptability of

an application or service, as perceived subjectively by the end-user. It is generally evaluated

by a Mean Opinion Score (MOS) ranging from 1 to 5 [5].

The overall goal of QoE management is to optimize end-user QoE (end-user perspective),

while making efficient use of network resources [6]. In order to successfully manage QoE

for a specific application, it is necessary to understand and identify multiple factors affecting

it (subjective and objectively) and how they impact QoE. Resulting QoE models dictate the

parameters to be monitored and measured. In [7], a survey breaks down the overall process

of QoE management into three general steps: QoE modeling, measurement and optimization.

QoE Modeling

Regarding the QoE modeling, its main objective is, given a set of conditions, to make

QoE estimations. For this, first of all, it is necessary to identify the influencing factors,

which, in [8], are grouped into four multidimensional spaces: Application (application

configuration-related factors), Resource (network/system related factors, e.g., throughput,
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bandwidth, etc), Context (user’s environment, e.g., location, time of day, movement, etc.) and

User (characteristics of a human user, e.g., gender, age, education background, etc.).

The majority of works have been focused on identifying the relationship between QoE and

the network/system related factors. For this purpose, quality assessments are deployed. The

main idea is to expose users to a specific service, where they need to rate the quality of the

service. The rates are then averaged into MOS. The details are specified in [9].

Nevertheless, there is still not a consensus on this topic. For example, in [10], it is

formulated that QoS and QoE are connected through an exponential relationship, called IQX

hypothesis, whereas, in [11], it is inferred that, especially for Voice over IP (VoIP) and mobile

broadband scenarios, the users’ experience follows logarithmic laws.

QoE Measurement

The main challenges in the QoE measurement are related to 3 questions [7]: what to

collect? Where to collect? And when to collect?

Firstly, one needs to determine which data to acquire. This decision depends on the service

type been monitored and on the QoE model adopted to convert the influencing factors into

MOS.

Secondly, one needs to decide where to collect the data, which can be within the network, at

the client side, or both. According to [12], the best way to obtain an accurate QoE assessment

is to combine reported measures from the mobile device with network data. However, as

pointed in [6], monitoring at the client side can pose issues of users’ privacy.

Finally, one should determine when and how often to perform the data acquisition. This

depends of what is been monitored and of where the measures are been taking, since

computational complexity and battery life of mobile devices need to be considered.

QoE Optimization

Concerning optimization strategies, different objectives can be considered, such as,

increasing battery life [13], optimizing handover decision [14], enhancing access network

selection [15] and improving Radio Resource Management (RRM). Regarding the RRM, one

possible approach is to consider QoE requirements when managing the limited available

resources of a communication system, such as frequency spectrum and transmit power.

In this context, this work proposes an algorithm of RRA and power allocation aiming at

maximizing the minimum MOS subject to a minimum number of satisfied users, wherein the

MOS objectively quantifies the users’ QoE.

1.2 State of the Art

According to [16], RRA problems can be classified into different categories, such as

opportunistic and fair algorithms.

Opportunistic algorithms

This category of algorithms is more interested in the system overall than in the users

individually. They exploit the idea of giving priority to users with the best opportunities to

achieve a predefined goal, over the other users. Several algorithms use this approach with

different objectives such as: rate maximization and power consumption minimization.

Rate maximization algorithms aim at maximizing the total data rate of the system. In [17],

the authors develop an RRM scheme that exclusively assigns a sub-carrier to a user with the

highest channel gain on that sub-carrier which maximizes the system sum rate. However,

usually, the resources are allocated to the users that are close to the base station, whereas
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edge users generally suffer from starvation and have very low data rates [18].

In a similar way, power consumption minimization algorithms tend to keep users with

bad channel conditions in starvation. In [19], a low computational algorithm is proposed

to minimize power consumption with Bit Error Rate (BER) and data rate constraints for

different types of services. Another power minimization problem is formulated in [20]

with a minimum user data rate constraint using integer programming and continuous

relaxation-based suboptimal solution methods.

Fair algorithms

The main objective of this category is to reach fairness between users, avoiding the

starvation of the opportunistic algorithms. The minimum rate maximization and Round Robin

are examples of this category.

In [21], a minimum rate maximization algorithm is proposed for the downlink of an

Orthogonal Frequency Division Multiplexing (OFDM) broadband system. By prioritizing users

with low data rate, it tends to overcome the problem of edge users’ starvation.

The Round Robin technique consists of scheduling the equal amount of resources for all

users in circular order. In [22], it is presented a comparison between a greedy scheduling and

an opportunistic Round Robin scheme for Multiple Input Multiple Output (MIMO) systems.

The results testify the fairness of this scheme.

The majority of RRA schemes in the literature considers QoS optimization criteria.

However, as previously explained, 5G networks will demand the management of a wide range

of QoS requirements. Therefore, new approaches based on user’s experience are needed since

QoS metrics would not reflect client perception of different applications anymore.

QoE-aware algorithms

In [23], the performance of three QoS-based RRA algorithms (max rate, max-min rate and

proportional fair) are compared in terms of QoE metrics (average QoE and geometric mean

QoE). The authors conclude that the QoE results need to be enhanced.

In fact, some authors have already addressed QoE aspects in RRA problems. A commonly

studied problem in this field is the maximization of the overall QoE. In [24], the allocation

problem is modeled as a bounded optimization problem to achieve the maximum overall QoE

with a constraint in total transmit power. In [25], a power allocation scheme, targeting

at maximizing QoE is proposed for video transmissions over MIMO systems. The problem

is decomposed into sub-problems and a bisection search algorithm is used to obtain their

optimal solutions.

In [26], a multicell coordination among multiple Base Stations (BSs) is investigated for

interference mitigation and overall QoE maximization. The problem is formulated as a local

cooperative game, where BSs are encouraged to cooperate with their peer nodes in the

adjacent cells when scheduling users and allocating power.

As the other opportunistic algorithms, the disadvantage of [24–26] is that they may penalize

users with poor link conditions. In [27], a similar problem is studied, but a penalty function is

also considered aiming at guaranteeing the fairness among users, besides of maximizing the

level of QoE in the system. Another strategy is adopted by the authors of [28] to overcome this

problem. They firstly allocate sub-carriers to all the users in order to guarantee their minimal

transmit rate requirement, then the remaining sub-carriers are allocated to the users who

can achieve the best QoE gain. In [29], a proportional fair scheduling is proposed considering

not only the users’ QoE maximization but as also the fairness among users.

In [30], the authors propose a QoE-aware scheduler that maximizes the average number of
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satisfied users. Their scheme needs the users’ participation informing their satisfaction over

a one-bit feedback.

Another studied problem is the maximization of the minimal MOS in the system. In [31],

a frequency spectrum assignment based on game theory together with a water-filling power

allocation is proposed. The system is modeled as a market place where, after a random

assignment, the users, in pairs, negotiate for the resources. The same problem is studied

in [32]. The Hungarian algorithm is used to assign frequency spectrum, and the optimal

solution of a Tchebycheff problem is used for the power allocation.

1.3 Open Problem and Contributions

As far as we know, the problem of maximizing the minimum MOS of the system considering

a satisfaction factor, i.e., a constraint on the minimum number of users that must be satisfied,

was not studied yet. This constraint is an important operator requirement and was considered

in other contexts [33–35]. In a real network, this fraction is a parameter defined by the

network operator.

First of all, we analyze the optimal solution of this problem, as a Mixed Integer Linear

Problem (MILP). Since it requires a high computational effort, we propose a heuristic solution

called Power and Resource Allocation Based on Quality of Experience (PRABE).

Figure 1.1 presents an overview of PRABE. The proposed framework is a QoE management

scheme which deals with MOS values. Independently of service or device, we consider

functions mapping QoS requirements into a MOS value. PRABE is divided into two parts:

the resource assignment and the power allocation. Each one of them tries first to satisfy the

required minimum number of satisfied users and then to maximize the minimum MOS in the

system.

QoS 
Requirements
___________
___________
___________
___________

QoS/ QoE Mapping

QoE Management

- Max-min system’s QoE
- Minimum number of satisfied users

Resource Assignment Power Allocation

Services and Devices

QoS 

Requirements
___________
___________
___________

Figure 1.1: Framework context.

In summary, the main contributions of this master’s thesis are:

i. Problem formulation: we formulate a max-min problem for the MOS considering a

satisfaction factor, an operator requirement not yet explored by previous works in this

context, as far as we know. With this constraint, we need to ensure that at least a specific
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fraction of the total number of users meets a minimum MOS value.

ii. Characterization of optimal solution: the original problem has non-linear constraints

and may require a prohibitive computational effort. We transform it and solve it optimally

as a MILP using standard algorithms, with lower complexity.

iii. Proposal of heuristic solution: we propose a suboptimal solution including radio

resource assignment and power allocation requiring lower complexity than the optimal

one does.

iv. Performance evaluation: we show that the proposed heuristic outperforms

benchmarking solutions in the different analyzed scenarios, besides of performing close

to the optimal one.

1.4 Thesis Organization

In Chapter 2, we present the main assumptions in this thesis related to the system model,

which is based on 3rd Generation Partnership Project (3GPP)’s Long Term Evolution (LTE)

standards. To this end, we also provide a quick insight into some relevant features of LTE

and LTE-Advanced (LTE-A).

The mathematical formulation of the studied problem and its optimal solution as a MILP

are presented in Chapter 3. To overcome the problem of high computational effort required

by the optimal solution, we also present in this chapter a heuristic solution with lower

complexity, called PRABE.

The performance evaluation is presented in Chapter 4. We consider four different scenarios

to compare the performance of PRABE with two benchmarking algorithms besides of the

optimal solution and a mixed one. The mixed solution is composed by two parts an

optimal resource assignment considering Equal Power Allocation (EPA) and a heuristic power

allocation.

The main conclusions of this master’s thesis are summarized in Chapter 5. Furthermore,

we also point out the main research directions that can be considered as extension of this

work.

1.5 Scientific Production

The content and contributions presented in this Master’s thesis were submitted with the

following information:

I Victor F. Monteiro, Diego A. Sousa, Tarcisio F. Maciel, F. Rafael M. Lima, Emanuel

B. Rodrigues and F. Rodrigo P. Cavalcanti, “Radio Resource Allocation Framework for

Quality of Experience Optimization in Wireless Networks”. IEEE Network special issue -

QoE-Aware Design in Next-Generation Wireless Networks (submitted).

I Victor F. Monteiro, Diego A. Sousa, Tarcisio F. Maciel, F. Rafael M. Lima and F.

Rodrigo P. Cavalcanti, “Alocação de Recursos em Redes Sem Fio Baseada na Qualidade

de Experiência do Usuário”. XXXIII Brazilian Telecommunications Symposium (SBrT),

2015.

I Victor F. Monteiro, Diego A. Sousa, Tarcisio F. Maciel, F. Rafael M. Lima and F. Rodrigo

P. Cavalcanti, “Power and Resource Allocation Based on Quality of Experience”. IEEE

Transactions on Vehicular Technology (to be submitted).
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In parallel to the work developed in the Master course that was initiated on the first

semester of 2014, I have been working on other research projects related to analysis and

control of trade-offs involving QoS provision. In the context of these projects, I have

participated on the following papers and technical reports:

I Victor F. Monteiro, Diego A. Sousa, F. Hugo C. Neto, Emanuel B. Rodrigues, Tarcisio

F. Maciel and F. Rodrigo P. Cavalcanti, “Throughput-based Satisfaction Maximization

for a Multi Cell Downlink OFDMA System with Imperfect CSI”. XXXIII Brazilian

Telecommunications Symposium (SBrT), 2015.

I Diego A. Sousa, Victor F. Monteiro, Tarcisio F. Maciel and F. Rafael M. Lima, “Resource

Management for Rate Maximization with QoE Provisioning in Wireless Networks”. IEEE

Transactions on Vehicular Technology (submitted).

I Victor F. Monteiro, Diego A. Sousa, Tarcisio F. Maciel, F. Rafael M. Lima and F.

Rodrigo P. Cavalcanti, “Power and Resource Allocation Based on Quality of Experience”,

GTEL-UFC-Ericsson UFC.40, Tech. Rep., March 2015, First Technical Report.

I Diego A. Sousa, Victor F. Monteiro, Tarcisio F. Maciel and F. Rafael M. Lima, “Resource

Management for Rate Maximization with QoE Provisioning in Wireless Networks”,

GTEL-UFC-Ericsson UFC.40, Tech. Rep., March 2015, First Technical Report.

I F. Hugo C. Neto, Victor F. Monteiro, Diego A. Sousa, Emanuel B. Rodrigues, Tarcisio

F. Maciel and F. Rodrigo P. Cavalcanti, “A Novel Utility-Based Resource Allocation

Technique for Improving User Satisfaction in OFDMA Networks”, GTEL-UFC-Ericsson

UFC.33, Tech. Rep., Aug. 2014, Fourth Technical Report.



Chapter 2
System Modeling

2.1 Introduction

The system architecture adopted in this thesis is based on 3rd Generation Partnership

Project (3GPP)’s Long Term Evolution (LTE) standards. To this end, Section 2.2 provides a

quick insight into some relevant features of LTE and LTE-Advanced (LTE-A) for the remaining

of this thesis. After that, in Section 2.3, we present the main assumptions of this thesis.

2.2 LTE Overview

With the development of highly advanced mobile devices, the demands for higher data

rates and better Quality of Service (QoS) increased rapidly. Therefore, in 2004 the 3GPP has

specified new standards for the mobile communications: the Evolved Universal Terrestrial

Radio Access Network (E-UTRAN) and the Evolved Packet Core (EPC), which define the radio

access network and the core network of the LTE system, respectively. The E-UTRAN together

with the EPC are known as the Evolved Packet System (EPS).

The standards for LTE are specified in the 3GPP Release 8, as high data rates of up to

300 Mbits/s in the downlink and 75 Mbits/s in the uplink. However, these specifications do

not meet the 4th Generation (4G) requirements set by the International Telecommunication

Union (ITU) such as data rate up to 1 Gbits/s. As a result, the LTE-A, an enhancement of

LTE, was presented as a 4G system to the ITU in 2009, and was finalized by the 3GPP in

Release 10 in March, 2011.

A simplified architecture of LTE is depicted in Figure 2.1. The main logical nodes of the core

network, the EPC, are the Serving Gateway (S-GW), the Mobility Management Entity (MME)

and the Packet Data Network Gateway (P-GW), while the radio access network, the E-UTRAN,

comprises the User Equipments (UEs) and the Evolved Node Bs (eNBs). Connections between

the EPC and the E-UTRAN are established through the S1 interface between the S-GW and

eNBs. The X2 interface was introduced to allow interconnections among eNBs for direct

signaling, eliminating the need of channeling data back and forth through the core network.

In the EPC, the S-GW serves as the local mobility anchor point for inter-eNB handover and

inter-3GPP mobility, as well as the handling of Internet Protocol (IP) packet transfer between

the EPC and the associated UEs. The MME is responsible for handling the user mobility, i.e.,

attaches and detaches to the EPC system, and for tracking area updates. It also handles the

radio bearer management where a radio bearer is a data flow or logical channel established

between an eNB and a UE [36]. The P-GW serves as the medium between the EPC and other

IP networks such as the Internet. It also performs IP address allocation for UEs and QoS
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Figure 2.1: LTE architecture.

enforcement [37].

Concerning the E-UTRAN, unlike the previous 2nd Generation (2G) and 3rd Generation

(3G) technologies, LTE integrates all the radio interface related functions into the eNB. The

eNB manages uplink and downlink transmissions among the UEs performing Radio Resource

Management (RRM) functions and control signaling.

Regarding the LTE physical layer of the downlink, some interesting concepts are relevant

for the remaining of this thesis, such as the Orthogonal Frequency Division Multiple Access

(OFDMA) technique and the link adaptation concept.

OFDMA

OFDMA is an extension of Orthogonal Frequency Division Multiplexing (OFDM). While

OFDM splits the frequency bandwidth into orthogonal sub-carriers and use them to transmit

data to a single user, OFDMA distributes sub-carriers to different users at the same time, so

that multiple users can be scheduled to receive data simultaneously. For LTE systems, the

sub-carrier spacing is 15 kHz.

The data symbols can be independently modulated and transmitted over these orthogonal

sub-carriers. In LTE, the available downlink modulation schemes are Quadrature Phase Shift

Keying (QPSK), 16-Quadrature Amplitude Modulation (QAM), and 64-QAM.

OFDMA enhances considerably the total system spectral efficiency. It performs adaptive

user-to-sub-carrier assignment, based on feedback about the Channel State Information (CSI)

from each user. It can also be used in combination with Time Division Multiple Access (TDMA),

such that the resources are partitioned in the time-frequency plane. Figure 2.2 illustrates this

partition. The minimum allocable time-frequency block is known as Resource Block (RB). An

RB corresponds to a subset of sub-carries in the frequency domain and a number of OFDM

symbols in the time domain [38]. A cyclic prefix is added prior to each OFDM symbol as a

guard interval to avoid inter-symbol interference due to channel delay spread.

Link Adaptation

Link adaptation technique consists of dynamically adjusting the transmission parameters,

such as Modulation and Coding Schemes (MCSs), to match the conditions of the users’ radio

link. During good propagation conditions, a high order modulation scheme with low coding

redundancy is used in order to increase the transmission data rate, while during a signal fade,

the system selects a more robust modulation scheme and a higher coding rate to maintain

both connection quality and link stability without increasing the signal power [39].
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Figure 2.2: Time-frequency partition.

In LTE, the UEs transmit in the uplink the Channel Quality Indicator (CQI) to the eNB,

which, in response, selects the best adapted MCS to use in the downlink. Table 2.1 presents

the mapping of CQI into MCS in LTE. Note that larger CQI indexes, i.e., better channel

conditions, allow to transmit more bits on each OFDM symbol and to use the channel more

efficiently.

Differences in MCS bring different BLock Error Rate (BLER) performances, which can be

seen in Figure 2.3. It represents the relationship between Signal to Noise Ratio (SNR), BLER

and MCS. Note that for the same SNR, higher MCS index represents higher BLER, which

means that a given MCS requires a certain SNR to operate with an acceptably low BLER [40].

Table 2.1: CQI and MCS mapping in LTE [41].

CQI
index Modulation Code rate

(x 1024)
Rate

(Bits/symbol)
CQI

index Modulation Code rate
(x1024)

Rate
(Bits/symbol)

0 Out of range 8 16QAM 490 1.9141
1 QPSK 78 0.152 9 16QAM 616 2.4063
2 QPSK 120 0.234 10 64QAM 466 2.7305
3 QPSK 193 0.377 11 64QAM 567 3.3223
4 QPSK 308 0.602 12 64QAM 666 3.9023
5 QPSK 449 0.877 13 64QAM 772 4.5234
6 QPSK 602 1.176 14 64QAM 873 5.1152
7 16QAM 378 1.477 15 64QAM 948 5.5547

2.3 System layout

In this thesis, we consider the downlink of a LTE-like system composed of a single cell in

which an eNB is deployed to serve a set U of UEs distributed within its coverage area. Both the

eNB and the UEs are equipped with single antennas, i.e., we consider a Single Input Single

Output (SISO) scenario.

Due to the diversity of applications with distinct requirements, we consider that the UEs

are separated into different mobile subscription plans. We define S = {1, 2, . . . , S} as the set of

subscription plans and Us as the set of subscribers of service plan s ∈ S, where
⋃

s∈S Us = U .

For example, a priority plan with higher requirements for emergency services, as fire brigade,

police and ambulances, and another one for UEs in general. Moreover, we consider that each

user subscribes to only a single service plan, i.e,
⋂

s∈S Us = ∅.
The considered LTE-like system employs OFDMA and TDMA as multiple access scheme,

where, due to signaling constraints, the radio resources are assigned in blocks. The system

disposes of K RBs arranged in a set K. The time duration corresponding to the time basis at

which resources are allocated to the UEs by the Radio Resource Allocation (RRA) algorithms

is termed herein as Transmission Time Interval (TTI), and it is equal to the time duration of
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Figure 2.3: Relationship between SNR, BLER and MCS in LTE [52].

an RB. Moreover, we consider that each RB can be allocated to only one UE at each TTI.

The complex channel coefficient hu,k between the eNB and the UE u ∈ U over the RB k ∈ K at

a specific TTI encompasses the main propagation effects on the wireless channel, namely path

loss, shadowing, and small-scale fading, as well as any transmit or receive antenna gains.

Furthermore, the channel coherence bandwidth is assumed to be larger than the bandwidth

of an RB, resulting in a flat fading channel over each of them; and the channel response

for each RB is represented by the complex channel coefficient associated with its middle

subcarrier and first OFDM symbol. The UE estimates hu,k using pilot symbols transmitted by

the eNB. The estimated channel, ĥu,k, can be modeled as described in [42]:

ĥu,k =
√
(1− ξ)hu,k +

√
ξη, (2.1)

where ξ ∈ (0, 1) denotes the degradation of the channel estimation and η ∈ C represents a

channel estimation error, which is modeled as a Zero Mean Circularly Symmetric Complex

Gaussian (ZMCSCG) random variable, with E{|η|2} = E{|hu,k|2}.
In this work, we are interested at studying the CSI imperfections regarding the estimation

errors, i.e., we evaluate the impact of the parameter ξ. Hence, we consider that the reports

are performed at every TTI and that the eNB receives the measures without delay.

The estimated instantaneous SNR γ̂u,k of each UE u on each RB k at each TTI is given by

γ̂u,k =
pu,k

∣∣∣ĥu,k∣∣∣2
σ2

, (2.2)

where pu,k is the power used by the eNB to transmit to UE u through the RB k and σ2 denotes

the average Additive White Gaussian Noise (AWGN) power.

As in LTE, we consider a link adaptation mechanism in which the eNB selects a MCS m

from a set M of MCSs. The choice of the MCS depends on γ̂u,k and we consider M = |M|
different MCSs, where | · | applied to a set denotes its cardinality. The selected MCS mu,k
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associated to UE u in RB k is given by

mu,k = f (γ̂u,k) , (2.3)

where f(γ̂u,k) is the link adaptation function. In this work, we consider that the eNB selects

as the best MCS for a given UE u on an RB k the one that leads to the highest data rate for a

given allocated power.

Fixing a desirable value of BLER, we can obtain from the link adaptation curves the

minimum estimated SNR, γ̂u,k,m, that the eNB needs to transmit the information to UE u

in the RB k using the mth MCS and guaranteeing the desirable value of BLER. This minimum

SNR is given by

γ̂u,k,m = f−1(mu,k), (2.4)

where f−1(·) is the inverse of link adaptation function.

From (2.4), we can obtain the values of γ̂u,k,m, which can be used in (2.2) to obtain the

minimum transmit power, pu,k,m, associated to MCS m. Since we consider flat fading over

each RB, at each TTI, the value of ĥu,k in (2.2) is constant for each pair {u, k}.
Defining ru,k,m as the throughput of UE u transmitting on RB k and using MCS m, the total

throughput Ru of UE u is given by

Ru =

K=|K|∑
k=1

M=|M|∑
m=1

ru,k,mxu,k,m, (2.5)

where xu,k,m is the assignment index indicating whether the RB k is allocated to UE u using

the MCS m.

Finally, the Quality of Experience (QoE) τu of a UE u can be obtained from the rate Ru using

the function φ(·), which maps rate into an Mean Opinion Score (MOS), as

τu = φ (Ru) . (2.6)

Based on all these assumptions, we are now able to introduce the studied problem, as well

as its solutions, which will be done in the next chapter.



Chapter 3
Power and Resource Allocation

Based on Quality of Experience

3.1 Introduction

This chapter presents the problem studied in this master thesis and its solutions. The

mathematical formulation of the problem and its optimal solution as a Mixed Integer Linear

Problem (MILP) are presented in Sections 3.2 and 3.3, respectively. MILPs can be solved by

standard numerical optimization methods, nevertheless, they still require high computational

effort. To overcome this issue, a heuristic solution is proposed in Section 3.4.

3.2 Problem Formulation

As already mentioned, the operators are changing their focus to deliver services with high

Quality of Experience (QoE), independently of technical requirements, and measuring their

performance based on the percentage of satisfied users in the system.

In this context, we aim to assign Resource Blocks (RBs) to the User Equipments (UEs)

being served by the system and to allocate power to their corresponding channels in a way

that maximizes the minimum Mean Opinion Score (MOS) perceived by these same UEs. In

Figure 3.1 we have an illustration of the studied problem. Initially, the smartphone and tablet

users are unsatisfied due to the low number of RBs and power allocated to them, while the

notebook and smartwatch users have more RBs than they need to get satisfied. Then, the RBs

are reassigned and the power is reallocated between the UEs’ channels in order to maximize

the minimum satisfaction in the system.

Besides the maximization of the minimum MOS t, in order to guarantee a minimum quality

for the services being provided by the network operator, we require that at least ϕs UEs should

be satisfied for each service plan s, i.e, have a MOS equal to or higher than a given target MOS

value ns. We call the ratio αs =
ϕs

Us
as the satisfaction factor of the service plan s.

Moreover, our problem is also constrained in transmit power, which should be equal to

or lower than the total transmit power Pt available at the Evolved Node B (eNB). Based on

these assumptions and on the models presented in Section 2.3, this problem can then be
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Figure 3.1: Studied problem.

formulated as

maximize t (3.1a)

subject to τu ≥ t,∀u ∈ U , (3.1b)
Us∑
u=1

u (τu, ns) ≥ ϕs,∀s ∈ S, (3.1c)

U∑
u=1

K∑
k=1

M∑
m=1

pu,k,mxu,k,m ≤ Pt, (3.1d)

U∑
u=1

M∑
m=1

xu,k,m ≤ 1,∀k ∈ K, (3.1e)

xu,k,m ∈ {0, 1},∀u ∈ U ,∀k ∈ K,∀m ∈M, (3.1f)

where u(a, b) represents the step function given by

u(a, b) =

1, if a ≥ b,

0, if a < b.
(3.2)

The objective function t being maximized in (3.1a) represents the system minimum MOS,

which is guaranteed by constraint (3.1b). The inequality in (3.1c) imposes that, for each

service s, at least ϕs out of the Us UEs have MOS equal to or greater than ns. In (3.1d), we

have the transmit power constraint. Finally, the last two constraints, (3.1e) and (3.1f), assure

that an RB will be allocated to only one UE at a time.
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The problem described in (3.1) is nonlinear, due to constraint (3.1c), and mixed integer

since xu,k,m is a binary variable and t is a continuous variable. Therefore, its optimal solution

may require a prohibitive computational effort [43]. To reduce its complexity, in the next

section we will convert (3.1) into a linear optimization problem.

3.3 Optimal Solution

The main objective of this section is to reformulate the problem (3.1) as an MILP, which has

lower complexity than the formulation presented in Section 3.2 and can be solved by standard

algorithms, such as the Branch and Bound (BB) method [44]. We take two main steps. The

first one is to linearize the constraint in (3.1c). The second one is to rewrite the problem in a

compact form, using tensor notation.

Considering φ(·) as a strictly increasing function, then there is an inverse function φ−1(·)
mapping the possible MOS values of the UEs into corresponding required data rate values [45].

Replacing (2.5) and (2.6) into (3.1b), we obtain

τu = φ (Ru) ≥ t⇒ φ

(
K∑

k=1

M∑
m=1

ru,k,mxu,k,m

)
≥ t

⇒
K∑

k=1

M∑
m=1

ru,k,mxu,k,m ≥ φ−1 (t)

⇒ φ−1 (t)−
K∑

k=1

M∑
m=1

ru,k,mxu,k,m ≤ 0,∀u.

(3.3)

Similarly, replacing (2.5) and (2.6) into the constraint (3.1c), we can rewrite it as

Us∑
u=1

u (τu, ns) ≥ ϕs ⇒
Us∑
u=1

u

(
K∑

k=1

M∑
m=1

ru,k,mxu,k,m, ψu

)
≥ ϕs,∀s ∈ S, (3.4)

where ψu = φ−1(ns),∀u ∈ Us and ∀s ∈ S, denotes the required transmit rate for UE u to be

satisfied.

We introduce a binary operator ρu defined as

ρu =

1, if τu ≥ φ(ψu),

0, if τu < φ(ψu),
(3.5)

to replace the step function in (3.4). This variable assumes the value 1 if the user u is satisfied

and 0 otherwise.

Restating (3.4), we have:

K∑
k=1

M∑
m=1

ru,k,mxu,k,m ≥ ψu · ρu, (3.6a)

U∑
u=1

qu,sρu ≥ ϕs,∀s ∈ S, (3.6b)

where qu,s is equal to 1 if the UE u subscribes the service plan s.
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In this way, (3.1) can be rewritten as:

maximize φ−1 (t) , (3.7a)

subject to φ−1 (t)−
K∑

k=1

M∑
m=1

ru,k,mxu,k,m ≤ 0,∀u ∈ U , (3.7b)

K∑
k=1

M∑
m=1

ru,k,mxu,k,m ≥ ψu · ρu, (3.7c)

U∑
u=1

qu,sρu ≥ ϕs,∀s ∈ S, (3.7d)

U∑
u=1

K∑
k=1

M∑
m=1

pu,k,mxu,k,m ≤ Pt, (3.7e)

U∑
u=1

M∑
m=1

xu,k,m ≤ 1,∀k ∈ K, (3.7f)

xu,k,m ∈ {0, 1},∀u ∈ U , k ∈ K,m ∈M. (3.7g)

At this point, we will reformulate (3.7) in a matrix form. For this, we need to introduce

some concepts and definitions related to tensors. The first one is the concept of unfolding,

illustrated in Figure 3.2. We arrange the elements xu,k,m in a multi-dimensional array X ∈
RU×K×M and we denote X(2) ∈ RK×U ·M as the mode-2 unfolding of X, where the elements x(2)

of X(2) are defined in function of the elements of X as x(2)k,u+(m−1)U = xu,k,m [46]. In a similar

way, the elements ru,k,m and pu,k,m form the multi-dimensional arrays R and P, respectively,

and R(2) and P(2) are the mode-2 unfolding of R and P, respectively.

Figure 3.2: Mode-2 unfolding of a third-order matrix [46].

We consider A � B as the element-wise product between two equal-size matrices, called

Hadamard product, and A⊗B as the Kronecker product expressed as

A⊗B =


a11B a12B · · · a1JB

a21B a22B · · · a2JB
...

...
. . .

...

aI1B aI2B · · · aIJB

 ,

where A ∈ RI×J and B ∈ RT×R. Finally, we define the vec {·} operation as vec {Z} =[
zT1 zT2 . . . zTn

]T
, where zi is the i-th column of matrix Z.

To simplify the notation, we rename the following variables: x = vec
{

X(2)T
}

, p =

vec
{

P(2)T
}

and r = vec
{

R(2)T
}

. Arranging the elements qu,s into the matrix Q, we can now
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rewrite (3.7) in matrix form as

maximize φ−1 (t) , (3.8a)

subject to φ−1 (t) · 1U −
[ (

1T
MK ⊗ IU

)
�
(
1U ⊗ rT

) ]
· x ≤ 0U , (3.8b)[(

ψ ⊗ 1T
U

)
� IU

]
· ρ−

[ (
1T
MK ⊗ IU

)
�
(
1U ⊗ rT

) ]
· x ≤ 0U , (3.8c)

−QTρ ≤ −ϕ, (3.8d)

pTx ≤ Pt, (3.8e)[
IK ⊗ 1UM

T
]
x ≤ 1K , (3.8f)

x and ρ are binary vectors, (3.8g)

where the elements ψs, ρu and ϕu are respectively arranged into the column vectors ψ, ρ and

ϕ, IU is a U ×U identity matrix, 0U is a column vector with U zeros and 1U is a column vector

with U ones.

At this point, the variables of our problem are: φ−1 (t), x and ρ. To simplify even more the

notation, they can be arranged into one single vector w, where

w =


φ−1 (t)

x

ρ

 . (3.9)

Then, using w in the definition of a, B and C as below

a =
[
1 0T

UMK 0T
U

]T
⇒ aTw = φ−1 (t) , (3.10a)

B =
[

0UMK IUMK 0UMK×U

]
⇒ Bw = x, (3.10b)

C =
[

0U×(1+UMK) IU

]
⇒ Cw = ρ, (3.10c)

we can finally rewrite the optimization problem as

minimize − aT ·w, (3.11a)

subject to D ·w ≤ e, (3.11b)

where

D =



1Ua−
[(

1T
MK ⊗ IU

)
�
(
1U ⊗ rT

)]
B[(

ψ ⊗ 1T
U

)
� IU

]
·C−

[(
1T
MK ⊗ IU

)
�
(
1U ⊗ rT

)]
B

−QTC

pTB[
IK ⊗ 1T

UM

]
B


, (3.12)

and,

e =
[

0T
U 0T

U −ϕT Pt 1T
K

]T
. (3.13)

We have been able to reformulate (3.1) into an equivalent MILP in standard form, (3.11),

with only linear constraints and which can be solved by standard methods, such as the BB

method.
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3.4 Proposed Solution

For real time systems, the optimal solution presented in Section 3.3 can still be impractical,

since, depending on the problem dimensions, it can still require high computational effort.

Motivated by this, in this section we develop a suboptimal heuristic solution, called Power and

Resource Allocation Based on Quality of Experience (PRABE), to solve (3.1) and to overcome

the complexity problem.

The proposed solution divides the problem (3.7) into two parts: the resource assignment

and the power allocation. In Section 3.4.1, we describe the resource assignment which is

performed considering Equal Power Allocation (EPA) among the RBs. In Section 3.4.2, we

describe the power allocation, which is done considering the previously performed resource

assignment.

3.4.1 Resource Allocation

Considering EPA among RBs, (3.7e) is always fulfilled (at most with equality) so that we

can rewrite problem (3.7) as

maximize φ−1 (t) (3.14a)

subject to φ−1 (t)−
K∑

k=1

r̃u,kx̃u,k ≤ 0,∀u ∈ U , (3.14b)

K∑
k=1

r̃u,kx̃u,k ≥ ψu · ρu,∀u ∈ U , (3.14c)

U∑
u=1

qu,sρu ≥ ϕs,∀s ∈ S, (3.14d)

U∑
u=1

x̃u,k ≤ 1,∀k, (3.14e)

x̃u,k and ρu ∈ {0, 1},∀u ∈ U and k ∈ K, (3.14f)

where x̃u,k is the binary assignment variable indicating whether the RB k is allocated to UE

u. Because the power per RB is constant, there is a single rate r̃u,k achievable by UE u

transmitting on an RB k, so that the total throughput Ru of UE u can be redefined as

Ru =

K∑
k=1

r̃u,kx̃u,k. (3.15)

As done with (3.7), we can reformulate (3.14) into a matricial form. Arranging the

elements r̃u,k and x̃u,k in the matrices R̃ and X̃, respectively, and denoting the Khatri-Rao

product for two matrices A =
[
a1 a2 · · · aJ

]
∈ RI×J and B =

[
b1 b2 · · · bJ

]
∈ RT×J as
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A ∗B =
[
a1 ⊗ b1 a2 ⊗ b2 · · · aJ ⊗ bJ

]
we have

maximize φ−1 (t) , (3.16a)

subject to φ−1 (t) · 1U −
(
R̃T ∗ IU

)T
· x̃ ≤ 0U , (3.16b)[(

ψ ⊗ 1T
U

)
� IU

]
· ρ−

(
R̃T ∗ IU

)T
· x̃ ≤ 0U , (3.16c)

−QTρ ≤ −ϕ, (3.16d)[
IK ⊗ 1U

T
]
x̃ ≤ 1K , (3.16e)

x̃ and ρ are binary vectors, (3.16f)

where x̃ = vec
{

X̃
}

.

In order to collect the optimization variables in a single vector, we define

w̃ =


φ−1 (t)

x̃

ρ

 , (3.17)

so that

ãT · w̃ = φ−1 (t) with ã =
[
1 0(UK+U)

T
]T
, (3.18a)

B̃ · w̃ = x̃ with B̃ = [0UK IUK 0UK×U ] , (3.18b)

and C̃ · w̃ = ρ with C̃ =
[
0U×(1+UK) IU

]
. (3.18c)

Finally, using (3.18), the optimization problem can be rewritten as

minimize − ãT · w̃ (3.19a)

subject to D̃ · w̃ ≤ ẽ (3.19b)

where

D̃ =


1U ãT −

(
R̃T ∗ IU

)T
B̃[(

ψ ⊗ 1T
U

)
� IU

]
· C̃−

(
R̃T ∗ IU

)T
B̃

−QTC̃[
IK ⊗ 1T

U

]
B̃

 (3.20)

and,

ẽ =
[

0T
U 0T

U −ϕ 1T
K

]T
. (3.21)

Problem (3.19) solves the resource assignment in an optimal way. Furthermore, compared

to (3.11), it has lower complexity since it solves the resource assignment considering EPA and,

thus, eliminating the power dimension of the optimization problem. However, its complexity

is still high for real time systems. Therefore, in order to obtain a suboptimal but efficient and

low-complexity solution to (3.19) we propose a new heuristic method presented in Figure 3.3.

Algorithm 3.1 presents, in algorithm form, how it can be implemented.

The flowchart in Fig. 3.3 is divided into two parts. On the first one we try to satisfy at least

ϕs UEs for each plan s, blocks (1) to (7). It is done in a loop, where in each step, an RB is

allocated to the UE that can achieve the highest transmit data rate on this RB. If this user

achieves the target MOS of his/her plan, he/she is removed from the set of users, block (3).
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Begin

(1) Estimate the transmit rate,
r̃u,k, of UE u transmitting in
RB k, ∀u ∈ U and ∀k ∈ K

(2) Find the pair (û, k̂) in U × K that
maximizes r̃u,k and allocate k̂ to û

(3) If û is now satisfied,
remove him/her from U .

(4) Are there RBs to be allocated?

(5) Being ŝ the service plan of û,
has ŝ at least ϕŝ satisfied users?

(6) Remove from U all the UEs of ŝ

(7) Are there at least ϕs

satisfied users ∀s ∈ S?

(8) Reinitialize the
set U with all UEs

(9) Allocate to the user with
the minimum MOS the

RB in which he/she has
the highest transmit rate

(10) Are there RBs to be allocated?

Power Allocation
(See Figure 3.4)

No

Yes

Yes

No

No

Yes

Yes

No

Figure 3.3: Flowchart of proposed resource assignment algorithm.

Besides, if his/her plan has already achieved the minimum number of satisfied users, the

other users of this plan are also removed from U , blocks (5) and (6). This process continues

until all plans have at least ϕs satisfied users, block (7), or until all RBs have been allocated,

block (4). On the second part, blocks (8) to (10), we maximize the minimum MOS, assigning

the available resources to the users with the lowest MOS.

Algorithm 3.1 presents the description of Figure 3.3 in a more detailed form. In the

beginning, no RB has been assigned and all users are unsatisfied. Therefore we initialize

the allocation matrix X̃ with only zeros (line 1). For each plan, we also initialize the number of

users already satisfied, usat, as zeros (line 2), and we initialize the number of unassigned RBs,

RBfree, as the number of available RBs, K (line 3). Next, we allocate RBs until all resources

have been assigned or the minimum number of satisfied users, ϕs, has been achieved for

all plans (lines 4 to 17). In line 5, we select the UE û and the resource k̂ associated to the

highest rate in R̃, then we allocate k̂ to û (line 6). In the sequel, we remove k̂ from the set

of resources, K, and update the number of available RBs (lines 8 and 9, respectively). If the

user û is now satisfied, he/she is removed from the set of users U and we update the number

of users already satisfied of his/her plan (lines 10 to 12). In the same way, if his/her plan

has achieved the minimum number of satisfied users, the other users of this plan are also
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removed. In line 18, we have three possibilities: the number of satisfied users has already

been achieved by all plan, all resources have been assigned or both. If there are still available

resources (in lines 18 to 28), they will be allocated aiming to maximize the minimum MOS.

First we identify, among all users, the one with the lowest MOS (line 21). Next, we chose

for him/her the remaining RB which maximizes his/her transmit data rate (line 22). This

algorithm finishes after the last available resource has been allocated.

Algorithm 3.1 Resource Allocation considering EPA.

1: X̃ ← 0U×K . Initialize the allocation matrix
2: usat ← 0S . For each plan, initialize the number of users already satisfied
3: RBfree ← K . Initialize the number of unassigned RBs
4: while (RBfree > 0 & usat < ϕ) do
5: (û, k̂)← argmaxu∈U,k∈K r̃u,k
6: x

û,k̂
← 1 . Assign RB k̂ to user û

7: Update τû
8: K ← K \ {k̂} . Remove RB k̂ from K
9: RBfree ← RBfree − 1 . Update RBfree
10: if τû ≥ φ (ψu) then . Test if user û is satisfied
11: U ← U \ {û} . Remove user û from U
12: usat (ŝ) ← usat (ŝ) + 1 . Update usat (ŝ), where û ∈ Uŝ
13: if usat (ŝ) ≥ ϕŝ then
14: U ← U \ Uŝ . Remove of U the UEs of ŝ
15: end if
16: end if
17: end while
18: if RBfree > 0 then
19: Reinitialize the set U with all users
20: while (RBfree > 0) do
21: û← argminu∈U τu . Find the user with the lowest MOS
22: k̂ ← argmaxk∈K r̃û,k
23: x

û,k̂
← 1 . Assign RB k̂ to user û

24: Update τû
25: K ← K \ {k̂} . Remove RB k̂ from K
26: RBfree ← RBfree − 1 . Update RBfree
27: end while
28: end if

3.4.2 Power Allocation

After the assignment of RBs to the UEs has been performed, it can be considered as a fixed

input for the proposed power allocation algorithm whose flowchart is illustrated in Figure 3.4.

Algorithm 3.2 presents, in algorithm form, how it can be implemented.

The first step is to estimate the amount of power, pneed
u , needed for each UE to achieve the

target MOS φ (ψu), block (1) of Figure 3.4 and lines 1 and 2 of Algorithm 3.2, where Ku is the

set of RBs allocated to UE u and pneed
u is the sum of powers pneed

u,k needed in each resource

k ∈ Ku. The method to estimate these values is presented in Algorithm 3.3, which will be

described later.

Next, the vector psort receives these powers divided in 2 parts, each one sorted in ascending

order: the first one is composed by the ϕs lowest values of service s, ∀ s ∈ S and the second

one is composed by the other values. This step can be seen in block (2) of Figure 3.4 and

lines 3 and 4 of Algorithm 3.2.

Next, we verify if the sum of all pneed
u is lower than the power in excess, Pexc, which is

initialized as Pt. If
∑

u∈U p
need
u ≤ Pt, it means that we have enough power to satisfy all the

users, so we set the number of users to be satisfied, Usat, equal to U . Otherwise, we will try

to satisfy at least the minimum number of users required by each service,
∑|S|

s=1 ϕs. This is

illustrated in blocks (4), (5a) and (5b) of Figure 3.4 and lines 6 to 11 of Algorithm 3.2.

Next, we start allocating the values of power in psort, in ascending order, blocks (6) to

(8) and lines 12 to 17. There are three stop conditions: 1) the number of expected users
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Resource Allocation (EPA)
(See Figure 3.3)

(1) Estimate the power needed,
pneed
u =

∑
∀k∈Ku

pneed
u,k , to each UE u,

targeting the threshold MOS φ (ψu)
(See Figure 3.5)

(2) Vector psort receives these
powers divided in 2 parts, each
one sorted in ascending order:

- The first one is composed
by the ϕs lowest values

of service s, ∀ s ∈ S
- The second one is

composed by the other values

(3) Set Pexc = Pt and i = 1

(4) Is the sum of these
powers lower or equal to

the power in excess, Pexc?

(5a) Set the
number of users
to be satisfied,
Usat, equal to the

number of users, U

(5b) Set Usat equal
to the minimum

number of satisfied
users,

∑|S|
s=1 ϕs

(6) The user corresponding to psort
i ,

the ith entry of psort, receives psort
i

(7) Update Pexc; Increment
i; Decrement Usat

(8) Is Usat = 0 or
Pexc = 0 or psort

i > Pexc?

(9) Now, we have l levels of MOS,
where l ≤ s + 1 and θj is the
j − th lowest value. Initialize,
j = 1 and set θl+1 = 5.

(10) Distribute Pexc among the
UEs with MOS θj , aiming to
equally increase their MOS

until achieving at maximum θj+1

(See Figure 3.6)

(11) Increment j and update Pexc

(12) Is Pexc > 0 and j < l + 1?

End

Yes No

Yes

No

Yes

No

Figure 3.4: Flowchart of proposed power allocation algorithm.

to be satisfied, Usat =
∑|S|

s=1 ϕs, has been achieved, 2) there is a lack of in-excess power to be

allocated or 3) the next value of power, pneed
u , to be allocated is higher than the excess of power.

At this point, we have l levels of MOS, with 1 ≤ l ≤ s + 1, where l = 1 if all UEs have MOS
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Algorithm 3.2 Power allocation.

1: ∀u ∈ U , call Algorithm 3.3 to estimate pneed
u,k , ∀k ∈ Ku, aiming MOS φ (ψu)

2: ∀u ∈ U , pneed
u ←∑

∀k∈Ku
pneed
u,k

3: ∀u ∈ Us and ∀s ∈ S, ps ← sort(pneed
u )

4: psort ← sort
(⋃∀s∈S
∀i∈[1,ϕs]

psi

)⋃
sort

(⋃∀s∈S
∀i∈[ϕs+1,Us]

psi

)
5: i← 1
6: Pexc ← Pt
7: if

∑
u∈U p

need
u ≤ Pexc then

8: Usat ← U . Satisfy all the users
9: else
10: Usat ←

∑|S|
s=1 ϕs . Try to satisfy at least the minimum number of users required for each service

11: end if
12: while

(
Usat > 0 & Pexc > 0 & psort

i ≤ Pexc
)

do
13: pi,k ← psort

i,k , ∀k ∈ Ki . Power allocation of user i
14: Pexc ← Pexc −

∑
∀k∈Ki

psort
i,k . Update Pexc

15: Usat ← Usat − 1 . User i is satisfied, so decrease Usat
16: i← i+ 1 . Increment i
17: end while
18: θ ← unique(sort(τ )) . θj is the j − th lowest MOS
19: θl+1 ← 5 . 5 is the highest MOS that can be achieved
20: j ← 1
21: while Pexc > 0 & j < l+ 1 do
22: Call Algorithm 3.4 to distribute Pexc among the UEs with MOS θj aiming at maximum the MOS θj+1

23: j ← j + 1
24: end while

equal to zero and l = s + 1 if at least one UE of each service has achieved the target MOS of

its service and there are still some UE with MOS equal to zero. These l levels are arranged in

ascending order in θ, where θj is the j-th lowest value and θl+1 = 5 is the highest MOS that

can be achieved, block (7) and lines 18 and 19.

Finally, in steps (9) to (12) and lines 21 to 23, for each level of MOS we will distribute

Pexc among the UEs of this level aiming to achieve the next level of MOS. If there is still Pexc

these UEs will joint the UEs of the next level and the power distribution will be repeated. The

algorithm to distribute the in-excess power among a set of users in a way that all achieve the

same MOS is presented in Algorithm 3.4.

It is also worthy to mention that Algorithms 3.3 and 3.4 are based on Hughes-Hartogs

Bit-Loading Algorithm [47]. Given a specific UE û and the set of RBs allocated to it, Kû,

(1) Initialize all RBs
of a specific UE
in Modulation
and Coding

Scheme (MCS) zero

(2) Estimate the power efficiency of
each RB, i.e., the ratio between the
increase in rate and the expense in
power when increasing their MCS

(3) - Increase the MCS of the RB
with the highest power efficiency

- Allocate to it the necessary power
to transmit using this new MCS
- Estimate its power efficiency

(4) Is the user’s MOS equal to or
higher than n or is his/her lowest
MCS equal to or higher than M?

End

Yes

No

Figure 3.5: Flowchart of proposed power calculation to achieve a target MOS for a specific user.
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(1) Initialize the
increment rate
variable rstep

(2) For each UE, estimate the
power needed to achieve the target
MOS φ (R+ rstep), which should

be lower than or equal to nmax
(See Fig. 3.5)

(3) Is the sum of these
powers lower than or equal

to the power in excess, Pexc?

(4a) Allocate them
to the UEs and

update the value
of Pexc and R

(4b) Decrement
the value of rstep

(5a) Is Pexc
greater

than zero?

(5b) Is rstep
greater

than zero?

End

Yes No

NoNo

Yes Yes

Figure 3.6: Flowchart of proposed power distribution targeting a uniform MOS.

Algorithm 3.3 calculates the power allocation among these RBs aiming to achieve a target

MOS n and minimizing the total power used. Considering that RB k is using MCS mk, in

the beginning, we select MCS zero to all resources (line 1), i.e. zero power for all RBs. We

define ∆Pk as the additional power needed for RB k to use MCS mk + 1 and ∆Rk as the

increase in transmit rate in RB k when changing from MCS mk to mk +1. These variables are

initialized in lines 2 and 3. While user û has not achieved the target MOS n and at least one

RB is not transmitting at the highest MCS, we repeat the steps between lines 4 and 14. In

line 5, we identify the resource k̂ with the highest power efficiency Ek̂, where Ek is the ratio

between the increase in rate and the power expenditure to change the MCS of RB k from mk

to mk + 1. After this identification, we increase the MCS of k̂ (line 6) and we update ∆Pk and

∆Rk (lines 7 to 13). In line 11, we guarantee that the maximum MCS achieved by any RB k

will be M by setting ∆Rk equal to −1 when it is already in MCS M . In that way, Ek will be

negative and it will not be selected anymore. Finally, we calculate the values pneed
û,k in line 15.

Algorithm 3.3 Power calculation targeting a target MOS (PCTSM).
Require: A MOS target n and the set of RBs of user û, Kû

Ensure: Estimation of pneed
û,k

, ∀k ∈ Kû

1: mk ← 0, ∀k ∈ Kû . Initialize all RBs in MCS zero
2: ∆Pk ← pû,k,(mk+1), ∀k ∈ Kû . Additional power needed
3: ∆Rk ← rû,k,(mk+1), ∀k ∈ Kû . Increment in transmit rate
4: while

(
τu < n & mink∈Kû

mk < M
)

do
5: k̂← arg maxk∈Kû

Ek = ∆Rk
∆Pk

. Find RB with highest power eff.

6: m
k̂
← m

k̂
+ 1 . Update MCS of RB k̂

7: if m
k̂
< M then . Update the increment in rate and power

8: ∆R
k̂
← r

û,k̂,(mk̂
+1) − rû,k̂,m

k̂

9: ∆P
k̂
← p

û,k̂,(mk̂
+1) − pû,k̂,m

k̂

10: else
11: ∆R

k̂
← −1

12: ∆P
k̂
← 1

13: end if
14: end while
15: pneed

û,k
← pû,k,mk

, ∀k ∈ Kû . Set needed power for all RBs
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Algorithm 3.4 Power distribution targeting a uniform MOS (PDTUM).
Require: A set of UEs U ′, their RBs, an excess of power, Pexc, and an upper bound nmax
1: Initialize rstep
2: while Pexc > 0 & φ (R+ rstep) ≤ nmax do
3: ∀u ∈ U ′, call Alg.3.3 to estimate pneed

u,k , ∀k ∈ Ku, aiming φ (R+ rstep)

4: pneed
u,k ← PCTSM (φ (R+ rstep)), ∀u ∈ U ′

5: if pu,k = pneed
u,k , ∀u ∈ U ′, k ∈ Ku then

6: Stop
7: end if
8: if

∑
∀u∈U′

∑
∀k∈Ku

(
pneed
u − pu

)
≤ Pexc then

9: pu,k ← pneed
u,k , ∀u ∈ U ′, k ∈ Ku

10: Pexc ← Pexc −
∑

∀u∈U′
∑

∀k∈Ku

(
pneed
u,k − pu,k

)
11: R← R+ rstep
12: else
13: Decrement rstep
14: if rstep = 0 then
15: Distribute Pexc in ascending order of

∑
∀k∈Ku

pneed
u

16: end if
17: end if
18: end while

Given an amount of power Pexc and a set of users, U ′, in which all users have

approximatively the same transmit rate R and so approximatively the same MOS φ(R),

Algorithm 3.4 allocates Pexc among these users and their RBs, in a way that all users increase

their MOS equally. It works as follow: 1) We fix a target value of rate R + rstep, where

φ
(
R+ rstep

)
must be lower than or equal to an upper bound nmax, and, in line 4, we use

Algorithm 3.3, to estimate the needed power for all UEs to transmit using the rate R + rstep;

2) If the increase in power that we need to have to achieve this purpose is lower than or equal

to Pexc, in lines 8 to 11, we distribute the power and update the value of R; 3) Otherwise, we

decrement the value of rstep and try again. In case rstep becomes zero, we stop. The initial

value of rstep and the way it will decrement is chosen by the operator. This choice has an

important impact on the algorithm complexity.

3.5 Partial Conclusions

In this chapter, we presented a radio resource assignment problem aiming at maximizing

the minimum MOS of the system subject to attaining at least a minimum number of satisfied

users. It was initially formulated as a non-linear problem, but we managed to reformulate

it as a MILP, solvable by standard methods, as the BB. Finally, we presented our proposal,

consisting of two parts. The first one assigns the resources considering EPA, while the second

one allocates power considering the previous resource allocation. In the next chapter, we

evaluate our proposal, by means of simulations, comparing it with the optimal solution, as

well as with two benchmarking algorithms and with a mixed solution, which uses as resource

assignment the optimal solution of (3.19) and as power allocation the heuristic proposed in

Algorithm 3.2, Section 3.4.2.



Chapter 4
Performance Evaluation

4.1 Introduction

In this chapter, we evaluate the proposed Power and Resource Allocation Based on

Quality of Experience (PRABE) algorithm and compare its performance with that of the

optimal solution, of a mixed-solution, as well as with that of two benchmarking algorithms.

In Section 4.2, we present the simulation parameters, the benchmarking algorithms, the

evaluated scenarios and the evaluation metrics. In Section 4.3, we present the results and

the discussions.

4.2 Simulation Assumptions

The system model configuration presented in Chapter 2 was adopted for all simulations.

The system parameters were aligned with the 3rd Generation Partnership Project (3GPP) Long

Term Evolution (LTE) architecture.

A hexagonal cell with 1 km radius was considered, within which there was one Evolved

Node B (eNB) with a three-sectored antenna. We adopted a system bandwidth of 5 MHz

and carrier frequency of 2 GHz. The system disposed of 25 Resource Blocks (RBs), each

one consisting of 12 adjacent subcarriers. The propagation effects on the wireless channel

included a lognormal shadowing component and a distance-dependent path-loss, as well as

small-scale fading. We also adopted a 3D antenna model, as in [48], considering a downtilt

angle in order to increase cell isolation and to mitigate the effects of inter-cell interference.

Table 4.1 presents the main adopted parameters. In subsections 4.3.1, 4.3.2 and 4.3.4 we

consider path loss model 1 and in subsection 4.3.3 we consider path loss model 2.

The Mean Opinion Score (MOS) function, φ (·), adopted for the simulations is proposed

in [53]. It is an utility function for web connections in LTE, in accordance with the scenario

adopted in this master’s thesis. It is presented in (4.1) and illustrated in Figure 4.1.

φ(Ru) = 5−
578

1 +

(
Ru + 541.1

45.98

)2 , (4.1)

where Ru is the total throughput of UE u.

Four different scenarios were adopted to evaluate the performance of the proposed

algorithm:

I The first one considered only one service plan. We analyzed the impact of the target

MOS for different numbers of UEs in the system, as well as the impact of the satisfaction
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Table 4.1: Simulation parameters.

Parameter Value
Maximum eNB transmit power (Pt) 43 dBm [49]
eNB antenna radiation pattern Three-sectored [49]
Cell radius 1 km
UE speed 3 km/h [50]
Carrier frequency 2 GHz [50]
System bandwidth 5 MHz [49]
Subcarrier bandwidth 15 kHz
Number of RBs (K) 25
Number of subcarriers per RB 12
Path loss model 1a 15.3 + 37.6 log10(d) [50]
Path loss model 2a 34.5 + 35 log10(d) [51]
Antenna gainb Gh(θh) +Gv(θv) [48]
Downtilt angle 8 degrees
Log-normal shadowing standard deviation 8 dB [50]
Small-scale fading IID
AWGN power per sub-carrier -123.24 dBm
Noise figure 9 dB
Link adaptation Link level curves from [52]
Traffic model Full buffer
Transmission Time Interval 1 ms
Number of snapshots 3000

ad is the distance from the eNB to the UE in m.
bθh and θv represents the horizontal and vertical angles related to the eNB, respectively.
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Figure 4.1: MOS function [53].

factor for a specific number of UEs.

I On the second one, we divided 20 UEs into two service plans. First, we fixed the

satisfaction factor of both services (α1 = α2 = 1) and the target MOS of service one

(n1 = 4.4), then we analyzed the impact of changing the target MOS of service two (n2)

and the percentage of UEs in each service. After that, we analyzed the impact of n2 for

different values of α2.

I The third one was similar to the first one, but we considered a stronger path loss.

I The last one, analyzed the impact of different values of degradation in the Channel State

Information (CSI) and different values of target MOS in a system with 5 UEs, all in the
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same service plan. We did this analysis twice, one considering α = 1 and the other one

considering α = 0.8, i.e, satisfy 4 among 5 UEs.

The proposed algorithm, PRABE, was compared to four other methods:

I The optimal solution, obtained solving (3.11) using the ILOG CPLEX solver [54].

I A mixed solution using as resource assignment the optimal solution of (3.19), also solved

using the ILOG CPLEX solver [54], and as power allocation the heuristic proposed in

Algorithm 3.2, Section 3.4.2.

I A benchmarking algorithm proposed in [31]. First, it partitions the subcarrier set into

groups which are randomly assigned to the UEs, then the UEs are grouped in pairs to

negotiate the RBs. At the same time, a water-filling power allocation is done.

I A second benchmarking algorithm proposed in [32]. It uses the Hungarian algorithm [55]

to assign frequency spectrum and the optimal solution of a Tchebycheff problem for the

power allocation.

The benchmarking algorithms were not used when evaluating the variation of the

satisfaction factor, since they do not consider this concept.

We adopted two metrics to evaluate the different algorithms. The first one was the

minimum MOS perceived among the UEs in the system, since our main objective is to

maximize this metric. The second one was the outage, which is defined as the percentage

of cases in which the minimum number of satisfied users ϕs is not achieved in at least one of

the services.

4.3 Results

4.3.1 Single Service Plan

This first scenario considers only one service plan. In Figure 4.2, we present the outage

rate as a function of the number of UEs considering three different values of target MOS and

a satisfaction factor equal to 1, i.e., satisfy all the UEs.

In Figure 4.2(a), target MOS equal to 3.6, different of the two benchmarking algortihms, the

outage of PRABE and of the mixed solution are optimal and equal to zero, for all the evaluated

numbers of UEs.

Sugiro que você se refira aos algoritmos 31 e 32 no mesmo formato usado nas figuras: Ref. [31]. – tfm

In Figure 4.2(b), target MOS equal to 4, the outage of PRABE and of the mixed solution

still present near optimal values. On the other hand, the outage of [31] increases fast with the

increase of the number of UEs. Comparing Figures 4.2(a) and 4.2(b), we see that even if the

outage of [32] slightly varies with the increase of the target MOS, the outage of PRABE varies

even less.

In Figure 4.2(c), we compare the performance of the evaluated algorithms for target MOS

of 4.4, which is already a very high value. In this case, [31] reaches an unacceptable value for

outage higher than 10% for 10 UEs, while PRABE reaches a similar value only for 20 UEs. At

the same time, for 20 UEs, [32] has almost the double of the outage of PRABE.

Comparing Figures 4.2(a), 4.2(b) and 4.2(c), we conclude that [31] has the worst

performance. It decreases faster then the others with the increase of the target MOS and

of the number of UEs. This occurs due to the fact that the assignment is not centralized, but

done in pairs and, therefore, when the number of UEs increases it becomes difficult for it to

finish with the RBs that benefit the users the most.
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(a) Target MOS = 3.6.
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(c) Target MOS = 4.4.

Figure 4.2: Impact of the number of UEs on the outage for satisfaction factor, α, equal to 1.
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The analyses of the minimum MOS versus the number of UEs are presented in Figure 4.3,

considering the same setup of the outage analyses, Figure 4.2. In order to perform a fair

comparison, we consider only the cases where the optimal solution is feasible.

In Figure 4.3(a), target MOS equal to 3.6, we notice that the performance of PRABE and

of the mixed solution is almost indistinguishable of the optimal one. We also identify a

considerable gap between PRABE and [31]. For 20 UEs, the minimum MOS of [31] does

not even reach the target MOS, 3.6.

In Figure 4.3(b), target MOS equal to 4, we notice that PRABE still has a near optimal

performance. Its minimum MOS still reaches values higher than the target MOS for all the

number of UEs, while [31] does not achieve this value when we have more than 15 UEs. In

this case, the algorithm of [32] is better than [31] but still worse than PRABE.

Comparing Figures 4.3(a) and 4.3(b), we notice that, for the same number of UEs, when

the target MOS changes from 3.6 to 4, the gap between the minimum MOS of [31] and [32]

decreases due to the enhancement of [31]. However, the difference between PRABE and the

benchmarking algorithms is still considerable.

In Figure 4.3(c), target MOS 4.4, PRABE still has a near optimal behavior, differing from

the optimal solution only when we have 20 UEs in the system. Different of the benchmarking

algorithms, only in this case, the minimum MOS is lower than the target MOS, indicating

cases of outage.

It is important to note in Figures 4.2 and 4.3 that the proposed algorithm, PRABE, performs

very close to the optimal solution, deviating from it only when the target MOS becomes high

and the number of UEs becomes close to the number of RBs. Nevertheless, the performance of

the proposed algorithm is still considerably better than those of the benchmarking algorithms.

One way of increasing the performace of PRABE, for high values of target MOS and UEs

in the system, is reducing the satisfaction factor. Figure 4.4 presents the outage versus the

satisfaction factor, in percentage, in a system with 20 UEs and target MOS equal to 4.4. This

analysis does not consider the benchmarking algorithms, [31] and [32], since they were not

designed to support a satisfaction factor lower than 1. However, this parameter plays an

important role, especially for network operators, since it is not always possible to satisfy all

UEs at the same time in real-life networks. As we can observe in Figure 4.4, just by changing

this parameter from 100% (satisfy 20 users out of 20) to 95% (satisfy 19 users out of 20) is

enough to obtain an acceptable value of outage.
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(c) Target MOS = 4.4.

Figure 4.3: Impact of the number of UEs on the minimum MOS for satisfaction factor, α, equal to 1.
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Figure 4.4: Impact of the satisfaction factor on the outage for number of UEs, U , equal to 20 and target
MOS equal to 4.4.

4.3.2 Multiple Service Plans

In Section 4.3.1, it was noticed that, in the adopted scenario, for high values of target

MOS and UEs in the system, the outage of PRABE can achieve values higher than 10%. The

presented solution to overcome this issue was to reduce the satisfaction factor. In this case,

all the UEs are treated equally and any one can be chosen not to be satisfied. Other option

to overcome this issue is to divide the UEs into service plans with different requirements of

target MOS and satisfaction factor. For example, a priority plan with higher requirements

for emergency services, as fire brigade, police and ambulances, and another one for users in

general. Figures 4.5 and 4.6 analyze this option. In both cases, 20 UEs are divided into two

service plans.

In Figure 4.5, we present the outage rate as function of the target MOS of service plan two,

n2, considering three different partitions of the UEs among the service plans. For all of them,

we considered the satisfaction factor of both service plans equal to 1, α1 = α2 = 1, and the

target MOS of service plan one equal to 4.4, n1 = 4.4.

In Figure 4.5(a), we considered 15 UEs in service plan one, U1 = 15, and the others in

service plan two, U2 = 5. As we can see, for n2 = 4.2, we already have an outage lower than

10%. However, it is important to mention that the gap between PRABE and the mixed solution

is higher than the one between the mixed solution and the optimal one. In this case we need

to choose between a better result or a lower computational effort. These gaps can still be

reduced if we change the number of UEs in each service plan, which is done in Figure 4.5(b),

for U1 = U2 = 10.

Comparing Figures 4.5(a) and 4.5(b), we note that, while the first case only achieves gaps

between PRABE and the optimal solution lower than 5% for n2 ≤ 3.6, the second case achieves

this values for n2 ≤ 4.2.

In Figures 4.5(c), we reduce even more the number of UEs in service plan one, U1 = 5

and U2 = 15. In this case PRABE has very low outage rates and performs close to the mixed

solution.

An interesting comparison can be done between Figure 4.2(b) and 4.5(c). In Figure 4.2(b),

for 20 UEs, PRABE achieves an outage rate of 1.7%, while in Figures 4.5(c), for n2 = 4, the

outage rate is of 2.6%. This means that trying to satisfy 5 UEs with MOS 4.4 and 15 UEs with

MOS 4, has almost the same outage rate than assuring 20 UEs with MOS 4, which validates
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the multi service plans as an option for increasing the system satisfaction.

Comparing Figures 4.5(a), 4.5(b) and 4.5(c), we note that the increase of U2 changes the

behavior of PRABE from linear to exponential. This occurs due to the fact that, for higher

values of U2, changing n2 impacts more users of the system. So, in Figure 4.5(c), to decrease

n2 means to reduce the target MOS of more users, which can clearly decrease the outage.

Focusing on the case U1 = U2 = 10, Figure 4.6 presents the relationship between the

outage rate and the target MOS of service plan two, n2, considering three different values for

the satisfaction factor of service two, α2. For all of them, we considered the satisfaction factor

of service plan one equal to 1, α1 = 1, and the target MOS of service plan one equal to 4.4,

n1 = 4.4.

Figure 4.6(a), presents the case of α2 = 0.9, i.e., satisfy 9 out of 10 UEs. We note that

reducing n2 from 4.4 to 4.2 the outage reduces almost 2%, however reducing even more does

not give higher gains. Similar conclusions can be obtained in Figure 4.6(b), where we have

α2 = 0.8.

At this point, a brief summary can be done. In Figure 4.2(c), we have seen that, in the

considered scenario, for 20 UEs in the system, target MOS equal to 4.4 and satisfaction factor

equal to 1, PRABE achieves an outage rate of 12%, while the optimal solution achieves 1%.

Aiming to reduce the outage of PRABE, we have studied two options: reduce the satisfaction

factor and divide the users into service plans.

In Figure 4.4, we have analyzed the impact of the satisfaction factor, based on the same

scenario. In this case, reducing the satisfaction factor from 1 to 0.95, i.e, satisfy 19 out of 20

UEs, the outage rate of PRABE has been reduced to 1%. The problem with this option is that

any user can be chosen not to be satisfied. To overcome this issue, we have divided the UEs

into two service plans, both with satisfaction factor 1. The target MOS of one service was kept

in a high value, 4.4, and the other one was reduced. Considering this option, in Figure 4.5(c),

PRABE has presented an acceptable value of outage rate, 2.6%, for U1 = 5, U2 = 15 and

n2 = 4. We also evaluated the reduction of α2, Figure 4.6, however the gains were marginal,

if we consider that we need to keep some users unsatisfied.
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(a) Number of UEs per service: U1 = 15 and U2 = 5.
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(b) Number of UEs per service: U1 = 10 and U2 = 10.
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(c) Number of UEs per service: U1 = 5 and U2 = 15.

Figure 4.5: Impact of the target MOS of service 2, n2, on the outage for satisfaction factor α1 = α2 = 1
and target MOS of service 1 n1 = 4.4.
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(a) Satisfaction factor of service plan 2: α2 = 0.9.
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(b) Satisfaction factor of service plan 2: α2 = 0.8.

Figure 4.6: Impact of the target MOS of service 2, n2, on the outage for 10 UEs in each service, U1 =
U2 = 10, satisfaction factor α1 = 1 and target MOS of service 1 n1 = 4.4.
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4.3.3 Low Coverage Scenario

Until now, we have seen that PRABE has a near optimal performance in a scenario with

good coverage, path loss model 1 of Table 4.1. Aiming to evaluate its performance in a scenario

with worse coverage, in this section we consider path loss model 2 of Table 4.1.

In Figure 4.7, we present the outage rate as a function of the number of UEs considering

three different values of target MOS and satisfaction factor equal to 1.

In Figure 4.7(a), target MOS equal to 3.6, we see that all the studied algorithms are

negatively affected by the increase of the path loss, as expected. This is due to the fact that we

need more RBs and power to overcome the increase of path loss and to achieve similar rates

as those in Section 4.3.1. However, as we know, RBs and power are limited resources.

In Figure 4.7(b) we increase the target MOS to 4. In this case, even the optimal solution

reaches unacceptable values of outage rate. Comparing Figures 4.7(a) and 4.7(b), we see that

the performance of [31] is less degraded than the other algorithms by the increase of the target

MOS, but this occurs because it already has the worst performance.

In Figure 4.7(c), we observe that the increase of the number of UEs negatively impacts all

the studied algorithms. This occurs because this increase leads to more UEs competing for

the same amount of resources. Thus, in average, the resources-per-UE will decrease and,

consequently, the users’ satisfaction too.

Comparing Figures 4.7(a), 4.7(b) and 4.7(c), we clearly see the gap between PRABE and [32]

decreasing. [32] uses the optimal solution of a Tchebycheff problem to allocate power, whereas

PRABE has a less complex power allocation, but not optimal. In a scenario with low coverage,

this difference may be evidenced. However, it is important to remark that PRABE still has a

better performance.

Also note that the outage for 20 UEs for the three cases of Figure 4.7 are very high. As in

Section 4.3.1, we can reduce the satisfaction factor in order to decrease the outage. Figure 4.8

presents the outage versus the satisfaction factor, in percentage, in a system with 20 UEs.

As we can observe in Figure 4.8(a), for target MOS equal to 3.6, just by changing this

parameter from 100% (satisfy 20 users out of 20) to 95% (satisfy 19 users out of 20) is enough

to obtain an acceptable value of outage, which is near optimal. For a target MOS equal to 4,

Figure 4.8(b), we need to reduce even more, for example, to 90%, i.e., 18 out of 20. The most

impressive result is illustrated in Figure 4.8(c), target MOS equal to 4.4. When decreasing the

satisfaction factor from 100% to 80%, i.e., 16 UEs out of 20, the outage rate of PRABE and of

the optimal solution decrease from 98% and 78% to 10% and 1%, respectively. This validates

the importance of the satisfaction factor.
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(a) Target MOS = 3.6.
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(c) Target MOS = 4.4.

Figure 4.7: Impact of the number of UEs on the outage for satisfaction factor, α, equal to 1.
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(a) Target MOS = 3.6.
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(c) Target MOS = 4.4.

Figure 4.8: Impact of the satisfaction factor on the outage for number of UEs, U , equal to 20.
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4.3.4 Imperfect CSI

The previous analyses considered perfect CSI, which is a simplified assumption. In this

section, we analyze the impact of considering imperfect CSI. Aiming to see only the effects

of the imperfect CSI, we consider a system with 5 UEs, since this is the only case where all

the algorithms present approximately zero outage for perfect CSI, as shown in Figure 4.2 of

Section 4.3.1.

Figure 4.9 presents the impact of the degradation, ξ, presented in (2.1), on the outage for

satisfaction factor, α, equal to 1. For target MOS equal to 3.6, in Figure 4.9(a), we note that in

the considered degradation interval, from 0% to 10%, the gap between the studied algorithms

is small and lower than 5%.

Changing the target MOS to 4, in Figure 4.9(b), the gap between [31] and the optimal

solution increases to 12%, while the gap between PRABE and the optimal solution is of

4%. Comparing Figures 4.9(a) and 4.9(b), it appears that [31] is more sensitive to the CSI

imperfections than the other algorithms.

Rising the target MOS to 4.4, in Figure 4.9(c), we can see that the imperfect CSI negatively

impacts all the algorithms, since their performance is very deteriorated even in a system

with only 5 UEs. However, it is important to note that the relative performance between the

algorithms do not change significantly from the ones obtained in the previous sections.

In this scenario, we also analyzed the impact of the satisfaction factor, since it has brought

gains in the other scenarios. Figure 4.10 presents similar evaluations but considering α equal

to 0.8 instead of 1, which means satisfy 4 users out of 5.

In Figure 4.10(a) we consider target MOS equal to 3.6. Comparing it to its equivalent with

α = 1, Figure 4.9(a), we can see an improvement in the performance of PRABE. Its outage has

decreased to values close to zero, which means that PRABE was able to satisfy 4 of 5 users in

almost all the simulations.

Figures 4.10(b) and 4.10(c) consider target MOS equal to 4 and 4.4, respectively. As

in Figure 4.10(a), the outage has been reduced if compared to their respective graphs in

Figure 4.9.
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(a) Target MOS = 3.6.
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(c) Target MOS = 4.4.

Figure 4.9: Impact of the degradation, ξ, on the outage for satisfaction factor, α, equal to 1 and number
of UEs equal to 5.
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(a) Target MOS = 3.6.
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(c) Target MOS = 4.4.

Figure 4.10: Impact of the degradation, ξ, on the outage for satisfaction factor, α, equal to 0.8.



Chapter 5
Conclusions and Future Work

In this master’s thesis, we have studied a new optimization problem in the fields of Quality

of Experience (QoE) and Radio Resource Allocation (RRA), taking into account constraints on

the total transmit power and on the fraction of users that must be satisfied.

More specifically, in Chapter 1, we have introduced some of the motivations that

are guiding operators to change their focus to delivering high-quality service experience,

independently of technical requirements. We have also presented an overview of what is

being doing in the three fields of QoE: modeling, measuring and optimization. Concerning

the optimization category, we have listed the main works that have already considered QoE

aspects when doing RRA.

In Chapter 3, a QoE-based RRA technique was studied from an optimization point of view.

We have mathematically formulated the problem of maximizing the minimum Mean Opinion

Score (MOS) of the users in a system constrained in transmit power and subject to satisfy

a minimum number of users called satisfaction factor. We were able to reformulate it as

a Mixed Integer Linear Problem (MILP), which solution can be obtained by standard solvers.

Motivated by the high computational effort required by the optimal solution, we have proposed

a framework called Power and Resource Allocation Based on Quality of Experience (PRABE).

In Chapter 4, we presented the performance evaluation. PRABE was evaluated in 4

different scenarios. The first one considered only one service plan. In this scenario, differently

from the benchmarking algorithms, PRABE performed very close to the optimal solution,

differing from it only for high values of target MOS and User Equipments (UEs) in the system.

In this case, the satisfaction factor reduction has enhanced PRABE’s performance. However,

as all UEs are treated as equal, any one can be chosen to not be satisfied.

To overcome this issue, in the second scenario, we divided the UEs into two service plans:

one with higher target MOS than the other. The obtained results validated the multi service

plans scenario as a good option to improve the system performance. We also evaluated the

reduction of the satisfaction factor of one of the plans, however the gains were marginals, if

we consider that we need to keep some users unsatisfied.

While the first two scenarios had a good coverage, the third one evaluated the performance

of PRABE in a scenario with worse coverage. The gap between PRABE and one of

the benchmarking algorithms has reduced in this analysis. However, it is important to

remark that PRABE still has a better performance and a less complex solution, since this

benchmarking algorithm uses the optimal solution of an optimization problem to allocate

power.
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The last analyzed scenario studied the impact of considering imperfect Channel State

Information (CSI). As expected, the imperfect CSI negatively impacted all the algorithms.

However, the relative results between the algorithms did not change significantly from the ones

obtained in the other scenarios, where PRABE outperformed the benchmarking algorithms.

Some perspectives for the continuation of this master’s thesis work are listed below:

I Time extension: in this work, we considered that the users need to be satisfied at each

Transmission Time Interval (TTI). If we consider a satisfaction factor equal to one, this

assumption limits the number of UEs in the system to be at maximum the number of

Resource Blocks (RBs), since for higher quantities of UEs we are sure that someone will

not be allocated RBs leading to an unsatisfied state. Another approach could consider

that the users need to be satisfied in the average over a number of TTIs, this way we can

increase the number of UEs in the system. In this case, the target throughput rate of

each UE in each TTI will change according to the previous resource allocations.

I Multiple mapping functions: in this work, all the service plans have the same function

mapping throughput rate into MOS. However, it would be interesting to consider that

each service plan has its own mapping function.

I Mapping functions with other Quality of Service (QoS) parameters: another possible

extension to this work is to consider functions mapping other QoS parameters into MOS,

e.g. the delay, rather than just the throughput.
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