
 

UNIVERSIDADE FEDERAL DO CEARÁ

CENTRO DE TECNOLOGIA

DEPARTAMENTO DE ENGENHARIA DE TRANSPORTES

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES

ANSELMO RAMALHO PITOMBEIRA NETO

DYNAMIC BAYESIAN STATISTICAL MODELS FOR THE ESTIMATION OF
THE ORIGIN-DESTINATION MATRIX

FORTALEZA

2015



ANSELMO RAMALHO PITOMBEIRA NETO

DYNAMIC BAYESIAN STATISTICAL MODELS FOR THE ESTIMATION OF
THE ORIGIN-DESTINATION MATRIX

Tese de Doutorado apresentada ao Pro-
grama de Pós-Graduação em Engenharia
de Transportes do Departamento de Engen-
haria de Transportes da Universidade Federal
do Ceará como parte dos requisitos para a
obtenção do título de Doutor em Engenharia
de Transportes. Área de concentração: Plane-
jamento e Operação de Sistemas de Trans-
portes

Orientador: Prof. Dr. Carlos Felipe Grangeiro
Loureiro

FORTALEZA

2015



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Dados Internacionais de Catalogação na Publicação 

Universidade Federal do Ceará 

Biblioteca de Ciências e Tecnologia 
 

 
P76d Pitombeira Neto, Anselmo Ramalho. 

Dynamic bayesian statistical models for the estimation of the origin-destination matrix / Anselmo 

Ramalho Pitombeira Neto. – 2015. 

102 f. : il.  

 

Tese (doutorado) – Universidade Federal do Ceará, Centro de Tecnologia, Departamento de 

Engenharia de Transportes, Programa de Pós-Graduação em Engenharia de Transportes, Fortaleza, 

2015. 

Área de concentração: Planejamento e Operação de Sistemas de Transportes. 

Orientação: Prof. Ph.D. Carlos Felipe Grangeiro Loureiro. 

   

1. Transportes - planejamento. 2. Teoria bayesiana de decisão estatística. I. Título. 

 

          CDD 388 





Dedicado às mulheres da minha vida:
Minha mãe Rosa, minha irmã Camila, e minha esposa Renata.



AGRADECIMENTOS

Ninguém faz nada sozinho. Embora este texto tenha sido redigido inteiramente por
mim, este não deixa de ser um trabalho coletivo. Nessa caminhada de mais de quatro anos,
contei com a ajuda e colaboração de muitas pessoas.

Primeiramente, gostaria de agradecer imensamente a Deus, pois Ele que nos dá
força para seguir sempre em frente.

Ao meu orientador, Prof. Felipe Loureiro, por toda a dedicação e apoio.

À minha esposa Renata, por estar sempre ao meu lado e por me dar conforto nos
momentos mais difíceis.

À minha mãe Rosa, minha irmã Camila, minha sobrinha Júlia e a todos os meus
familiares, os quais sempre desejaram o melhor para mim.

Aos meus sogros, Crisóstomo e Neide, e a toda a família da minha esposa, a qual
também se tornou a minha família.

Aos meus colegas do Petran e da UFC, cujas companhias enriquecem minha vida
acadêmica.



“Whenever a theory appears to you as the only possible one,
take this as a sign that you have neither understood the theory,

nor the problem which it was intended to solve.”
Karl Popper



ABSTRACT

In transportation planning, one of the first steps is to estimate the travel demand. A product
of the estimation process is the so-called origin-destination matrix (OD matrix), whose
entries correspond to the number of trips between pairs of zones in a geographic region in
a reference time period. Traditionally, the OD matrix has been estimated through direct
methods, such as home-based surveys, road-side interviews and license plate automatic
recognition. These direct methods require large samples to achieve a target statistical error,
which may be technically or economically infeasible. Alternatively, one can use a statistical
model to indirectly estimate the OD matrix from observed traffic volumes on links of the
transportation network. The first estimation models proposed in the literature assume that
traffic volumes in a sequence of days are independent and identically distributed samples
of a static probability distribution. Moreover, static estimation models do not allow for
variations in mean OD flows or non-constant variability over time. In contrast, day-to-day
dynamic models are in theory more capable of capturing underlying changes of system
parameters which are only indirectly observed through variations in traffic volumes. Even
so, there is still a dearth of statistical models in the literature which account for the day-to-
day dynamic evolution of transportation systems. In this thesis, our objective is to assess
the potential gains and limitations of day-to-day dynamic models for the estimation of the
OD matrix based on link volumes. First, we review the main static and dynamic models
available in the literature. We then describe our proposed day-to-day dynamic Bayesian
model based on the theory of linear dynamic models. The proposed model is tested by
means of computational experiments and compared with a static estimation model and
with the generalized least squares (GLS) model. The results show some advantage in
favor of dynamic models in informative scenarios, while in non-informative scenarios the
performance of the models were equivalent. The experiments also indicate a significant
dependence of the estimation errors on the assignment matrices.

Keywords: OD matrix. Estimation. Bayesian statistics.
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1 INTRODUCTION

1.1 The problem

In transportation planning, one of the first steps is to estimate the travel demand. Generally,
the demand is measured in terms of trip flows between zones in a geographic region. The
final product of the estimation process is a so-called origin-destination matrix (OD matrix,
for short), whose entries correspond to the number of trips between pairs of zones in a
reference time period.

Traditionally, the OD matrix has been estimated through direct methods, such as
home-based surveys, road-side interviews and license plate automatic recognition. These
methods collect sample data on the number of trips performed daily, their origins and their
destinations. Such data can be compiled and several statistics may be computed, such as
the mean, standard deviation and confidence intervals. However, these direct methods
require large samples to achieve a target statistical significance, which may be technically
or economically infeasible (CASCETTA, 2009).

Another way of estimating the OD matrix is by using trip generation and dis-
tribution models. In this approach, social and economic data are used to estimate the
number of trips produced and attracted by each zone. In the next step, a gravity-type
model is applied in order to distribute the generated trips between zones (ORTÚZAR;
WILLUMSEN, 2011). Nevertheless, this approach also has its drawbacks. First, obtaining
all the required data demands considerable amounts of resources, with high accompanying
costs. Second, these models are in general aimed at long term planning horizons, which
limit their use in short term applications, such as traffic management systems and public
transit operation.

In the 1970s, researchers started developing alternative mathematical models whose
objective was to obtain an OD matrix from indirect data on trip patterns. The main
sources of indirect data were traffic volumes observed on links of the transportation network
(also called traffic counts). The development of traffic monitoring systems opened up the
possibility of acquiring data on traffic volumes in an automated way at low costs. In road
networks this acquisition takes place by means of sensors installed on the roads, and in
transit networks data on traffic of passengers can be acquired by means of electronic
ticketing.

The rationale of these alternative models is to estimate OD flows through a
mathematical model which relates traffic volumes on links of the transportation network to
OD flows between zones. The models are in general of an optimization or statistical nature.
The OD matrix so obtained is called a synthetic OD matrix, since it is not estimated by
direct observation of trips (e.g., by directly sampling OD trips), but as an output of a
model which uses indirect data on the travel demand. The usefulness of such a model is
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evident: the transportation demand patterns in a part or in a whole region may be, in
theory, traced to a finer time scale of days or hours, or even in real time. This is a great
improvement over household surveys, which are typically carried out once in a decade, a
time period during which the demand pattern may have changed considerably.

Since the pioneering work of Robillard (1975), many models have been proposed
based on different approaches and assumptions. However, there are several issues related
to the problem which have yet to be resolved satisfactorily, both from the theoretical and
practical perspectives. Moreover, the literature lacks thorough comparisons and assessments
of the performance and properties of the estimates produced by the alternative models.
All this has led to a low adoption of the synthetic OD matrix based on link counts as
an alternative to the more traditional and costly OD matrix obtained by means of direct
estimation.

1.2 Research gap

The first attempts at estimating OD matrices from traffic counts relied on a single sample of
volumes. The early data collection procedures involved the manual counting of vehicles in
selected points in a transportation network. Due to technological or economical limitations,
it was infeasible to take repeated samples of traffic volumes. Since there were no further
data on traffic variability, a static and deterministic approach to the problem seemed
plausible. The availability of a single sample of volumes provided only a snapshot of the
transportation system in a point in time. The so-called reconstruction models sought to
estimate mean OD matrices based on a sample of a single day. The validity of static
reconstruction models critically hinged on the assumption that observed volumes were
representative of a typical day.

More recently, many cities around the world have built traffic control systems,
thereby massive data on urban traffic volumes have been collected daily. This opened up
the possibility of applying statistical models based on large samples in order to estimate
OD matrices and other relevant parameters more accurately. These first estimation models,
initially proposed in the 1990’s, assume that traffic volumes in a sequence of days are
independent and identically distributed samples of a static probability distribution. They
use frequentist or Bayesian statistical techniques so as to estimate static quantities, such
as mean OD matrices, variances of OD flows, or parameters of the route choice model.

A major weakness of static estimation models is that they do not allow for variations
in mean OD flows or heteroscedasticity (i.e., non-constant variability) over time. In the
relevant literature, two types of dynamics are often distinguished: within-day and day-to-
day dynamics. Within-day dynamics refer to the temporal variation of the transportation
demand for a specified time period within a single day. The extension of the time period
under study may be as short as a few minutes or an entire day. Within-day dynamics is
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often of interest in short-term operational planning, since knowledge of the demand profile
is valuable to effective intervention or to designing traffic management policies. In contrast,
day-to-day dynamics is related to the variation of the demand for a repeated reference
time period (typically the peak hour) over a sequence of days. It is more adequate for mid
to long-term planning, when factors such as seasonality, changes in transportation supply
and in economic activities are more pronounced. In this thesis, we focus on day-to-day
dynamics.

In comparison with static models, day-to-day dynamic models are in theory more
capable of capturing underlying changes of system parameters which are only indirectly
observed through variations in traffic volumes. They may be more responsive to temporal
changes and provide useful information on the dynamic behavior of the transportation
system. Despite these promising features, there is still a dearth of statistical models in the
literature which account for the day-to-day dynamic evolution of transportation systems.

Moreover, an important issue that we should be aware of when developing models for
the estimation of the OD matrix is the occurrence of non-identifiability of the parameters,
which refers to the existence of multiple parameter values which fit the data almost equally
well. This issue has the implication that, except in very small transportation networks, it is
often difficult to estimate OD matrices and other parameters based solely on traffic volume
data. Some of the strategies to tackle this problem are: the development of parsimonious
models, which are economic in the number of parameters; the use of a prior OD matrix,
which can be, for example, an outdated matrix obtained by survey; or the adoption of
simplifying and, in some cases, very restrictive assumptions.

In order to contribute to the development and analysis of day-to-day dynamic
models for the OD matrix estimation problem, we propose a dynamic model and evaluate
its potentials and limitations through computational experiments. Our main hypothesis
is that day-to-day dynamic models can produce better estimates of mean OD matrices
than static estimation models, since they should be able to account for the evolution of
transportation systems over time and make use of the information provided by temporal
changes. Our efforts are driven mainly towards attempting to answer the following specific
questions:

• Are dynamic models capable of reducing the non-identifiability of mean OD matrices
by incorporating the variation of the link volumes over time?

• Can dynamic estimation models produce better estimates of mean OD matrices than
static estimation models?

• What is the impact of prior information on estimation errors?

• How do assignment matrices affect estimation errors?
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According to the aforementioned research questions, the research objectives of this
doctoral thesis are the following:

1.3 General objective

To assess the potential gains and limitations of day-to-day dynamic Bayesian statistical
models for the estimation of the OD matrix based on link volumes.

1.4 Specific objectives

• To describe the main static and dynamic OD matrix estimation models currently
available in the literature;

• to propose a model for the estimation of the day-to-day dynamic OD matrix based
on the theory of dynamic linear models;

• to perform computational experiments in order to evaluate the potential application
of dynamic models relative to static models proposed in the literature;

• to assess how assignment matrices affect estimation errors, and

• to assess the impact of prior information on estimation errors.

1.5 Structure of this doctoral thesis

The literature review of our research is compiled in Chapters 2 and 3. We start by
describing the traffic assignment models in Chapter 2. As we will see in Chapter 3, the OD
matrix estimation problem is the inverse of the traffic assignment problem. Hence, many
OD matrix estimation models embed traffic assignment models as part of their solution
procedures. We describe the main variables and mathematical relationships involved in
modeling transportation networks and the modeling of user behavior through route choice
models. The traffic assignment models are presented according to the classification in
proportional and equilibrium models, which correspond, in general, to assignment in
uncongested and congested networks respectively.

In Chapter 3 we review the main models for OD matrix estimation. The chapter
is divided in three sections, corresponding to reconstruction, estimation and dynamic
models. In the following Chapter 4, we describe our proposed dynamic Bayesian statistical
model for the estimation of the OD matrix and illustrate its application through a small
test network from the literature. In Chapter 5 we present and discuss the results of some
computational experiments. All experiments are carried out by means of Monte Carlo
simulation. We use simulated data in order to evaluate the research questions. The use of
synthetic data allows us to have full control of all experimental conditions. We use as test
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unit a benchmark transportation network from the literature. Finally, in Chapter 6 we
draw some conclusive comments and suggest further research directions.
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2 TRAFFIC ASSIGNMENT

2.1 Modelling transportation flows on networks

Let (N ,A) be a transportation network, in which N is a set of nodes and A is a set
of directed links. Typically, for road networks, the links and nodes correspond to road
segments and intersections between road segments, respectively. The transport network
connects zones of a certain geographic region (e.g., a city), which “produce and attract”
trips, so that there is also a set of zones, denoted by I. A trip is a movement of a user
(person, freight, or vehicle) between an origin zone and a destination zone (referred to
simply as an OD pair). All trips enter and exit the network through centroid nodes, which
are terminal nodes located at zone centroids. Intrazonal trips are not taken into account,
since their origin and destination centroid nodes coincide.

We denote by xi the total flow of trips in an OD pair i for a given time period.
In applications, a time period may be, e.g., the morning peak hour or a whole business
day. What is traditionally meant as an OD matrix is a two-dimensional array whose row
indices identify origin zones, column indices identify destination zones, and the entries are
the number of trips in an OD pair. As a matter of analytical convenience, in our notation
the OD matrix is stretched out as a vector x ∈ Rn

+, for which n = |I| is the number of
OD pairs. The total count of trips which flow through a link a for a given time period
is denoted as the traffic volume za. The traffic volumes on all links are represented by a
vector z ∈ Rm

+ , and m = |A| is the number of links in the network.

For a given OD pair i, there is a set of routes connecting its origin and destination
zones. A route is a simple path between a pair of nodes. In general, we consider only a
reduced set of routes, since the total number of routes may be prohibitively large in real
scale networks. (See Bekhor, Ben-Akiva and Ramming (2006) for an evaluation of route
choice set generation algorithms). Let Ki be a set of routes associated with OD pair i. For
a route k ∈ Ki, we define yik as the flow of trips through route k in the reference time
period. Let also y ∈ Rr

+ be the vector whose components are yik, and r = ∑
i∈I |Ki| is the

number of routes over all OD pairs.

Flows in OD pairs, route flows and traffic volumes are all related by flow conservation
equations (2.1) and (2.2), given below:

∑
k∈Ki

yik = xi ∀i ∈ I (2.1)

za =
∑
i∈I

∑
k∈Ki

δakyik ∀a ∈ A (2.2)

In equation (2.2), δak takes the value 1 if link a is part of route k, and 0 otherwise. It
synthesizes information on the topology of the network. Conveniently, we will refer to
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equation (2.2) in matrix notation, in which ∆ = [δak]m×r is called the link-path incidence
matrix :

z = ∆y (2.3)

It is also worth defining the route choice fraction pik = yik/xi, which gives the
proportion of users in OD pair i that chooses to follow route k. Notice that it is possible
to establish a direct relationship between OD flows and traffic volumes through the route
fractions. Let P = [pik]r×n be a route choice matrix, then:

z = ∆Px (2.4)

The route choice matrix P is commonly specified by means of a route choice model,
which estimates the probability that a user chooses a route as a function of the travel
time (or generalized cost) associated with the route. Deterministic route choice models
assume that the users have perfect knowledge of costs and always choose the route with
minimum cost. In contrast, stochastic models assume that perceived costs of the users are
different from actual costs, so that they may choose routes which do not have minimum
costs. The probabilities are estimated by means of discrete choice models, among which
the multinomial logit and probit are the most used (CASCETTA, 2009).

The term F = ∆P is called the assignment matrix (CASCETTA; NGUYEN, 1988),
through which the relationship between x and z may be directly expressed by:

z = Fx (2.5)

As we will see in the forthcoming chapters, the assignment matrix plays a key role
both in traffic assignment as in the OD matrix estimation problem.

2.2 Route choice models

Route choice models try to capture the choice behavior of users on which route to follow
when going from an origin to a destination. Each route has a cost associated to it, and
it is assumed that a user chooses the one route with minimum cost (rational behavior).
Most of the occasions, costs will be measured in terms of travel time spent from origin to
destination by following the chosen route. Other sources of costs may include, e.g., the
gas consumption, toll fees or transit fares. In reality, all those may be aggregated in a
generalized cost measure.
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It is assumed that the cost associated with a particular route depends linearly on
the costs associated with the links that make up the route. Let ck be the cost associated
with a route k ∈ Ki for an OD pair i, and let τa be the cost associated with a link a. Then:

ck =
∑
a∈A

δakτa + cNAk k ∈ Ki (2.6)

In equation 2.6, the term cNAk corresponds to some fixed cost incurred when using the
route, e.g., a toll fee. Without loss of generalization, we assume it to be zero henceforth.
Let pk = yk/xi be the fraction of trips in od pair i that flows through route k ∈ Ki,
with ∑i∈Ki

pk = 1, and pk is a function of the route costs cj for all j ∈ Ki for OD pair i.
There are two classes of models to determine the value of pk: Deterministic and stochastic
(CASCETTA, 2009).

In deterministic models, it is assumed that the user knows with certainty the costs
associated to each route. Let c∗ = mink∈Ki

(ck) be the minimum cost among all routes in
OD pair i. Thus:

pk =

1 if ck = c∗

0 if ck > c∗
∀k ∈ Ki (2.7)

In other words, the determination of pk by means of equation (2.7) implies that all trips in
OD pair i will flow through the minimum cost route. In case there are multiple routes with
minimum cost, pk is undefined, since users will show no preference for a particular route.
A procedure to define a unique value for pk based on entropy maximization is presented in
(LARSSON et al., 2001).

On the other hand, in stochastic models, it is assumed that users do not have
full knowledge of the actual costs associated with links and routes. In this way, the user
chooses the route of minimum perceived cost, which is modelled as a random variable,
whose probability distribution captures the variability in perception among users. The
route cost ck is then given by the following expression:

ck =
∑
a

δakτa + cNAk + εk (2.8)

The term ∑
a δkca + cNAk is called systematic cost or actual cost associated with the route,

and the term εk corresponds to random error, which represents the variability in the
perceptions of users with respect to actual cost. The fraction pk in stochastic models
may be regarded as the probability of a user choosing route k, which corresponds to the
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probability of k being a route with minimum cost:

pk = Prob(ck ≤ cl, ∀l 6= k) (2.9)

The determination of pk in stochastic models depends on the probability distribution
of the error εk. Some of the models widely applied in the literature are the probit, which
assumes a normal distribution, and the logit, which assumes a Gumbel distribution (BEN-
AKIVA; LERMAN, 1985). In the case of the probit model, pk must be estimated through
Monte Carlo simulation, while for the logit model, there is an analytical solution given in
equation (2.10):

pk = exp(−ck/ξ)∑
l∈Ki

exp(−cl/ξ)
(2.10)

In equation (2.10), ξ is a scaling factor proportional to the variance of the error term εk.

An important issue in route choice models is the generation of the route choice set.
Ideally, the models should consider exhaustively all available routes, but the number of
routes in real networks is prohibitively large, which poses computational challenges in the
development of efficient algorithms. This difficulty has been addressed in two directions:
one consider the generation of a reduced choice set, by means of some criterion or procedure
which samples meaningful routes from the point of view of the user (BEKHOR; BEN-
AKIVA; RAMMING, 2006); the other consider the development of algorithms which do
not require the enumeration of routes, such as Dial’s Algorithm (DIAL, 1971) and the
algorithms proposed by Akamatsu (1996) and Bell (1995).

2.3 Proportional assignment

The earlier approaches to traffic assignment considered that congestion effects on costs
were negligible, so that costs could be treated as constants independent of traffic link
flows. The methods based on this assumption were called proportional traffic assignment,
since scaling the OD matrix by a constant would result in link flows scaled by the same
constant. Proportional assignment procedures are generally classified in deterministic and
stochastic, according to the corresponding route choice model adopted (See section 2.2).

A simple deterministic assignment method is the all-or-nothing (SHEFFI, 1985).
It consists in identifying a minimum cost route for each OD pair, and assigning all the
flow in the OD pair to this route. Afterwards, the link flows are determined by simple
application of the flow conservation equation (2.2). The most computationally expensive
step in the application of the all-or-nothing is in the determination of the minimum cost
routes. A minimum cost route may be obtained by means of the application of one of the
several available algorithms for finding minimum paths in a graph. In practice, Dijkstra’s
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algorithm is very convenient, by virtue of its computational efficiency and the fact that it
can generate multiple routes at a time (AHUJA; MAGNANTI; ORLIN, 1993). The main
drawback of the all-or-nothing procedure is that it is not much realistic. In real situations,
the trips are distributed among multiple routes between each OD pair, instead of only one.
Notwithstanding this limitation, the all-or-nothing procedure is still useful in intermediate
steps in more sophisticated assignment procedures, as in equilibrium assignment.

In contrast, stochastic assignment procedures assign flows to multiple routes for an
OD pair. They are based on stochastic route choice models, as the multinomial logit or
probit. In summary, the procedure consists in computing the probabilities of each route,
and then applying flow conservation equations (2.1) and (2.2) in order to determine route
and link flows. The main issue in applying stochastic assignment is the generation of
the route choice set. For a given OD pair, the number of possible routes in a real scale
network can be overwhelmingly large, so that the enumeration of all possible routes may
be infeasible, as already pointed out in Section 2.2.

As stated in the beginning of this Section, proportional assignment is more suitable
for networks where congestion effects are negligible. In the next section we present a class
of non-proportional assignment procedures, equilibrium methods, which take congestion
into account.

2.4 Equilibrium assignment

From a practical point of view, proportional assignment models are useful only for networks
with low to moderate congestion levels. Nevertheless, as flows increase in the network,
so does congestion, and costs are significantly affected by it. Users respond to changes
in costs by changing their routes, trying to minimize their private costs. By its turn, the
route choices made by users determine traffic flows on routes and links, affecting back the
costs of routes. This feedback loop makes the whole transportation network behave as
a dynamic system. Ceteris paribus, the transportation network may eventually reach an
equilibrium state in the long run, in which the flows remain constant over time. We refer
to equilibrium traffic assignment as the determination of traffic flows for a network in an
equilibrium state for a given OD matrix.

One of the first definitions of traffic equilibrium is known as Wardrop first principle,
whose statement is: in Wardrop equilibrium, “The journey times on all the routes actually
used are equal, and less than those which would be experienced by a single vehicle on any
unused route.” (WARDROP, 1952, p. 345).

In mathematical terms, in a Wardrop equilibrium, for any two routes k and l:

cl > ck =⇒ yl = 0 (2.11)
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When a transportation network is at Wardrop equilibrium, no user has incentive to
unilaterally change route because all other routes have cost equal to or greater than the
route currently used. Devarajan (1981) shows that this is equivalent to the definition of
Nash equilibrium in non-cooperative games. Although a Wardrop equilibrium is reached
as users try to optimize their particular costs, it is not necessarily optimal to the user, as
there may be traffic distributions that produce lower costs for all users, as is demonstrated
by the so-called Braess paradox (BRAESS; NAGURNEY; WAKOLBINGER, 2005). There
may also be a traffic distribution which is socially optimal, in which the sum of costs of
all users is minimum (this is known in the literature as Wardrop second principle).

Equilibrium assignment relies on link performance functions in order to evaluate the
effect of congestion on links. In general, as traffic volumes increase, so do the time spent on
links, the consumption of gas by vehicles, and other proxies of cost. The dependence of costs
on link flows is modelled by the performance functions, among which the BPR function is
very popular in the transportation theory and practice, given below (CASCETTA, 2009):

τa(za) = τa0

1 + α

(
za
zmax
a

)β (2.12)

Where τa(za) is the cost in link a when there is a flow of za. The cost in “free flow” is
denoted as τa0, i.e., the cost the user incurs if no other user is using the link, and zmax

a is
the capacity of the link. α and β are parameters of the function (typical values adopted in
the literature are 0.15 and 4, respectively). Note that the capacity of the link is not treated
as a hard constraint, i.e., actual volumes are allowed to be greater than the theoretical
maximum. It is also worth noting that BPR function (equation (2.12)) has the following
properties: it is continuous; it is strictly increasing, which means cost always increases
with flow; and it is separable, which means the link costs depend solely on the flow on
that link.

Smith (1979) has shown that a Wardropian equilibrium point satisfies the following
variational inequalities with respect to link costs and flows:

τ (z∗)T (z − z∗) ≥ 0 (2.13)

In equation 2.13, τ (z) is the vector of link costs, z is the vector of link flows, and z∗ is
the vector of equilibrium link flows. The satisfaction of inequalities (2.13) are also shown
to be sufficient for the existence, uniqueness and stability of a Wardropian equilibrium
point if the cost functions are continuous and strictly increasing. (BPR function, equation
(2.12), satisfies both conditions).

It can be shown (SHEFFI, 1985) that the variational inequalities given by (2.13)
correspond to first order optimality conditions of the following mathematical program
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proposed by Beckmann, McGuire and Winsten (1956):

min
∑
a∈A

∫ za

0
τa(v)dv (2.14)

s.t. ∑
k∈Ki

yk = xi ∀i ∈ I (2.15)

za =
∑
i∈I

∑
k∈Ki

δakyk ∀a ∈ A (2.16)

yk ≥ 0 ∀k ∈ Ki ∀i ∈ I (2.17)

The objective function in (2.14) in known as Beckmann’s transformation, and has no
physical meaning. The constraints (2.15) and (2.16) are the flow conservation equations
and (2.17) are non-negativity constraints on route flows. The mathematical program given
by equations (2.14) to (2.17) is convex, and may be solved efficiently and without route enu-
meration by means of the Frank-Wolfe algorithm (LEBLANC; MORLOK; PIERSKALLA,
1975).

The definition of Wardrop equilibrium is often referred to as deterministic user
equilibrium, since a basic assumption is that the user knows with certainty the costs
associated to each route (See section 2.2). Daganzo and Sheffi (1977, p. 255) proposed the
notion of stochastic user equilibrium as an extension of the Wardrop first principle to the
case when users do not have full knowledge of the costs associated to routes, stated as: “In
stochastic user equilibrium, no user believes he can improve his travel time by unilaterally
changing routes.”

The stochastic user equilibrium concept has been proposed as more realistic than the
deterministic user equilibrium, since it takes explicitly into account the different perception
of users on costs, and it is a generalization of deterministic equilibrium. Nonetheless,
stochastic route choice models require the calibration of parameters so that the model
fits the observed behavior of users. Fisk (1980) proposed the following mathematical
programming model, whose solution is a stochastic equilibrium point according to a logit
route choice model:
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min
∑
a∈A

∫ za

0
τa(v)dv + ξ

∑
i∈I

∑
k∈Ki

yk ln yk (2.18)

s.t. ∑
k∈Ki

yk = xi ∀i ∈ I (2.19)

za =
∑
i∈I

∑
k∈Ki

δakyk ∀a ∈ A (2.20)

yk ≥ 0 ∀k ∈ Ki ∀i ∈ I (2.21)

The solution of the model (2.18)-(2.21) may be obtained by the iterated application of
Dial’s Algorithm and use of the method of successive averages (MSA) (CHEN; ALFA,
1991; POWELL; SHEFFI, 1982). It should be pointed out that, when ξ = 0 the model for
stochastic user equilibrium reduces to the model for deterministic user equilibrium given
by (2.14)-(2.17).

More recently, Watling (2002a), Watling (2002b) has proposed a new formulation
for the stochastic user equilibrium, which he called a general stochastic user equilibrium
with stochastic flows. According to the author, the definition of stochastic user equilibrium
proposed by Daganzo and Sheffi (1977) assumes that OD flows are deterministic, and
there is randomness only in users perception of route costs. Then, he proposes a more
general definition of stochastic user equilibrium which account for stochastic OD flows. Let
pi be a vector of route choice probabilities for an OD pair i, whose OD flow is a random
variable with a specified probability distribution (e.g., binomial, Poisson, beta-binomial).
Given a realized OD flow xi and pi, the route flows are random variables with multinomial
probability distribution, i.e., yi ∼ MN(xi,pi). The random route flows will induce random
route costs, with a corresponding probability distribution. If we define ck(pi) as the
expected cost of route k given route choice probabilities pi, then the probability of route k
being chosen is φk(pi) = Prob{ck(pi) + εk < cl(pi) + εl} ∀l 6= k. If we denote φ(p) as the
vector of output route choice probabilities for the vector of input route choice probabilities
p, then the network is in general stochastic user equilibrium when the following fixed point
condition is verified (NAKAYAMA; WATLING, 2014):

p = φ(p) (2.22)

Watling (2002a) has also shown that his proposed notion of general stochastic
equilibrium reduces to the traditional notion proposed by Daganzo and Sheffi (1977) if
the performance functions on links are linear.

With all the background theory on traffic assignment presented, we are finally
ready to discuss in Chapter 3 the models for the estimation of OD matrix based on traffic
counts.
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3 ORIGIN-DESTINATION MATRIX ESTIMATION

3.1 Problem description

The OD matrix estimation problem may be defined as the inverse of the traffic assignment
problem: given a set of observed link volumes observed in a reference time period, to
determine the corresponding OD matrix which generated those volumes. Figures 1 and 2
show schematic representations of the traffic assignment problem (described in Chapter
2) and of the OD matrix estimation problem, respectively, where we can see the close
relationship between the two problems.

Figure 1 – The traffic assignment problem

Traffic
 assignment

Route choice
model

Network model

Link volumesOD matrix

Source: Cascetta (2009)

Figure 2 – The OD matrix estimation problem

OD matrix
estimation

Route choice
modelNetwork model

Observed
link volumes

OD matrix

Source: Cascetta (2009)

The idea of estimating the OD matrix from observed link volumes came out from the
observation that, as link volumes are functions of the OD matrix through flow conservation
equations (2.1) and (2.2), observed link volumes could be in theory used to estimate the
corresponding OD matrix. One straight approach would be to try to directly invert the
mapping given by equation (2.5), if we knew the assignment matrix. The main hurdle
is that this mapping is generally non-invertible, since there may be many OD matrices
corresponding to the same observed link volumes. This is known in the literature as
the underspecification problem (WILLUMSEN, 1981) (also known as non-identifiability
problem). For example, if we treat the assignment matrix as independent of the OD matrix,
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equation (2.5) results in a linear system. In most practical settings, the number of OD
pairs is much greater than the number of observed links, so that a solution of the linear
system will not be unique. This problem is even more severe in practice as the number of
independent observed links is commonly only a fraction of all links.

In order to overcome the underspecification problem, most models use a prior OD
matrix, which could be an outdated matrix obtained by past household surveys, a recent
sample matrix, or a modelled matrix produced by a trip generation and distribution model.
Such a prior matrix provides additional information on the OD flows, thus mitigating the
underspecification. They are in general used as a target or seed matrix. When it is used as
a target matrix, the model outputs as estimate an OD matrix consistent with observed
link volumes and least distant from the target matrix. In contrast, a seed OD matrix is
intended to be a starting solution, so that the estimated OD matrix may not bear any
resemblance to the seed matrix.

A natural concern when dealing with transportation networks is the level of
congestion. In uncongested networks, the route choice matrix P may be determined
exogenously, since it is assumed that the level of congestion does not influence the choices
of the users. On the other hand, in congested networks the choices of the users are
significantly influenced by the level of congestion, so that the route choice matrix is a
function of the OD matrix. OD matrix estimation models for congested networks generally
take a bilevel form, in which an embedded equilibrium traffic assignment model iteratively
estimates the route choice matrix.

Currently in the literature, a distinction between reconstruction and estimation is
made, as pointed out by Spiess (1987), Lo, Zhang and Lam (1996), Hazelton (2000), Timms
(2001) and Carvalho (2014). We define as reconstruction of the OD matrix the attempt to
recover the “exact” OD matrix which produced an observed vector of link volumes in a
given time period. Reconstruction models do not take into account the variability of OD
flows and link volumes. On the other hand, we refer to estimation of the OD matrix when
we intend to estimate the mean OD flows or other parameters of a “population” of OD
matrices. Thus, estimation models assume that OD flows and link volumes are stochastic
and try to statistically estimate their mean values.

In Sections 3.2 and 3.3 we review reconstruction and estimation models, respectively.

3.2 Models for the reconstruction of the OD matrix

The first models proposed to the estimation of the OD matrix were optimization models
with the aim of reconstructing the OD matrix given the observation of link volumes on
selected links in a single time period. They try to overcome the underspecification problem
by choosing an OD matrix which is consistent with the observed volumes and, at the same
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time, is optimal according to some objetive-function. The main models in this category are
the maximum entropy model (ME) and the generalized least squares model (GLS), which
we review in Sections 3.2.1 and 3.2.2, respectively. Another noteworthy one is the Bayesian
model of Maher (1983) (Section 3.2.3). These models are based on the assumption that
the network is uncongested and that the assignment matrix is known. In Section 3.2.4
we describe the bilevel approch, which allows these models to be applied to congested
networks.

3.2.1 Maximum entropy

Van Zuylen andWillumsen (1980) proposed the use of the principle of entropy maximization,
from Statistical Mechanics, so as to uniquely determine an OD matrix. This principle
had already been applied in Transportation Planning by Wilson (1967). The idea is to
make an analogy between trips in the network and particles in a gas. For a given trip
pattern, it is possible to identify macro, meso and microstates of the network. For example,
a macrostate is identified with the total number of trips in the network. For a given
macrostate, there are many mesostates, which are identified with each different OD matrix.
And for a given mesostate, there are many microstates, each identified with a particular
labeling of individual trips. Assuming that all microstates are equally likely, the more
microstates are associated with an OD matrix x, the more likely it is. The objective of
the ME model is then to obtain the most likely OD matrix subject to the constraint that
observed volumes are reproduced exactly, as given below (WILLUMSEN, 1981):

max −
∑
i∈I

(xi ln xi − xi) (3.1)

s.t.

Fx = ẑ (3.2)

x ≥ 0 (3.3)

In which ẑ is the vector of observed link volumes. In the ME model, it is assumed that the
route choice matrix P is exogenously determined, so that the assignment matrix F = ∆P
is constant (and ∆ includes only rows corresponding to observed links). As the objective
function (3.1) is strictly concave, and constraints (3.2) and (3.3) are convex, the optimal
solution is unique. By forming the Lagrangian function and applying first order conditions
for a maximum, we obtain the following set of nonlinear equations:

xME
i =

∏
a∈A′

bfai
a ∀i ∈ I (3.4)

In which ba are balancing factors, fai are the corresponding elements from the assignment
matrix F and A′ is the set of observed links. The equations (3.4) may be solved by an
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iterative algorithm described by Van Zuylen and Willumsen (1980), though it has no
convergence guarantees. Alternatively, an ME model may be directly solved by using one
of the standard nonlinear programming methods (See Nocedal and Wright (2006), Boyd
and Vandenberghe (2004)). The model also accommodates the possibility of using a prior
OD matrix x̂. In this case, it can be shown that the solution to the ME model is:

xME
i = x̂i

∏
a∈A′

bfai
a ∀i ∈ I (3.5)

In equation (3.5), it can be seen that the reconstructed OD matrix will be an expansion
of the prior OD matrix. In particular, xME

i = 0 if the corresponding prior OD flow x̂i = 0.
In case the prior OD matrix is a sample matrix obtained by means of a household survey,
many prior OD flows will be zero due the relative small size of the sample, so that equation
(3.5) cannot provide a better estimate of the OD flows. A further difficulty which may arise
when applying an ME model is the presence of inconsistencies in the linear constraints given
by equation (3.2). Due to observation errors, the observed link volumes may not satisfy
all equations, and some correction procedure may have to be applied (VAN ZUYLEN;
BRANSTON, 1982).

3.2.2 Generalized least squares

Cascetta (1984) proposed a model based on the generalized least squares (GLS) method.
The GLS extends the simple least squares method used in linear regression, and allows
for observations with heteroscedasticity and correlation. The GLS model is more general
than the ME model, in the sense that it takes into account the presence of errors in both
a prior OD matrix obtained by survey and the observed link volumes.

Let vector x̂ be a prior estimate of the OD matrix, obtained by direct sampling
such as household surveys or obtained by a trip generation and distribution model. Bear in
mind that we are trying to reconstruct the OD matrix x, which we regard as an unknown
constant. In the process of trying to estimate x, there will be errors from sampling or
from the inadequacy of the model. Thus, the prior estimate x̂ may be expressed as:

x̂ = x+ ε (3.6)

In equation (3.6), ε is a random error vector with zero mean and covariance matrix Σε. The
GLS model also considers the fact that observed link volumes may not comply with flow
conservation in nodes due to observation errors. Let z = Fx be the actual link volumes,
in which F = ∆P is assumed known. The vector ẑ of observed volumes is then given by:

ẑ = Fx+ ζ (3.7)
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Where ζ is a random error term with zero mean and covariance matrix Σζ . If we assume
that the prior matrix x̂ and the observed link volumes ẑ are independent, then the GLS
estimator xGLS is the solution of the following quadratic program:

xGLS = argmin
x≥0

{
(x− x̂)TΣ−1

ε (x− x̂) + (Fx− ẑ)TΣ−1
ζ (Fx− ẑ)

}
(3.8)

If we assume that xi > 0 ∀i ∈ I, a unique solution may be obtained explicitly by
applying first orders conditions for an optimum, since the objective-function is strictly
convex, resulting in the following expression:

xGLS = (Σ−1
ε + FTΣ−1

ζ F)−1(Σ−1
ε x̂+ FTΣ−1

ζ ẑ) (3.9)

In case any of the non-negativity constraints is active, the solution may be obtained
by gradient methods as the one proposed by Bell (1991). In equation (3.8), it can be seen
that GLS is a kind of weighted least squares, in which the weights are given by the inverse
of the covariance matrices of the errors. This is, the less the covariance of a term is, the
more weight is put on it. Another interpretation is that the GLS model tries to find an
OD matrix which is consistent with observed link volumes and the least distant from the
target prior OD matrix x̂. The covariance matrices Σε and Σζ are obtained according to
the properties of x̂ and ẑ, respectively. If we do not have data to estimate them, we must
use identity matrices and the GLS model becomes a simple least squares model.

An advantage of the GLS model when a prior OD matrix is available is that,
unlike the ME model, it can produce estimated OD flows greater than zero even if the
corresponding prior OD flows are zero in the prior OD matrix (see equation (3.5)). On the
other hand, the GLS model cannot be applied without a prior OD matrix. In case such
a prior OD matrix is not available, the term related to x̂ in equation (3.8) is dropped,
and only the term related to ẑ remains. However, the solution to the resulting model is
not unique, due to the underspecification problem. If we want a unique solution, we must
regularize the problem in some way. This is precisely what the term related to the prior
OD matrix x̂ does. Spiess (1990), Doblas and Benitez (2005) also develop GLS models
which circumvent the underspecification problem by not allowing the estimated matrix to
be much different from a prior matrix.

3.2.3 Maher’s Bayesian model

In a Bayesian model for the reconstruction of the OD matrix x, we must specify the prior
distribution p(x) of the real OD matrix and the likelihood function p(ẑ|x) of the observed
link volumes (See the Appendix B for a basic review on Bayesian inference). The prior
distribution may be specified from subjective knowledge from a practitioner or expert in
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the field of transportation systems. If a prior OD matrix is available, it may be included
in the model as mean values of the prior distribution, for example.

Maher (1983) proposed one of the first Bayesian models to reconstruct the OD
matrix. The author assumes a multivariate normal distribution as prior (See A), with
hyperparameters mean µ0 and covariance matrix Σ0, and as likelihood also a MVN
distribution with mean µz = Fx and covariance matrix Σz. The author also assumes that
the network is uncongested and that the assignment matrix is known. It can be shown
that the posterior is also MVN, i.e., p(x|ẑ) = N(µ1,Σ1), where the posterior parameters
mean µ1 and covariance matrix Σ1 are given by the following expressions:

µ1 = µ0 + Σ0FT(Σz + FΣ0FT)−1(ẑ − Fµ0) (3.10)

Σ1 = Σ0 −Σ0FT(Σz + FΣ0FT)−1FΣ0 (3.11)

Then, we can take the posterior mean µ1 as an estimator for the OD matrix. It
should be emphasized that equations (3.10) and (3.11) do not assure non-negativity, which
may be a problem in OD pairs with low OD flows. Alternatively one may obtain the
posterior maximum by maximizing the posterior density p(x|ẑ) subject to non-negativity
constraints.

3.2.4 Equilibrium-based models and the bilevel approach

Both ME and GLS models assume that the assignment matrix F was determined ex-
ogenously. This is suitable for uncongested networks, in which the assignment matrix is
independent of the OD matrix. Nonetheless, in congested networks we cannot isolate the
estimation of the OD matrix from the estimation of the assignment matrix, since the level
of congestion influences the choices of the users.

One of the first models for the estimation of OD matrices in congested networks was
proposed by Nguyen (1977), from an adaptation of Beckmann’s model for deterministic
equilibrium assignment (Section 2.4), given below (YANG et al., 1992):

min
∑
a

∫ za

0
τa(v)dv −

∑
i∈I

c∗ixi (3.12)

s.t. ∑
k∈Ki

yk = xi ∀i ∈ I (3.13)

za =
∑
i∈I

∑
k∈Ki

δakyk (3.14)

yk ≥ 0 ∀k ∈ Ki ∀i ∈ I (3.15)
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In which the term c∗i corresponds to the minimum route cost in OD pair i. Nguyen’s
model assumes that the network is in deterministic user equilibrium and that all links are
observed. In practice, one does not know the minimum route cost for an OD pair, so that
Nguyen’s model is has not been considered in practice. Another limitation of Nguyen’s
model is that the objective function (3.12) is not strictly convex in the OD flows vector x,
so that it suffers from the underspecification problem. In order to ensure a unique solution,
LeBlanc and Farhangian (1982) proposed an extension to Nguyen’s model which produces
an OD matrix of minimum Euclidian distance to a target prior OD matrix, while Turnquist
and Gur (1979) proposed the use of a target prior OD matrix as an initial solution in the
algorithm. This strategy is similar to the one adopted in the GLS model.

An alternative to Nguyen’s model are the bilevel models, which bear their origins
in the Stackelberg game framework from Game Theory (FISK, 1984; FISK, 1988; FISK,
1989). In bilevel models, there is an upper level, in which the OD matrix is estimated
using a route choice matrix estimated by an equilibrium traffic assignment in the lower
level (SHEFFI, 1985; BELL; IIDA, 1997). A general bilevel model, proposed by Yang et
al. (1992), is given below:

min ρg1(x, x̂) + g2(z, ẑ) (upper level) (3.16)

s.t.

z = zeq(x) (lower level) (3.17)

x ≥ 0 (3.18)

At the upper level, one must obtain an OD matrix x which minimizes the objective function
(3.16). The model is multiobjective, since the objective-function is a linear combination of
two functions, g1 and g2 (BRENNINGER-GÖTHE; JÖRNSTEN, 1989). g1 is a function
of the OD matrix x and a prior OD matrix x̂, while g2 is a function of the link volumes z
resulting from the traffic assignment of the OD matrix x and observed link volumes ẑ.
ρ > 0 is a weighting factor which balances the importance of functions g1 and g2. Notice
that the ME and GLS models are special cases of the general bilevel model (CASCETTA;
NGUYEN, 1988).

At the lower level, constraint (3.17) means that the vector of link volumes z = zeq(x)
corresponds to a network in equilibrium for a given OD matrix x. The equilibrium volumes
are obtained by assigning the OD matrix reconstructed at the upper level by means of a
deterministic or stochastic user equilibrium assignment (MAHER; ZHANG; VAN VLIET,
2001). The whole procedure is iterative, since the process of reconstructing the OD matrix
and assigning it to the network must be repeated until convergence.

Bilevel models are difficult to solve, since they are not convex and may have many
local optima (FLORIAN; CHEN, 1995). Moreover, evaluating constraint (3.17) in the lower
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level is a computationally intensive task, since traffic assignment is in general obtained
by the solution of an optimization model. Yang (1995) proposed the following heuristic
algorithm to solve the general bilevel model:

Initial Step: Make t := 0 and get an initial assignment matrix F(t) = ∆P(t).

Step 1 (upper level): Get x(t+1) by solving the upper level using a linear approximation
z(x) = F(t)x in the objective-function;

Step 2 (lower level): Determine a new assignment matrix F(t+1) = ∆P(x(t+1)) by means
of an equilibrium assignment of x(t+1);

Step 3: If a stopping criterion is met, stop. Otherwise, make t := t + 1 and return to
step 1.

If convergence is reached, the estimated OD matrix, the link volumes and the
assignment matrix should all correspond to an equilibrium state of the network. Other
algorithms proposed in the literature include the ones by Codina and Barceló (2004) and
Codina, García and Marín (2006), which are based on conjugate directions; and the one
proposed by Lundgren and Peterson (2008), which is based on the projected gradient.
They may be computationally more efficient than Yang’s heuristics since they use gradient
information.

A different direction is taken by Cascetta and Postorino (2001), who proposed a
formulation of the bilevel model as a compound fixed point problem. That is, as in the case
of bilevel programming models, where there is an optimization problem within another
optimization problem, in the compound fixed point problem there is a fixed point problem
within another fixed point problem. The upper level is given by the following equation:

x∗ = argminx≥0 ρg1(x, x̂) + g2(F(z∗(x∗))x, ẑ) (3.19)

Where the vector of modeled link flows z∗(x) is the result of a stochastic traffic assignment
of OD matrix x formulated as a fixed point problem in the lower level:

z∗(x) = F(z∗(x))x (3.20)

Finally, the iterative algorithm to solve the compound fixed point problem given
by equations (3.19) and (3.20) is similar to Yang’s heuristic to solve the general bilevel
model:

Initial step: Take t = 0. Get an initial solution x(0);
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Step 1: Obtain the assignment matrix F(x(t)) by means of a stochastic equilibrium
assignment (solution of the fixed point problem at the lower level).

Step 2: Get a linear approximation of the assignment map by doing:

z(x) = F(x(t))x (3.21)

Step 3: Get x(t+1) by means of the solution of the optimization model below:

min ρg1(x, x̂) + g2(x, ẑ) (3.22)

s.t.

z = F(x(t))x (3.23)

x ≥ 0 (3.24)

Step 4: If the convergence criterion is met, stop. Otherwise, make t := t+ 1 and
return to step 1.

In the next Section 3.3 we review the main models for the estimation of the mean
OD matrix.

3.3 Models for the estimation of the mean static OD matrix

Unlike reconstruction models, reviewed in Section 3.2, estimation models assume that
OD flows are stochastic and follow some specified probability distribution. The aim of
these models is to estimate parameters of “population” of OD matrices, such as mean OD
matrices, variances and covariances and other quantities of interest.

In the following sections, we classify the models according to the estimation method:
maximum likelihood, moment-based or Bayesian.

3.3.1 Maximum likelihood

Let the OD flow xi in OD pair i ∈ I be a random variable. Many authors (SPIESS, 1987;
VARDI, 1996; TEBALDI; WEST, 1998; HAZELTON, 2000) assume that OD flows follow
a Poisson distribution with parameter θi = E[xi] . We denote by θ ∈ Rn the vector of
mean OD flows for all OD pairs. If we assume that the OD flows are independent, it can
be shown (HAZELTON, 2000) that route flows yik, ∀k ∈ Ki, i ∈ I are also independent
random variables which follow Poisson distributions with expected value E[yik] = pikθi,
in which pik is the probability that a trip occurs in route k ∈ Ki. Moreover, as traffic
volumes on links are sums of route flows according to the flow conservation equation (2.2),
they also marginally follow Poisson distributions. Nevertheless, since some links share
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the same route flows, link volumes are not independent random variables, so that their
covariances will be different from zero. Their joint distribution should be some complicated
form of multivariate Poisson, which may be well approximated by a multivariate normal
distribution if link volumes are far from zero (HAZELTON, 2000; VARDI, 1996). From
equation (2.4), we see that the mean vector and covariance matrix of the link volumes vector
z ∈ Rm are given respectively by µ = ∆Pθ and Σ = ∆Θ∆T, in which Θ = diag(Pθ).
Making F = ∆P, the joint probability density function of the link volumes is given by:

f(z|θ) = (2π)−m/2|Σ|−1/2 exp
{
−1

2(z − Fθ)TΣ−1(z − Fθ)
}

(3.25)

Where |.| denotes the determinant of a matrix. It should be noted in the density function
defined by (3.25) that the matrix ∆ should be formed only by independent rows, otherwise
the covariance matrix Σ will be singular. This means that only the rows corresponding to
non-redundant observed links should be included in ∆. Another important issue related
to (3.25) is how to treat the route choice matrix P. If the network is uncongested, P can
be estimated independently from the estimation of the mean OD matrix, by means of
a route choice model. Another approach would be to treat the route choice matrix as a
parameter of the model, so that in theory it could be jointly estimated with the mean OD
matrix, irrespective of the network being congested or not.

Given a sample of size N of traffic volumes vectors z(1), z(2), . . . ,z(N), each observed
in different days during the same reference time period and assumed independent, we
define the likelihood function as the following:

L(θ) =
N∏
j=1

f(z(j)|θ) (3.26)

We can define as a maximum likelihood estimate of the mean OD matrix the maximizer
of equation (3.26). It is though computationally more convenient to maximize the log-
likelihood function, given by `(θ) = logL(θ), which in our present case takes the following
form:

`(θ) = −N2 log|Σ| − 1
2

N∑
j=1

(z(j) − Fθ)TΣ−1(z(j) − Fθ) + c (3.27)

In which c = −(Nm/2) log(2π) is constant with respect to θ. Let θ∗ = argmaxθ≥0 `(θ) be a
maximizer of the log-likelihood function. As the log-likelihood may not be strictly concave,
due to the existence of multiple θ with the same likelihood value (the underspecification
problem), it may have multiple maximizers. Some ways of circumventing this problem
is to resort to a prior OD matrix as a target matrix in a way similar to the GLS model
described in section 3.2.2, or advance to a Bayesian approach as described in section 3.3.3.



Chapter 3. Origin-Destination Matrix Estimation 38

In case the sample of observed volume vectors is large, Hazelton (2000) proposes
to substitute the population covariance matrix by the sample covariance matrix S in
the log-likelihood, resulting in the following approximation to the log-likelihood that is
computationally more tractable:

˜̀(θ) = −1
2

N∑
j=1

(z(j) − Fθ)TS−1(z(j) − Fθ) (3.28)

Maximizing equation (3.28) can be interpreted as finding an estimate θ̂ for which the sum
of the weighted quadratic distance (S−1 is the matrix of weights) between the expected
volume vector µ = Fθ and the observed volume vectors z(j), j = 1, 2, . . . N is minimal.
However, once more ˜̀(θ) is not stricly concave if ∆ has more columns than rows, which
occurs if there are more OD pairs than observed links and we may have to resort to a prior
OD matrix as a target matrix in a way similar to the GLS model described in section
3.2.2.

3.3.2 Moment-based models

The method of moments is a classical technique in point estimation. Its basic idea
is to solve the equations obtained by equating population and sample moments. Let
z(1), z(2), . . . ,z(N) be a sample of traffic volumes vectors, each observed in different days
during the same reference time period and assumed independent. Their sample mean z̄
and sample covariance matrix S are given respectively by:

z̄ = 1
N

N∑
j=1
z(j) (3.29)

S = 1
N − 1

N∑
j=1

(z(j) − z̄)(z(j) − z̄)T (3.30)

In theory, an estimate of the mean OD flows θ may be obtained by solving the
linear system of equations resulting from equating population and sample moments for
θ ≥ 0. A problem is that this linear system is often inconsistent, as pointed out by Vardi
(1996). The inconsistencies arise from the sampling errors. To overcome this problem,
Hazelton (2003) proposed to set an optimization model whose objective-function is the
minimization of the distances between theoretical and sample moments:

θ̂ = argmin
θ≥0

{‖Fθ − z̄‖+ ρ‖vec(Σ)− vec(S)‖} (3.31)

In which vec(.) is the vector concatenation of the columns of a matrix, ‖.‖ denotes a
suitable distance measure (a popular one is the Euclidian distance), ρ ≥ 0 is a weighting
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factor, F = ∆P, Σ = ∆Θ∆T and Θ = diag(Pθ). It is worth noting that the method
of moments is not dependent on the Poisson assumption, and may be applied to more
general models in which only a relationship between the mean vector and the covariances
matrix is assumed. See Hazelton (2003) for more details.

3.3.3 Bayesian inference

The models based on Bayesian inference define, in addition to the likelihood of the data,
prior and posterior probability distributions for the OD matrix. We have already presented
a Bayesian model for reconstruction of the OD matrix, Maher’s model, in Section 3.2.3.
See Appendix B for a short review of the main concepts of Bayesian inference.

The main model in this class was proposed by Tebaldi and West (1998). Following
Vardi (1996), they assume that the OD flows follow independent Poisson distributions,
whose mean value θi for OD pair i follows a gamma prior probability distribution. They
also assume that only one route is available for each OD pair, so that the route choice
matrix P equals the identity matrix. Let z be a vector of observed link volumes, with the
following likelihood function:

p(z|θ) =
∑
x∈X

p(x, z|θ) (3.32)

In which X = {x : ∆x = z} is the set of OD flow vectors consistent with the observed link
volume vector z. The problem with the likelihood function in (3.32) is that the evaluation
of this sum requires the enumeration of all vectors x ∈ X , which is computationally
infeasible for even moderately-sized networks. Their solution strategy is to evaluate not
the marginal posterior p(θ|z), but the joint posterior distribution p(x,θ|z), by noting
that:

p(x,θ|z) ∝ p(z|x,θ)p(x,θ) (3.33)

If we further assume that z is conditionally independent of θ given x, and by
noting that p(x,θ) = p(x|θ)p(θ), we have:

p(x,θ|z) ∝ p(z|x)p(x|θ)p(θ) (3.34)

In addition, they assume there are no observation errors in link volumes, so that
p(z|x) = I(∆x = z) and I denotes the indicator function, I(A) = 1 if A is true and 0
otherwise. In order to sample from the joint posterior given by 3.34, Tebaldi and West
proposed a Gibbs sampler (GEMAN; GEMAN, 1984), which iteratively samples from
the conditional distributions p(xi|x[−i],θ, z) and p(θi|θ[−i],x, z), in which x[−i] and θ[−i]
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denote the corresponding vectors with component i excluded. This sequence of conditional
samples is a Markov chain, which converges (mixes) in the long run to the desired joint
posterior distribution p(x,θ|z). We can draw samples from the corresponding marginal
posteriors p(x|z) and p(θ|z) by taking samples from x and θ in isolation.

Given gamma priors on θi, sampling from p(θi|θ[−i],x, z) is easy by virtue of conju-
gacy, so that p(θi|θ[−i],x, z) = Ga(αi + xi, βi + 1), in which αi and βi are the parameters
of the gamma prior distribution of θi. With regards to the posterior p(xi|x[−i],θ, z), there
is no conjugate distribution, so that we have to resort to a scheme called Metropolis-within-
Gibbs. This scheme is used to sample from the posterior p(xi|x[−i],θ, z) by means of the
Metropolis-Hastings algorithm (HASTINGS, 1970).

In order to sample from p(xi|x[−i],θ, z), we should also notice that the assumption
of error-free observed volumes implies that p(xi|x[−i],θ, z) has positive support only for
values of the vector x which satisfy the constraints ∆x = z and non-negativity x ≥ 0.
They then proposed to partition the link-route incidence matrix ∆ = [∆1,∆2], thereby
∆1 is a nonsingular m×m matrix and ∆2 is an m× (n−m) matrix, with a corresponding
partition x = [x1,x2]T and m and n are respectively the number of observed independent
links and the number of OD pairs. Thus, we can write the dependent subvector x1 as a
linear combination of the independent subvector x2:

x1 = ∆−1
1 (z −∆2x2) (3.35)

Equation (3.35) implies that we do not have to sample conditionally all components from x.
Once p(x|θ, z) = p(x1|x2,θ, z)p(x2|θ, z) and p(x1|x2,θ, z) = I(x1 = ∆−1

1 (z −∆2x2)),
we need to sample only the components from x2. Finally, the conditional distribution
p(xi|x[−i],θ, z) is given by:

p(xi|x[−i],θ, z) ∝ θi
xi!

∏
k∈I1

θk
xk!

i ∈ I2 (3.36)

In equation (3.36), I1 and I2 denote, respectively, the sets of indexes of the subvectors
x1 and x2. A major caveat in sampling from the conditional distribution in (3.36) is
identifying its support. For xi conditional on the other values x[−i] and i ∈ I2, Tebaldi
and West proposed to start by setting the lower bound xLB

i = 0 and the upper bound
xUB
i ≤ mina∈A(i){za −

∑
j∈I2,j 6=i δajxj}, where A(i) denotes the set of links affected by OD

pair i, and then testing for non-negativity of x1. In case x1 ≥ 0 is not true, either the lower
bound xLB

i = 0 is incremented or the upper bound xUB
i is decremented and non-negativity

of x1 tested. The procedure is repeated until the condition x1 ≥ 0 is satisfied, and the
lower and upper bounds are fixed. For real-scale networks, this trial-and-error procedure
can be computationally prohibitive, as pointed out by Parry and Hazelton (2013).
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After identifying the support of the posterior (3.36), we should use a proposal
distribution q(xi) to sample candidate values for xi. The authors suggest using uniform or
Poisson proposals. Given a candidate value x∗i , the candidate is accepted with probability
given by the following ratio r:

r = min
(

1, p(x∗i )q(xi)
p(xi)q(x∗i )

)
(3.37)

Finally, the description of the Gibbs sampler is the following:

1. (Initialization) Set starting values for the OD flow vector x(0). This can be ac-
complished by finding a non-negative solution to the underdetermined system of
equations ∆x = z

2. (Step 1) Draw independent samples for the mean values θi from the posterior
p(θi|θ[−i],x, z), for i ∈ I;

3. (Step 2) For each i, sample a candidate x∗i from a proposal distribution q(.) and
accept it with probability given by min

(
1, p(x∗i )q(xi)

p(xi)q(x∗i )

)
.

4. Repeat steps 1 and 2 until convergence.

In the following Section 3.4 we review dynamic models for estimation of the OD
matrix.

3.4 Models for the estimation of the dynamic OD matrix

All approaches discussed up to this point in this review modeled the transportation system
as static and in equilibrium. By static we mean that the parameters of the system do not
vary over time. However, in reality the system is dynamic, since social-economic factors and
infrastructure do change over time, affecting the system parameters. In order to predict
future behavior of the system or assess the impact of intervention in the system over
time, we should be able to model the dynamic variation of the demand and other relevant
parameters.

The types of dynamic models for the OD matrix may be classified in two broad
classes, according to the time scale of the model: within-day and day-to-day models.
Within-day models consider the time variation of the demand for a specified time period
within a single day. The extension of the time period under study may be as short as a
few minutes or the whole day. In contrast, day-to-day models are often concerned with
the variation of the demand for a repeated reference time period (typically the peak hour)
over a sequence of days.
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In this work we are concerned with day-to-day dynamic models, since our main
interest is in mid to long-term planning horizon, while the within-day models are more
useful for short-term operational decisions. We refer to the works of Willumsen (1984),
Cremer and Keller (1987), Cascetta (1993), Ashok and Ben-Akiva (2002) for further
reading on within-day dynamic models. The development of models for the estimation
of the OD matrix in day-to-day dynamic settings is very recent, with the main paper
published by Hazelton (2008). According to his words:

Previous work on inference for OD matrices from link count data can
be split broadly into two types. First there is static matrix estimation,
where it is most often assumed that a single set of link counts is available,
typically augmented by highly relevant prior information such as an
outdated OD matrix. [...] Second, there is dynamic matrix estimation,
based on a sequence of consecutive traffic counts taken at say 5–15 min
intervals. [...] We look at OD matrix estimation based on a sequence
of daily link counts. This is different to the within-day dynamic matrix
estimation problem mentioned above since we assume that all trips are
completed within a single observational period. [...] Neither is the problem
of estimating daily OD matrices simply equivalent to a sequence of static
estimation problems. While in principle we could apply existing static
matrix estimators, we would lose a great deal of information in terms
of likely similarities between OD matrices from one day to the next.
(HAZELTON, 2008, p.542)

In the day-to-day dynamic OD matrix estimation problem, we want to estimate a
sequence of unobserved mean OD matrices θ1,θ2, . . . ,θT given a sample of link volume
vectors z1, z2, . . . ,zT observed in a sequence of t = 1, 2, . . . , T consecutive days on some
links of the network. In the referred paper, Hazelton assumes that the OD flows are
independent and follow Poisson distributions. The independence assumption implies that
the covariance between OD pairs is zero, while the Poisson assumption implies that the
mean OD flows and their variances are equal, i.e., given the OD flow xti in OD pair i
at time t, E[xti] = Var(xti) = θti. Furthermore, both assumptions have the implication
that the OD route flows ytk at time t will also be Poisson with mean λtk = ptkθti for route
k ∈ Ki, and ptk is the probability of choosing route k. Thus, inference can be made directly
on the mean route flows λtk and the mean OD flows in each OD pair i may be estimated
by summing up the estimated mean route flows in each route in OD pair i.

A problem we face when assuming Poisson OD flows is that the joint probability
distribution of the link volumes will have a complicated form, which is not tractable,
as already discussed in Section 3.3.1. By using a normal approximation, the conditional
distribution of the link volumes zt given the mean OD route flows λt is given by p(zt|λt) =
N(∆λt, φ∆Λt∆T), in which Λt = diag(λt) and φ > 0 is a scale factor which adjusts for
link volumes which are not compliant with the Poisson assumption.

Hazelton further considers parsimonious parametrizations of the mean OD route
flows. The idea is to represent the mean OD route flows λt as a function of a vector
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of parameters β which does not change with time. A possible parsimonious model is
to represent the vector λt as a linear model λt = λ0 + tδ, with a vector of parameters
β = (λ0, δ, φ), so that we make inferences on the initial vector λ0, the time increment
vector δ and the link volume scale factor φ. Another possibility is a weekday-weekend
model, in which λt = λ0 in weekdays and λt = γλ0 for weekends, and γ is a demand
adjustment factor, so that β = (λ0, γ, φ) is the vector of parameters on which we make
inference. Assuming that link volumes are independent over time, the likelihood function
of the observed link volumes will be given by the following expression:

L(β) =
T∏
t=1

(2π)−T/2|Σt(β)|−1/2 exp
{
−1

2(zt −∆λt(β))TΣt(β)−1(zt −∆λt(β))
}

(3.38)

Where Σt(β) = φ∆Λt∆T, which is a function of β since Λt = diag(λt(β)). Inference on β
may be performed by maximizing equation (3.38), so that we obtain a maximum likelihood
estimator. Alternatively, we obtain a Bayesian estimator by specifying a prior distribution
on β and using the maximum a posteriori or mean of the posterior distribution.

A limitation of this latter model is that it assumes independence of link volumes,
which may not correspond to reality. In fact, it is expected that link volumes exhibit
correlation over time due the nature of the decision process of users, who dynamically
adapt to congestion conditions. In a recent paper, Parry and Hazelton (2013) make an
attempt at modeling this time dependence of the OD route flows according to an n-step
Markovian process with transition kernel given by p(yt|zt−1, zt−2, . . . ,zt−n,β), in which β
is a vector of parameters of interest. They propose a Gibbs sampler in order to iteratively
sample from the conditionals p(β|Y,Z) and p(Y|β,Z), where Y = (y1,y2, . . . ,yT ) and
Z = (z1, z2, . . . ,zT ). Nevertheless, a major drawback in their model is that it relies
on sampling route flows, which is a daunting computational task for which no efficient
procedure was until this moment proposed in the literature. Moreover, their model demands
observations in all links of the network, preventing its use in large networks where one
often observes only a subset of all links.

In the following Chapter 4, we describe our proposed dynamic model for the
estimation of OD matrices in day-to-day dynamic settings.
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4 A BAYESIAN DYNAMIC LINEAR MODEL FOR THE DAY-TO-DAY ESTIMA-
TION OF THE OD MATRIX

In this chapter, we describe our proposed dynamic model for the day-to-day estimation of
the OD matrix. Unlike the dynamic model of Hazelton (2008) described in Section 3.4, and
static estimation models such as the ones from Vardi (1996) and Hazelton (2000), which
assume independent Poisson OD flows, we model OD flows as random variables following
multivariate normal distributions. By assuming normal/Gaussian OD flows, we can benefit
from a more flexible covariance structure. For example, in contrast to the independent
Poisson assumption, we may allow OD flows to be correlated and variances not be equal to
mean OD flows. Moreover, the multivariate normal distribution is analytically convenient
for Bayesian inference, since it is amenable to conjugacy.

For each OD pair, we model OD route flows also as Gaussian variables with a
multinomial-like covariance structure, defined by the route choice set and the route choice
probabilities. Accordingly, the link volumes are also Gaussian with a mean vector which is
a function of the mean OD flows and whose covariance matrix reflects the variability of the
OD flows, of the route choices and of the measurements of volumes on links. We cast all
these variables in a dynamic linear model, which allows us to model the time dependence
and evolution of the OD flows.

In addition, unlike the model of Hazelton (2008), the dynamic linear formulation of
our model allows online estimation, i.e., we can update the estimate of the OD matrix as
soon as a new vector of link volumes is observed. This is in contrast to batch estimation,
in which we must gather a sample of link volume vectors and then apply the model to the
batch of observations.

We describe the mathematical formulation and updating equations of our proposed
model in the following Sections 4.1 and 4.2. In Section 4.3, we propose a method to
estimate the route choice probability within our proposed dynamic model. In Section 4.4,
we consider the static equilibrium-based case. Finally, in Section 4.5 we illustrate the
application of the model to a small network.

4.1 Mathematical formulation of the model

We model the day-to-day dynamics of origin-destination flows with basis on the theory
of dynamic linear models (DLM), which are Markovian state space models (WEST;
HARRISON, 1997; SÄRKKÄ, 2013) (See Appendix C for a review of dynamic linear
models). In the context of the estimation of the OD matrix in a day-to-day setting, we
define θt = (θt1, θt2, . . . , θtn)T as the mean OD flow vector, in which θtj is the mean OD
flow between OD pair j ∈ J at time t, and n = |J | is the number of OD pairs. We define
zt = (zt1, zt2, . . . , ztm)T as the vector of observed volumes in a subset of links in the network
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at time t, in which zti is the observed volume on link i ∈ I and m = |I| is the number of
observed links.

A simple model for the temporal variation of the mean OD flow vector is based
on the assumption that, in the short term, mean OD flows are locally constant. In other
words, at time t mean OD flows should be equal to the previous OD flows at time t− 1
but shifted by some stochastic error:

θt = θt−1 + ωt (4.1)

In which ωt ∼ N(0,Wt) and the covariances matrix Wt can be construed as an evolution
matrix. It measures the uncertainty of the modeller with regards to the variability of OD
flows over the time step from t− 1 to t. Moreover, the vector of observed volumes zt is
related to the current mean OD vector θt through an observation model, given below:

zt = Ftθt + νt (4.2)

In (4.2), Ft = ∆Pt is an assignment matrix, ∆ is the link-path incidence matrix and Pt a
route choice matrix at time t. The observation error at time t is given by νt ∼ N(0,Vt).
It represents the variability of the observed volumes around the mean expected volumes
given by E[zt] = Ftθt.

We should give special attention to the specification of the covariance matrix Vt of
the observed volumes. Due to the network structure, link volumes are correlated. This
correlation structure has to be represented in the covariances matrix Vt. We can identify
three sources of variability affecting link volumes: the generation of OD flows; the route
choice process; and the counting of volumes on the links.

Let us define xt = (xt1, xt2, . . . , xtn)T as the vector of actual OD flows at time t.
The conditional probability density function of xt is given by:

p(xt|θt) = N(θt,Σtx) (4.3)

Where Σtx is the covariance matrix of the actual OD flows, which can account for
correlations among OD flows or simply be a diagonal matrix in case OD flows are deemed
independent. Given a realized vector xt, for each OD pair j we have a vector of route
flows ytj = (ytj1, ytj2, . . . , ytjn(j)), in which n(j) = |Kj| is the size of the route set Kj of OD
pair j. We assume that ytj ∼ MN(dxtje,ptj), in which ptj = (ptj1, ptj2, . . . , ptjn(j))T is the
vector of route choice probabilities of OD pair j. Notice that, according to the properties
of the multinomial distribution, we must have ∑k∈Kj

ptjk = 1 and ∑k∈Kj
ytjk = dxtje, and

the mean and covariances are respectively given by:
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E[ytjk] = dxtjeptjk (4.4)

Cov(ytjk, ytjl) =

dxtjeptjk(1− ptjk) if k = l

−dxtjeptjkptjl if k 6= l
(4.5)

In order to work within the framework of Gaussian DLMs, we consider a normal
approximation to the multinomial, given by:

p(ytj|xtj,ptj) ≈ N(xtjptj,Σtyj) (4.6)

Where the covariance matrix of the route flows for OD pair j at time t is given by:

Σtyj = xtj(diag(ptj)− ptjpT
tj) (4.7)

The approximation given by expression (4.6) will be good provided that route flows
are large. Notice also that, as long as ∑k∈Kj

ptjk = 1, the covariance matrix Σtyj will be
singular and the corresponding multivariate normal distribution will be degenerate. In
order to avoid this, we assume there is a positive probability of none of the routes in the
route set being chosen, so that ∑k∈Kj

ptjk ≤ 1, assuring that Σtyj is non-singular.

The conditional distribution of the vector of route flows yt = (yt1,yt2, . . . ,ytn)T

will be multivariate normal (since we defined normal distributions for all subvectors ytj):

p(yt|xt) = N(Ptxt,Σty) (4.8)

Where Pt and Σty are block-diagonal matrices represented, respectively, by:

Pt =


pt1

pt2
. . .

ptn



Σty =


Σty1

Σty2
. . .

Σtyn


Since we assume that Pt is known, we omit its explicit dependence in (4.8) as well

as in subsequent conditional densities. Notice also from (4.7) that the covariance matrix
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Σty is dependent on the OD flow vector xt. In order to avoid such dependence, which
may impose some “analytic hurdles”, we define an approximate covariance matrix Σ̂ty

calculated on an approximate OD flow vector x̂t.

The next step is to obtain the conditional distribution of route flows given mean
OD flows θt:

p(yt|θt) =
∫

p(yt,xt|θt)dxt

=
∫

p(yt|xt)p(xt|θt)dxt (4.9)

Where (4.9) results from the conditional independence of yt from θt, given xt and Pt.
From (4.3) and (4.8), and from equations (A.2) and (A.3) in Appendix A, the marginal
density (4.9) is multivariate normal:

p(yt|θt) = N(Ptθt,PtΣtxPT + Σ̂ty) (4.10)

In order to complete the specification of our model, we must obtain the conditional
distribution of the observed volumes given the mean OD flows θt. First we notice that the
conditional distribution of observed volumes zt, given route flows yt is:

p(zt|yt) = N(∆yt,Σtz) (4.11)

In which Σzt is the covariance matrix of the errors originated when observing the volumes
on links, and ∆ is the link-path incidence matrix. Then we have:

p(zt|θt) =
∫

p(zt,yt|θt)dyt

=
∫

p(zt|yt)p(yt|θt)dyt (4.12)

From (4.10), (4.11) and from equations (A.2) and (A.3), we have:

p(zt|θt) = N(∆Ptθt,Vt) (4.13)

In which the covariance matrix Vt is given by:

Vt = ∆(PΣtxPT
t + Σ̂ty)∆T + Σtz

= FtΣtxFT
t + ∆Σ̂ty∆T + Σtz (4.14)
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Finally, we are able to state fully our dynamic linear model for the day-to-day
variation of the OD matrix:

Dynamic model:

θt = θt−1 + ωt ωt ∼ N(0,Wt) (4.15)

Observational model:

zt = Ftθt + νt νt ∼ N(0,Vt) (4.16)

Observational covariance matrix :

Vt = FtΣtxFT
t + ∆Σ̂ty∆T + Σtz (4.17)

And Wt is determined according to the knowledge of the analyst regarding how the OD
flows vary over the days. For example, if the OD flows are independent and vary only
slightly from time t− 1 to t, one may set Wt as a diagonal matrix with small variances
for the OD flows.

4.2 Updating equations for the formulated model

At a time t, let Dt−1 = {z1, z2, . . . ,zt−1} and Ft is the (known) assignment matrix. The
updating equations of our model are the following (See Appendix C):

Posterior distribution of θt at time t− 1:

p(θt−1|Dt−1) = N(mt−1,Ct−1)

Prior distribution of θt at time t:

p(θt|Dt−1) = N(m̄t, C̄t)

Where

m̄t = mt−1

C̄t = Ct−1 + Wt

One-step forecast of link volumes zt:
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p(zt|Dt−1) = N(ft,Qt)

And

ft = Ftm̄t

Qt = FtC̄tFT
t + Vt

It is worth noting that in computing Vt, the covariance matrix of route flows Σ̂ty is
computed based on the predicted value of mean OD flows, i.e., Σ̂ty = blockdiagj∈J {Σ̂tyj}
in which Σ̂tyj = m̄tj(diag(ptj)− ptjpT

tj).

Compute the prediction error:

et = zt − ft

And At is an adjustment matrix:

At = C̄tFT
tQ−1

t (4.18)

Finally, the posterior distribution of θt given Dt = Dt−1 ∪ {zt}:

p(θt|Dt) = N(mt,Ct)

With posterior mean and covariance matrix:

mt = m̄t + Atet (4.19)

Ct = C̄t −AtQtAT
t (4.20)

In equations (4.19) and (4.20), we see that the adjustment matrix At controls how the
parameters from the posterior distribution are modified according to the new observation
zt. In particular, we see from equation (4.18) that the adjustment matrix is a function
of the prior covariance matrix C̄t and of the inverse Q−1

t of the covariance matrix of the
forecast distribution of the link volumes, so that the adjustment matrix gives more or
less weight on the observed link volumes according to their uncertainty relative to the
uncertainty on OD flows.
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4.3 Congestion and the estimation of route choice probabilities

In the preceding Sections 4.1 and 4.2, we developed the base dynamic linear model for
the problem of estimation of the OD matrix in a day-to-day dynamic setting. In our
exposition, we assumed that the route choice probabilities, represented in the form of a
route choice matrix Pt, are known for all time periods. In practice, these probabilities
have to be estimated.

We consider the estimation of the route choice matrix by an exogenous route choice
model, which has been the practice in most literature on OD matrix estimation. In general,
these models are based on the theoretical body of discrete choice theory (also referred to
as random utility theory), briefly reviewed in Section 2.2.

In the uncongested case, we may plausibly assume that the route choice matrix
does not depend on time, at least for the the planning horizon under consideration, in
order that Pt = P for all t. Then, we can estimate P by applying, for example, a logit or
probit model based on free flow times (for further details, refer to Section 2.2).

The problem gets a new layer of complexity in congested networks. In this case, in
contrast to uncongested networks, the levels of traffic volumes on links have non-negligible
deteriorating impact on route travel times. In response to congestion, rational users change
routes in order to minimize their travel times. This means that route choice probabilities
will change with time as a function of users expected travel times.

Moreover, unlike static models, in dynamic settings the network may not be in
an equilibrium state. As described in Section 2.4, in stochastic equilibrium, route choice
probabilities (i.e., expected route choice proportions) are constant functions of mean OD
flows, corresponding to stationary probability distributions reached in the long run. If
mean OD flows vary with time, the transportation network will likely not have enough
time to converge to an equilibrium state.

Our strategy is then to estimate the route choice matrix at each time t. Let
ft−1 = Ft−1m̄t−1 be the forecast traffic volumes at time t− 1. We define the vector ut−1

of forecast route choice travel times as:

ut−1 = ∆Tτ (ft−1) (4.21)

In which τ (.) is the link cost vector, given by performance functions (e.g., BPR functions,
see Section 2.4), and we assume additive route costs as standard in the literature. We can
estimate the route choice probabilities at time t taking into account the forecast costs at
the previous time:

p̂t = p(ut−1) (4.22)
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And the function p(.) is computed by means of a route choice model. In practice, it is
plausible to consider that users decide which route to follow based on average route travel
times, which they average out from past experiences. Then, at a time t, we recursively
define as estimate of users average route travel time the weighted average of forecast travel
times and estimated average travel times at time t− 1:

ũt = α∆Tτ (ft−1) + (1− α)ũt−1 (4.23)

In (4.23), 0 ≤ α ≤ 1 is the weight that users put on recently experienced travel times,
with α = 0 resulting in constant route travel times equal to the initial travel times,
ũt = ũt−1, . . . , ũ0, and α = 1 resulting in users totally ignoring past experiences. ũ0

may be estimated, for example, from free-flow route travel times. Finally, route choice
probabilities may be estimated by the following expression:

p̂t = p(ũt) (4.24)

4.4 The static equilibrium-based case

If we assume the premise that the mean OD matrix is constant over the considered
time horizon, then the evolution covariance matrix from time t to time t + 1 is zero,
Wt = W = 0. Thus according to equation (4.1) θt = θt−1 = θ, so that we do not need a
dynamic model. In addition, in the static case it is typically assumed that the network is
in equilibrium, so that route choice probabilities also do not vary over time. Then, we have
the following observational model, which relates the mean OD matrix θ to the observed
link volumes:

zt = Fθ + ν (4.25)

In which F = ∆P is the constant assignment matrix corresponding to an equilibrium
state, and ν ∼ N(0,V) are homoscedastic errors (do not vary over time) with covariance
matrix (according to equation (4.14)):

V = FΣxFT + ∆Σy∆T + Σz (4.26)

In which Σx, Σy and Σz are the covariance matrices of OD flows, route flows and counting
errors, respectively.
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Given a prior probability distribution p(θ) and observed volume vectors z1, z2, . . . ,zT ,
the posterior distribution p(θ|z1, z2, . . . ,zT ) is given by Bayes theorem:

p(θ|z1, z2, . . . ,zT ) ∝ p(z1, z2, . . . ,zT |θ)p(θ) (4.27)

Assuming conditional independence of zt given θ, the likelihood in expression
(4.27) may be written as:

p(z1, z2, . . . ,zT |θ) =
T∏
t=1

p(zt|θ) (4.28)

Further, notice that p(θ|zt, zt−1, . . . ,z1) ∝ p(zt|θ)p(θ|zt−1, . . . ,z1), once more due
to conditional independence, so that we can obtain the posterior p(θ|zt, zt−1, . . . ,z1) by
iterating through t = 1, 2, . . . , T and updating the prior to posterior distributions as in
the dynamic case. The following are the updating equations for the static case:

Posterior distribution of θt at time t− 1, equals to prior distribution at time t:

p(θt−1|Dt−1) = N(mt−1,Ct−1)

One-step forecast of link volumes zt:

p(zt|Dt−1) = N(ft,Qt)

Where

ft = Ftmt−1

Qt = FtCt−1FT
t + Vt

Compute the prediction error:

et = zt − ft

And the adjustment matrix:

At = Ct−1FT
tQ−1

t

Finally, the posterior distribution of θt given Dt = Dt−1 ∪ {zt}:

p(θt|Dt) = N(mt,Ct)
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mt = mt−1 + Atet (4.29)

Ct = Ct−1 −AtQtAT
t (4.30)

Moreover, in the static case we assume that the network is in equilibrium. For a
given route choice matrix P (the equilibrium probabilities are deterministic), we define
the posterior estimate m of θ as the expected value of the posterior distribution, m =
E[p(θ|P, z1, z2, . . . ,zT )]. It turns out that the estimate m must be consistent with the
route choice probabilities. Then we set up the following fixed point problem to find m∗:

m∗ = E[p(θ|P(m∗), z1, z2, . . . ,zT )] (4.31)

The estimate m∗ in (4.31) may be found by a fixed point iteration:

• Initial step (k = 0): Start with an initial route choice matrix P(0) (which can be
obtained based on free flow route travel times), and prior distribution p(θ) based on
prior knowledge.

• While a stopping criteria is not met, repeat:

1. Obtainm(k) = E[p(θ|P(k), z1, z2, . . . ,zT )] by recursively applying the updating
equations (4.29) and (4.30).

2. Calculate new route choice matrix P(k+1)(m(k)) based on stochastic traffic
assignment of m(k). Make k := k + 1.

An alternative method is to obtain the maximum a posteriori (MAP) by maximizing
the logarithm of expression (4.27), with likelihood p(zt|θ) = N(θ,V) and prior p(θ) =
N(m0,C0):

`(θ) = −T2 log|V| − 1
2

T∑
t=1

(zt − Fθ)TV−1(zt − Fθ)− 1
2(θ −m0)TC−1

0 (θ −m0) (4.32)

The main difficulty in maximizing equation (4.32) is that both the covariance matrix V
and the assignment matrix F are functions of mean OD flows θ. A relaxation we can take
with regards to V is to substitute it for the sample covariance matrix V̂, given by:

V̂ = 1
T − 1

T∑
t=1

(zt − z̄)(zt − z̄)T (4.33)
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In which z̄ is the vector of sample mean observed volumes. Finally, we set up a bilevel
model in order to cope with the dependence between the assignment matrix F and the
vector of mean flows θ:

min 1
2

T∑
t=1

(zt − Fθ)TV̂
−1(zt − Fθ) + 1

2(θ −m0)TC−1
0 (θ −m0) (4.34)

s.t.

F = F(θ) (4.35)

θ ≥ 0 (4.36)

Where F(θ) is calculated by means of the assignment of the mean OD flow vector θ. It is
noteworthy that the model given by equations (4.34)-(4.36) is essentially the GLS model
of Hazelton (2000) (see equation (3.28)) with an added term corresponding to the prior
OD matrix and cast in a bilevel form. It can be solved by iterating between the upper and
lower levels, as described in Section 3.2.4.

4.5 An illustrative example

In order to illustrate the application of our proposed DLM to the estimation of day-to-day
OD flows, we simulate dynamic OD flows in a small network from the paper of Hazelton
(2000), which is shown in the Figure 3 below:

Figure 3 – Network used in the illustrative example

1 3

2

1 2

3

Source: Hazelton (2000)

There are three OD pairs: (1,2), (1,3) and (2,3). OD pairs (1,2) and (2,3) have only
one route each, and OD pair (1,3) has two available routes: The first through links 1 and
2, and the second directly through link 3. Thus, the corresponding link-path incidence
matrix is the following:

∆ =


1 1 0 0
0 1 0 1
0 0 1 0


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We assume that all links have the same length of one unit and capacities respectively
of 100.0, 100.0 and 50.0. We adopt BPR-like performance functions, with the traditional
values α = 0.15 and β = 4.0 for all three links. Free-flow times are equal to link lengths.

We will simulate T time periods (e.g., days). The simulation is performed according
to the following steps for each time period t = 1, . . . , T , starting on initial mean OD
flow vector θ0, average route costs ũ0 based on free-flow times on links, and specified
parameters α (weight of current route costs) and ξ (logit scale):

1. Draw a new mean OD flow vector θt ∼ N(θt−1,Wt) (equation (4.1));

2. draw OD flows xt ∼ N(θt,Σtx);

3. compute route choice probabilities by using a logit route choice model based on
current average route costs: ptj = logit(ũtj, ξ);

4. for each OD pair j, draw route flows ytj ∼ MN(dxtje,ptj(1 − π)), where π is the
probability of a user not choosing a route in the route choice set;

5. assign route flows to links by making zt = ∆yt + νt, in which νt ∼ N(0,Σtz);

6. update average route costs for next time period by means of the equation ũt+1 =
α∆Tτ (zt) + (1− α)ũt, in which τ (.) is a vector-valued function which returns the
travel time on links.

We adopt the following values for the parameters of the simulation: T = 100
(days); initial mean OD flow vector θ0 = (70.0, 100.0, 80.0)T; ξ = 5.0; α = 0.25; π = 0.01
(probability of a user not choosing a route in the route choice set). In addition, we assume
that mean OD flows are mutually independent and that they vary slightly between times t−1
and t, by setting the coefficient of variation equals to 0.01, so that Wt = 10−4×diag(θ2

t−1).
Notice that the mean OD flows will show heteroscedasticity over time, since the variances
will be proportional to mean OD levels. We also maintain mean OD flows within the range
[50.0, 150.0]. With regards to realized OD flows xt, we assume Poisson-like variability,
in order that Σtx = diag(θt). Finally, we assume negligible counting errors in observed
volumes, with Σtz = I (the identity matrix). In applying the updating equations (4.19) and
(4.20) at each time t, we start with an uniformative prior distribution θ0 ∼ N(m0,C0),
with m0 = (70.0, 100.0, 80.0)T and C0 = 104 × I.

Figures 4, 5 and 6 show the results of the simulation for OD flows, while Figures 7,
8 and 9 show the results for link volumes. In these figures, we can see how the updating
equations correctly respond to dynamic changes in OD flows by exploiting information
contained in the observed link volumes. The estimated mean OD flows, given by the
continuous line in the corresponding figures, is not far from the dots, which correspond to
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“true” mean OD flows. In Figure 10, we have the probability of choosing route 1 of OD
pair 2. As the OD flows vary over the simulated time horizon, the probability also changes
in response to congestion. Once again, the estimated probability is not far from the actual
probability. As a final comment, we should point out that in this illustrative example the
mean OD flows are identifiable, since the number of independent observed link volumes
equals the number of OD pairs. In larger and more realistic networks, we should expect
facing identifiability problems.

Figure 4 – Simulation of OD flow in pair 1

Source: the author

Figure 5 – Simulation of OD flow in pair 2

Source: the author
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Figure 6 – Simulation of OD flow in pair 3

Source: the author

Figure 7 – Simulation of volume on link 1

Source: the author
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Figure 8 – Simulation of volume on link 2

Source: the author

Figure 9 – Simulation of volume on link 3

Source: the author
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Figure 10 – Probability of choosing the route 1 in OD pair 2

Source: the author
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5 COMPUTATIONAL EXPERIMENTS

In this chapter, we describe three computational experiments we performed. In the
first one, our objective is to assess if dynamic models can reduce the non-identifiability
(underspecification problem) of the mean OD matrix. This corresponds to our first research
question as stated in the introduction. We test our proposed dynamic model and a dynamic
version of the GLS model at best conditions, and verify if they are able to estimate the
dynamic mean OD matrices over time with low estimation errors. By “best conditions”
we mean that the models are tested as if all parameters were known exactly except for
the mean OD matrices. In the second experiment, corresponding to our second research
question, our objective is to compare static and dynamic models in a realistic scenario to
test if dynamic models can produce better estimates of mean OD matrices. The impact of
prior information, our third research question, is assessed in both experiments 1 and 2.
Finally, in a third experiment, we address our fourth research question, the effect of the
assignment matrix on the estimation error, by evaluating the performance of the GLS and
dynamic models on three test cases in which we use different assignment matrices. In the
following sections, we detail how the models were implemented, the data generated, the
experimental design and the performance measures used. We comment on the results in
each experiment. We summarize the main findings in the final Section 5.9 of this chapter.

5.1 Implementation details

All algorithms were implemented in the Python programming language version 2.7.7,
which is a high level open-source programming language (LUTZ, 2003). We used the
Scientific Python library (SciPy), which is a collection of functions and algorithms for
scientific computing (JONES et al., 2001). In particular, we used heavily the linear algebra
submodule linalg, which is a wrapper for the low level functions of the LAPACK (Linear
Algebra Package) and BLAS (Basic Linear Algebra Subroutines) written in FORTRAN.
This means that, although our high level codes are written in Python, all the “numerical
crunching” is effectively outsourced to computationally efficient routines in FORTRAN.
We used the version of LAPACK provided by Intel via the Math Kernel Library (MKL).
The optimization models were solved by using the limited memory Broyden-Fletcher-
Goldfarb-Shanno algorithm for bounded variables, known as L-BFGS-B (NOCEDAL;
WRIGHT, 2006). In order to model the network and perform some operations on nodes
and links, we used the Python module networkx (HAGBERG; SCHULT; SWART, 2008).

5.2 Characterizarization of the test network

We use the Sioux Falls network as the test unit in our experiments. It is an abstracted
version of a real network in the city of Sioux Falls in the United States. It is routinely
used in the literature, which allows for repeatability and comparison. Its first reference
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is the paper by LeBlanc, Morlok and Pierskalla (1975). Figure 11 shows an schematic
representation, while Table 1 shows its main features.

Figure 11 – Schematic representation of Sioux Falls network
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Table 1 – Main characteristics of Sioux Falls network

Feature Value
Nodes 24
Links 76
OD pairs 552
Type of link All bidirectional
Total number of routes ≈ 1.8× 106

Source: the author

Table 13 in Annex B contains the lengths of all links, their corresponding capacities
and other parameters. Table 2 shows some statistics on the OD matrix for Sioux Falls
(in vehicles per hour), while Figure 12 shows an histogram of the OD flows. It can be
seen from the histogram that the distribution of the OD flows is skewed to the right, with
many OD pairs with low flow and just a few with high flow. Table 12 in Annex A contains
the values of the OD flows for all OD pairs.
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Table 2 – Statistics for the OD matrix of Sioux Falls

Statistic Value (veh/h)
Total flow 360600
Mean 653
Minimum 0
Maximum 4400
Standard deviation 695
Number of OD pairs with zero OD flow 24
Source: the author

Figure 12 – Histogram of Sioux Falls OD flows

Source: the author

As the total number of feasible routes is intractably large (≈ 1.8×106, see Table 1),
we enumerate only the five shortest routes for each OD pair by mean of Yen’s algorithm
(YEN, 1971), summing up to 2760 routes (5 routes for each one of the 552 OD pairs). This
is a fairly realistic assumption, since in practice the users consider a relatively small set of
routes (BEKHOR; BEN-AKIVA; RAMMING, 2006). We also assume that all 76 links are
observed, resulting in a link-path incidence matrix ∆ with 76 rows and 2760 columns.

Figure 13 shows the result of a stochastic user equilibrium assignment of the OD
matrix of the Sioux Falls network. In the assignment we used a multinomial logit route
choice model with scale factor ξ = 5.0 (equation (2.10)) and link-path incidence matrix
generated from the 5-shortest routes in each OD pair.

5.3 Tested models

Below we briefly describe the three models we tested in the experiments. A dynamic version
of the GLS model described in Section 3.2.2, the static estimation model we developed in
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Figure 13 – Congested links in Sioux Falls network (in black)

Source: the author

Section 4.4, and the dynamic model we developed in Section 3.4.

5.3.1 Dynamic GLS model

Since the GLS model was designed for reconstruction, we define what we call a dynamic
GLS: at each time t, we reconstruct an OD matrix based on the observed volumes at t.
The prior matrix at time t is the reconstructed matrix from previous time period t− 1,
with an initial prior matrix x0. At the end, we calculate the estimate of the mean OD
matrix as the average of all reconstructed matrices:

θGLS = 1
T

T∑
t=1
xGLS
t (5.1)

In equation (5.1), xGLS
t is the reconstructed matrix at time t, obtained as the solution of

equation (3.8).
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5.3.2 Static estimation model

The estimator of the mean OD matrix given by the static estimation model (SE model) is
given by the solution of equation (4.31):

θSE = m∗ where m∗ = E[p(θ|P(m∗), z1, z2, . . . ,zT )] (5.2)

It should be emphasized that the estimator θSE is applied in batch mode, this is, it
needs observations from all T time periods in the time horizon in order to be applied.

5.3.3 Dynamic estimation model

Finally, dynamic estimation (DE) model gives an estimate of the mean OD matrix θDE
t at

each time step as the mean of the posterior distribution p(θt|zt, zt−1, . . . ,z1):

θDE
t = mt where mt = E[p(θt|zt, zt−1, . . . ,z1)] (5.3)

And mt is obtained recursively by means of equation (4.19). It is worth noting that the
GLS model is fundamentally different from the other two. First, it assumes that the
demand is deterministic, so that it does not seek to estimate a mean OD matrix, but to
reconstruct an OD matrix which generated the observed volumes. It takes into account
only errors in the observation of volumes. On the other hand, both static and dynamic
estimation models are fully stochastic, in the sense that they also consider errors in volumes
brought about by the random nature of OD flows and route choices. Table 3 shows a
summary of the main characteristics of the tested models:

Table 3 – Main features of the tested models

Model Paradigm Demand Main references

GLS Frequentist Deterministic static Cascetta (1984), Bell
(1991), Cascetta and
Postorino (2001)

Static Estimation (SE) Bayesian Stochastic static Hazelton (2000),
Hazelton (2001), this
thesis

Dynamic Estimation (DE) Bayesian Stochastic dynamic This thesis
Source: the author

5.4 Performance measures

In all experiments, we use the relative root mean squared error (RRMSE) and the relative
mean absolute error (RMAE) as performance measures of the model. Equations (5.4) and



Chapter 5. Computational experiments 65

(5.5) give the root mean squared error (RMSE) and the mean absolute error (MAE), while
equations (5.6) and (5.7) give the corresponding RRMSE and RMAE:

RMSEOD =

√√√√√ 1
nT

T∑
t=1

n∑
j=1

(θ̂tj − θtj)2 (5.4)

MAEOD = 1
nT

T∑
t=1

n∑
j=1
|θ̂tj − θtj| (5.5)

RRMSEOD = RMSEOD
1
nT

∑T
t=1

∑n
j=1 θtj

(5.6)

RMAEOD = MAEOD
1
nT

∑T
t=1

∑n
j=1 θtj

(5.7)

In which, θtj and θ̂tj are, respectively, the actual mean OD flow and estimated OD flow
in OD pair j at time t, and n is the number of OD pairs. The RMSE is the traditional
performance measure, but it is sensitive to extreme values. MAE is less sensitive, then
in some cases it may provide a more fair comparison between models. We use similar
performance measures with relation to volumes:

RMSEvol =

√√√√ 1
nT

T∑
t=1

m∑
i=1

(µ̂ti − µtj)2 (5.8)

MAEvol = 1
nT

T∑
t=1

m∑
i=1
|µ̂ti − µti| (5.9)

RRMSEvol = RMSEvol
1
mT

∑T
t=1

∑m
i=1 µti

(5.10)

RMAEvol = MAEvol
1
mT

∑T
t=1

∑m
i=1 µti

(5.11)

Where µti and µ̂ti are, respectively, the actual and estimated volumes on link i at time t,
and m is the number of observed links.

5.5 Generation of synthetic data

We use simulated data in order to test the models. The procedure of generation is the
following: we generate a sequence of OD flow vectors θ1,θ2, . . . ,θT according to a gaussian
random walk (See equation (4.1)), with θt = θt−1 + ωt, and ωt ∼ N(0,Wt). We assume
independent mean OD flows, so that Cov(θti,θtj) = 0. Furthermore, we assume that from
time t− 1 to t the standard deviation of the mean flow in an OD pair j is proportional to
the realized mean OD flow θt−1,j at the previous time t− 1, with proportionality constant
given by the coefficient of variation κ. Thus, the evolution matrix at time t will be a
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diagonal matrix given by Wt = κ2diag(θ2
t−1). We adopt κ = 0.01, i.e., from time t− 1 to t

the standard deviation of the mean OD flow in each OD pair is only 1% of the mean OD
flow in the preceding time period. In this way, we simulate a smooth drift of the mean OD
matrix over time.

For each time period t we assign the mean OD matrix θt to the network in
order to generate observed link volumes. We draw realized OD flows according to a
multivariate normal distribution, so that xt ∼ N(θt,Σtx). We assume an independent
Poisson-like variance structure, then Σtx = diag(θt). In the next step, we assign the
realized OD flows to routes according to a multinomial distribution, i.e., for each OD pair
j, ytj ∼ MN(dxtje,ptj(1−π)), and yt is the vector of realized route flows. We calculate the
route choice probabilities by means of a multinomial logit model ptj = logit(ũtj; ξ), based
on average route costs ũtj. We assume a logit scale parameter ξ = 5.0, and a probability
of not using any of the routes in the route choice set π = 0.01.

Finally, we assign route flows to links by means of the link-path incidence matrix,
zt = ∆yt + νt, in which νt ∼ N(0,Σtz). We assume negligible counting errors in observed
volumes, so that Σtz = I (the identity matrix). At each time step, we update the average
route costs by means of the expression ũt+1 = α∆Tτ (zt) + (1−α)ũt, with starting average
route costs ũ0 based on free-flow times, and α = 0.05 is the assumed weight users apply in
averaging route costs. The starting mean OD matrix θ1, which is the original OD matrix
for the Sioux Falls network, is available in Annex A. We generate sample paths for T
time periods, and discard the T ′ first time periods in order to mitigate the influence of
starting conditions on future values. Below we summarize in a systematic way the steps
just described, while in Table 4 we arrange the values adopted for the parameters used in
the generation of the data.

Table 4 – Parameters in the generation of simulated data

Parameter Value Description
κ 0.01 Coefficient of variation of the mean OD flows
ξ 5.00 Scale parameter in multinomial logit model
π 0.01 Probability of none of the routes in a route

choice set being chosen
α 0.05 Weight in averaging route costs
Wt κ2diag(θ2

t−1) Evolution matrix
Σtx diag(θt) Covariance matrix of the realized OD flows
Σtz I Covariance of counting errors in traffic vol-

umes
θ1 See Annex A Initial mean OD matrix

Source: the author

Procedure for the generation of the simulated data:
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1. Draw a new mean OD flow vector θt ∼ N(θt−1,Wt) (equation (4.1));

2. draw OD flows xt ∼ N(θt,Σtx);

3. compute route choice probabilities by using a logit route choice model based on
current average route costs: ptj = logit(ũtj, ξ);

4. for each OD pair j, draw route flows ytj ∼ MN(dxtje,ptj(1− π)) (notice that π is
the probability of a user not choosing a route in the route choice set);

5. assign route flows to links by making zt = ∆yt + νt, in which νt ∼ N(0,Σtz);

6. update average route costs for next time period by means of the equation ũt+1 =
α∆Tτ (zt) + (1− α)ũt, in which τ (.) is a vector-valued function which returns the
travel time on links.

5.6 Experiment 1

In this first experiment, our objective is to assess if dynamic models can reduce the non-
identifiability (underspecification problem) of the mean OD matrix. We test our proposed
dynamic model described in Chapter 4 and the GLS model, proposed by Cascetta (1984)
and described in Section 3.2.2. We used a “dynamic” version of the GLS, which consists
simply in applying the GLS at each time period t assuming as prior matrix the matrix
reconstructed at time period t − 1. (See Section 5.3.1). We test both models at best
conditions, so as to exclude estimation errors in parameters other than the mean OD flows
and link volumes.

We consider one non-informative case and two informative cases. The cases are
slightly different according to the model tested. For example, in the GLS model there is
no prior probability distribution, only a point estimate of a prior OD matrix, while in the
dynamic estimation model the prior information is specified by the mean and covariance
matrix of the prior distribution. The non-informative case corresponds to a situation in
which there is no prior knowledge on the OD flows or this knowledge is unreliable. This
may happen, for example, when no prior OD matrix is available or it is outdated. For the
GLS model, we assume a prior OD matrix x0 = 100× 1, and for the dynamic model we
assume a prior mean OD flow vector m0 = 100× 1 and covariance matrix C0 = 106 × I.

In contrast, in the informative cases there is a reliable prior OD matrix, and we
further consider two situations: a scaled-down case (informative 1), and an exact case
(informative 2). In the scaled-down case, the prior OD matrix has the same pattern but
its magnitude is 75% of the actual matrix at time t = 1; while in exact case, the prior
OD matrix is equal to the actual OD matrix at time t = 1. In the dynamic estimation
model the prior covariance matrix is set to the identity, while in the GLS model in both
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Table 5 – Controlled parameters (kept constant) for the dynamic and GLS models in the test cases

Model Parameter Values Description
Common to both models ξ 5.0 Logit scale parameter

π 0.01 Probability of a trip occur in a
route outside the route choice set

GLS Σx I Covariance matrix of the OD flows
Σz I Covariance matrix of the traffic

volumes
ρ 1.0 Weight of the distance to the prior

OD matrix
Dynamic estimation Σx diag(m̄t) Covariance matrix of OD flows

Σz I Covariance matrix of the errors in
counting traffic volumes

κ 0.01 Coefficient of variation in the evo-
lution matrix

W κ2diag(m̄2
t ) Estimated evolution matrix

Source: the author

non-informative and informative cases the covariances of OD flows and traffic volumes
are set to the identity, since they do not represent subjective uncertainty as in Bayesian
models. Table 5 shows the controlled factors for the three tested models, while Table 6
summarizes the test cases. In all cases the assignment matrices are assumed known and
equal to the simulated ones. The results for a simulation of T = 350 with T ′ = 50 first
observations discarded are given in Table 7.

Table 6 – Cases studied in the computational experiment 1

Case Model Prior OD matrix Prior cov. matrix
Non-inform. GLS x0 = 100× 1 Not applicable

Dynamic estimation m0 = 100× 1 C0 = 106 × I
Informative 1 GLS x0 = 0.75θ1 Not applicable

Dynamic estimation m0 = 0.75θ1 C0 = I
Informative 2 GLS x0 = θ1 Not applicable

Dynamic estimation m0 = θ1 C0 = I
Source: the author

As we can see from the RMAE of the OD flows in Table 7, the dynamic estimation
model performed better in both informative cases, with 25% and 15% smaller error in
informative cases 1 and 2, respectively. In the non-informative case, the performances of
both models were equivalent. This suggests that, in non-informative situations, we may
alternatively use the dynamic GLS or the dynamic estimation model, while in informative
scenarios we may achieve smaller errors by using the dynamic estimation model. We show
graphs of the evolution of OD flows over time for the informative case 2 in three selected
OD pairs (See Figure 11): OD pair 10-16 (high flows, Figures 14 and 15); OD pair 1-10
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Table 7 – Results for the application of the models to the Sioux Falls Network in the computational
experiment 1

Performance measures
Case Model RRMSEOD RMAEOD RRMSEvols RMAEvols

Non-informative GLS 1.1016 0.7088 0.0113 0.0086
Dynamic estimation 1.1075 0.7150 0.0116 0.0087

Informative 1 GLS 0.2945 0.1909 0.0113 0.0091
Dynamic estimation 0.2134 0.1441 0.0121 0.0085

Informative 2 GLS 0.1754 0.1018 0.0115 0.0088
Dynamic estimation 0.1377 0.0866 0.0113 0.0086

Source: the author

(medium flows, Figures 16 and 17), and OD pair 24-4 (low flows, Figures 18 and 19). All
graphs for the dynamic model show the smoothed curve. We can see from these figures
that the dynamic model was able to adapt to the variation of the mean OD flows, while the
GLS did not follow the variation, remaining at an approximately constant level. However,
the 95% limits for the dynamic model are wide and increasing, indicating high uncertainty
in the estimated mean OD flows. In the non-informative case, both models are not able to
track the mean OD flows, as shown in Figures 20 and 21.

Regarding link volumes, Figures 22 and 23 show the estimation of link volumes
in link 32 by the dynamic and GLS models, respectively. We can see that the dynamic
model discarded part of the variability in volumes, estimating their means, while the GLS
model tracked the observed volumes more closely, being sensitive to the variability.

Figure 14 – Estimation of flows in OD pair 10-16 (high flow) by the dynamic estimation model

Source: the author
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Figure 15 – Estimation of flows in OD pair 10-16 (high flow) by the GLS model

Source: the author

Figure 16 – Estimation of flows in OD pair 1-10 (medium flow) by the dynamic estimation model

Source: the author

5.7 Experiment 2

In this experiment, our objective is to compare the models in a realistic scenario. The
practical situation we have in mind is one in which a practitioner want to estimate the
mean OD matrix for a base-year from a sample of T = 100 days of observed volumes
on links. In addition to the GLS and dynamic estimation models, we also test the static
estimation model we developed in Section 4.4. Once again, we evaluate the models in
three test cases: one non-informative and two informatives. The non-informative and
informative 1 cases are identical to the ones treated in experiment 1, but the informative
case 2 is different: the prior OD matrix is equal to the actual initial mean OD matrix
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Figure 17 – Estimation of flows in OD pair 1-10 (medium flow) by the GLS model

Source: the author

Figure 18 – Estimation of flows in OD pair 24-4 (low flow) by the dynamic estimation model

Source: the author

θ1 at time t = 1 plus some random perturbation in the mean OD flows. The random
perturbation is given by a gaussian zero-mean error with coefficient of variation equals
to 10% of the actual mean flow in each OD pair. In both static and dynamic estimation
models the prior covariances are set to the identity. Table 8 shows the controlled factors
for the three tested models, while Table 9 summarizes the test cases.

Table 10 exhibits the results of the computational experiments on the three models
tested. We can make the following considerations on the results. First, the most noteworthy
result is the good performance of the GLS model in estimating the OD flows relative to the
static and dynamic estimation models. In the three tested cases, it outperformed the other
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Figure 19 – Estimation of flows in OD pair 24-4 (low flow) by the GLS model

Source: the author

Figure 20 – Estimation of flows in OD pair 10-16 (high flow) by the dynamic model in the non-informative
case

Source: the author

two models in both RRMSE and RMAE measures. This is surprising since we applied the
GLS model assuming identity covariance matrices, i.e., we did not inform to the method
the degree of uncertainty on the prior OD matrix or on the observed volumes. Although
worse in all measures, the static estimation model was not much far from the GLS. The
dynamic model showed a low performance, with both RRMSE and RMAE worse than
the the GLS and the static estimation models in all cases. The difference in performance
is more pronounced in the informative cases. On the other hand, in the non-informative
case the relative performance of the dynamic model was seemingly only slightly worse.
Our main hypothesis for this low performance of the dynamic model is that it has more



Chapter 5. Computational experiments 73

Figure 21 – Estimation of flows in OD pair 10-16 (high flow) by the GLS model in the non-informative
case

Source: the author

Figure 22 – Estimation of link volumes in link 32 by the dynamic model

Source: the author

parameters to tune, and the setting of good values for the parameters may demand a fair
amount of trial-and-error.

With relation to the traffic volumes, in most cases the performances of the models
were very good, with relative errors around 1%. One noteworthy exception, though, is the
performance of the static model in informative case 1, with relative errors between 20%
and 25%. Our main hypothesis for the cause of this adverse result has to do with prior
information. In the static model, we specify prior information by setting the mean and
covariance matrix of the prior distribution. According to Table 9, in informative case 1 we
set the covariance matrix to the identity matrix, putting much confidence on the prior
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Figure 23 – Estimation of link volumes in link 32 by the GLS model

Source: the author

mean. The static estimation model then tried to be near the prior mean, which does not
correspond to the observed volumes. We repeated the experiment assuming larger prior
variances, thus less confidence on the prior mean, and the relative errors with relation to
the traffic volumes were small, though there were no improvement with relation to the
estimation of OD flows. It is should point out that, notwithstanding the fact the we also
used small prior variances, the dynamic model did not exhibit this problem. The reason is
that the prior distribution in the dynamic model refers only to the initial mean OD flows,
and not the mean OD flows over the whole time horizon as it is the case for the static
estimation model.

Finally, we should mention that, in consonance with experiments reported in
the literature, estimation errors reduced significantly when more prior information was
provided. In particular, the RMAE of the OD flows was only 10% for the GLS and
static estimation models in informative case 2. The results for the other two cases show
a substantial decrease in performance down to RMAE of 70% in the non-informative
case. This is in agreement with the literature that the lack of identifiability in the OD
matrix estimation problem from traffic volumes, which is the reason why only in highly
informative scenarios we are able to estimate the OD matrix with low errors, is one of the
main hurdles to effective application of the models.

5.8 Experiment 3

In this experiment, we assess the effect of the assignment matrix on the estimation error.
We tested the GLS and dynamic models on three test cases, according to the nature of
the assignment matrix: estimated, free flow (uncongested), and exact. The static model is
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Table 8 – Controlled parameters (kept constant) for the models in the test cases in experiment 2

Model Parameter Values Description
Common to all models ξ 5.0 Logit scale parameter

π 0.01 Probability of a trip occur in a
route outside the route choice set

GLS Σx I Covariance matrix of OD flows
Σz I Covariance matrix of traffic vol-

umes
ρ 1.0 Weight of the distance to the prior

OD matrix
Static estimation Σx diag(m̄t) Covariance matrix of OD flows

Σz I Covariance matrix of the errors in
counting traffic volumes

Dynamic estimation Σx diag(m̄t) Covariance matrix of OD flows
Σz I Covariance matrix of the errors in

counting traffic volumes
κ 0.1 Coefficient of variation in the evo-

lution matrix (10 times greater
than the simulated one)

W κ2diag(m̄2
t ) Estimated evolution matrix

α 0.01 Weight in the estimation of the
route costs (smaller than the ac-
tual one)

Source: the author

Table 9 – Cases studied in the computational experiment 2

Case Model Prior OD matrix Prior cov. matrix
Non-inform. GLS x0 = 100× 1 Not applicable

Static estimation m0 = 100× 1 C0 = 106 × I
Dynamic estimation m0 = 100× 1 C0 = 106 × I

Informative 1 GLS x0 = 0.75θ1 Not applicable
Static estimation m0 = 0.75θ1 C0 = I
Dynamic estimation m0 = 0.75θ1 C0 = I

Informative 2 GLS x0 = θ1 + ε Not applicable
Static estimation m0 = θ1 + ε C0 = I
Dynamic estimation m0 = θ1 + ε C0 = I

Source: the author

not tested since it does not consider different assignment matrices at each time step.

In the first case, the assignment matrix is estimated at each time step, and the
estimation procedure is dependent on the model: in the dynamic GLS, the assignment
matrix corresponds to an equilibrium state at each time step obtained by means of equation
(3.8), while in the dynamic estimation model it is estimated by means of equations (4.23)
and (4.24). In the free flow case, we used a constant assignment matrix for the whole time
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Table 10 – Results for the application of the models to the Sioux Falls Network in the computational
experiment 2

Performance measures
Case Model RRMSEOD RMAEOD RRMSEvols RMAEvols

Non-informative GLS 1.0936 0.6996 0.0114 0.0088
Static Estimation 1.1202 0.7309 0.0163 0.0118
Dynamic Estimation 1.1856 0.8152 0.0116 0.0089

Informative 1 GLS 0.2905 0.1881 0.0114 0.0088
Static Estimation 0.3596 0.2211 0.2454 0.2171
Dynamic Estimation 0.8253 0.5503 0.0116 0.0090

Informative 2 GLS 0.1807 0.1089 0.0114 0.0088
Static Estimation 0.1853 0.0940 0.0516 0.0363
Dynamic Estimation 0.6633 0.4578 0.0116 0.0089

Source: the author

horizon based on a uncongested stochastic traffic assignment with a logit route choice
model (equation (2.10)). Finally, in the exact case both GLS and dynamic estimates are
obtained with the exact assignment matrix at each time step. All other factors are kept
constant at the levels given in informative case 2 from Table 9.

Table 11 – Effect of the assignment matrix on the estimation errors in experiment 3

Performance measures
Case Model RRMSEOD RMAEOD RRMSEvols RMAEvols

Estimated GLS 0.1807 0.1089 0.0114 0.0088
Dynamic Estimation 0.6633 0.4578 0.0116 0.0089

Free flow GLS 2.3409 1.3785 0.0615 0.0345
Dynamic Estimation 3.4790 1.5969 0.2698 0.2277

Exact GLS 0.1754 0.1018 0.0114 0.0088
Dynamic Estimation 0.1377 0.0866 0.0114 0.0088

Source: the author

The corresponding results are given in Table 11, in which we can see that the quality
of the estimated assignment matrix has a high detrimental impact on the estimation of OD
flows. In particular, the performance measures show a high deterioration in estimation error
when we used a constant assignment matrix corresponding to an uncongested condition for
both the GLS and dynamic models. This gives us evidence that the premise of uncongested
network adopted by some models revised in Chapter 3 may result in really bad estimates
in practice. In the case we used an estimated assignment matrix, the GLS had a good
performance, unlike the dynamic model. Our main hypothesis to this result lies in the fact
that the GLS model is based on the equilibrium hypothesis, while the dynamic model
does not. Perhaps assuming equilibrium may give good estimates in practice even though
the network is not fully equilibrated. Finally, in the case we used an exact assignment
matrix, both models gave low errors, with a marginal advantage to the dynamic model.
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5.9 Comments on the main results

The first question we addressed in the experiments concerned whether dynamic models
could reduce the non-identifiability of mean OD matrices by incorporating the variability
of the link volumes over time. As can be seen in Figures 14, 16 and 18, the dynamic model
was able to reasonably track the variation of the mean OD matrix if we provide it with
highly informative prior information. Nonetheless, the 95% credible limits are increasing,
which is a sign that the information in link volumes are not contributing to decreasing the
uncertainty on OD flows. Moreover, as shown for a selected OD pair in Figure 20, in the
non-informative case the dynamic model was not able of estimating the true level of the
mean OD flows.

With regards to the evaluation if dynamic models can provide estimates of the OD
matrix with lower errors than static models, according to the results of experiment 2, given
in Table 10, the dynamic GLS model produced better estimates than the static model in
both the non-informative and informative 1 cases, with a comparable error in informative
case 2, while the estimates obtained by the dynamic estimation model had high errors.
We should emphasize that this experiment tried to simulate practical conditions, and part
of the error in the case of the dynamic estimation model may be due to the fact that it
has more parameters to tune. The setting of good values for the parameters may demand
a fair amount of trial-and-error.

In addition, the static estimation model seems to be more sensitive to the prior
distribution, as can be seen in the high errors in estimated volumes in informative case 1.
In this case we used an informative prior mean whose magnitude was 75% of the actual
initial mean and a small covariance matrix, which tilted the model towards fitting the
estimates to the prior mean and neglecting part of the information on link volumes. As the
static model assumes that the mean OD matrix is constant, it assigns all the variability to
the uncertainty in the prior information or in the link volumes, not allowing for part of
the variation to be attributed to the temporal changes in mean OD flows. We think that
the results will be more favorable to dynamic models in environments in which the trip
pattern changes faster, while if the pattern is almost constant there should be no marginal
gain in using a dynamic model.

Considering prior information, the results in all experiments and models indicated
that the prior information is a key factor in obtaining good estimates. For example, in the
non-informative case in experiment 1, in which the models are tested at best conditions, the
relative mean absolute error (RMAE) of the OD flows were around 70%. This magnitude
of error may be unacceptable in practice, so that the availability of useful prior information
is central for the applicability of any reconstruction or estimation model. This also means
that the naive application of these models in “black box” computational packages, without
the proper understanding of their limitations, may bring about severe errors in decision
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making by planners.

Finally, we should also point out the importance of obtaining good estimates of
assignment matrices. As indicated by the results of experiment 3, in which we tested
the dynamic estimation and GLS models with estimated, free flow and exact assignment
matrices, the use of a poorly estimated assignment matrix may greatly increase estimation
errors. For example, in Table 11 we can see that the estimation errors measured by the
RMAE in the case of the free flow assignment matrix are very high. This suggests that
using a model which is based on an assumption of uncongested network may yield low
quality estimates in a congested environment. This highlights the importance of putting
effort in more precise methods of estimation of the assignment matrix, such as more
realistic route choice models or the use of traffic flow simulation software. Surprisingly,
the GLS model with assignment matrices estimated by an equilibrium assignment had a
good performance, which may suggest that the equilibrium assumption may render good
results even if the real network under analysis is not in equilibrium.
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6 CONCLUSION

This doctoral thesis started from the hypothesis that day-to-day dynamic models could
provide better estimates of OD matrices and be more responsive to changes than static
models, since they should be able to account for the evolution of transportation systems
over time and make use of the information provided by temporal changes. With this in
mind, its general objective was to assess the potential gains and limitations of day-to-day
dynamic Bayesian statistical models for the estimation of the OD matrix based on link
volumes. We developed a dynamic linear model which considers the variation of OD flows
and link volumes over time. In particular, our model is more general than previous static
estimation models proposed by Vardi (1996) and Hazelton (2000), and than the dynamic
model of Hazelton (2008). Its main characteristics are the following:

• it assumes Gaussian OD flows, allowing more flexible covariance structures;

• it allows the updating of the estimate of the OD matrix online as soon as a new
vector of link volumes is available;

• it may be applied to congested networks, since we proposed a method to estimate
online the route choice probabilities and the assignment matrix, and

• it may be used to forecast future OD flows and link volumes.

In the following paragraphs, we give tentative answers to the research questions
which drove our research and make suggestions for further developments.

The first question was whether dynamic models were capable of reducing the
non-identifiability of mean OD matrices by incorporating the variation of the link volumes
over time. Our experiments did not provide evidence that this is the case. In contrast
to our expectation, the availability of samples of volumes on links over the days did not
reduce the uncertainty in OD flows. This is flagrant in the results of the application of the
dynamic estimation model, in which the variances of the OD flows kept increasing over
time. Moreover, in non-informative cases there was no sign of convergence of estimates to
the actual mean OD flows with the observation of link volumes over time.

The second question was if dynamic estimation models could produce better
estimates of mean OD matrices than static estimation models. In our experiments, dynamic
models gave better estimates than static models in informative cases. Our main hypothesis
for this result is that dynamic models take into account the variability in link volumes
originated in the variability of the mean OD flows, while static models do not consider
this possibility. However, the performances were similar in non-informative cases.

The third question was related to the impact of prior information, and as expected,
the experiments showed a high deterioration in estimation errors when no prior information
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was used. This draws attention to the fact that an analyst must be aware of this limitation
of the models, in particular when using software packages with “black box” models, which
may lead he or she to trust in estimates which may be very far from the reality.

One more critical aspect of the problem is the importance of obtaining good
estimates of the assignment matrices, corresponding to our fourth research question. In
particular, our experiments showed that using a constant assignment matrix based on
free flows, which is suitable in uncongested networks, produced high estimation errors in
OD flows in congested networks. As assignment matrices have been estimated through
traffic assignment models, this suggests that special care should be taken in choosing and
calibrating these models.

Finally, we think that the key for developing more accurate models is finding
strategies to overcome the underspecification/identifiability problem. We envisage two
promising directions: the development of more parsimonious models and the incorporation
of other sources of information in addition to the observed link volumes.

The principle of parsimony states that “among theories fitting the data equally
well, researchers should choose the simplest theory”. (GAUCH, 2003, p.269). In statistics,
this means that among models which fit the data, we should choose the one with least
parameters. In the models for the estimation of OD matrix, the data are the observed link
volumes and the parameters are the OD mean flows, covariances, logit scale and others. In
most of the cases tested in our experiments, the models were able to fit the observed volumes,
i.e., they were able to explain the data. In this context, the underspecification/identifiability
problem in fact means that our models may be over-parameterized and that we should
seek to develop more parsimonious models.

We see as a promising direction to extend our dynamic linear model in a similar
way as proposed by Hazelton (2008), who parameterized the OD flows in terms of a set of
static parameters. We may define the dynamic OD flows as functions of seasonal effects
and linear trends, regarded as time-invariant in a defined time horizon. Another direction
is the one followed by Marzano, Papola and Simonelli (2009), who proposed a parsimonious
model in which the total trips generated in each origin are assumed to vary in the short
term, while the trip distribution among destinations are assumed constant within the time
horizon.

Regarding other sources of information, a research direction which is worth investi-
gating is the incorporation of data on land use and on the activity system. As land use
supposedly changes at a lower rate over time than OD flows, this may allow the estimation
of long term correlations among OD flows which may be considered constant over shorter
time horizons. These correlations can potentially reduce the non-identifiability of mean OD
flows, since the covariances are taken into account when updating the posterior estimates.
Moreover, with the development of new technologies which allow the tracking of vehicles
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over space and time, one can acquire data on origins and destinations, measure travel
times and other variables which may be used to calibrate route choice models and other
relevant parameters.
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APPENDIX A – THE MULTIVARIATE NORMAL PROBABILITY DENSITY

Given a vector of random variables x ∈ Rn, we say that it follows a multivariate normal
distribution with mean µ and covariance matrix Σ if its density function has the following
form:

f(x) = (2π)−n/2|Σ|−1/2 exp
{
−1

2(x− µ)TΣ−1(x− µ)
}

(A.1)

The covariance matrix Σ must be positive-definite in order that equation (A.1) is
a proper multivariate density, otherwise it will be degenerate.

Let x ∼ N(µ,Σ) and the conditional distribution of a random vector y given x be
N(Ax+ b,C). Then the joint distribution of (x,y) is given by (SÄRKKÄ, 2013):

x
y

 ∼ N
 µ

Aµ+ b

 ,
 Σ ΣAT

AΣ AΣAT + C

 (A.2)

The marginal distribution of y, from the joint distribution in (A.2) is:

y ∼ N(Aµ+ b,AΣAT + C) (A.3)

Let ν = Aµ+ b and Φ = AΣAT + C. The conditional distribution of x given y is
also multivariate normal:

x|y ∼ N(µ+ R(y − ν),Σ−RΦRT) (A.4)

Where R = ΣATΦ−1 is the regression matrix of x on y.
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APPENDIX B – BAYESIAN INFERENCE

Bayesian Statistics has a different approach to parameter estimation. Unlike frequentist
statistics, unknown parameters are not treated as constants, but as random variables for
which two probability distributions are defined: a prior and a posterior distribution. The
prior distribution synthesizes the degree of belief in different values for the parameter
before any empirical data is collected, and the posterior distribution is an update of the
prior after the empirical data is considered (GELMAN et al., 2003). The update rule is
given by Bayes Theorem:

f(θ|y) = f(y|θ)f(θ)
f(y) (B.1)

In which θ is the parameter to be estimated and y is the empirical data. f(θ) is the prior
distribution of the parameter, f(y) is the marginal distribution of the data, f(y|θ) is the
likelihood function and f(θ|y) is the posterior distribution. An estimator for the parameter
of interest may be defined as the mean or mode (also called a posterior maximum) of the
posterior distribution.

For conjugate distributions, it is possible to obtain analytically the posterior f(θ|y).
For example, if we specify a gamma distribution as a prior and the likelihood as Poisson,
then the posterior will also be from the gamma family and we can calculate the posterior
parameters analytically. However, in complex models it is in general difficult to specify
conjugate distributions, so that we must resort to Monte Carlo simulation (in particular,
Markov chain Monte Carlo) in order to estimate moments of the posterior distribution.
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APPENDIX C – DYNAMIC LINEAR MODELS

A general DLM is defined by a system evolution model and a measurement model (WEST;
HARRISON, 1997). Let θt be a vector of parameters in time t. What we call by parameter
is any unobserved quantity, i.e., any variable that is important to our analysis but we
cannot observe directly. The parameters are related in some way to quantities we can
observe, which are represented by the vector zt. The system evolution model describes
how the vector of parameters evolves over time, according to equation (C.1):

θt = Gtθt−1 + ωt (C.1)

In (C.1), Gt is a matrix which describes the deterministic evolution of the parameters,
while ωt ∼ N(0,Wt) is a gaussian random error term which describes their stochastic
evolution. Wt is a covariance matrix.

The measurement model, which relates the vector of parameters θt to the vector of
observed quantities zt, is given by:

zt = Ftθt + νt (C.2)

In (C.2), Ft is the regression matrix at time t and νt ∼ N(0,Vt) is a gaussian random
error term which represents the observation error of zt relative to its expected value Ftθt.

In order to complete the model, we must also specify a prior probability density
function for the initial state θ0 at time t = 0, given by p(θ0|D0) = N(m0,C0), in which
m0 and C0 are, respectively, the prior mean and covariance matrix, and D0 is the set of
prior data.

DLMs are Markovian models, in the sense that the current and future states of
the parameter vector θt,θt+1,θt+2 . . . depend only on the previous state θt−1, and not
on the past states θt−2,θt−3, . . . . This is often represented by the following conditional
independence condition:

p(θt|θt−1,θt−1, . . . ,θ0) = p(θt|θt−1) (C.3)

In addition, zt is also conditionally independent of past states θt−1,θt−2, . . . and
past observations zt−1, zt−2, . . . , given the current state θt:

p(zt|θt,θt−1, . . . ,θ0, zt−1, zt−2, . . . ,z1) = p(zt|θt) (C.4)

In our case, we are interested in gaussian DLMs, so that p(θt|θt−1) = N(Gtθt−1,Wt)
and p(zt|θt) = N(Ftθt,Vt).
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The application of DLMs to time series occurs by means of recurrence equations,
given in the following section. Given a times series of observed vectors z1, z2, . . . ,zn,
the estimation of the sequence of parameter vectors θ1,θ2, . . . ,θn occurs by repeated
application of Bayes updating. At time t− 1, let p(θt−1|Dt−1) be the posterior distribution
of the parameter vector θt−1 given the data set Dt−1 = {z1, z2, . . . ,zt−1}. The prior
distribution of the parameter vector next time period t is given by:

p(θt|Dt−1) =
∫

p(θt,θt−1|Dt−1)dθt−1

=
∫

p(θt|θt−1)p(θt−1|Dt−1)dθt−1 (C.5)

In equation (C.5), p(θt−1|Dt−1) = N(mt−1,Ct−1) and p(θt|θt−1) = N(Gtθt−1,Wt), so
that, from equation (A.3) (Appendix A), p(θt|Dt−1) = N(m̄t, C̄t) with m̄t = Gtmt−1 and
C̄t = GtCt−1GT

t + Wt.

Let p(zt|Dt−1) be the one-step forecasting distribution of the observation vector,
given by:

p(zt|Dt−1) =
∫

p(zt,θt|Dt−1)dθt

=
∫

p(zt|θt)p(θt|Dt−1)dθt (C.6)

In equation (C.6), p(zt|θt) = N(Ftθt,Vt) and p(θt|Dt−1) = N(m̄t, C̄t) given by equation
(C.5). Once more, from equation (A.3) p(zt|Dt−1) = N(ft,Qt) in which ft = Ftm̄t and
Qt = FtC̄tFT

t + Vt.

Finally, by Bayes’ theorem, the posterior distribution of θt, given the observed
vector zt and the prior data set Dt−1 is the following:

p(θt|Dt) = p(zt|θt, Dt−1)p(θt|Dt−1)∫
p(zt|θt, Dt−1)p(θt|Dt−1)dθt

(C.7)

In (C.7), Dt = Dt−1 ∪ {zt}. From equation (A.4), then p(θt|Dt) = N(mt,Ct), so that:

mt = m̄t + Atet (C.8)

Ct = C̄t −AtQtAT
t (C.9)

In which et = zt − ft is the forecasting error and At = C̄tFT
tQ−1

t is an adjustment matrix
(or alternatively, the regression matrix of θt on zt).
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In summary, given a prior data set Dt−1, the posterior distribution θt−1|Dt−1 and
the recently observed vector zt, the parameters mt and Ct of the posterior distribution
p(θt|Dt) are calculated by the following succession of computations:

Compute the parameters of the prior p(θt|Dt−1):

m̄t = Gtmt−1

C̄t = GtCt−1GT
t + Wt

Compute the parameters of the one-step forecasting distribution p(zt|Dt−1):

ft = Ftm̄t

Qt = FtC̄tFT
t + Vt

Finally, compute the parameters of the posterior distribution p(θt|Dt):

et = zt − ft
At = C̄tFT

tQ−1
t

mt = m̄t + Atet

Ct = C̄t −AtQtAT
t
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ANNEX A – OD MATRIX OF SIOUX FALLS NETWORK

Table 12 – OD matrix of the Sioux Falls network

Origin 1

1 : 0.0 2 : 100.0 3 : 100.0 4 : 500.0 5 : 200.0
6 : 300.0 7 : 500.0 8 : 800.0 9 : 500.0 10 : 1300.0
11 : 500.0 12 : 200.0 13 : 500.0 14 : 300.0 15 : 500.0
16 : 500.0 17 : 400.0 18 : 100.0 19 : 300.0 20 : 300.0
21 : 100.0 22 : 400.0 23 : 300.0 24 : 100.0

Origin 2

1 : 100.0 2 : 0.0 3 : 100.0 4 : 200.0 5 : 100.0
6 : 400.0 7 : 200.0 8 : 400.0 9 : 200.0 10 : 600.0
11 : 200.0 12 : 100.0 13 : 300.0 14 : 100.0 15 : 100.0
16 : 400.0 17 : 200.0 18 : 0.0 19 : 100.0 20 : 100.0
21 : 0.0 22 : 100.0 23 : 0.0 24 : 0.0

Origin 3

1 : 100.0 2 : 100.0 3 : 0.0 4 : 200.0 5 : 100.0
6 : 300.0 7 : 100.0 8 : 200.0 9 : 100.0 10 : 300.0
11 : 300.0 12 : 200.0 13 : 100.0 14 : 100.0 15 : 100.0
16 : 200.0 17 : 100.0 18 : 0.0 19 : 0.0 20 : 0.0
21 : 0.0 22 : 100.0 23 : 100.0 24 : 0.0

Origin 4

1 : 500.0 2 : 200.0 3 : 200.0 4 : 0.0 5 : 500.0
6 : 400.0 7 : 400.0 8 : 700.0 9 : 700.0 10 : 1200.0

11 : 1400.0 12 : 600.0 13 : 600.0 14 : 500.0 15 : 500.0
16 : 800.0 17 : 500.0 18 : 100.0 19 : 200.0 20 : 300.0
21 : 200.0 22 : 400.0 23 : 500.0 24 : 200.0

Origin 5

1 : 200.0 2 : 100.0 3 : 100.0 4 : 500.0 5 : 0.0
6 : 200.0 7 : 200.0 8 : 500.0 9 : 800.0 10 : 1000.0
11 : 500.0 12 : 200.0 13 : 200.0 14 : 100.0 15 : 200.0
16 : 500.0 17 : 200.0 18 : 0.0 19 : 100.0 20 : 100.0
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21 : 100.0 22 : 200.0 23 : 100.0 24 : 0.0

Origin 6

1 : 300.0 2 : 400.0 3 : 300.0 4 : 400.0 5 : 200.0
6 : 0.0 7 : 400.0 8 : 800.0 9 : 400.0 10 : 800.0

11 : 400.0 12 : 200.0 13 : 200.0 14 : 100.0 15 : 200.0
16 : 900.0 17 : 500.0 18 : 100.0 19 : 200.0 20 : 300.0
21 : 100.0 22 : 200.0 23 : 100.0 24 : 100.0

Origin 7

1 : 500.0 2 : 200.0 3 : 100.0 4 : 400.0 5 : 200.0
6 : 400.0 7 : 0.0 8 : 1000.0 9 : 600.0 10 : 1900.0
11 : 500.0 12 : 700.0 13 : 400.0 14 : 200.0 15 : 500.0
16 : 1400.0 17 : 1000.0 18 : 200.0 19 : 400.0 20 : 500.0
21 : 200.0 22 : 500.0 23 : 200.0 24 : 100.0

Origin 8

1 : 800.0 2 : 400.0 3 : 200.0 4 : 700.0 5 : 500.0
6 : 800.0 7 : 1000.0 8 : 0.0 9 : 800.0 10 : 1600.0
11 : 800.0 12 : 600.0 13 : 600.0 14 : 400.0 15 : 600.0
16 : 2200.0 17 : 1400.0 18 : 300.0 19 : 700.0 20 : 900.0
21 : 400.0 22 : 500.0 23 : 300.0 24 : 200.0

Origin 9

1 : 500.0 2 : 200.0 3 : 100.0 4 : 700.0 5 : 800.0
6 : 400.0 7 : 600.0 8 : 800.0 9 : 0.0 10 : 2800.0

11 : 1400.0 12 : 600.0 13 : 600.0 14 : 600.0 15 : 900.0
16 : 1400.0 17 : 900.0 18 : 200.0 19 : 400.0 20 : 600.0
21 : 300.0 22 : 700.0 23 : 500.0 24 : 200.0

Origin 10

1 : 1300.0 2 : 600.0 3 : 300.0 4 : 1200.0 5 : 1000.0
6 : 800.0 7 : 1900.0 8 : 1600.0 9 : 2800.0 10 : 0.0

11 : 4000.0 12 : 2000.0 13 : 1900.0 14 : 2100.0 15 : 4000.0
16 : 4400.0 17 : 3900.0 18 : 700.0 19 : 1800.0 20 : 2500.0
21 : 1200.0 22 : 2600.0 23 : 1800.0 24 : 800.0
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Origin 11

1 : 500.0 2 : 200.0 3 : 300.0 4 : 1500.0 5 : 500.0
6 : 400.0 7 : 500.0 8 : 800.0 9 : 1400.0 10 : 3900.0
11 : 0.0 12 : 1400.0 13 : 1000.0 14 : 1600.0 15 : 1400.0

16 : 1400.0 17 : 1000.0 18 : 100.0 19 : 400.0 20 : 600.0
21 : 400.0 22 : 1100.0 23 : 1300.0 24 : 600.0

Origin 12

1 : 200.0 2 : 100.0 3 : 200.0 4 : 600.0 5 : 200.0
6 : 200.0 7 : 700.0 8 : 600.0 9 : 600.0 10 : 2000.0

11 : 1400.0 12 : 0.0 13 : 1300.0 14 : 700.0 15 : 700.0
16 : 700.0 17 : 600.0 18 : 200.0 19 : 300.0 20 : 400.0
21 : 300.0 22 : 700.0 23 : 700.0 24 : 500.0

Origin 13

1 : 500.0 2 : 300.0 3 : 100.0 4 : 600.0 5 : 200.0
6 : 200.0 7 : 400.0 8 : 600.0 9 : 600.0 10 : 1900.0

11 : 1000.0 12 : 1300.0 13 : 0.0 14 : 600.0 15 : 700.0
16 : 600.0 17 : 500.0 18 : 100.0 19 : 300.0 20 : 600.0
21 : 600.0 22 : 1300.0 23 : 800.0 24 : 800.0

Origin 14

1 : 300.0 2 : 100.0 3 : 100.0 4 : 500.0 5 : 100.0
6 : 100.0 7 : 200.0 8 : 400.0 9 : 600.0 10 : 2100.0

11 : 1600.0 12 : 700.0 13 : 600.0 14 : 0.0 15 : 1300.0
16 : 700.0 17 : 700.0 18 : 100.0 19 : 300.0 20 : 500.0
21 : 400.0 22 : 1200.0 23 : 1100.0 24 : 400.0

Origin 15

1 : 500.0 2 : 100.0 3 : 100.0 4 : 500.0 5 : 200.0
6 : 200.0 7 : 500.0 8 : 600.0 9 : 1000.0 10 : 4000.0

11 : 1400.0 12 : 700.0 13 : 700.0 14 : 1300.0 15 : 0.0
16 : 1200.0 17 : 1500.0 18 : 200.0 19 : 800.0 20 : 1100.0
21 : 800.0 22 : 2600.0 23 : 1000.0 24 : 400.0
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Origin 16

1 : 500.0 2 : 400.0 3 : 200.0 4 : 800.0 5 : 500.0
6 : 900.0 7 : 1400.0 8 : 2200.0 9 : 1400.0 10 : 4400.0

11 : 1400.0 12 : 700.0 13 : 600.0 14 : 700.0 15 : 1200.0
16 : 0.0 17 : 2800.0 18 : 500.0 19 : 1300.0 20 : 1600.0

21 : 600.0 22 : 1200.0 23 : 500.0 24 : 300.0

Origin 17

1 : 400.0 2 : 200.0 3 : 100.0 4 : 500.0 5 : 200.0
6 : 500.0 7 : 1000.0 8 : 1400.0 9 : 900.0 10 : 3900.0

11 : 1000.0 12 : 600.0 13 : 500.0 14 : 700.0 15 : 1500.0
16 : 2800.0 17 : 0.0 18 : 600.0 19 : 1700.0 20 : 1700.0
21 : 600.0 22 : 1700.0 23 : 600.0 24 : 300.0

Origin 18

1 : 100.0 2 : 0.0 3 : 0.0 4 : 100.0 5 : 0.0
6 : 100.0 7 : 200.0 8 : 300.0 9 : 200.0 10 : 700.0
11 : 200.0 12 : 200.0 13 : 100.0 14 : 100.0 15 : 200.0
16 : 500.0 17 : 600.0 18 : 0.0 19 : 300.0 20 : 400.0
21 : 100.0 22 : 300.0 23 : 100.0 24 : 0.0

Origin 19

1 : 300.0 2 : 100.0 3 : 0.0 4 : 200.0 5 : 100.0
6 : 200.0 7 : 400.0 8 : 700.0 9 : 400.0 10 : 1800.0
11 : 400.0 12 : 300.0 13 : 300.0 14 : 300.0 15 : 800.0
16 : 1300.0 17 : 1700.0 18 : 300.0 19 : 0.0 20 : 1200.0
21 : 400.0 22 : 1200.0 23 : 300.0 24 : 100.0

Origin 20

1 : 300.0 2 : 100.0 3 : 0.0 4 : 300.0 5 : 100.0
6 : 300.0 7 : 500.0 8 : 900.0 9 : 600.0 10 : 2500.0
11 : 600.0 12 : 500.0 13 : 600.0 14 : 500.0 15 : 1100.0
16 : 1600.0 17 : 1700.0 18 : 400.0 19 : 1200.0 20 : 0.0
21 : 1200.0 22 : 2400.0 23 : 700.0 24 : 400.0
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Origin 21

1 : 100.0 2 : 0.0 3 : 0.0 4 : 200.0 5 : 100.0
6 : 100.0 7 : 200.0 8 : 400.0 9 : 300.0 10 : 1200.0
11 : 400.0 12 : 300.0 13 : 600.0 14 : 400.0 15 : 800.0
16 : 600.0 17 : 600.0 18 : 100.0 19 : 400.0 20 : 1200.0
21 : 0.0 22 : 1800.0 23 : 700.0 24 : 500.0

Origin 22

1 : 400.0 2 : 100.0 3 : 100.0 4 : 400.0 5 : 200.0
6 : 200.0 7 : 500.0 8 : 500.0 9 : 700.0 10 : 2600.0

11 : 1100.0 12 : 700.0 13 : 1300.0 14 : 1200.0 15 : 2600.0
16 : 1200.0 17 : 1700.0 18 : 300.0 19 : 1200.0 20 : 2400.0
21 : 1800.0 22 : 0.0 23 : 2100.0 24 : 1100.0

Origin 23

1 : 300.0 2 : 0.0 3 : 100.0 4 : 500.0 5 : 100.0
6 : 100.0 7 : 200.0 8 : 300.0 9 : 500.0 10 : 1800.0

11 : 1300.0 12 : 700.0 13 : 800.0 14 : 1100.0 15 : 1000.0
16 : 500.0 17 : 600.0 18 : 100.0 19 : 300.0 20 : 700.0
21 : 700.0 22 : 2100.0 23 : 0.0 24 : 700.0

Origin 24

1 : 100.0 2 : 0.0 3 : 0.0 4 : 200.0 5 : 0.0
6 : 100.0 7 : 100.0 8 : 200.0 9 : 200.0 10 : 800.0
11 : 600.0 12 : 500.0 13 : 700.0 14 : 400.0 15 : 400.0
16 : 300.0 17 : 300.0 18 : 0.0 19 : 100.0 20 : 400.0
21 : 500.0 22 : 1100.0 23 : 700.0 24 : 0.0
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ANNEX B – SIOUX FALLS NETWORK PARAMETERS

Table 13 – Sioux Falls network parameters

Init node Term node Capacity Length F.F. time α β Speed limit Toll Type

1 2 25900 6 6 0.15 4 0 0 1
1 3 23404 4 4 0.15 4 0 0 1
2 1 25900 6 6 0.15 4 0 0 1
2 6 4958 5 5 0.15 4 0 0 1
3 1 23403 4 4 0.15 4 0 0 1
3 4 17111 4 4 0.15 4 0 0 1
3 12 23404 4 4 0.15 4 0 0 1
4 3 17111 4 4 0.15 4 0 0 1
4 5 17783 2 2 0.15 4 0 0 1
4 11 4909 6 6 0.15 4 0 0 1
5 4 17783 2 2 0.15 4 0 0 1
5 6 4948 4 4 0.15 4 0 0 1
5 9 10000 5 5 0.15 4 0 0 1
6 2 4958 5 5 0.15 4 0 0 1
6 5 4948 4 4 0.15 4 0 0 1
6 8 4899 2 2 0.15 4 0 0 1
7 8 7841 3 3 0.15 4 0 0 1
7 18 23404 2 2 0.15 4 0 0 1
8 6 4899 2 2 0.15 4 0 0 1
8 7 7842 3 3 0.15 4 0 0 1
8 9 5050 10 10 0.15 4 0 0 1
8 16 5046 5 5 0.15 4 0 0 1
9 5 10000 5 5 0.15 4 0 0 1
9 8 5050 10 10 0.15 4 0 0 1
9 10 13916 3 3 0.15 4 0 0 1
10 9 13916 3 3 0.15 4 0 0 1
10 11 10000 5 5 0.15 4 0 0 1
10 15 13512 6 6 0.15 4 0 0 1
10 16 4855 4 4 0.15 4 0 0 1
10 17 4994 8 8 0.15 4 0 0 1
11 4 4909 6 6 0.15 4 0 0 1
11 10 10000 5 5 0.15 4 0 0 1
11 12 4909 6 6 0.15 4 0 0 1
11 14 4877 4 4 0.15 4 0 0 1
12 3 23404 4 4 0.15 4 0 0 1
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12 11 4909 6 6 0.15 4 0 0 1
12 13 25900 3 3 0.15 4 0 0 1
13 12 25900 3 3 0.15 4 0 0 1
13 24 5091 4 4 0.15 4 0 0 1
14 11 4877 4 4 0.15 4 0 0 1
14 15 5128 5 5 0.15 4 0 0 1
14 23 4925 4 4 0.15 4 0 0 1
15 10 13512 6 6 0.15 4 0 0 1
15 14 5128 5 5 0.15 4 0 0 1
15 19 14565 3 3 0.15 4 0 0 1
15 22 9599 3 3 0.15 4 0 0 1
16 8 5046 5 5 0.15 4 0 0 1
16 10 4855 4 4 0.15 4 0 0 1
16 17 5230 2 2 0.15 4 0 0 1
16 18 19680 3 3 0.15 4 0 0 1
17 10 4994 8 8 0.15 4 0 0 1
17 16 5230 2 2 0.15 4 0 0 1
17 19 4824 2 2 0.15 4 0 0 1
18 7 23404 2 2 0.15 4 0 0 1
18 16 19680 3 3 0.15 4 0 0 1
18 20 23404 4 4 0.15 4 0 0 1
19 15 14565 3 3 0.15 4 0 0 1
19 17 4824 2 2 0.15 4 0 0 1
19 20 5003 4 4 0.15 4 0 0 1
20 18 23404 4 4 0.15 4 0 0 1
20 19 5003 4 4 0.15 4 0 0 1
20 21 5060 6 6 0.15 4 0 0 1
20 22 5076 5 5 0.15 4 0 0 1
21 20 5060 6 6 0.15 4 0 0 1
21 22 5230 2 2 0.15 4 0 0 1
21 24 4885 3 3 0.15 4 0 0 1
22 15 9599 3 3 0.15 4 0 0 1
22 20 5076 5 5 0.15 4 0 0 1
22 21 5230 2 2 0.15 4 0 0 1
22 23 5000 4 4 0.15 4 0 0 1
23 14 4925 4 4 0.15 4 0 0 1
23 22 5000 4 4 0.15 4 0 0 1
23 24 5079 2 2 0.15 4 0 0 1
24 13 5091 4 4 0.15 4 0 0 1
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24 21 4885 3 3 0.15 4 0 0 1
24 23 5079 2 2 0.15 4 0 0 1
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