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de Matemática da Universidade Federal do
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Profa. Dra. Fernanda Ester Camillo Camargo
Universidade Federal do Ceará (UFC)
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“ Il n’existe pas de sciences appliquées,

mais seulement des applications de la sci-

ence.”(Louis Pasteur)



RESUMO

Neste trabalho, apresentamos resultados de unicidade para hipersuperf́ıcies de curvatura

média constante, tanto em um produto Riemanniano como Lorentziano. Tratamos de

produtos cuja fibra tenha curvatura seccional limitada por baixo. Para isto, consideramos

um certo controle na norma do gradiente da função altura pela norma da segunda forma

fundamental com o objetivo de obter que tal hipersuperf́ıcie deve ser um slice, i.e., uma

“fatia”. Também obtemos a unicidade através de condições de integrabilidade no gradiente

da função altura. Apresentamos uma extensão de um lema devido a Nishikawa que

utilizamos para provar os resultados no caso das superf́ıcies máximas, ou seja, aquelas com

curvatura média nula. Utilizamos como ferramenta essencial, na prova dos resultados, o

prinćıpio do máximo generalizado de Omori-Yau em suas versões mais atuais. Finalmente,

apresentamos exemplos que justificam a necessidade das hipóteses exigidas nos resultados.

Palavras-chave: Hipersuperf́ıcie tipo-espaço. Produtos semi-Riemannianos. Curvatura

média constante.



ABSTRACT

In this work we present uniqueness results for constant mean curvature hypersurfaces in

Riemannian and Lorentzian products. We dealt with product whose fiber has sectional

curvature bounded from below. We considered a certain control in the norm of the

gradient of the height function by the norm of the second fundamental form in order to

obtain that such a surface is slice. We also obtained uniqueness through integrability

conditions in the gradient of the height function. We also presented an extension of a

lemma due to Nishikawa which was used to prove the results for the case of maximal

surfaces, that is, with zero mean curvature. We have utilized as an essential tool, in the

prove of the results, the generalized Omori-Yau maximum principle in one of the latest

versions. In the end, we present examples showing and justifying the necessity of required

hypothesis in the results.

Keywords : Spacelike hypersurfaces. Semi-Riemannian Products. Constant Mean Cur-

vature.
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1 INTRODUCTION

Classically, hypersurfaces, or more simply surfaces, have been studied since

the earliest steps of geometry. Formulas for volume and area of symmetric surfaces as

the spheres were discovered even before the integral calculus. In particular, Archimedes

evaluated the volumes of the sphere on a beautiful and whimsical way (EVES, 1990). It

turned out that such a surface maximizes the inner volume among the one sharing the

same area (STEINER, 1841).

When the inner volume or between the (hyper)surfaces and a (hyper)plane

are maximum considering a fixed area we conceive it to be optimal. While we cannot

clearly say the volume of a Lorentzian Manifold we can discuss the area of spacelike (hy-

per)surfaces when they have a fixed boundary. This concept is natural in the Riemannian

case. The mean curvature is related to both phenomenons of critical points of the area

function given by

A(M) =

∫
M

dM

whose variations φN , for N the unit normal give us

dA(M) =

∫
M

H〈N,∇φ〉dM

where the (hyper)-surface with zero mean curvature minimizes locally the area in the

Riemannian ambient and therefore are called Minimals while for the Lorentzian case they

maximize the area being called Maximals. The (spacelike) (hyper)surfaces have as a

Riemannian manifold its own intrinsic geometric properties as well extrinsic properties as

they are immersed into a Riemannian or Lorentzian manifold. In the sequel will define

the Lorentzian spaces that are used to describe the universe with a distinguished metric

for the time component.

The uniqueness of minimal surfaces in R3 flourished with Bernstein’s theorem

in (BERNSTEIN, 1910) stating that the only complete minimal graphs in R3 are the

planes.

In the Lorentzian Geometry we have that only complete maximal spacelike

hypersurfaces in Ln+1 are the spacelike hyperplanes (see (CALABI, 1970), for n ≤ 4,

and (CHENG and YAU, 1976), for arbitrary n).

So the interest in the study of spacelike hypersurfaces in Lorentzian spaces is

also motivated by the fact that such hypersurfaces exhibit nice Bernstein-type properties.

For example, Xin (1991) and Aiyama (1992) simultaneous and independently characte-

rized the spacelike hyperplanes as the only complete constant mean curvature spacelike

hypersurfaces in the Lorentz-Minkowski space Ln+1 having the image of its Gauss map
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contained in a geodesic ball of the hyperbolic space (see also (PALMER, 1990) for a we-

aker first version of this result). More recently, de Lima (2011) obtained an extension

of the Xin-Aiyama theorem concerning complete spacelike hypersurfaces immersed with

bounded mean curvature in Ln+1.

In this thesis we present results related to the Riemannian and Lorentzian

Product which are characterization of constant mean curvature hypersurfaces satisfying

some constrains in order to obtain they are slices, totally geodesic or maximal/minimal.

In our results we utilized recurrently the Omori-Yau maximum principle, which

had been generalized in many contexts with that in mind we considered alternative pro-

ofs in order that the results would be more easily generalized accordingly to the new

generalization and weaker forms available. See (ALÍAS, DAJCZER, and RIGOLI, 2013),

(BORBÉLY, 2012) and (BESSA and PESSOA, 2014).

In Chapter 3, we initially show a uniqueness property for hypersurfaces in a

Riemannian product such that the height function growth is controlled by the norm of

the second fundamental form as we see below:

Let M
n+1

= R × Mn be a Riemannian product space whose base Mn has

sectional curvature KM satisfying KM ≥ −κ for some κ > 0, and let ψ : Σn → M
n+1

be

a two-sided complete hypersurface with constant mean curvature H and H2 bounded from

below. Suppose that the angle function η of Σn is bounded away from zero and that its

height function h satisfies one of the following conditions:

|∇h|2 ≤ α

(n− 1)κ
|A|2, (1)

for some constant 0 < α < 1; or

|∇h|2 ≤ n

(n− 1)κ
H2. (2)

Then, Σn is a slice of M
n+1

.

These results extends the main theorem in (De LIMA and PARENTE, 2012)

where they considered R×Hn and |∇h|2 ≤ nα

(n− 1)κ
H2, α < 1 instead of inequality (2).

We also described how should behave the mean curvature of a hypersurface in

such Riemannian product accordingly with the a priori bounds.

Let M
n+1

= R × Mn be a Riemannian product space whose base Mn has

sectional curvature bounded from below, and let ψ : Σn → M
n+1

be a two-sided complete

hypersurface which lies between two slices of M
n+1

. Suppose that the angle function η of

Σn is not adherent to 1 or −1. If H2 is bounded from below, H is bounded and it does not

change sign on Σn, then infΣ H = 0. In particular, if H is constant, then Σn is minimal.

In Chapter 4 we dealt with the Lorentzian context, where we properly extended

the results in (ALBUJER, CAMARGO, and de LIMA, 2010), they dealt with spacelike
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constant mean curvature hypersurfaces immersed in −R×Hn. The final result gained the

following configuration:

Let ψ : Σn → −R ×Mn be a complete spacelike hypersurface immersed with

constant mean curvature H in a Lorentzian product space −R × Mn, whose sectional

curvature KM of its fiber Mn is such that −κ ≤ KM for some positive constant κ. Suppose

that one of the following conditions is satisfied:

(a) The height function h of Σn is such that

|∇h|2 ≤ n

κ(n− 1)
H2. (3)

(b) H2 is bounded from below on Σn and the height function h of Σn is such that, for some

constant 0 < α < 1,

|∇h|2 ≤ α

κ(n− 1)
|A|2. (4)

Then, Σn is a slice.

As in the Riemannian case we also studied the mean curvature and characte-

rized when a CMC spacelike hypersurface is a slice.

Let ψ : Σn → −R ×Mn be a complete spacelike hypersurface immersed in a

Lorentzian product space −R×Mn, whose sectional curvature KM of its fiber Mn is such

that −κ ≤ KM for some positive constant κ. Suppose that Σn lies between two slices of

−R×Mn and that |∇h| is bounded on Σn. If H is bounded and it does not change sign

on Σn, then H is not globally bounded away from zero. In particular, if H is constant,

then Σn is maximal.

Here we highlight that the Lorentzian case was previously and in the Rieman-

nian case we also combined with the classical results due to Osserman ( 1959) in order to

obtain uniqueness.

In chapter 5, inspired in the results due to Aledo and Aĺıas (2002) where

they studied spacelike hypersurface in de Sitter space, Sn+1
1 , such that the Normal N is

contained in geodesic balls of Hn+1 showing their compactness. We decided to present

results for spacelike hypersurfaces in the −R×Mn where the fiber is compact with positive

sectional curvature and compact as we see in the following.

Let Σn be a complete spacelike hypersurface immersed with constant mean cur-

vature in a spatially closed Lorentzian product space −R×Mn, whose fiber Mn has positive

sectional curvature. If the normal hyperbolic angle of Σn is bounded, then Σn is a slice

{t0} ×Mn for some t0 ∈ R.

We also studied whether a CMC hypersurfaces whether they should be maxi-

mal and half space properties.

Let Σn be a complete spacelike hypersurface immersed with constant mean cur-

vature in Lorentzian product space −R×Mn, whose fiber Mn has non-negative sectional
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curvature. If the normal hyperbolic angle of Σn is bounded, then Σn is maximal. Moreover

if Σ(u) is vertically half bounded then it is a slice {t0} ×Mn for some t0 ∈ R.

We considered integrability conditions in order to obtain the desired uniqueness

in this context.

Let Σn be a complete spacelike hypersurface immersed with constant mean cur-

vature in a spatially closed Lorentzian product space −R×Mn, whose fiber Mn has positive

sectional curvature. If ∇h ∈ L1 ∩ L∞(Σ) and A ∈ L∞(Σ) then Σn is a slice {t0} ×Mn

for some t0 ∈ R.

Rosenberg, Schulze and Spruck (2013) proved a half-space property for graph

in a Riemannian product R × Mn whose fiber has non-negative Ricci curvature and

sectional curvature bounded from below. Chapter 6 is devoted to graphs and the study of

its completeness inspired in the previous work where we considered a half space property:

Let M
n+1

= −R ×Mn be a Lorentzian product space, such that the sectional

curvature KM of its Riemannian fiber Mn satisfies KM ≥ −κ, for some positive constant

κ. Let Σ(u) be an entire H-graph over Mn, with u and H2 bounded from below. If

|Du|2M ≤
|A|2

κ(n− 1) + |A|2
, (5)

then u ≡ t0 for some t0 ∈ R.

Inequality (5) is implied either by inequality (3) or (4) therefore its veracity

is a weaker assumption than the validity of one of them. However in this result we also

assume the hypersurface is a graph and half bounded which will be necessary.

For the case −R×H2, it is known (ALBUJER, 2008b) that there are complete

maximal surfaces which are not totally geodesic. Thus, it naturally arises the question

to decide what additional assumptions are needed to conclude that a complete maximal

surface in −R×M2, where κM ≥ −κ, must be totally geodesic.

In chapter 7 we show Calabi-Bernstein properties of maximal surfaces in a

Lorentzian product space where the Gauss curvature of the fiber M2 satisfies KM ≥ −κ
for some κ ∈ R , κ ≥ 0.

Let M
3

= −R ×M2 be a Lorentzian product spacetime, such that the Gauss

curvature KM of its Riemannian fiber M2 satisfies KM ≥ −κ, for some positive constant

κ. Let Σ be a complete maximal surface such that it Gauss-Kronecker curvature satisfies

KG ≤ G(r). If the height function h and the shape operator A of Σ satisfy

|∇h|2 ≤ |A|
2

κ
, (6)

then Σ is a slice.

Our technique is based on a proper extension of a result by Nishikawa (1984)

and relies within the applications of the generalized maximum principle due to Yau (1975)
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to complete Riemannian manifolds. In fact, we previously proved an extension of (YAU,

1975, Lemma 2) to the case the Ricci curvature is no longer bounded by a constant but

by a more general function of the distance on the manifold.

Let M be a complete Riemmanian manifold such that Ric ≥ −G(r) for G such

that G(0) ≥ 1, G′ ≥ 0 and G−1/2 /∈ L1[0,∞]. If u is a non-negative function on M

satisfying

∆u ≥ βu2, β > 0, (7)

then u ≡ 0.

In chapter 8 we exhibit examples and highlight their properties that are impor-

tant to the previous presented result. Which are the three examples of spacelike graphs in

−R×H2, for H2 given by the Poincaré model of half plane. Example 8.1, see (De LIMA

and LIMA JR, 2013), u(x, y) = a ln y with |a| < 1, this example is also considered in

the Riemannian setting, it shows that maximality cannot be removed in the results we

required so, as well that we cannot choose α = 1 when we required α < 1 . In fact, we

cannot even replace it by constant mean curvature. Considering the previously quoted

result we see that Example 8.2, see (ALBUJER, 2008b), u(x, y) = a ln(x2 + y2) for a < 1
2
,

lacks, on the general hypothesis, the main inequality we usually required in the control

of norm of the gradient of the height function. Finally the Example 8.3, see (ALBUJER,

2008b), u(x, y) = ln(y +
√
a+ y2) where a > 0, fails the control in the growth of the

gradient of the height function, in reality its growth is more than exponential. We also

emphasized that this example is a graph half bounded which is required in Chapter 6.
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2 SOME PRELIMINARIES AND CLASSIC RESULTS

2.1 Semi-Riemannian elements and basic results

We consider hypersurfaces Σn immersed into an (n + 1)-dimensional Semi-riemannian

product space M
n+1

of the form R × Mn, where Mn is an n-dimensional connected

Riemannian manifold and M
n+1

is endowed with the Lorentzian metric

〈, 〉 = επ∗R(dt2) + π∗M(〈, 〉M),

where πR and πM denote the canonical projections from R×M onto each factor, and 〈, 〉M
is the Riemannian metric on Mn. For simplicity, we will just write M

n+1
= εR ×Mn

and 〈, 〉 = εdt2 + 〈, 〉M . In this setting, for a fixed t0 ∈ R, we say that Mn
t0

= {t0} ×Mn

is a slice of M
n+1

. It is not difficult to prove that a slice of M
n+1

is a totally geodesic

hypersurface (see Proposition 1 in (MONTIEL, 1999)).

In the Lorentzian case a smooth immersion ψ : Σn → −R × Mn of an n-

dimensional connected manifold Σn is said to be a spacelike hypersurface if the induced

metric via ψ is a Riemannian metric on Σn, which, as usual, is also denoted for 〈, 〉. Since

∂t = (∂/∂t)(t,x) , (t, x) ∈ −R×Mn,

is a unitary timelike vector field globally defined on the ambient spacetime, then there

exists a unique timelike unitary normal vector field N globally defined on the spacelike

hypersurface Σn which is in the same time-orientation as ∂t. By using Cauchy-Schwarz

inequality, we get

〈N, ∂t〉 ≤ −1 < 0 on Σn. (8)

We will refer to that normal vector field N as the future-pointing Gauss map of the

spacelike hypersurface Σn.

Let ∇ and ∇ denote the Levi-Civita connections in εR × Mn and Σn, res-

pectively. Then the Gauss and Weingarten formulas for the (spacelike) hypersurface

ψ : Σn → εR×Mn are given by

∇XY = ∇XY + ε〈AX, Y 〉N (9)

and

AX = −∇XN, (10)
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for every tangent vector fields X, Y ∈ X(Σ). Here A : X(Σ)→ X(Σ) stands for the shape

operator (or Weingarten endomorphism) of Σn with respect to the future-pointing Gauss

map N .

As in (O’NEILL, 1983), the curvature tensor R of the spacelike hypersurface

Σn is given by

R(X, Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z,

where [ ] denotes the Lie bracket and X, Y, Z ∈ X(Σ).

The curvature tensor R of the (spacelike) hypersurface Σn can be described

in terms of the shape operator A and the curvature tensor R of the ambient spacetime

M
n+1

= εR×Mn by the so-called Gauss equation given by

R(X, Y )Z = (R(X, Y )Z)> + ε〈AX,Z〉AY − ε〈AY,Z〉AX, (11)

for every tangent vector fields X, Y, Z ∈ X(Σ), where ( )> denotes the tangential compo-

nent of a vector field in X(M
n+1

) along Σn.

Now, we consider two particular functions naturally attached to a (spacelike)

hypersurface Σn immersed into a Semi-Riemannian product space εR×Mn, namely, the

(vertical) height function h = (πR)|Σ and the support function 〈N, ∂t〉, where we recall

that N denotes the future-pointing Gauss map of Σn and ∂t is the coordinate vector field

induced by the universal time on εR×Mn.

Let us denote by ∇ and ∇ the gradients with respect to the metrics of εR×Mn

and Σn, respectively. Then, a simple computation shows that the gradient of πR on

−R×Mn is given by

∇πR = ε〈∇πR, ∂t〉∂t = ε∂t, (12)

so that the gradient of h on Σn is

∇h = (∇πR)> = ε∂>t = ε∂t − 〈N, ∂t〉N. (13)

Thus, we get

ε|∇h|2 = 〈N, ∂t〉2 − 1, (14)

where | | denotes the norm of a vector field on Σn.

In the Lorentzian case the geometrical interpretation of the norm of the gradi-

ent of the height function involves the notion of normal hyperbolic angle. More precisely,

if Σn is a spacelike hypersurface of −R×Mn with future-pointing Gauss map N , we define

the normal hyperbolic angle θ of Σn as being the smooth function θ : ψ(Σ) → [0,+∞)

given by

cosh θ = −〈N, ∂t〉. (15)
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Consequently, from (14) and (15) we have that

|∇h|2 = cosh2 θ − 1. (16)

In order to evaluate the Laplacian of the height function we consider that ∂t is parallel

on εR×Mn, then

∇X∂t = 0, (17)

for every tangent vector field X ∈ X(Σ). Writing ε∂t = ∇h + 〈N, ∂t〉N along the hyper-

surface Σn and using formulas (9) and (10), we get that

∇X∇h = 〈N, ∂t〉AX, (18)

for every tangent vector fieldX ∈ X(Σ). Therefore, from (18) we obtain that the Laplacian

on Σn of the height function is given by

∆h = εnH〈N, ∂t〉, (19)

where H = −ε 1
n
trace(A) is the mean curvature of Σn relative to N . The gradient of the

support function is given by

X〈N, ∂t〉 = 〈∇XN, ∂t〉+ 〈N,∇X∂t〉 (20)

= 〈AX,−∂t>〉 = 〈AX,−ε∇h〉

= −ε〈A∇h,X〉.

Since X is arbitrary we get

∇〈N, ∂t〉 = −εA(∇h). (21)

Moreover, as a particular case of the Proposition 3.1 in (CAMINHA and De LIMA, 2009),

we obtain the following suitable formula for the Laplacian on Σn of the angle function η.

Lemma 1 Let ψ : Σn → εR ×Mn be a hypersurface with orientation N , and let η =

〈N, ∂t〉 be its angle function. If Σn has constant mean curvature H, then

∆η = −ε
(
RicM(N∗, N∗) + |A|2

)
η, (22)

where RicM denotes the Ricci curvature of the base Mn, N∗ is the projection of the unit

normal vector field N onto the base Mn and |A| is the Hilbert-Schmidt norm of the shape

operator A.

In order to establish our results, we also need of the following auxiliary lemma

for the Lorentzian case.
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Lemma 2 Let ψ : Σ→ −R×Mn be a spacelike hypersurface immersed in a Lorentzian

product space −R×Mn, whose sectional curvature KM of its fiber Mn is such that −κ ≤
KM for some positive constant κ. Then, for all X ∈ X(Σ), the Ricci curvature of Σn

satisfies the following inequality

Ric(X,X) ≥ −κ(n− 1)(1 + |∇h|2)|X|2 − n2H2

4
|X|2. (23)

Proof. Since the curvature tensor R of the spacelike hypersurface Σn can be

described in terms of the shape operator A and the curvature tensor R of the ambient

spacetime −R×Mn by the so-called Gauss equation given by1

R(X, Y )Z = (R(X, Y )Z)> − 〈AX,Z〉AY + 〈AY,Z〉AX, (24)

for every tangent vector fields X, Y, Z ∈ X(Σ).

Consider X ∈ X(Σ) and a local orthonormal frame {E1, · · · , En} of X(Σ).

Then, it follows from Gauss equation that the Ricci curvature tensor Ric is given by

Ric(X,X) =
n∑
i=1

〈R(X,Ei)X,Ei〉+ nH〈AX,X〉+ 〈AX,AX〉

=
n∑
i=1

〈R(X,Ei)X,Ei〉 −
n2H2

4
|X|2 +

∣∣∣∣AX +
nH

2
X

∣∣∣∣2 .
Moreover, we have that

〈R(X,Ei)X,Ei〉 = 〈R(X∗, E∗i )X
∗, E∗i 〉M

= KM(X∗, E∗i )
(
〈X∗, X∗〉M〈E∗i , E∗i 〉M − 〈X∗, E∗i 〉2M

)
.

Since X∗ = X + 〈X, ∂t〉∂t, E∗i = Ei + 〈Ei, ∂t〉∂t and ∇h = −∂>t , with a straightforward

computation we see that

〈X∗, X∗〉M〈E∗i , E∗i 〉M = (1 + 〈Ei,∇h〉2)(|X|2 + 〈X,∇h〉2)

and

〈X∗, E∗i 〉M〈E∗i , E∗i 〉M = 〈X,Ei〉2 + 2〈X,∇h〉〈Ei,∇h〉〈X,Ei〉

+〈X,∇h〉2〈Ei,∇h〉2.
1As in (O’NEILL, 1983), the curvature tensor R of the spacelike hypersurface Σn is given by

R(X,Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z,

where [ ] denotes the Lie bracket and X,Y, Z ∈ X(Σ).
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Therefore, since we are supposing that −κ ≤ KM for some positive constant κ, we obtain

inequality (23).

Remark 1 We note that when the ambient spacetime −R×Mn is such that its fiber Mn

is flat, from Lemma 2 we see that the boundedness of the mean curvature is enough to

guarantee that the Ricci curvature of the spacelike hypersurface is bounded from below.

When we have a maximum point we can have nice properties on any smooth

function on manifolds. However when the manifold is not compact we cannot guarantee

such a critical point even when the function admits a infimum or a supremum. With some

completeness assumptions on the Riemannian manifolds as we see below it is possible to

still obtain similar properties.

Lemma 3 Let Σn be an n-dimensional complete Riemannian manifold whose Ricci cur-

vature is bounded from below and u : Σn → R be a smooth function which is bounded from

above on Σn. Then there is a sequence of points pk ∈ Σn such that

lim
k
u(pk) = inf u, lim

k
|∇u(pk)| = 0 and lim sup

k
∆u(pk) ≥ 0.

This is the well known generalized maximum principle of Omori-Yau (OMORI,

1967) and (YAU, 1975). Several authors have developed extension for this principle manly

in order obtain the same thesis assuming weaker hypothesis see (ALÍAS, DAJCZER, and

RIGOLI, 2013), (BORBÉLY, 2012) and (BESSA and PESSOA, 2014). For simplicity we

present one given by

Lemma 4 (Borbély) Let Mn be a complete Riemannian manifold, p ∈ M be a fixed

point and r(x) be the distance function from p. Let us assume that away from the cut

locus of p we have

Ric(∇r,∇r) ≥ −BG2(r),

where G(t) has the following properties:

G ≥ 1 , G′ ≥ 0 and

∫ ∞
0

dt

G(t)
=∞

Then Mn satisfies the Omori-Yau maximum principle.

Since G(r) belongs to the class of function such that G ≥ 0, G′ ≥ α > 0 and G−
1
2 /∈

L1[0,∞], we will identify any function in that class just by G(r).

The next results are due to Yau (1975) and (1976) for the first one we put a

simplified version adapted for our purposes

Lemma 5 The only harmonic semi-bounded functions defined on an n-dimensional com-

plete Riemannian manifold whose Ricci curvature is nonnegative are the constant ones.

The second one is an extension of H. Hopf theorem to a complete noncompact Riemannian

manifold. In what follows, L1(Σ) denotes the space of Lebesgue integrable functions on

Σn.
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Lemma 6 Let Σn be an n-dimensional, complete noncompact Riemannian manifold and

let u : Σn → R be a smooth function. If u is a subharmonic (or superharmonic) function

such that |∇u| ∈ L1(Σ), then u must actually be harmonic.

2.2 Vertical Graphs in a Semi-Riemannian Product

Let εR×Mn a Semi-Riemannian product space and let Ω ⊆Mn be a connected domain

of the fiber Mn. A vertical graph over Ω is determined by a smooth function u ∈ C∞(Ω)

and it is given by

Σn(u) = {(u(x), x);x ∈ Ω} ⊂ εR×Mn.

The metric induced on Ω from the Semi-Riemannian metric on the ambient

space via Σn(u) is

〈, 〉 = εdu2 + 〈, 〉M . (25)

A graph is said to be entire if Ω = Mn.

If Σn(u) is a (spacelike) vertical graph over a domain we verify that the vector

field

N(x) =
1√

1 + ε|Du|2
(∂t|(u(x),x) − εDu(x)), x ∈ Ω, (26)

defines the Gauss map of Σn(u), it is future-pointing in the Lorentzian case. For the shape

operator A of Σn(u) with respect its orientation given by (26). For any X ∈ X(Σ(u)), for

X∗ the projection onto the tangent space of the fiber M , then X = X∗ + ε〈Du,X∗〉M∂t,
we have that

AX = −∇XN = ε〈Du,X∗〉M∇∂tN −∇X∗N. (27)

From (26), (27), and with aid of Proposition 7.35 in (O’NEILL, 1983), we verify that

AX = ε〈Du,X∗〉∇∂t

(
∂t − εDu√
1 + ε|Du|2

)
−∇X∗

(
∂t − εDu√
1 + ε|Du|2

)

= −∇X∗

(
∂t − εDu√
1 + ε|Du|2

)

= ∇X∗

(
εDu√

1 + ε|Du|2

)
= ε

∇X∗Du√
1 + ε|Du|2

− Du

(1 + ε|Du|2)3/2
〈∇X∗Du,Du〉.

Denoting by D the Levi-Civita connection with respect to the metric 〈 , 〉M on X(M) we

obtain

AX =
ε√

1 + ε|Du|2M
DX∗Du− 〈DX∗Du,Du〉M

(1 + ε|Du|2M)3/2
Du, (28)
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From (28) we obtain that the mean curvature of Σ(u) is given by

nH = −Div

(
εDu√

1 + ε|Du|2M

)
, (29)

where Div stands for the divergence operator on Mn with respect to the metric 〈, 〉M . In

the Lorentzian context a graph Σn(u) is a spacelike hypersurface if, and only if, |Du|2 < 1,

being Du the gradient of u in Ω and |Du| its norm, both with respect to the metric 〈, 〉M
in Ω. Note that every complete spacelike hypersurface in −R×Mn is an entire spacelike

vertical graph in such space. For a proof of this fact see Lemma 3.1 in (ALÍAS, ROMERO,

and SANCHEZ, 1995) and Lemma 3.1 in (ALBUJER and ALÍAS, 2009). However, in

contrast to the case of graphs into a Riemannian space, an entire spacelike graph in

a Lorentzian product space is not necessarily complete, in the sense that the induced

Riemannian metric (25) is not necessarily complete on Mn. In fact, Albujer have obtained

explicit examples of non-complete entire maximal graphs in −R × H2 (cf. (ALBUJER,

2008b) we also put it in details in Chapter 8).
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3 HYPERSURFACES WITH PRESCRIBED ANGLE FUNCTION

3.1 Introduction

One of the most celebrated theorems of the theory of minimal surfaces in R3 is Bernstein’s

theorem in (BERNSTEIN, 1910) which establishes that the only complete minimal graphs

in R3 are the planes. This result was extended under the weaker hypothesis that the image

of the Gauss map of Σ2 lies in an open hemisphere of S2, as we can see in (BARBOSA

and Do CARMO, 1974).

Meanwhile, Osserman (1959) answered a conjecture due to Nirenberg, showing

that if a complete minimal surface Σ2 in R3 is not a plane, then its normals must be

everywhere dense on the unit sphere S2. More generally, Fujimoto (1988) proved that if

the Gaussian image misses more than four points, then it is a plane. Meanwhile Hoff-

man, Osserman and Schoen in (1982) showed that if a complete oriented surface Σ2 with

constant mean curvature in R3 is such that the image of its Gauss map N(Σ) lies in some

open hemisphere of S2, then Σ2 is a plane. Moreover, if N(Σ) lies in a closed hemisphere,

then Σ2 is a plane or a right circular cylinder.

When the ambient space is a Riemannian product M
n+1

= R × Mn, as it

was already observed by Espinar and Rosenberg ( 2009), the condition that the image

of the Gauss map is contained in a closed hemisphere, becomes that the angle function

η = 〈N, ∂t〉 does not change sign. Here, N denotes a unit normal vector field along a

hypersurface ψ : Σn →M
n+1

and ∂t stands for the unitary vector field which determines

on M
n+1

a codimension one foliation by totally geodesic slices {t} ×Mn. In this setting,

our purpose in this work is to establish analogous results to those ones above described.

In other words, we aim to give new satisfactory answers to the following question: under

what reasonable geometric restrictions on the angle function must a complete hypersurface

immersed in a certain product space be a slice?

We can truly say that one of the first remarkable results in this direction was

the celebrated theorem of Bombieri, De Giorgi and Miranda (1969), who proved that an

entire minimal positive graph over Rn is a totally geodesic slice.

Many other authors have approached problems in this branch. Hence, in this

case, the graph is a horizontal slice or M2 is a flat R2 and the graph is a tilted plane. Later

on, Bérard and Sá Earp (2008) have described all rotation hypersurfaces with constant

mean curvature in R×Hn and used them as barriers to prove existence and characteriza-

tion of certain vertical graphs with constant mean curvature and to give symmetry and

uniqueness results for constant mean curvature compact hypersurfaces whose boundary

is one or two parallel submanifolds in slices.

Espinar and Rosenberg ( 2009) have studied constant mean curvature surfaces

Σ2 in R × M2. Under the assumption that the angle function does not change sign,
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they classified such surfaces according to the infimum of the Gaussian curvature of their

horizontal projection.

Recently, Aquino, de Lima and Parente (AQUINO and De LIMA, 2011) and

(De LIMA and PARENTE, 2012) have applied the well known generalized maximum

principle of Omori-Yau (OMORI, 1967; YAU, 1975) and an extension of it due to Aku-

tagawa (1987) in order to obtain rigidity theorems concerning complete vertical graphs

with constant mean curvature in R × Qn. De Lima (2014) also extended the technique

developed by Yau (1976) in order to investigate the rigidity of entire vertical graphs in a

Riemannian product space R×Mn, whose base Mn is supposed to have Ricci curvature

with strict sign. Under a suitable restriction on the norm of the gradient of the function

u which determines such a graph Σn(u), he proved that Σn(u) must be a slice {t} ×Mn.

3.2 Uniqueness for hypersurfaces on a Riemannian product

Inspired in the previous works and motivated by comprehend the theory, we could prove

proper extensions and give counter-examples showing the paths where the results cannot

be extended. These results are originally in (De LIMA, LIMA JR, and PARENTE, 2014).

In the following H2 = 2
n(n−1)

S2 stands for the mean value of the second ele-

mentary symmetric function S2 on the eigenvalues of the Weingarten operator A of the

hypersurface Σn. Moreover, we recall that a hypersurface is said to be two-sided if its

normal bundle is trivial, that is, there is on it a globally defined unit normal vector field.

Theorem 1 Let M
n+1

= R ×Mn be a Riemannian product space whose base Mn has

sectional curvature KM such that KM ≥ −κ for some κ > 0, and let ψ : Σn → M
n+1

be

a two-sided complete hypersurface with constant mean curvature H and H2 bounded from

below. Suppose that the angle function η of Σn is bounded away from zero and that its

height function h satisfies one of the following conditions:

|∇h|2 ≤ α

(n− 1)κ
|A|2, (30)

for some constant 0 < α < 1; or

|∇h|2 ≤ n

(n− 1)κ
H2. (31)

Then, Σn is a slice of M
n+1

.

Proof. Since we are assuming that η is bounded away from zero, we can

suppose that η > 0 and, consequently, inf η > 0. From Lemma 1, we have

∆η = −(RicM(N∗, N∗) + |A|2)η. (32)
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Moreover, since we are also assuming that the sectional curvature KM of the base Mn is

such that KM ≥ −κ for some κ > 0, with a straightforward computation we get

RicM(N∗, N∗) ≥ −(n− 1)κ|N∗|2 = −(n− 1)κ(1− η2),

where the N∗ stands for the component of N tangent to Mn. Then, from (14) and (32)

we obtain

∆η ≤ −(|A|2 − (n− 1)κ|∇h|2)η. (33)

Thus, if we assume that the height function of Σn satisfies the hypothesis (30)

and from (33), we have that

∆η ≤ −(1− α)|A|2η. (34)

We claim that the Ricci curvature of Σn is bounded from below. Therefore,

we are in conditions to apply Lemma 3 to the function η, obtaining a sequence of points

pk ∈ Σn such that

lim inf
k→∞

∆η(pk) ≥ 0 and lim
k→∞

η(pk) = inf
p∈Σ

η(p).

Consequently, since we are assuming that the Weingarten operator A is bounded on Σn,

from (34), up to a subsequence, we get

0 ≤ lim inf
k→∞

∆η(pk) ≤ −(1− α) lim
k→∞
|A|2(pk) inf

p∈Σ
η(p) ≤ 0.

Thus, we obtain that limk→∞ |A|(pk) = 0 and, from (30), limk→∞ |∇h|(pk) = 0. Hence,

from (14) we conclude that infp∈Σ η(p) = 1 and, consequently, η ≡ 1. Therefore, Σ is a

slice.

It just remains to prove our claim that the Ricci curvature of Σn is boun-

ded from below. For this, let us consider X ∈ X(Σ) and a local orthonormal frame

{E1, · · · , En} of X(Σ). Then, it follows from Gauss Equation (11) that

RicΣ(X,X) =
∑
i

〈R(X,Ei)X,Ei〉+ nH〈AX,X〉 − 〈AX,AX〉. (35)

Thus, taking into account once more the lower bound of the sectional curvature of the

base Mn, we have

〈R(X,Ei)X,Ei〉 ≥ −κ(〈X∗, X∗〉Mn〈E∗i , E∗i 〉Mn − 〈X∗, E∗i 〉2Mn), (36)
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where X∗ = X − 〈X, ∂t〉∂t and E∗i = Ei − 〈Ei, ∂t〉∂t are the projections of the tangent

vector fields X and Ei onto Mn, respectively. Then, summing up relation (36) we get∑
i

〈R(X,Ei)X,Ei〉 ≥ −κ
(
(n− 1)|X|2 − |∇h|2|X|2 − (n− 2)〈X,∇h〉2

)
≥ −κ(n− 1)|X|2.

Therefore, from (35) and using Cauchy-Schwarz inequality we have that the Ricci curva-

ture of Σn satisfies the following lower estimate

RicΣ(X,X) ≥ −
(
(n− 1)κ− |A||A− nHI|

)
|X|2, (37)

for all X ∈ X(Σ). Therefore, taking into account that

|A|2 = n2H2 − n(n− 1)H2, (38)

our restrictions on H and H2 guarantee that the Ricci curvature tensor of Σn is bounded

from below and, hence, we conclude the first part of the proof of Theorem 1.

Now, let us suppose that the height function of Σn satisfies the hypothesis

(31). In this case, from (33) and (38) we obtain

∆η ≤ −n(n− 1)(H2 −H2)η. (39)

Consequently, in a similar way of the previous case, we can apply Lemma 3 in order to

obtain a sequence of points pk ∈ Σn such that

0 ≤ lim inf
k→∞

∆η(pk) ≤ −n(n− 1) lim inf
k→∞

(H2 −H2)(pk) inf
p∈Σ

η(p) ≤ 0.

Hence, up to a subsequence,

lim
k→∞

(H2 −H2)(pk) = 0.

Moreover, since H is supposed to be constant, from (38) we get

lim
k→∞
|A|2(pk) = nH2.

At this point, we recall that |A|2 =
∑

i κ
2
i , where κi are the eigenvalues of A.

Thus, up to subsequence, for all 1 ≤ i ≤ n we have that limk κi(pk) = κ∗i for some κ∗i ∈ R.

Motivated from such fact, we set

n(n− 1)

2
H2 =

∑
i<j

κ∗iκ
∗
j
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and we note that H = 1
n

∑
i κ
∗
i . Then, we have H2 = H2 and, for all 1 ≤ i ≤ n, κ∗i = H.

So, let {ei} be a local orthonormal frame of eigenvectors associated to the eigenvalues

{κi} of A. In this setting, we can write ∇h =
∑

i λiei for some continuous functions λi

on Σn.

From (8) and (13) we have that

X(η) = −〈A(X), ∂t〉 = −〈X,A(∂>t )〉 = −〈X,A(∇h)〉,

for all X ∈ X(Σ). Thus,

∇η = −A(∇h). (40)

Hence, by applying once more Lemma 3 to the function η, from (40) we get

0 = lim
k
|A(∇h)|2(pk) =

∑
i

lim
k

(
κ2
iλ

2
i

)
(pk)

=
∑
i

(κ∗i )
2 lim

k
λ2
i (pk) = H2

∑
i

lim
k
λ2
i (pk),

up to subsequence. If H = 0, from hypothesis (30), we have immediately that Σn is a slice.

If H2 > 0 then, for all 1 ≤ i ≤ n, we have that limk λi(pk) = 0. Thus, limk |∇h|(pk) = 0

and, from equation (14),

inf
p∈Σ

η(p) = lim
k→∞

η(pk) = 1.

Therefore, η = 1 on Σn and, hence, Σn is a slice.

Now we treat the case when the mean curvature H is not assumed to be

constant, but it is just supposed not to change sign along the hypersurface.

Theorem 2 Let M
n+1

= R ×Mn be a Riemannian product space whose base Mn has

sectional curvature bounded from below, and let ψ : Σn → M
n+1

be a two-sided complete

hypersurface which lies between two slices of M
n+1

. Suppose that the angle function η of

Σn is not adherent to 1 or −1. If H2 is bounded from below, H is bounded and it does not

change sign on Σn, then infΣ H = 0. In particular, if H is constant, then Σn is minimal.

Proof.

First, we note that, as in the proof of Theorem 1, our restrictions on the

sectional curvature of the base Mn jointly with the hypothesis on the mean curvatures H

and H2 guarantee that the Ricci curvature of Σn is bounded from below.

Suppose for instance that H ≥ 0 on Σn. Since Σn lies between two slices of

R ×Mn the height function is bounded. Therefore on a maximizing sequence of points

pk ∈ Σn accordingly with Lemma 3 we obtain the following. Firstly, using (19) we get

0 ≥ lim sup
k→∞

∆h(pk) = n lim sup
k→∞

(Hη) (pk).



30

Moreover, from equation (14) we also have that

0 = lim
k→∞
|∇h|(pk) = 1− lim

k→∞
η2(pk).

Thus, if we suppose, for instance, that η is not adhere to −1, we get

lim
k→∞

η(pk) = 1.

Consequently,

0 ≥ lim sup
k→∞

∆h(pk) = n lim sup
k→∞

H(pk) ≥ 0

and, hence, we conclude that

lim sup
k→∞

H(pk) = 0.

If H ≤ 0, from (14) and (19), we can apply once more Lemma 3 in order to

obtain a sequence qk ∈ Σn such that

0 ≤ lim inf
k→∞

∆h(qk) = n lim inf
k→∞

(Hη) (qk)

and, supposing once more that η is not adhere to −1, we get

0 ≤ lim inf
k→∞

∆h(pk) = n lim inf
k→∞

H(pk) ≤ 0.

Consequently, we have that

lim inf
k→∞

H(pk) = 0.

Therefore, in this case, we also conclude that infΣ H = 0.

Corollary 1 The only two-sided complete constant mean curvature surfaces of R3 with

Gaussian curvature bounded from below, lying between two planes and whose Gauss map

is not adhere to both poles of S2 which are orthogonal to such planes, are planes of R3.

Through Example 8.1, we see that the assumption of that hypersurface Σn lies

between two slices of R×Mn is a necessary hypothesis in Theorem 2 in order to conclude

that the mean curvature of Σn cannot be globally bounded away from zero. Moreover,

we observe that the horizontal circular cylinder C ⊂ R3 satisfies almost all hypothesis of

Corollary 1, except to that one which requires the Gauss map N of C to be not adhere to

both poles of S2 orthogonal to C. Actually, such cylinder is unbounded in all directions

where N is isolated.

Rosenberg, Schulze and Spruck (2013) showed that an entire minimal graph

with nonnegative height function in a product space R×Mn, whose base Mn is a complete

Riemannian manifold having non-negative Ricci curvature and with sectional curvature

bounded from below, must be a slice. Consequently, from Theorem 2 we obtain the

following:
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Corollary 2 Let Mn be a complete Riemannian manifold with nonnegative Ricci curva-

ture and whose sectional curvature is bounded from below. Let Σn(u) = {(u(x), x) : x ∈
Mn} ⊂ R ×Mn be an entire graph of a nonnegative smooth function u : Mn → R, with

H constant and H2 bounded from below. If u is bounded, then u ≡ t0 for some t0 ∈ R.

Furthermore, taking into account once more Theorem 2 jointly with Theorem

1.2 in (ROSENBERG, SCHULZE, and SPRUCK, 2013), we also have:

Corollary 3 Let Mn be a parabolic complete Riemannian manifold whose sectional cur-

vature is bounded. Let Σn(u) = {(u(x), x) : x ∈ Mn} ⊂ R ×Mn be an entire graph of

a smooth function u : Mn → R, with H constant and H2 bounded from below. If u is

bounded, then u ≡ t0 for some t0 ∈ R.

We point out that, in the context of Theorem 2, the constant mean curvature

hypersurface will be indeed minimal provided the asked hypothesis. An interesting ques-

tion that arises from Theorem 1 is whether the constant mean curvature hypersurface

trapped between two planes with Gauss map not adherent to both poles is a graph, then

is it trivial? Accordingly to Osserman (1959) that hypersurface is indeed a plane when

the ambient space is R3. When the ambient space is a product whose fiber has nonnega-

tive Ricci curvature and sectional curvature bounded from below, Corollary 2 also give a

positive answer for such question, provided that the hypersurface is already a graph of a

bounded and nonnegative function, while Corollary 3 deals with the parabolic case using

that parabolicity is invariant under conformal changes.
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4 CALABI-BERNSTEIN RESULTS FOR HYPERSURFACES ON A LO-

RENTZIAN SPACE

4.1 Uniqueness results in −R×Mn

Here N denotes the future-pointing Gauss map of a spacelike hypersurface ψ : Σn →
−R ×Mn. In the sequence we show Calabi-Bernstein results on a Lorentzian ambient

dual to the ones in the previous Chapter. The results here in this chapter are published

in (De LIMA and LIMA JR, 2013).

Theorem 3 Let ψ : Σn → −R×Mn be a complete spacelike hypersurface immersed in a

Lorentzian product space −R×Mn, whose sectional curvature KM of its fiber Mn is such

that −κ ≤ KM for some positive constant κ. Suppose that Σn lies between two slices of

−R×Mn and that |∇h| is bounded on Σn. If H is bounded and it does not change sign

on Σn, then H is not globally bounded away from zero. In particular, if H is constant,

then Σn is maximal.

Proof. First, from Lemma 2 we have that our restriction on the sectional

curvature of the fiber Mn jointly with the hypothesis that |∇h| and H are bounded on

Σn guarantee that the Ricci curvature of Σn is bounded from below.

Now, suppose for instance that H ≥ 0 on Σn. Thus, since Σn lies between two

slices of −R×Mn, from equation (19) and Lemma 3 we get a sequence of points pk ∈ Σn

such that

0 ≤ lim
k

∆(−h)(pk) = n lim
k

(H〈N, ∂t〉) (pk).

From equation (14) jointly with Lemma 3, we have that

0 = lim
k
|∇h|(pk) = lim

k
〈N, ∂t〉2(pk)− 1.

Thus, since 〈N, ∂t〉 ≤ −1,

lim
k
〈N, ∂t〉(pk) = −1.

Consequently,

0 ≤ lim
k

∆(−h)(pk) = −n lim
k
H(pk) ≤ 0

and, hence, we conclude that

lim
k
H(pk) = 0.

If H ≤ 0, with the aid of equations (14) and (19) then applying Lemma 3 , we have a

sequence qk ∈ Σn such that

0 ≤ lim
k

∆h(qk) = −n lim
k

(H〈N, ∂t〉) (qk)
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and

lim
k
〈N, ∂t〉(qk) = −1.

Therefore, we conclude again that H is not globally bounded away from zero.

Remark 2 We observe that Example 8.1 shows that the spacelike hypersurface Σn to lie

between two slices of −R ×Mn is a necessary hypothesis in Theorem 3 to conclude that

the mean curvature of Σn can not be globally bounded away from zero.

In what follows, let us consider the product model of the Minkowski space

Ln+1, that is, Ln+1 ' −R× Rn.

Taking into account Remark 1 and that the only complete maximal spacelike

hypersurfaces in Ln+1 are the spacelike hyperplanes (see (CALABI, 1970), for n ≤ 4,

and (CHENG and YAU, 1976), for arbitrary n), from Theorem 3 we get the following

Corollary 4 (Theorem 1 in (ALEDO and ALÍAS, 2000)) Let ψ : Σn → Ln+1 be a

complete spacelike hypersurface with constant mean curvature H and which lies between

two parallel spacelike hyperplanes of Ln+1. Then, Σn is a hyperplane.

Let ψ : Σn → Ln+1 be a spacelike hypersurface. We note that the future-

pointing timelike unit normal vector field N ∈ X(Σ) can be regarded as the Gauss map

N : Σn → Hn of Σn, where Hn denotes the n-dimensional hyperbolic space, that is,

Hn = {x ∈ Ln+1; 〈x, x〉 = −1, xn+1 ≥ 1}.

In this setting, the image N(Σ) is called the hyperbolic image of Σn. Furthermore, given

a hyperbolic geodesic ball B(a, %) ⊂ Hn of radius % > 0 and centered at a point a ∈ Hn,

we recall that B(a, %) is characterized as the following

B(a, %) = {p ∈ Hn;− cosh % ≤ 〈p, a〉 ≤ −1}.

So, if the hyperbolic image of Σn is contained into some B(a, %), then

1 ≤ |〈N, a〉| ≤ cosh %.

From Theorem 3 we obtain the following result, which can be regarded as a

sort of extension of the result due to Xin (1991) and Aiyama (1992).

Corollary 5 (Theorem 1.1 in (De LIMA, 2011)) Let ψ : Σn → Ln+1 be a complete

spacelike hypersurface which lies between two parallel spacelike hyperplanes of Ln+1. Sup-

pose that the mean curvature H is bounded and that it does not change sign on Σn. If the

hyperbolic image of Σn is contained in the closure of a hyperbolic geodesic ball of radius %

which satisfies cosh % ≤ 1 + infΣ |H|, then Σn is a hyperplane.
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Let S2 denote the second elementary symmetric function on the eigenvalues of

the second fundamental form A of Σn, and

H2 =
2

n(n− 1)
S2

denotes the mean value of S2. Elementary algebra gives

|A|2 = n2H2 − n(n− 1)H2. (41)

Our next result is an extension of Theorems 3.1 and 3.2 in (ALBUJER, CA-

MARGO, and de LIMA, 2010).

Theorem 4 Let ψ : Σn → −R × Mn be a complete spacelike hypersurface immersed

with constant mean curvature H in a Lorentzian product space −R×Mn, whose sectional

curvature KM of its fiber Mn is such that −κ ≤ KM for some positive constant κ. Suppose

that one of the following conditions is satisfied:

(a) The height function h of Σn is such that

|∇h|2 ≤ n

κ(n− 1)
H2. (42)

(b) H2 is bounded from below on Σn and the height function h of Σn is such that, for some

constant 0 < α < 1,

|∇h|2 ≤ α

κ(n− 1)
|A|2. (43)

Then, Σn is a slice.

Proof. First, let us suppose that the condition of item (a) is satisfied. From

hypothesis (42), we get

〈N, ∂t〉2 = 1 + |∇h|2 ≤ 1 +
n

κ(n− 1)
H2.

Consequently, we have that the infimum infp∈Σ〈N, ∂t〉(p) exists and is a negative number.

We easily see that 〈N∗, N∗〉M = |∇h|2, where N∗ = N + 〈N, ∂t〉∂t is the

projection of N onto the fiber Mn. Consequently, taking a local orthonormal frame

{E1, · · · , En} on Mn, we have that the Ricci curvature RicM of Mn is such that

RicM(N∗, N∗) =
∑
i

〈RM(N∗, Ei)N
∗, Ei〉M

=
∑
i

KM(N∗, Ei)
(
〈N∗, N∗〉M − 〈N∗, Ei〉2M

)
≥ −κ

∑
i

(
〈N∗, N∗〉M − 〈N∗, Ei〉2M

)
= −κ(n− 1)|∇h|2,
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where we have used our restriction on the sectional curvature KM of Mn. Thus, using

again hypothesis (42), from Lemma 1 and equation (41) we obtain

∆〈N, ∂t〉 ≤
(
n2H2 − n(n− 1)H2 − κ(n− 1)|∇h|2

)
〈N, ∂t〉

=
(
nH2 + n(n− 1)(H2 −H2)− κ(n− 1)|∇h|2

)
〈N, ∂t〉

≤ n(n− 1)(H2 −H2)〈N, ∂t〉.

Now, taking into account Lemma 2, we can apply Lemma 3 to obtain a se-

quence of points pk ∈ Σn such that

0 ≤ lim
k

∆〈N, ∂t〉(pk) ≤ n(n− 1) inf
p∈Σ
〈N, ∂t〉(p) lim

k
(H2 −H2)(pk) ≤ 0.

Consequently,

lim
k

(H2 −H2)(pk) = 0.

Moreover, since |A|2 = nH2 + n(n− 1)(H2 −H2), we get

lim
k
|A|2(pk) = nH2.

At this point, we recall that |A|2 =
∑

i κ
2
i , where κi are the eigenvalues of A. Thus, up

to subsequence, for all 1 ≤ i ≤ n we have that limk κi(pk) = κ∗i for some κ∗i ∈ R.

We set
n(n− 1)

2
H2 =

∑
i<j

κ∗iκ
∗
j .

We note that H = − 1
n

∑
i κ
∗
i . Then, we have H2 = H2 and, for all 1 ≤ i ≤ n, κ∗i = −H.

So, let {ei} be a local orthonormal frame of eigenvectors associated to the eigenvalues

{κi} of A. In this setting, we can write ∇h =
∑

i λiei for some smooth functions λi on

Σn. Thus, up to subsequence, from Lemma 3 we get

0 = lim
k
|A(∇h)|2(pk) =

∑
i

lim
k

(
κ2
iλ

2
i

)
(pk)

=
∑
i

(κ∗i )
2 lim

k
λ2
i (pk) = H2

∑
i

lim
k
λ2
i (pk).

If H = 0, from hypothesis (42), we have immediately that Σn is a slice. If H2 > 0 then, for

all 1 ≤ i ≤ n, we have that limk λi(pk) = 0. Thus, limk |∇h|(pk) = 0 and, from equation

(14),

inf
p∈Σ
〈N, ∂t〉(p) = lim

k
〈N, ∂t〉(pk) = −1.

Therefore, 〈N, ∂t〉 = −1 on Σn, that is, Σn is a slice.
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Let us consider the case that the item (b) is satisfied. Reasoning as in the

previous case, we show that infp∈Σ〈N, ∂t〉(p) exists and it is negative. Moreover, using

again that RicM(N∗, N∗) ≥ −κ(n− 1)|∇h|2, from Lemma 1 and hypothesis (43) we get

∆〈N, ∂t〉 ≤
(
|A|2 − κ(n− 1)|∇h|2

)
〈N, ∂t〉

≤ (1− α)|A|2〈N, ∂t〉 ≤ 0.

Taking into account once more Lemma 2, we can use Lemma 3 to guaran-

tee the existence of a sequence of points pk ∈ Σn such that limk ∆〈N, ∂t〉(pk) ≥ 0 and

limk〈N, ∂t〉(pk) = infp∈Σ〈N, ∂t〉. Consequently, limk〈N, ∂t〉2(pk) = supp∈Σ〈N, ∂t〉2.

Thus,

0 ≤ lim
k

∆〈N, ∂t〉(pk) ≤ (1− α) lim
k
|A|2(pk) inf

p∈Σ
〈N, ∂t〉 ≤ 0.

It follows that limk |A|2(pk) = 0. Now, by using the hypothesis (43), we

obtain that limk |∇h|2(pk) = 0, what it implies by equation (14) that supp∈Σ〈N, ∂t〉2 =

limk〈N, ∂t〉2(pk) = 1. But 〈N, ∂t〉2 ≥ 1, hence, 〈N, ∂t〉2 = 1 on Σn and, therefore, Σn is a

slice.

Remark 3 As observed in (ALBUJER, CAMARGO, and de LIMA, 2010), in Theo-

rems 3 and 4, a geometrical interpretation of our restriction on the norm of the gradient

of the height function h involves the notion of normal hyperbolic angle. More precisely,

if ψ : Σn → −R × Mn is a spacelike hypersurface oriented by the timelike unit vector

field N such that 〈N, ∂t〉 < 0, the normal hyperbolic angle θ of ψ is the smooth function

θ : ψ(Σ)→ [0,+∞) such that cosh θ = −〈N, ∂t〉 ≥ 1. Thus, from equation (14), we have

that |∇h|2 = cosh2 θ−1. Consequently, the conditions on the growth of the height function

h can be interpreted geometrically as a boundedness of the normal hyperbolic angle θ of

the spacelike hypersurface Σn.

Theorem 5 Let ψ : Σn → −R × Mn be a complete spacelike hypersurface such that

its mean curvature H does not change sign. If |∇h| ∈ L1(Σ), then Σn is maximal. In

addition, if H2 is bounded from below on Σn and the Ricci curvature RicM of the fiber Mn

is non-negative, then Σn is totally geodesic. Moreover, if RicM is strictly positive, then

Σn is a slice.

Proof. Since we are supposing that H does not change sign on Σn, from

equation (19) we conclude that ∆h also does not change sign on Σn. Thus, from Lemma 6,

our hypothesis |∇h| ∈ L1(Σ) guarantees that h is harmonic and, using again equation

(19), we conclude that Σn is maximal.

From (13) and (17) we have that

X (〈N, ∂t〉) = −〈A(X), ∂t〉 = −〈X,A(∂>t )〉 = 〈X,A(∇h)〉,
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for all X ∈ X(Σ). Thus,

∇〈N, ∂t〉 = A(∇h).

Consequently, since H = 0 and H2 bounded from below imply that |A| is bounded on Σn,

we get

|∇〈N, ∂t〉| ≤ |A||∇h| ∈ L1(Σ).

So, if the Ricci curvature RicM of the fiber Mn is non-negative, from Lemmas 1 and 6,

we conclude that 〈N, ∂t〉 is harmonic. Hence, using Lemma 1, we have |A| = 0 on Σn,

that is, Σn is totally geodesic. Moreover, if RicM is strictly positive, RicM(N∗, N∗) = 0

implies that N∗ = 0 on Σn. Therefore, N is parallel to ∂t, that is, Σn is a slice.

From Theorem 5 jointly with Theorem 3.3 in (ALBUJER and ALÍAS, 2009)

(see also (ALBUJER, 2008a) for another approach of such result), we get the following

Corollary 6 Let M2 be a complete Riemannian surface with nonnegative Gaussian cur-

vature KM , and let ψ : Σ2 → −R×M2 be a complete spacelike hypersurface such that its

mean curvature H does not change sign. If |∇h| ∈ L1(Σ), then Σ2 is totally geodesic. In

addition, if KM > 0 at some point on M2, then Σ2 is a slice.

As another consequence of Theorem 5, we also obtain a sort of extension of

the classical theorem of Cheng-Yau (1976).

Corollary 7 Let ψ : Σn → Ln+1 be a complete spacelike hypersurface such that the mean

curvature H does not change sign. If |∇h| ∈ L1(Σ), then Σn is a hyperplane.

4.2 Entire spacelike vertical graphs in −R×Mn

In this context, we obtain a non-parametric version of Theorem 3.

Corollary 8 Let Σn(u) be an entire spacelike vertical graph in a Lorentzian product space

−R×Mn, whose fiber Mn is complete and such that its sectional curvature KM satisfies

−κ ≤ KM ≤ 0 for some positive constant κ. Suppose that Σn(u) lies between two slices

of −R ×Mn. If |Du| ≤ α, for some constant 0 < α < 1, and H does not change sign

on Σn(u), then Σn(u) is complete and H is not globally bounded away from zero. In

particular, if H is constant, then Σn(u) is maximal.

Proof.

Observe first that, under the assumptions of the theorem, Σn(u) is a complete

hypersurface. In fact, from (25) and the Cauchy-Schwarz inequality we get

〈X,X〉 = 〈X,X〉M − 〈Du,X〉2M ≥ (1− |Du|2)〈X,X〉M

for every tangent vector field X on Σn(u). Therefore,

〈X,X〉 ≥ (1− α2)〈X,X〉M .
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This implies that L ≥
√
cLM , where L and LM denote the length of a curve on Σn(u)

with respect to the Riemannian metrics 〈, 〉 and 〈, 〉M , respectively, and c = 1 − α2. As

a consequence, since we are supposing that Mn is complete, then the induced metric on

Σn(u) from the metric of −R×Mn is also complete.

Since N = −〈N, ∂t〉∂t + N∗ where N∗ denotes the projection of N onto the

fiber Mn, from equation (13) we get

N∗> = −〈N, ∂t〉∇h

and

|∇h|2 = 〈N∗, N∗〉M .

Thus, since

N =
1√

1− |Du|2
(∂t +Du),

we obtain that

|∇h|2 =
|Du|2

1− |Du|2
.

Therefore, if |Du| ≤ α for some constant 0 < α < 1, we conclude that

|∇h|2 ≤ α2

1− α2

and, hence, the result follows from Theorem 3.

In an analogous way, we can also obtain the following non-parametric version

of Theorems 4 and 5,

Corollary 9 Let Σn(u) be an entire spacelike vertical graph immersed with constant mean

curvature H in a Lorentzian product space −R ×Mn, whose fiber Mn is complete and

such that its sectional curvature KM satisfies −κ ≤ KM for some positive constant κ.

Suppose that one of the following conditions is satisfied:

(a) |Du|2 ≤ nH2

κ(n− 1) + nH2
.

(b) H2 is bounded from below on Σn(u) and |Du|2 ≤ α|A|2

κ(n− 1) + α|A|2
, for some constant

0 < α < 1.

Then, Σn(u) is a slice.

Corollary 10 Let Σn(u) be an entire spacelike vertical graph in a Lorentzian product

space −R ×Mn, whose fiber Mn is complete. Suppose that the mean curvature H does

not change sign on Σn(u). If |Du| ≤ α, for some constant 0 < α < 1, and |Du| ∈ L1(M),

then Σn(u) is complete and maximal. In addition, if H is constant, H2 is bounded from

below on Σn(u) and the Ricci curvature RicM of the fiber Mn is non-negative, then Σn(u)

is totally geodesic. Moreover, if RicM is strictly positive, then Σn(u) is a slice.
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Remark 4 Salavessa (2008) have described an explicit foliation of −R×Hn by complete

spacelike graphs with constant mean curvature c, for any constant c.

Proceeding as before from Corollary 10 and the results in (ALBUJER and

ALÍAS, 2009) and (ALBUJER and ALÍAS, 2011)), we obtain

Corollary 11 Let Σ2(u) be an entire spacelike vertical graph in a Lorentzian product space

−R×M2, whose fiber M2 is a complete Riemannian surface with nonnegative Gaussian

curvature KM . Suppose that the mean curvature H does not change sign on Σ2(u). If

|Du| ≤ α, for some constant 0 < α < 1, and |Du| ∈ L1(M), then Σ2(u) is complete and

totally geodesic. In addition, if KM > 0 at some point of M2, then Σ2(u) is a slice.
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5 UNIQUENESS FOR SPATIALLY CLOSED SPACES

5.1 Introduction

It was conjectured by Goddard (1977) that in the de Sitter space Sn+1
1 , the only complete

spacelike hypersurfaces with constant mean curvature should be the totally umbilical ones.

This conjecture, regardless the veracity, motivated the work of an impressive number

of authors who considered the problem of characterizing the totally umbilical spacelike

hypersurfaces of de Sitter space in terms of some appropriate geometric assumptions. In

particular, Akutagawa (1987) showed that Goddard’s conjecture is true if the constant

mean curvature H of the hypersurface satisfies H2 ≤ 4(n − 1)/n2. As an application of

it, Akutagawa also proved that when n = 2 Goddard’s conjecture is also true under the

additional hypothesis of the compactness of the surface (see also (RAMANATHAN, 1987)

for a simultaneous and independent alternative proof for n = 2). Afterwards, Montiel

(1988) extended this last result to the general case by showing that the only compact

spacelike hypersurfaces in de Sitter space are the totally umbilical round spheres.

Later on, Aledo and Aĺıas (2002) studied complete spacelike hypersurfaces in

Sn+1
1 whose image of the Gauss mapping is contained in a geodesic ball of the hyperbolic

space Hn+1, showing that such a hypersurface Σn is necessarily compact and obtaining

sharp estimates concerning the n-dimensional volume of Σn. As an application of their

result, they also concluded that Goddard’s conjecture is true under the assumption that

the image of the Gauss mapping of the spacelike hypersurface is bounded. Next, S.

Montiel (2003) have proved that if a complete spacelike hypersurface Σn in Sn+1
1 with

constant mean curvature H ≥ 1 is such that the image of its Gauss mapping is contained

in the closure of the interior domain enclosed by a horosphere of Hn+1, then its mean

curvature is, in fact, equal to 1. When n = 2, this implies that Σ2 is also an umbilical

surface.

In this chapter, we study the geometry of complete hypersurfaces immersed

with constant mean curvature in a spatially closed Lorentzian product space −R ×Mn,

that is, the Riemannian fiber Mn is compact; for a thorough discussion about this class

of spacetimes, see for example (ALÍAS, ROMERO, and SANCHEZ, 1995) and (ALÍAS

and COLARES, 2007).

5.2 Characterization of CMC hypersurfaces on spatially closed

spaces

Recall that the normal hyperbolic angle θ of the spacelike hypersurface Σn is defined by

cosh θ = −〈N, ∂t〉, where N stands for the future-pointing Gauss map of Σn and ∂t denotes

the coordinate vector field induced by the universal time on the Lorentzian product space

−R×Mn . The following results are in (AQUINO, De LIMA, and LIMA, 2014).
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Theorem 6 Let Σn be a complete spacelike hypersurface immersed with constant mean

curvature in a spatially closed Lorentzian product space −R ×Mn, whose fiber Mn has

positive sectional curvature. If the normal hyperbolic angle of Σn is bounded, then Σn is

a slice {t0} ×Mn for some t0 ∈ R.

Proof.

From the Gauss equation (11), taking a (local) orthonormal frame {E1, · · · , En}
in X(Σ), we have that the Ricci curvature Ric of Σn is given by

Ric(X,X) =
n∑
i=1

〈R(X,Ei)X,Ei〉+ nH〈AX,X〉+ |AX|2, (44)

for X ∈ X(Σ). Moreover, we have that

〈R(X,Ei)X,Ei〉 = 〈R(X∗, E∗i )X
∗, E∗i 〉M (45)

= KM(X∗, E∗i )(〈X∗, X∗〉M〈E∗i , E∗i 〉M − 〈X∗, E∗i 〉2M).

where X∗ = X + 〈X, ∂t〉∂t and E∗i = Ei + 〈Ei, ∂t〉∂t are the projections of the tangent

vector fields X and Ei onto the fiber Mn, respectively.

Now, taking into account (13), with a straightforward computation we see that

〈X∗, X∗〉M〈E∗i , E∗i 〉M = (1 + 〈Ei,∇h〉2)(|X|2 + 〈X,∇h〉2)

and

〈X∗, E∗i 〉2M = 〈X,Ei〉2 + 2〈X,∇h〉〈Ei,∇h〉〈X,Ei〉

+〈X,∇h〉2〈Ei,∇h〉2.

Thus, since Mn is compact with KM > 0, there exists a positive constant κ such that

n∑
i=1

〈R(X,Ei)X,Ei〉 ≥ κ
(
(n− 1)|X|2 + (n− 2)〈X,∇h〉2 + |X|2|∇h|2

)
. (46)

Hence, from (44) and (46) we obtain

Ric(X,X) ≥ κ
(
(n− 1)|X|2 + |∇h|2|X|2 + (n− 2)〈X,∇h〉2

)
(47)

+nH〈AX,X〉+ |AX|2.

Here we can observe that we can write

nH〈AX,X〉+ |AX|2 =
∣∣∣AX +

nH

2
X
∣∣∣2 − n2H2

4
|X|2. (48)
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Thus, from equation (47) and (48) we obtain that

RicΣ(X,X) ≥ −n
2H2

4
|X|2, (49)

for all X ∈ X(Σ). Thus, since H is constant, we conclude from (49) that the Ricci

curvature of Σn is bounded from below. Now consider Bochner’s formula, (BOCHNER,

1946),
1

2
∆
(
|∇h|2

)
= |∇2h|2 + Ric(∇h,∇h) + 〈∇(∆h),∇h〉. (50)

Since H is constant, from (19) and (21) we also have

∇(∆h) = −nHA(∇h). (51)

Thus, from (47) and (51) we get

Ric(∇h,∇h) ≥ (n− 1)κ|∇h|2(1 + |∇h|2) + nH〈A(∇h),∇h〉+ |A(∇h)|2. (52)

Then from (50), (51) and (52) we get

1

2
∆
(
|∇h|2

)
≥ |∇2h|2 + (n− 1)κ|∇h|2(1 + |∇h|2) + |A(∇h)|2. (53)

At this point, we observe that from (16) our hypothesis that the normal hyperbolic angle

of Σn is bounded implies that the function |∇h|2 is also bounded on Σn. Hence, from

Lemma 3 we have that there exists a sequence of points (pk)k≥1 in Σn such that

lim
k
|∇h|2(pk) = supΣ|∇h|2 and lim

k
sup ∆

(
|∇h|2

)
(pk) ≤ 0.

Thus, from (53) we have that

0 ≥ lim
k

sup ∆
(
|∇h|2

)
(pk) ≥ κ sup

Σ
|∇h|2 ≥ 0.

Consequently, we obtain that supΣ |∇h|2 = 0 and, hence, h is constant on Σn. Therefore,

Σn is a slice {t0} ×Mn for some t0 ∈ R.

The next result deals with the half space property, that is, when hypersurface

is vertically half bounded it must be a slice.

Theorem 7 Let Σn be a complete spacelike hypersurface immersed with constant mean

curvature in Lorentzian product space −R×Mn, whose fiber Mn has non-negative sectional

curvature. If the normal hyperbolic angle of Σn is bounded, then Σn is maximal. Moreover

if Σ(u) is vertically half bounded then it is a slice {t0} ×Mn for some t0 ∈ R.

Proof. Analogously to the proof of Theorem 6 we see that the Ricci cur-

vature is bounded from below and by the same bounds. Thus, taking into account that



43

n|∇2h|2 ≥ (∆h)2 from (53) we get

∆|∇h|2 ≥ 2

n
(∆h)2 (54)

From (19) and (54) we get

∆|∇h|2 ≥ 2nH2〈N, ∂t〉2 ≥ 2nH2. (55)

As before for a sequence (pk)k≥1 ∈ Σn given by Lemma 3 we have from (55) that

0 ≥ lim
k

sup ∆
(
|∇h|2

)
(pk) ≥ 2nH2 ≥ 0.

Then Σ is Maximal. Consequently, from (49) we obtain that Ric is non-negative on Σ

and from (51) we get h is harmonic. Using Lemma 5 h must be constant.

As observed by Espinar and Rosenberg (2009), we see that our restriction

on θ can be interpreted as the image N(Σ) of the Gauss map N of Σn being bounded.

Consequently, Theorem 6 can be regarded as a natural version of theorems of Xin (1991)

and Aiyama (1992), and Aledo-Aĺıas (2002) to the context of Lorentzian product spaces.

Through Example 4.4 in (De LIMA, 2014) we see that Theorem 6 does not hold when

the fiber Mn of the ambient spacetime −R×Mn has negative sectional curvature.

Using the integrability condiction we can also obtain the following:

Theorem 8 Let Σn be a complete spacelike hypersurface immersed with constant mean

curvature in a spatially closed Lorentzian product space −R ×Mn, whose fiber Mn has

positive sectional curvature. If ∇h ∈ L1 ∩ L∞(Σ) and A ∈ L∞(Σ) then Σn is a slice

{t0} ×Mn for some t0 ∈ R.

Proof. From inequality (53) we get

1

2
∆
(
|∇h|2

)
≥ (n− 1)κ|∇h|2 + |A(∇h)|2. (56)

Note that

∇|∇h|2 = ∇〈N, ∂t〉2 = 2〈N, ∂t〉∇〈N, ∂t〉 = 2〈N, ∂t〉A(∇h)

So it is integrable. Integrating (56) obtain

0 ≥
∫

Σ

κ|∇h|2dΣ.

Since κ > 0 we see that h must be constant.

Remark 5 Albujer and Aĺıas (2009) established Calabi-Bernstein results for maximal

surfaces immersed into a Lorentzian product space −R×M2. In particular, when M2 is a

Riemannian surface with nonnegative Gaussian curvature, they proved that any complete

maximal surface in −R ×M2 must be totally geodesic. Besides, if M2 is non-flat, the
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authors concluded that it must be a slice {t} ×M2. Li and Salavessa (2009) generalized

such results of Albujer and Aĺıas to higher dimension and codimension.

From inequality (53), we can apply Hopf’s theorem in order to obtain the

following:

Corollary 12 The only compact spacelike hypersurfaces immersed with constant mean

curvature in a spatially closed Lorentzian product space −R ×Mn, whose fiber Mn has

positive sectional curvature, are the slices {t} ×Mn.
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6 BOUNDED HYPERSURFACES IN VERTICAL REGION OF −R×Mn

6.1 CMC Graphs in −R×Mn

The next results shows that we can improve the Calabi-Bernstein results in Chapter 4 for

the case the graphs are vertically bounded these results are accepted to be published in

(De LIMA and LIMA JR, 2015).

Theorem 9 Let M
n+1

= −R×Mn be a Lorentzian product space, such that the sectional

curvature KM of its Riemannian fiber Mn satisfies KM ≥ −κ, for some positive constant

κ. Let Σ(u) be an entire H-graph over Mn, with u and H2 bounded from below. If

|Du|2M ≤
|A|2

κ(n− 1) + |A|2
, (57)

then u ≡ t0 for some t0 ∈ R.

Proof.

Observe first that, under the assumptions of the theorem, Σ(u) is indeed a

complete spacelike hypersurface. In fact, from (25) and the Cauchy-Schwarz inequality

we get

〈X,X〉 = 〈X∗, X∗〉M − 〈Du,X∗〉2M ≥ (1− |Du|2M)〈X∗, X∗〉M , (58)

for every tangent vector field X on Σ(u).

Recall that the Hilbert-Schmidt norm of the shape operator A of Σ(u) satisfies

the following algebraic identity

|A|2 = n2H2 − n(n− 1)H2. (59)

Since H is constant and H2 is supposed to be bounded from below, from (59) it holds

that supp∈Σ(u) |Ap|2 < +∞. From (57) we see that there exists a constant 0 < α < 1 such

that |Du|M ≤ α. Hence, from (58) we get

〈X,X〉 ≥ (1− α2)〈X∗, X∗〉M .

This implies that L ≥
√
cLM , where L and LM denote the length of a curve on Σ(u)

with respect to the Riemannian metrics 〈, 〉 and 〈, 〉M , respectively, and c = 1 − α2. As

a consequence, since Mn is complete, the induced metric on Σ(u) from the metric of

−R×Mn is also complete.

Now, let us consider on Σ(u) the functions η = 1−e−ku and W =
√

1− |Du|2M .

Since we are supposing that u is bounded from below, we have that the function ϑ = ηW

is bounded from below. We claim that the Ricci curvature of Σ(u) is also bounded from

below. Hence, we are in conditions to apply Lemma 3 to the function ϑ, obtaining a
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sequence of points {pk,ε} in Σ(u) such that, for each fixed k > 0,

|∇ϑ|(pk,ε) ≤ ε , ϑ(pk,ε) ≤ inf
Σ(u)

ϑ+ ε and ∆ϑ(pk,ε) ≥ −ε.

Hence, along this minimizing sequence {pk,ε}, we have

∇ϑ = ∇ηW = −η∇W + εvk,ε, (60)

for vk,ε vectors satisfying |vk,ε| ≤ 1. Computing ∆ϑ we obtain

∆ϑ = ∆(ηW ) = W∆η + η∆W + 2〈∇W,∇η〉 (61)

Therefore, from (60) and (61) we get

∆ϑ = W∆η + η

(
∆W − 2

|∇W |2

W

)
+

2ε

W
〈∇W, vk,ε〉. (62)

Since N = −〈N, ∂t〉∂t + N∗ where N∗ denotes the projection of N onto the

fiber Mn, from equation (13) it is not difficult to see that N∗> = −〈N, ∂t〉∇h where >
denotes the tangent part with respect to the graph. From (26) we obtain

|∇h|2 = 〈N∗, N∗〉M and 〈N, ∂t〉 = − 1

W
. (63)

Here we used that

|∇h|2 =
|Du|2M

1− |Du|2M
. (64)

Hence, taking into account that

∆

(
1

W

)
= − 1

W 2

(
∆W − 2|∇W |2

W

)
,

we can use formula (22) to rewrite (62) as

∆ϑ = W∆η − η(RicM(N∗, N∗) + |A|2)W +
2ε

W
〈∇W, vk,ε〉. (65)

Hence, along the minimizing sequence {pk,ε}, we get

− ε ≤ W∆η − η(RicM(N∗, N∗) + |A|2)W +
2ε

W
〈∇W, vk,ε〉. (66)

Since we are assuming that KM ≥ −κ for some positive constant κ, we have

RicM(N∗, N∗) ≥ −κ(n− 1)|N∗|2 = −κ(n− 1)|∇h|2.
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But, from (57) and (64) it holds that

|∇h|2 ≤ |A|2

κ(n− 1)
.

Consequently,

RicM(N∗, N∗) + |A|2 ≥ −κ(n− 1)|∇h|2 + |A|2 ≥ 0. (67)

Using inequalities (66) and (67), on the minimizing Omori-Yau sequence {pk,ε}
we obtain

−ε
(
W + 2|∇W |

W 2

)
≤ ∆η

or, equivalently,

− ε
(
W + 2|∇W |

W 2

)
≤ e−ku(k∆h− k2|∇h|2). (68)

Hence, taking into account (19) and (29), from (68) we must have

− εeku (W + 2|∇W |) ≤ (−nHkW − k2|Du|2M). (69)

We claim that ∇W is also bounded. In fact, from (63) we have that

∇W = − 1

〈N, ∂t〉2
∇〈N, ∂t〉

and, hence,

|∇W | ≤ W 2|A||∇h| ≤ W 2 |A|2√
κ(n− 1)

.

Thus, letting ε→ 0 in (69) and taking the lim inf on ε, we obtain the following

estimate

0 ≤ n|H| lim inf
ε→0

W − k lim sup
ε→0

|Du|2M . (70)

Now, multiplying (70) by
1

k
and making k →∞ as we take the lim inf over k

we get the next

lim sup
k→∞

lim sup
ε→0

|Du|2M = 0. (71)

Consequently, since W 2 = 1− |Du|2M , we have

lim inf
k→∞

lim inf
ε→0

W 2 = 1. (72)

Since these sequences are minimizing, by Lemma 3 on an arbitrary point we

have the ensuing

η2(pk,ε)W
2(pk,ε) ≤ η2W 2 + ε,



48

which implies that

|Du|2M ≤ 1− η2
∗
η2
W 2(pk,ε) +

ε

η2

≤ 1− (1− e−ku∗)2W 2(pk,ε) +
ε

(1− e−ku∗)2
,

where η∗ = infΣ(u) η and u∗ = infΣ(u) u. Without loss of generality we can suppose that

u ≥ u∗ > 0. Thus,

|Du|2M ≤ 1− (1− e−ku∗)2W 2(pk,ε) +
ε

(1− e−ku∗)2
. (73)

Since ε does not appear in the left hand side of (73), we can take lim supε→0

on both sides of that obtaining

|Du|2M ≤ 1− (1− e−ku∗)2 lim inf
ε→0

W 2(pk,ε). (74)

In an analogous way, taking lim supk→∞ on (74), we finally conclude that |Du|2M = 0 on

Σ(u), that is, u ≡ t0 for some t0 > 0.

It just remains to prove our claim that the Ricci curvature of Σ(u) is bounded

from below. Since H is constant and taking into account the hypothesis (57) jointly with

(81) that follows directly from Lemma 2 we conclude that Ric is bounded from below.

Remark 6 We recall that the Cheeger constant b(M) of a complete Riemannian manifold

Mn is given by

b(M) = inf
D

A(∂D)

V (D)
,

where D ranges over all open submanifolds of Mn with compact closure in Mn and smooth

boundary, and where V (D), A(∂D) are the volume of D and the area of ∂D, respectively,

relative to the metric of Mn.

Returning to the context of Theorem 9, assuming that there exists an entire

H-graphs with H > 0 and such that (57) holds, from (29) we can apply an argument due

to Salavessa ( 1989) to get

nHV (D) ≤
∫
D

nHdV =

∫
D

Div

(
Du√

1− |Du|2M

)
dV

=

∮
∂D

〈
Du√

1− |Du|2M
, ν

〉
dA ≤

√
n

(n− 1)κ
HA(∂D),

where ν is the outward unit normal of ∂D. Yielding the following lower estimate for the

Cheeger constant of the fiber Mn

√
n(n− 1)κ ≤ b(M).
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Furthermore, recalling the stability operator J = ∆ + Ric(N,N) − |A|2, a

H-hypersurface Σn is said to be stable if∫
Σ

J f.f ≥ 0, ∀f ∈ C2
0(Σ). (75)

We also note that, under the stated hypothesis of Theorem 9, entire H-graph is, in fact,

a slice and therefore Ric(∂t, ∂t) = 0 and |A|2 ≡ 0. Hence, in this case, from (75) we see

that such graph is stable.

Remark 7 According to Example 8.1 originally in (De LIMA and LIMA JR, 2013), that

family of complete vertical H-graphs given by

Σ(u) = {(a ln y, x, y); y > 0} ⊂ −R×H2

with H = − a

2
√

1− a2
, H2 = 0 and satisfying

|Du|2H2 =
|A|2

1 + |A|2
. (76)

Shows that the semi-bound on u is actually necessary on Theorem 9. Furthermore 〈N, ∂t〉
is constant on Σ(u), from (22), (64) and (76), we get

∆〈N, ∂t〉 = (|A|2 − |∇h|2)〈N, ∂t〉 = 0. (77)

Consequently, according to the stability criteria given in (75), from equation (77) we

also conclude that Σ(u) constitutes a nontrivial example of stable surface in −R × H2.

Therefore, concerning the context of Theorem 9, we see that the stability of the entire

H-graph cannot alone guarantee the uniqueness result.
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7 MAXIMAL SURFACES IN A LORENTZIAN PRODUCT

7.1 Introduction

Albujer and Aĺıas (2011), established Calabi-Bernstein results for maximal surfaces in a

Lorentzian product space −R×M2. In particular, when the Riemannian surface M2 has

non-negative Gauss curvature, they proved that any complete maximal surface must be

totally geodesic. Besides, if M2 is non-flat, the authors have concluded that it must be a

slice {t} ×M2. The necessity of the assumption on the Gauss curvature can be observed

from the examples of maximal surfaces in −R×H2, constructed in (ALBUJER, 2008b).

In (De LIMA and LIMA JR, 2013) see Example 8.1 the author and de Lima

exhibit a (non totally geodesic) complete spacelike surface of constant mean curvature

(CMC) in −R × H2 such that the hyperbolic angle function is constant. Caballero,

Romero and Rubio ( 2013) worked in the generalized Robertson-Walker spaces considering

maximal surfaces with uniqueness results for the case the fiber is of non-negative Gauss

curvature generalizing results of Albujer and Aĺıas (2011)].

The main aim of this section is to present Calabi-Bernstein properties of ma-

ximal surfaces in a Lorentzian product space where the Gauss curvature of the fiber M2

satisfies KM ≥ −κ for some κ ∈ R , κ ≥ 0.

Since it is known that there are complete maximal surfaces which are not

totally geodesic in −R×H2. That naturally arises the question to decide what additional

assumptions are needed to conclude that a complete maximal surface in −R×M2, where

κM ≥ −κ, must be totally geodesic.

Our technique is based on a proper extension of a result by Nishikawa (1984)

and relies within the applications of the generalized maximum principle due to Yau (1975)

to complete Riemannian manifolds. In fact, we previously proved an extension of (NISHI-

KAWA, 1984, Lemma 2) to the case the Ricci curvature is no longer bounded by a constant

but by a more general function of the distance on the manifold (Lemma 7), that will also

be in (LIMA JR and ROMERO, 2015).

7.2 Gauss equation

The Gauss curvature KΣ of the surface Σ is described in terms of A and the curvature of

the ambient spacetime by the Gauss equation, which is given by

KΣ = K +KG, (78)

where K denotes the sectional curvature in −R × M2 of the tangent plane to Σ and

KG = − detA. We can also write K in terms of the Gauss curvature of M as

K = κM(1 + |∇h|2) (79)
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where, for simplicity, κM stands for the Gauss curvature of M along the surface Σ for the

projection of the tangent plane to Σ onto the tangent plane to M .

Combining equations (78) and (79) we obtain

KΣ = κM cosh2 θ +KG, (80)

where θ is the hyperbolic angle between N and ∂t. We also have the relation

|A|2 = 2H2 + 2(H2 +KG). (81)

7.3 An Omori-Yau-Borbély-Nishikawa generalized maximum prin-

ciple

The following Lemma is a generalization of a result due to Nishikawa (1984). Using a

generalized maximum principle given by Borbély (2012).

Lemma 7 Let M be a complete Riemannian manifold such that Ric ≥ −G2(r) for G

such that G(0) ≥ 1, G′ ≥ 0 and G−1 /∈ L1[0,∞]. If u is a non-negative function on M

satisfying

∆u ≥ βu2, β > 0, (82)

then u ≡ 0.

Proof. Under this conditions (M, g) satisfies the Omori-Yau-Borbély gene-

ralized maximum principle. Since u ∈ C∞(M) and non-negative, consider the following

function

F =
1

(1 + u)
1
2

, F ∈ C∞(M), F > 0, inf(F ) ≥ 0.

Therefore

∇u = − 2

F 3
∇F

and

∆F = − ∆u

2(1 + u)
3
2

+
|∇F |2

(1 + u)
5
2F 6

,

then

F∆F = −1

2
F 4∆u+ 3|∇F |2. (83)

Then for an Omori-Yau sequence we have

|∇F |(pm) <
1

m
(84)

∆F (pm) > − 1

m
(85)

and

0 ≤ inf F ≤ F (pm) < inf F +
1

m
. (86)
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By definition of F

limF (pm) = inf F ⇔ limu(pm) = supu. (87)

Combining 82, 83 and 84 we obtain

− 1

m
F (pm) + c

1

2
u2(pm)F 4(pm) <

1

m

− 1

m
F (pm) + c

1

2

u2(pm)

(1 + u(pm))2
<

1

m

Letting m→∞ we get limu(pm) = 0 therefore u ≡ 0.

7.4 Maximal surfaces in products with Gauss curvature bounded

from below on the fiber

In order to use Lemma 7 note that if we assume KM ≥ −κ for some positive constant κ,

then (80) gives the following inequality

KΣ ≥ −κ(1 + |∇h|2) +KG. (88)

Theorem 10 Let M
3

= −R×M2 be a Lorentzian product spacetime, such that the Gauss

curvature KM of its Riemannian fiber M2 satisfies KM ≥ −κ, for some positive constant

κ. Let Σ be a complete maximal surface such that KG ≤ G(r). If

|∇h|2 ≤ |A|
2

κ
, (89)

then Σ is a slice.

Proof.

Initially we prove that the Gauss curvature of Σ is bounded from below by

G(r). From (88) it is enough to prove that |∇h|2 is bounded by G(r). Using (89) we need

to show that |A|2 has such a bound. This follows directly from (81). Therefore we can

use Lemma 3 in the function |∇u|2.

Now we recall the classical Bochner-Lichnerowicz’s formula which holds for

any smooth function on a Riemannian manifold Σ

1

2
∆|∇u|2 = |Hessu|2 + Ric(∇u,∇u) + 〈∇u,∇∆u〉,

where ∆ stands for the Laplacian operator, Hess(u) the Hessian of u and Ric the Ricci

tensor on Σ.

This formula specializes in our case applied to the height function as follows

1

2
∆|∇h|2 = |Hess(h)|2 +KΣ|∇h|2 + 〈∇h,∇∆h〉 (90)
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From (LATORRE and ROMERO, 2002) we have

|Hess(h)|2 = cosh2 θ|A|2 (91)

Moreover, from (90) and (91) we have

1

2
∆ sinh2 θ ≥ |A|2 cosh2 θ − κ cosh2 θ sinh2 θ + 1

2
|A|2 sinh2 θ

Making use of (88) and (89)

∆ sinh2 θ ≥ κ sinh4 θ (92)

therefore using Lemma 7 we obtain case θ ≡ 0.

Corollary 13 Let M
3

= −R × M2 be a Lorentzian product spacetime, such that the

Gauss curvature KM of its Riemannian fiber M2 satisfies KM ≥ −κ, for some positive

constant κ. Let Σ be a complete H-surface such that KG ≤ G(r). If

|∇h|2 ≤ 2
KG

κ
, (93)

then Σ is a slice.

With an analogous argument of the proof of Theorem 10 we obtain that such

a surface must be maximal and then we use directly the previous result.

Corollary 14 Let M
3

= −R × M2 be a Lorentzian product spacetime, such that the

Gauss curvature KM of its Riemannian fiber M2 satisfies KM ≥ −κ, for some positive

constant κ. Let Σ be a complete maximal surface such that KG is bounded from above. If

(89) holds then Σ is a slice.

The principal theorem uses three main hypothesis: maximality, the inequality

(89) and the controlled growth of KG. From the proof of Theorem 10 we observe that the

condition on the growth of KG can be replaced by the same condition on the growth of

the norm of gradient of the height function ( see Corollary 15).

In order to see that the assumptions in Theorem 10 cannot be dropped, it

suffices to see in the Chapter 8 the three examples of spacelike graphs in −R × H2, for

H2 given by the Poincaré model of half plane. Example 8.1, originally in (De LIMA and

LIMA JR, 2013): u(x, y) = a ln y with |a| < 1. It shows that maximality cannot be

removed in Theorem 10. In fact, we cannot even replace it by constant mean curvature.

We also consider two examples from (ALBUJER, 2008b) the first one is Example 8.2:

u(x, y) = a ln(x2 + y2) for a < 1
2
. It lacks only the hypothesis of the inequality (89).

There is also Example 8.3: u(x, y) = ln(y+
√
a+ y2) where a > 0. It satisfies maximality

and the inequality (89) however fails the control in the growth, in reality its growth is

more than exponential. For more details see Chapter 8 and the original paper.
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Remark 8 In the proof of Theorem 10 we notice that the bound on KG bounded can be

replaced by a bound on the hyperbolic angle. Indeed, the assumption KG ≤ G(r) is used

only to guarantee that cosh2 θ has such a bound, when we have this for granted we obtain

the following consequence.

Corollary 15 Let M
3

= −R × M2 be a Lorentzian product spacetime, such that the

Gauss curvature KM of its Riemannian fiber M2 satisfies KM ≥ −κ, for some positive

constant κ. Let Σ be a complete maximal surface such that the hyperbolic angle between

N and ∂t is bounded by G(r) and additionally inequality (89) holds then Σ is a slice.

For the special case when 〈N, ∂t〉 is constant we have the following result.

Corollary 16 A complete maximal surface with constant hyperbolic angle in −R × H2

must be a slice.

Remark 9 In Example 8.2, we have all hypothesis of Corollary 15 except the inequality

(89) showing that we cannot withdraw this hypothesis even when the fiber is of constant

Gauss curvature −1. That example also shows Corollary 16 cannot be extended to the

case bounded hyperbolic angle.

7.5 Calabi-Bernstein’s type results

As a direct consequence of the previous results we have non-parametric uniqueness results.

Corollary 17 Let M
3

= −R × M2 be a Lorentzian product spacetime, such that the

Gauss curvature KM of its Riemannian fiber M2 satisfies KM ≥ −κ, for some positive

constant κ. Let Σ(u) be an entire graph over ×M2 such that KΣ is bounded from below.

If

|∇u|2 ≤ |A|2

κ+ |A|2
, (94)

then Σ is a slice.

Analogously to the previous section we have the following

Corollary 18 Let M
3

= −R × M2 be a Lorentzian product spacetime, such that the

Gauss curvature KM of its Riemannian fiber M2 satisfies KM ≥ −κ, for some positive

constant κ. Let Σ(u) be an entire maximal graph over M2 such that the hyperbolic angle

between N and ∂t is bounded and additionally inequality (94) holds then u is constant.

For the special case when 〈N, ∂t〉 is constant we have the following result.

Corollary 19 A complete maximal graph with constant hyperbolic angle in −R×H2 must

be a slice.
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8 EXAMPLES OF SURFACES IN −R×H2

In order to give the examples we consider the hyperbolic space with the model of half

space in R2 given by

H2 = {(x, y) ∈ R2; y > 0}

with the metric

ds2
H2 =

dx2 + dy2

y2
.

Therefore for a graph in −R × H2, Σ(u) = {(u(x, y), x, y); (x, y) ∈ H2} we evaluate in

coordinates the second fundamental form as the following{
AXx = aXx + bXy

AXy = cXx + dXy

here Xx = ∂x + 〈N, ∂x〉N and Xy = ∂y + 〈N, ∂y〉N . Therefore we obtain the following
〈AXx, Xx〉 = a〈Xx, Xx〉+ b〈Xy, Xx〉
〈AXx, Xy〉 = a〈Xx, Xy〉+ b〈Xy, Xy〉
〈AXy, Xx〉 = c〈Xx, Xx〉+ d〈Xy, Xx〉
〈AXy, Xy〉 = c〈Xx, Xy〉+ d〈Xy, Xy〉

In this way we have

det(A) = ad− bc = −a2 − bc,

since A is traceless and then d = −a. Observing that Xx and Xy are linearly independent

we can solve this system using only the first three equations and obtain:


a = 1

Q(Xy ,Xy)
(〈AXx, Xx〉|Xy|2 − 〈AXx, Xy〉〈Xx, Xy〉)

b = 1
Q(Xy ,Xy)

(〈AXx, Xy〉|Xx|2 − 〈AXx, Xx〉〈Xx, Xy〉)
c = 1

Q(Xy ,Xy)

(
〈AXx, Xy〉|Xy|2 − 〈AXx, Xx〉〈Xx, Xy〉 〈Xy ,Xy〉

〈Xx,Xx〉

)
For Q(Xy, Xy) = 〈Xy, Xy〉〈Xx, Xx〉 − 〈Xx, Xy〉2.

Combining the previous equations we obtain

− det(A) =
1

Q(Xy, Xy)

(
〈AXx, Xy〉2(|Xy|2|Xx|2 + 〈Xx, Xy〉2) (95)

+
|Xy|2

|Xx|2
〈AXx, Xx〉2Q(Xy, Xy)− 2〈AXx, Xy〉〈AXx, Xx〉|Xy|2〈Xx, Xy〉

)
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The following example shows that the assumption (43) on the norm of gradient

of the height function in Theorem 1 and in Theorem 4 can not be extended for α = 1.

Example 8.1 Let us consider the smooth function u : H2 → R given by u(x, y) = a ln y,

and its respective entire vertical graph

Σ2(u) = {(a ln y, x, y); y > 0} ⊂ εR×H2.

We have that Du(x, y) = (0, ay) and, hence, |Du(x, y)|2 = |a|2. If we take 0 < |a| < 1,

we have that Σ2(u) will be a complete spacelike surface in −R×H2. Moreover, its height

function h satisfies

|∇h|2 =
|Du|2

1 + ε|Du|2
=

|a|2

1 + ε|a|2
.

Consequently,

〈N, ∂t〉 = ε
1√

1 + ε|a|2
.

The mean curvature H of Σ2(u) is given by

nH = −Div

(
εDu√

1 + ε|Du|2

)
,

where Div is the divergent on H2. So, using that Div = Div0 − 2
y
dy, where Div0 denotes

the divergent on R2, we get

2Hr3 = r2y2∆0u− εy3(yQ(u) + uy|D0u|20), (96)

where r =
√

1 + ε|Du|2 =
√

1 + εa2, ∆0, D0 and |.|0 are the Laplacian, the gradient and

the norm in the Euclidian metric, and Q(u) = u2
xuxx + 2uxuyuxy + u2

yuyy. Replacing

u(x, y) = a ln y in equation (96), we obtain

H = ε
a

2
√

1 + εa2

and, since 〈N, ∂t〉 is constant, from Lemma 1 we get

0 = ∆〈N, ∂t〉 = −ε(|A|2 − |∇h|2)〈N, ∂t〉.

Consequently,

|∇h|2 = |A|2.

Furthermore, from equation (81) we easily see that H2 = 0 on Σ2(u). But, H2 = κ1κ2,

where κ1, κ2 denote the eigenvalues of A. Therefore, considering κ2 = 0 and using that

H = εκ1+κ2
2

= εκ1
2

, we obtain that κ1 = a√
1+εa2

.

Now follow two examples of maximal surfaces in R×H2 given by Albujer (2008b),



57

Example 8.2 Consider the function u : H2 → R given by u(x, y) = a ln(x2 + y2), and its

respective entire graph

Σ(u) = {(a ln(x2 + y2), x, y); y > 0} ⊂ −R×H2.

We have that Du(x, y) = 2a y2

x2+y2
(x, y) and, hence, |Du(x, y)|2 = 4a2 y2

x2+y2
. If we take

0 < |a| < 1
2
, we have that Σ(u) will be a complete spacelike surface in −R×H2.

Notice that |∇h|2 = |Du(x,y)|2
1−|Du(x,y)|2 is bounded. Making use of (95) gives A(0,y) ≡ 0

and |∇h|2(0,y) = 4a2

1−4a2
> 0. Therefore, inequality (89) does not hold for this example.

Meanwhile, |A(y,y)|2 = O(y4) for y big enough, which implies det(A) is not bounded from

below.

The following example presented here is not complete even though it is maxi-

mal.

Example 8.3 Here the function u is given by u(x, y) = ln(y+
√
a+ y2), for a a positive

constant. Observing that u depends only of y, we obtain from (95) that 〈AXx, Xy〉 = 0

we also have 〈Xx, Xy〉 = 0. Since this graph is maximal, the norm of A is given by

|A|2 = 2|Xx|−4〈AXx, Xx〉2 =
2

W 2
y2u2

y (97)

Since

|∇h|2 =
|Du|2

W 2
=

1

W 2
y2u2

y,

we obtain

|∇h|2 =
1

2
|A|2.

Therefore inequality (89) holds for this example, in fact for any maximal graph in −R×H2

such that u depends only on y . It shows that we cannot drop out the condition KG ≤ G(r).
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9 CONCLUSION

The examples show the necessity of the main hypothesis in all the study.

However there are many more options to be explored since we can see example and

counter examples arises naturally in this context. In the context of surfaces in Chapter 7

we see that the hypothesis: maximality, |∇h|2 ≤ |A|
2

κ
and KG ≤ G(r), cannot be dropped

out, meanwhile it leaves room to examine the same results for bigger dimensions since the

technique is specific for surfaces.
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