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RESUMO

Neste trabalho, apresentamos resultados de unicidade para hipersuperficies de curvatura
média constante, tanto em um produto Riemanniano como Lorentziano. Tratamos de
produtos cuja fibra tenha curvatura seccional limitada por baixo. Para isto, consideramos
um certo controle na norma do gradiente da fungao altura pela norma da segunda forma
fundamental com o objetivo de obter que tal hipersuperficie deve ser um slice, i.e., uma
“fatia”. Também obtemos a unicidade através de condigoes de integrabilidade no gradiente
da funcéo altura. Apresentamos uma extensao de um lema devido a Nishikawa que
utilizamos para provar os resultados no caso das superficies maximas, ou seja, aquelas com
curvatura média nula. Utilizamos como ferramenta essencial, na prova dos resultados, o
principio do maximo generalizado de Omori-Yau em suas versoes mais atuais. Finalmente,
apresentamos exemplos que justificam a necessidade das hipdteses exigidas nos resultados.
Palavras-chave: Hipersuperficie tipo-espago. Produtos semi-Riemannianos. Curvatura

média constante.



ABSTRACT

In this work we present uniqueness results for constant mean curvature hypersurfaces in
Riemannian and Lorentzian products. We dealt with product whose fiber has sectional
curvature bounded from below. We considered a certain control in the norm of the
gradient of the height function by the norm of the second fundamental form in order to
obtain that such a surface is slice. We also obtained uniqueness through integrability
conditions in the gradient of the height function. We also presented an extension of a
lemma due to Nishikawa which was used to prove the results for the case of maximal
surfaces, that is, with zero mean curvature. We have utilized as an essential tool, in the
prove of the results, the generalized Omori-Yau maximum principle in one of the latest
versions. In the end, we present examples showing and justifying the necessity of required
hypothesis in the results.

Keywords : Spacelike hypersurfaces. Semi-Riemannian Products. Constant Mean Cur-

vature.
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1 INTRODUCTION

Classically, hypersurfaces, or more simply surfaces, have been studied since
the earliest steps of geometry. Formulas for volume and area of symmetric surfaces as
the spheres were discovered even before the integral calculus. In particular, Archimedes
evaluated the volumes of the sphere on a beautiful and whimsical way (EVES, 1990). Tt
turned out that such a surface maximizes the inner volume among the one sharing the
same area (STEINER] (1841]).

When the inner volume or between the (hyper)surfaces and a (hyper)plane
are maximum considering a fixed area we conceive it to be optimal. While we cannot
clearly say the volume of a Lorentzian Manifold we can discuss the area of spacelike (hy-
per)surfaces when they have a fixed boundary. This concept is natural in the Riemannian
case. The mean curvature is related to both phenomenons of critical points of the area

function given by
A(M) = / M
M

whose variations ¢/N, for N the unit normal give us
JA(M) = / H(N,V)dM
M

where the (hyper)-surface with zero mean curvature minimizes locally the area in the
Riemannian ambient and therefore are called Minimals while for the Lorentzian case they
maximize the area being called Maximals. The (spacelike) (hyper)surfaces have as a
Riemannian manifold its own intrinsic geometric properties as well extrinsic properties as
they are immersed into a Riemannian or Lorentzian manifold. In the sequel will define
the Lorentzian spaces that are used to describe the universe with a distinguished metric
for the time component.

The uniqueness of minimal surfaces in R? flourished with Bernstein’s theorem
in (BERNSTEIN, [1910) stating that the only complete minimal graphs in R? are the
planes.

In the Lorentzian Geometry we have that only complete maximal spacelike
hypersurfaces in L"*! are the spacelike hyperplanes (see (CALABI, 1970), for n < 4,
and (CHENG and YAU, |1976), for arbitrary n).

So the interest in the study of spacelike hypersurfaces in Lorentzian spaces is
also motivated by the fact that such hypersurfaces exhibit nice Bernstein-type properties.
For example, Xin (1991) and Aiyama (1992) simultaneous and independently characte-
rized the spacelike hyperplanes as the only complete constant mean curvature spacelike

hypersurfaces in the Lorentz-Minkowski space "™ having the image of its Gauss map
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contained in a geodesic ball of the hyperbolic space (see also (PALMER, [1990) for a we-
aker first version of this result). More recently, de Lima (2011) obtained an extension
of the Xin-Aiyama theorem concerning complete spacelike hypersurfaces immersed with
bounded mean curvature in L1,

In this thesis we present results related to the Riemannian and Lorentzian
Product which are characterization of constant mean curvature hypersurfaces satisfying
some constrains in order to obtain they are slices, totally geodesic or maximal/minimal.

In our results we utilized recurrently the Omori-Yau maximum principle, which
had been generalized in many contexts with that in mind we considered alternative pro-
ofs in order that the results would be more easily generalized accordingly to the new
generalization and weaker forms available. See (ALfAS, DAJCZER, and RIGOLI, 2013]),
(BORBELY], 2012) and (BESSA and PESSOA| 2014).

In Chapter 3, we initially show a uniqueness property for hypersurfaces in a
Riemannian product such that the height function growth is controlled by the norm of
the second fundamental form as we see below:

Let M = R x M™ be a Riemannian product space whose base M"™ has
sectional curvature Ky satisfying Ky > —k for some k > 0, and let ¢ : X" — M be
a two-sided complete hypersurface with constant mean curvature H and Hy bounded from
below. Suppose that the angle function n of X" is bounded away from zero and that its

height function h satisfies one of the following conditions:

VAR < AP, (1)

Q@
(n—1)
for some constant 0 < o < 1; or

n

< ——
VA" < (n—1)k

H>. (2)
Then, ¥" is a slice of M

These results extends the main theorem in (De LIMA and PARENTE, 2012)
where they considered R x H" and |Vh|* < ne K;H 2 o < 1 instead of inequality 1)

We also described how should behave the mean curvature of a hypersurface in
such Riemannian product accordingly with the a priori bounds.

Let M = R x M™ be a Riemannian product space whose base M"™ has
sectional curvature bounded from below, and let 1) : ¥" — M be a two-sided complete
hypersurface which lies between two slices of M Suppose that the angle function n of
3" is not adherent to 1 or —1. If Hy is bounded from below, H is bounded and it does not
change sign on 3", then infy H = 0. In particular, if H is constant, then X" is minimal.

In Chapter 4 we dealt with the Lorentzian context, where we properly extended

the results in (ALBUJER, CAMARGO, and de LIMA| [2010)), they dealt with spacelike
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constant mean curvature hypersurfaces immersed in —R x H". The final result gained the
following configuration:

Let ¢ : X" — —R x M™ be a complete spacelike hypersurface immersed with
constant mean curvature H in a Lorentzian product space —R x M™, whose sectional
curvature Ky of its fiber M™ is such that —x < Ky for some positive constant k. Suppose
that one of the following conditions is satisfied:

(a) The height function h of X" is such that

n

k(n —1)

(b) Hy is bounded from below on X" and the height function h of X" is such that, for some
constant 0 < a < 1,

[VA? < H”. (3)

IV < AP (4)

Q@
k(n—1)
Then, ¥™ is a slice.

As in the Riemannian case we also studied the mean curvature and characte-
rized when a CMC spacelike hypersurface is a slice.

Let 1 - ¥ — —R x M™ be a complete spacelike hypersurface immersed in a
Lorentzian product space —R x M™, whose sectional curvature Ky of its fiber M™ is such
that —k < Ky for some positive constant k. Suppose that X" lies between two slices of
—R x M™ and that |Vh| is bounded on ¥". If H is bounded and it does not change sign
on X", then H s not globally bounded away from zero. In particular, if H is constant,
then X" is maximal.

Here we highlight that the Lorentzian case was previously and in the Rieman-
nian case we also combined with the classical results due to Osserman ( 1959) in order to
obtain uniqueness.

In chapter 5, inspired in the results due to Aledo and Alfas (2002)) where
they studied spacelike hypersurface in de Sitter space, S}, such that the Normal N is
contained in geodesic balls of H"* showing their compactness. We decided to present
results for spacelike hypersurfaces in the —R x M™ where the fiber is compact with positive
sectional curvature and compact as we see in the following.

Let XX be a complete spacelike hypersurface immersed with constant mean cur-
vature in a spatially closed Lorentzian product space —Rx M™, whose fiber M™ has positive
sectional curvature. If the normal hyperbolic angle of X" is bounded, then X" is a slice
{to} x M™ for some ty € R.

We also studied whether a CMC hypersurfaces whether they should be maxi-
mal and half space properties.

Let XX be a complete spacelike hypersurface immersed with constant mean cur-

vature in Lorentzian product space —R x M™, whose fiber M™ has non-negative sectional
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curvature. If the normal hyperbolic angle of X" is bounded, then 3" is mazximal. Moreover
if X(u) is vertically half bounded then it is a slice {to} x M™ for some to € R.

We considered integrability conditions in order to obtain the desired uniqueness
in this context.

Let XX be a complete spacelike hypersurface immersed with constant mean cur-
vature in a spatially closed Lorentzian product space —Rx M™, whose fiber M™ has positive
sectional curvature. If Vh € L* N L>®(X) and A € L>®(X) then X" is a slice {to} x M™
for some ty € R.

Rosenberg, Schulze and Spruck (2013]) proved a half-space property for graph
in a Riemannian product R x M™ whose fiber has non-negative Ricci curvature and
sectional curvature bounded from below. Chapter 6 is devoted to graphs and the study of
its completeness inspired in the previous work where we considered a half space property:

Let M = —R x M" be a Lorentzian product space, such that the sectional
curvature Ky of its Riemannian fiber M™ satisfies Ky > —k, for some positive constant
k. Let 3(u) be an entire H-graph over M"™, with u and Hy bounded from below. If

A

2
<

then u =ty for some ty € R.

Inequality is implied either by inequality or therefore its veracity
is a weaker assumption than the validity of one of them. However in this result we also
assume the hypersurface is a graph and half bounded which will be necessary.

For the case —R x H?, it is known (ALBUJER), 2008b) that there are complete
maximal surfaces which are not totally geodesic. Thus, it naturally arises the question
to decide what additional assumptions are needed to conclude that a complete maximal
surface in —R x M?, where k), > —k, must be totally geodesic.

In chapter 7 we show Calabi-Bernstein properties of maximal surfaces in a
Lorentzian product space where the Gauss curvature of the fiber M? satisfies Ky, > —k
for some k € R , k > 0.

Let MI° = —R x M? be a Lorentzian product spacetime, such that the Gauss
curvature Ky of its Riemannian fiber M? satisfies Ky > —k, for some positive constant
k. Let 3 be a complete mazximal surface such that it Gauss-Kronecker curvature satisfies
Kg < G(r). If the height function h and the shape operator A of ¥ satisfy

A

[Vh[? < (6)

then X3 is a slice.
Our technique is based on a proper extension of a result by Nishikawa (1984)

and relies within the applications of the generalized maximum principle due to Yau (1975
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to complete Riemannian manifolds. In fact, we previously proved an extension of (YAU,
1975, Lemma 2) to the case the Ricci curvature is no longer bounded by a constant but
by a more general function of the distance on the manifold.
Let M be a complete Riemmanian manifold such that Ric > —G(r) for G such
that G(0) > 1, G' > 0 and G™Y2 ¢ L'[0,00]. If u is a non-negative function on M
satisfying
Au > Bu?, B >0, (7)

then u = 0.

In chapter 8 we exhibit examples and highlight their properties that are impor-
tant to the previous presented result. Which are the three examples of spacelike graphs in
—R x H?, for H? given by the Poincaré model of half plane. Example [8.1] see (De LIMA|
and LIMA JR) 2013), u(z,y) = alny with |a| < 1, this example is also considered in
the Riemannian setting, it shows that maximality cannot be removed in the results we
required so, as well that we cannot choose @ = 1 when we required o < 1 . In fact, we
cannot even replace it by constant mean curvature. Considering the previously quoted
result we see that Example , see (ALBUJER),, 2008b), u(z,y) = aln(z?+y?) for a < 1,
lacks, on the general hypothesis, the main inequality we usually required in the control
of norm of the gradient of the height function. Finally the Example , see (ALBUJER,
2008b)), u(z,y) = In(y + m) where a > 0, fails the control in the growth of the
gradient of the height function, in reality its growth is more than exponential. We also

emphasized that this example is a graph half bounded which is required in Chapter 6.
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2 SOME PRELIMINARIES AND CLASSIC RESULTS

2.1 Semi-Riemannian elements and basic results

We consider hypersurfaces X" immersed into an (n + 1)-dimensional Semi-riemannian
product space M of the form R x M " where M"™ is an n-dimensional connected

Riemannian manifold and Mﬂﬂ is endowed with the Lorentzian metric

(,) = emp(dt®) + i, (()a),

where g and ), denote the canonical projections from R x M onto each factor, and (, )
is the Riemannian metric on M™. For simplicity, we will just write M = R x M
and (,) = edt® + (). In this setting, for a fixed ¢ty € R, we say that M;" = {t;} x M"
is a slice of M. Tt is not difficult to prove that a slice of M s a totally geodesic
hypersurface (see Proposition 1 in (MONTIEL; |1999))).

In the Lorentzian case a smooth immersion ¢ : 3" — —R x M™ of an n-
dimensional connected manifold X" is said to be a spacelike hypersurface if the induced

metric via ¢ is a Riemannian metric on X", which, as usual, is also denoted for (, ). Since
O = (0/9) . () € —R x M",

is a unitary timelike vector field globally defined on the ambient spacetime, then there
exists a unique timelike unitary normal vector field N globally defined on the spacelike
hypersurface ¥ which is in the same time-orientation as ;. By using Cauchy-Schwarz
inequality, we get

(N,0y) <—=1<0 onX" (8)

We will refer to that normal vector field N as the future-pointing Gauss map of the
spacelike hypersurface ¥".

Let V and V denote the Levi-Civita connections in eR x M™ and X", res-
pectively. Then the Gauss and Weingarten formulas for the (spacelike) hypersurface

Y X" — eR X M™ are given by
VxY =VxY +e(AX,Y)N (9)

and
AX = —VyN, (10)
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for every tangent vector fields X,Y € X(X). Here A : X(¥) — X(X) stands for the shape
operator (or Weingarten endomorphism) of 3" with respect to the future-pointing Gauss
map N.
As in (O’NEILL| 1983), the curvature tensor R of the spacelike hypersurface
" is given by
R(X,Y)Z =V xy1Z — [Vx,Vy|Z,

where [ | denotes the Lie bracket and X,Y, 7 € X(2).
The curvature tensor R of the (spacelike) hypersurface X" can be described
in terms of the shape operator A and the curvature tensor R of the ambient spacetime

M =R x M» by the so-called Gauss equation given by

R(X,Y)Z = (R(X,Y)Z)" 4+ e(AX, Z)AY — €(AY, Z)AX, (11)

for every tangent vector fields X, Y, Z € X(X), where ( )7 denotes the tangential compo-
nent of a vector field in %(WH) along X"

Now, we consider two particular functions naturally attached to a (spacelike)
hypersurface X" immersed into a Semi-Riemannian product space eR x M", namely, the
(vertical) height function h = (7g)|x and the support function (N, d;), where we recall
that N denotes the future-pointing Gauss map of X and 0, is the coordinate vector field
induced by the universal time on eR x M™".

Let us denote by V and V the gradients with respect to the metrics of eR x M™
and X", respectively. Then, a simple computation shows that the gradient of mr on
—R x M™ is given by

Vg = €(Vrg, 0,)0, = €0, (12)

so that the gradient of A on X" is
Vh = (Vrg)" =0 =¢d, — (N,0,)N. (13)

Thus, we get
e|Vh|?> = (N,0,)* — 1, (14)

where | | denotes the norm of a vector field on X"

In the Lorentzian case the geometrical interpretation of the norm of the gradi-
ent of the height function involves the notion of normal hyperbolic angle. More precisely,
if ¥X™ is a spacelike hypersurface of —R x M™ with future-pointing Gauss map N, we define
the normal hyperbolic angle § of X" as being the smooth function 6 : ¥(X) — [0, +00)
given by

cosh = —(N, ;). (15)
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Consequently, from and we have that
|Vh|? = cosh? 6 — 1. (16)

In order to evaluate the Laplacian of the height function we consider that 0; is parallel
on eR x M", then
vXat - 0, (17)

for every tangent vector field X € X(X). Writing €d, = Vh + (N, 9;) N along the hyper-
surface ¥ and using formulas @[} and , we get that

VxVh = (N,d,)AX, (18)

for every tangent vector field X € X(X). Therefore, from we obtain that the Laplacian
on X" of the height function is given by

Ah = enH (N, ), (19)
where H = —extrace(A) is the mean curvature of £" relative to N. The gradient of the
support function is given by

X(N,8) = (VxN,0) + (N,Vxd,) (20)
= (AX,-0,") = (AX,—€eVh)
= —e(AVh,X).
Since X is arbitrary we get
V(N,0;) = —€A(Vh). (21)

Moreover, as a particular case of the Proposition 3.1 in (CAMINHA and De LIMA| [2009),
we obtain the following suitable formula for the Laplacian on X" of the angle function 7.
Lemma 1 Let ¢ : X" — eR x M™ be a hypersurface with orientation N, and let n =

(N, ;) be its angle function. If X" has constant mean curvature H, then
An = —e (Riear(N", N*) +A]*) n, (22)

where Ricy, denotes the Ricci curvature of the base M™, N* is the projection of the unit
normal vector field N onto the base M™ and |A| is the Hilbert-Schmidt norm of the shape
operator A.

In order to establish our results, we also need of the following auxiliary lemma

for the Lorentzian case.
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Lemma 2 Let ¢ : X — —R x M™ be a spacelike hypersurface immersed in a Lorentzian
product space —R x M™, whose sectional curvature Ky; of its fiber M™ s such that —k <
Ky for some positive constant k. Then, for all X € X(X), the Ricci curvature of X"

satisfies the following inequality

; 2 o M
Ric(X,X) > —k(n — 1)(1 + |VA|)| X]|* — T!X| ) (23)

Proof. Since the curvature tensor R of the spacelike hypersurface X" can be
described in terms of the shape operator A and the curvature tensor R of the ambient

spacetime —R x M™ by the so-called Gauss equation given byﬂ
R(X,Y)Z = (R(X,Y)Z)" —(AX, Z)AY + (AY, Z)AX, (24)

for every tangent vector fields X, Y, Z € X(X).
Consider X € X(X) and a local orthonormal frame {Fi,---, E,} of X(X).

Then, it follows from Gauss equation that the Ricci curvature tensor Ric is given by

n

Ric(X, X) = > (R(X,E)X,E;) +nH(AX, X) + (AX, AX)

i=1
no 2H2 H 2

- Z<R(X> E)X, E;) — ! 1 | X]* + 'AX + %X
i=1

Moreover, we have that

(R(X,E)X,E) = (R(X", E)X", Ef)u
= Ku(X", B7) (X, X\l E]L B ) — (X7 ED)Yy) -

Since X* = X + (X,0,)0;, Ef = E; + (E;,0;)0; and Vh = —09,", with a straightforward

computation we see that
(X X)W (B] B u = (1+ (B, V) (IX[* + (X, VR)?)
and

(X*ENM(E; By = (X, E)? + 2(X, VR)(E;, Vh)(X, E;)
+(X, Vh)*(E;, Vh)2.

!As in (O’NEILL, 1983), the curvature tensor R of the spacelike hypersurface X" is given by
R(Xa Y)Z = v[)(',Y]Z - [vXa VY]Zv

where [ | denotes the Lie bracket and X,Y, Z € X(%).
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Therefore, since we are supposing that —x < K, for some positive constant x, we obtain
inequality (23). M
Remark 1 We note that when the ambient spacetime —R x M™ is such that its fiber M"
is flat, from Lemma [] we see that the boundedness of the mean curvature is enough to
guarantee that the Ricci curvature of the spacelike hypersurface is bounded from below.
When we have a maximum point we can have nice properties on any smooth
function on manifolds. However when the manifold is not compact we cannot guarantee
such a critical point even when the function admits a infimum or a supremum. With some
completeness assumptions on the Riemannian manifolds as we see below it is possible to
still obtain similar properties.
Lemma 3 Let X" be an n-dimensional complete Riemannian manifold whose Ricci cur-
vature 1s bounded from below and u : X" — R be a smooth function which is bounded from

above on ¥". Then there is a sequence of points p, € X" such that
lillcrnu(pk) = inf u, h;?l |IVu(pr)| =0 and limsup Au(pg) > 0.
k

This is the well known generalized maximum principle of Omori-Yau (OMORI,
1967) and (YAU, 1975)). Several authors have developed extension for this principle manly
in order obtain the same thesis assuming weaker hypothesis see (ALfAS, DAJCZER, and
RIGOLI, 2013)), (BORBELY, 2012) and (BESSA and PESSOA| 2014). For simplicity we
present one given by
Lemma 4 (Borbély) Let M™ be a complete Riemannian manifold, p € M be a fixed
point and r(x) be the distance function from p. Let us assume that away from the cut
locus of p we have

Ric(Vr, Vr) > —BG*(r),

where G(t) has the following properties:

G>1, G >0and C>Oi:oo
o G()

Then M™ satisfies the Omori- Yau maximum principle.
Since G(r) belongs to the class of function such that G > 0, G’ > o > 0 and G2 ¢
L0, oo], we will identify any function in that class just by G(r).

The next results are due to Yau (1975)) and (1976) for the first one we put a
simplified version adapted for our purposes
Lemma 5 The only harmonic semi-bounded functions defined on an n-dimensional com-
plete Riemannian manifold whose Ricci curvature is nonnegative are the constant ones.
The second one is an extension of H. Hopf theorem to a complete noncompact Riemannian

manifold. In what follows, £!(X) denotes the space of Lebesgue integrable functions on
P
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Lemma 6 Let X" be an n-dimensional, complete noncompact Riemannian manifold and
let w: X" — R be a smooth function. If u is a subharmonic (or superharmonic) function

such that |Vu| € LY(X), then u must actually be harmonic.

2.2 Vertical Graphs in a Semi-Riemannian Product

Let eR x M™ a Semi-Riemannian product space and let 2 C M"™ be a connected domain
of the fiber M™. A wvertical graph over € is determined by a smooth function u € C*°(2)
and it is given by

¥'u) = A{(u(z),x);x € Q} C eR x M™.

The metric induced on € from the Semi-Riemannian metric on the ambient
space via X" (u) is

() = edu® + (). (25)

A graph is said to be entire if Q = M".
If ¥™(u) is a (spacelike) vertical graph over a domain we verify that the vector
field

1
N(ZL‘) = —(8t|(u(x),x) — EDU(J})), T € Q, (26)

1+ €| Dul?
defines the Gauss map of X" (u), it is future-pointing in the Lorentzian case. For the shape
operator A of ¥"(u) with respect its orientation given by (26]). For any X € X(3(u)), for
X* the projection onto the tangent space of the fiber M, then X = X* + e(Du, X*),0;,

we have that
AX = —VyN = e(Du, X*)y Vo N — Vx-N. (27)

From (26)), (27), and with aid of Proposition 7.35 in (O’NEILL] [1983)), we verify that

— 0y — eDu — 0y — eDu
AX =€e(Du,X*)Vy, | ——— | —Vx+ | ————
< Ve (\/1+6|DU|2> . <\/1—|—6|Du|2>

_ _vX* 8t —eDu
1+ €|Du|?
— eDu

N 1+ | Dup?

1+ €|Du|? (14 ¢€|Duf?)??

Denoting by D the Levi-Civita connection with respect to the metric (, )y on X(M) we

<vX* Du, Du> .

= €

obtain Do DuD
‘ y— \Px D Dy py (28)

— DD
J1+eDu, (1+ €[ Dul?,)?7

AX =
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From (128)) we obtain that the mean curvature of ¥(u) is given by

D
nH = —Div | ———22 ), (29)
1+ €|Dul3,

where Div stands for the divergence operator on M™ with respect to the metric (, ). In
the Lorentzian context a graph X"(u) is a spacelike hypersurface if, and only if, | Du|? < 1,
being Du the gradient of u in 2 and |Du| its norm, both with respect to the metric (, ),
in ). Note that every complete spacelike hypersurface in —R x M™ is an entire spacelike
vertical graph in such space. For a proof of this fact see Lemma 3.1 in (ALfAS, ROMERO,
and SANCHEZ, [1995) and Lemma 3.1 in (ALBUJER and ALIAS, 2009). However, in
contrast to the case of graphs into a Riemannian space, an entire spacelike graph in
a Lorentzian product space is not necessarily complete, in the sense that the induced
Riemannian metric (25)) is not necessarily complete on M. In fact, Albujer have obtained
explicit examples of non-complete entire maximal graphs in —R x H? (cf. (ALBUJER,
2008b) we also put it in details in Chapter [§)).
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3 HYPERSURFACES WITH PRESCRIBED ANGLE FUNCTION

3.1 Introduction

One of the most celebrated theorems of the theory of minimal surfaces in R? is Bernstein’s
theorem in (BERNSTEIN||1910) which establishes that the only complete minimal graphs
in R? are the planes. This result was extended under the weaker hypothesis that the image
of the Gauss map of 2 lies in an open hemisphere of S?, as we can see in (BARBOSA
and Do CARMO, 1974).

Meanwhile, Osserman ((1959) answered a conjecture due to Nirenberg, showing
that if a complete minimal surface ¥2 in R? is not a plane, then its normals must be
everywhere dense on the unit sphere S?. More generally, Fujimoto (1988)) proved that if
the Gaussian image misses more than four points, then it is a plane. Meanwhile Hoff-
man, Osserman and Schoen in (1982) showed that if a complete oriented surface ¥? with
constant mean curvature in R? is such that the image of its Gauss map N(X) lies in some
open hemisphere of S, then ¥2 is a plane. Moreover, if N(X) lies in a closed hemisphere,
then Y2 is a plane or a right circular cylinder.

When the ambient space is a Riemannian product M =Rx M "oas it
was already observed by Espinar and Rosenberg ( 2009)), the condition that the image
of the Gauss map is contained in a closed hemisphere, becomes that the angle function
n = (N,d;) does not change sign. Here, N denotes a unit normal vector field along a
hypersurface ¢ : 3" — M and 0, stands for the unitary vector field which determines
on M a codimension one foliation by totally geodesic slices {t} x M™. In this setting,
our purpose in this work is to establish analogous results to those ones above described.
In other words, we aim to give new satisfactory answers to the following question: under
what reasonable geometric restrictions on the angle function must a complete hypersurface
immersed in a certain product space be a slice?

We can truly say that one of the first remarkable results in this direction was
the celebrated theorem of Bombieri, De Giorgi and Miranda (1969), who proved that an
entire minimal positive graph over R" is a totally geodesic slice.

Many other authors have approached problems in this branch. Hence, in this
case, the graph is a horizontal slice or M? is a flat R? and the graph is a tilted plane. Later
on, Bérard and Sa Earp (2008) have described all rotation hypersurfaces with constant
mean curvature in R x H" and used them as barriers to prove existence and characteriza-
tion of certain vertical graphs with constant mean curvature and to give symmetry and
uniqueness results for constant mean curvature compact hypersurfaces whose boundary
is one or two parallel submanifolds in slices.

Espinar and Rosenberg (2009 have studied constant mean curvature surfaces

Y2 in R x M?. Under the assumption that the angle function does not change sign,
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they classified such surfaces according to the infimum of the Gaussian curvature of their
horizontal projection.

Recently, Aquino, de Lima and Parente (AQUINO and De LIMA| [2011) and
(De LIMA and PARENTE, [2012)) have applied the well known generalized maximum
principle of Omori-Yau (OMORI, [1967; [YAU, [1975)) and an extension of it due to Aku-
tagawa (1987) in order to obtain rigidity theorems concerning complete vertical graphs
with constant mean curvature in R x Q". De Lima (2014) also extended the technique
developed by Yau (1976) in order to investigate the rigidity of entire vertical graphs in a
Riemannian product space R x M™, whose base M™ is supposed to have Ricci curvature
with strict sign. Under a suitable restriction on the norm of the gradient of the function

u which determines such a graph ¥"(u), he proved that ¥"(u) must be a slice {t} x M™.

3.2 Uniqueness for hypersurfaces on a Riemannian product

Inspired in the previous works and motivated by comprehend the theory, we could prove
proper extensions and give counter-examples showing the paths where the results cannot
be extended. These results are originally in (De LIMA, LIMA JR, and PARENTE, [2014)).

In the following Hy = ﬁSQ stands for the mean value of the second ele-
mentary symmetric function Ss on the eigenvalues of the Weingarten operator A of the
hypersurface ¥X". Moreover, we recall that a hypersurface is said to be two-sided if its
normal bundle is trivial, that is, there is on it a globally defined unit normal vector field.
Theorem 1 Let M = R x M™ be a Riemannian product space whose base M™ has
sectional curvature Ky such that Ky > —k for some k > 0, and let ¢ : X" — M be
a two-sided complete hypersurface with constant mean curvature H and Hs bounded from
below. Suppose that the angle function 1 of X" is bounded away from zero and that its

height function h satisfies one of the following conditions:

Q@
Vh? < ——— AP 30
VA < AP (30)
for some constant 0 < a < 1; or
n
Vh]* < ———H>. 31
VAP < o (31)
Then, 3" is a slice of M
Proof. Since we are assuming that 7 is bounded away from zero, we can

suppose that n > 0 and, consequently, inf7 > 0. From Lemma [I| we have

An = —(Rient(N", N*) + | A[)n. (32)
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Moreover, since we are also assuming that the sectional curvature K, of the base M" is

such that Kj; > —k for some x > 0, with a straightforward computation we get
Ricy(N*, N*) > —(n — 1)k|N*|* = —(n — 1)k(1 — 1),

where the N* stands for the component of N tangent to M™. Then, from and
we obtain

An < —(|A]” = (n = Dx|[VA[*)n. (33)

Thus, if we assume that the height function of 3" satisfies the hypothesis
and from , we have that
An < —(1 - a)|APn. (34)

We claim that the Ricci curvature of X" is bounded from below. Therefore,
we are in conditions to apply Lemma [3[ to the function 7, obtaining a sequence of points
pr € X" such that

liminf An(pg) >0 and lim n(px) = inf n(p).
k—oo k—o0 peEX

Consequently, since we are assuming that the Weingarten operator A is bounded on X",

from (34)), up to a subsequence, we get
0 < liminf An(py) < —(1 — a) lim |A]*(py,) inf n(p) < 0.
k—o0 k—o0 pEX

Thus, we obtain that limj_. |A|(px) = 0 and, from (30), limj_. |VA|(pr) = 0. Hence,
from we conclude that inf,ex 7(p) = 1 and, consequently, n = 1. Therefore, ¥ is a
slice.

It just remains to prove our claim that the Ricci curvature of " is boun-

ded from below. For this, let us consider X € X(X) and a local orthonormal frame
{Ey,---, E,} of X(X). Then, it follows from Gauss Equation that

Ricy (X, X) = Y (R(X,E)X,E;) + nH(AX, X) — (AX, AX). (35)

%

Thus, taking into account once more the lower bound of the sectional curvature of the

base M™, we have

(R(X,E)X, Ei) > —s((X*, X (BF, B )an — (X7, B )3n), (36)
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where X* = X — (X,0,)0, and Ef = E; — (E;,0;)0; are the projections of the tangent
vector fields X and E; onto M", respectively. Then, summing up relation (36 we get

Z(E(X, E)X,E) > —k((n—1|XJ—|VAPX]? - (n—2)(X,Vh)?)

> —k(n—1)|X2

Therefore, from and using Cauchy-Schwarz inequality we have that the Ricci curva-

ture of X" satisfies the following lower estimate
Rics (X, X) > —((n — 1)k — |A||A — nHI|)| X7, (37)
for all X € X(X). Therefore, taking into account that
|A]? = n*H? — n(n — 1)H,, (38)

our restrictions on H and H, guarantee that the Ricci curvature tensor of X" is bounded
from below and, hence, we conclude the first part of the proof of Theorem [1]

Now, let us suppose that the height function of ¥ satisfies the hypothesis

. In this case, from and we obtain
An < —n(n — 1)(H* — Hy)n. (39)

Consequently, in a similar way of the previous case, we can apply Lemma 3| in order to

obtain a sequence of points p, € X" such that
0 < liminf An(py) < —n(n — 1) liminf(H? — Hy)(py) inf n(p) < 0.
k—00 k—o00 peEX
Hence, up to a subsequence,

lim (H — Hy)(pr) = 0.

k—o0

Moreover, since H is supposed to be constant, from (38]) we get
lim |A|*(p) = nH?>.
k—o00

At this point, we recall that |A|* = 3", k2, where r; are the eigenvalues of A.
Thus, up to subsequence, for all 1 < i < n we have that limy, k;(px) = k} for some k} € R.

Motivated from such fact, we set

n—1)
UERTA S

1<j
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and we note that H = %EZ xf. Then, we have H? = Hy and, for all 1 <i <n, kf = H.
So, let {e;} be a local orthonormal frame of eigenvectors associated to the eigenvalues
{k;} of A. In this setting, we can write Vi = ). \;e; for some continuous functions \;
on X".

From and we have that
X(n) = —(A(X),0) = —(X, A(9/])) = —(X, A(Vh)),

for all X € X(X). Thus,
Vn=—A(Vh). (40)

Hence, by applying once more Lemma (3| to the function 7, from (40)) we get
0 = hm |A(Vh)|? th (57 X7) (pr)

= D () A (pe) = H Y Tim X (py),
up to subsequence. If H = 0, from hypothesis (30)), we have immediately that X" is a slice.
If H? > 0 then, for all 1 < i < n, we have that limy \;(py) = 0. Thus, limy |VA|(p) = 0
and, from equation ,

inf (p) = lim 7(py) = 1.

pEY

Therefore, n = 1 on X" and, hence, X" is a slice. W

Now we treat the case when the mean curvature H is not assumed to be
constant, but it is just supposed not to change sign along the hypersurface.
Theorem 2 Let M = R x M™ be a Riemannian product space whose base M"™ has
sectional curvature bounded from below, and let 1) : ¥" — M be a two-sided complete
hypersurface which lies between two slices of M Suppose that the angle function n of
3" is not adherent to 1 or —1. If Hy is bounded from below, H is bounded and it does not
change sign on X", then infy H = 0. In particular, if H is constant, then X" is minimal.

Proof.

First, we note that, as in the proof of Theorem [I| our restrictions on the
sectional curvature of the base M™ jointly with the hypothesis on the mean curvatures H
and H, guarantee that the Ricci curvature of X" is bounded from below.

Suppose for instance that H > 0 on X". Since X" lies between two slices of

R x M™ the height function is bounded. Therefore on a maximizing sequence of points
pr € X" accordingly with Lemma |3| we obtain the following. Firstly, using we get

0 > limsup Ah(px) = nlimsup (Hn) (pk).

k—o0 k—o0
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Moreover, from equation ((14)) we also have that
0= lim |Vh|(ps) =1 — lim 5*(pg).
k—o0 k—oc0
Thus, if we suppose, for instance, that n is not adhere to —1, we get
lim n(px) = 1.
k—o00

Consequently,
0 > lim sup Ah(px) = nlimsup H(px) > 0

k—o00 k—o0
and, hence, we conclude that

limsup H (px) = 0.

k—o0

If H <0, from ((14)) and , we can apply once more Lemma |3 in order to

obtain a sequence ¢ € X" such that
0 < liminf Ah(gx) = nliminf (H7) (¢)
k—o00 k—o00
and, supposing once more that 7 is not adhere to —1, we get
0 < liminf Ah(py) = nliminf H(p;) < 0.
k—o00 k—o00

Consequently, we have that
liminf H(py) = 0.

k—00

Therefore, in this case, we also conclude that infy H =0. W

Corollary 1 The only two-sided complete constant mean curvature surfaces of R with
Gaussian curvature bounded from below, lying between two planes and whose Gauss map
is not adhere to both poles of S* which are orthogonal to such planes, are planes of R3.

Through Example 8.1} we see that the assumption of that hypersurface " lies
between two slices of R x M™ is a necessary hypothesis in Theorem [2|in order to conclude
that the mean curvature of X" cannot be globally bounded away from zero. Moreover,
we observe that the horizontal circular cylinder C C R3 satisfies almost all hypothesis of
Corollary [T} except to that one which requires the Gauss map N of C to be not adhere to
both poles of S? orthogonal to C. Actually, such cylinder is unbounded in all directions
where N is isolated.

Rosenberg, Schulze and Spruck (2013) showed that an entire minimal graph
with nonnegative height function in a product space R x M", whose base M™ is a complete
Riemannian manifold having non-negative Ricci curvature and with sectional curvature
bounded from below, must be a slice. Consequently, from Theorem [2| we obtain the

following:
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Corollary 2 Let M"™ be a complete Riemannian manifold with nonnegative Ricci curva-
ture and whose sectional curvature is bounded from below. Let ¥"(u) = {(u(x),z) : x €
M"™} C R x M™ be an entire graph of a nonnegative smooth function u : M"™ — R, with
H constant and Hy bounded from below. If u is bounded, then u =ty for some ty € R.

Furthermore, taking into account once more Theorem [2| jointly with Theorem

1.2 in (ROSENBERG, SCHULZE, and SPRUCK], 2013), we also have:
Corollary 3 Let M"™ be a parabolic complete Riemannian manifold whose sectional cur-
vature is bounded. Let ¥"(u) = {(u(z),z) : x € M"} C R x M™ be an entire graph of
a smooth function u : M™ — R, with H constant and Hy bounded from below. If u is
bounded, then u =ty for some ty € R.

We point out that, in the context of Theorem [2] the constant mean curvature
hypersurface will be indeed minimal provided the asked hypothesis. An interesting ques-
tion that arises from Theorem [1] is whether the constant mean curvature hypersurface
trapped between two planes with Gauss map not adherent to both poles is a graph, then
is it trivial? Accordingly to Osserman (1959)) that hypersurface is indeed a plane when
the ambient space is R®. When the ambient space is a product whose fiber has nonnega-
tive Ricci curvature and sectional curvature bounded from below, Corollary [2f also give a
positive answer for such question, provided that the hypersurface is already a graph of a
bounded and nonnegative function, while Corollary [3| deals with the parabolic case using

that parabolicity is invariant under conformal changes.
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4 CALABI-BERNSTEIN RESULTS FOR HYPERSURFACES ON A LO-
RENTZIAN SPACE

4.1 Uniqueness results in —R x M"

Here N denotes the future-pointing Gauss map of a spacelike hypersurface ¢ : ¥ —
—R x M™. In the sequence we show Calabi-Bernstein results on a Lorentzian ambient
dual to the ones in the previous Chapter. The results here in this chapter are published
in (De LIMA and LIMA JR| 2013).

Theorem 3 Let vy : X" — —R x M" be a complete spacelike hypersurface immersed in a
Lorentzian product space —R x M™, whose sectional curvature Ky, of its fiber M™ is such
that —k < Ky for some positive constant k. Suppose that 3" lies between two slices of
—R x M™ and that |Vh| is bounded on X™. If H is bounded and it does not change sign
on X", then H is not globally bounded away from zero. In particular, if H is constant,
then X" is maximal.

Proof. First, from Lemma [2] we have that our restriction on the sectional
curvature of the fiber M™ jointly with the hypothesis that |[Vh| and H are bounded on
3" guarantee that the Ricci curvature of X" is bounded from below.

Now, suppose for instance that H > 0 on X". Thus, since >" lies between two
slices of —R x M™, from equation and Lemma [3| we get a sequence of points p;, € X"
such that

0 < lim A(=h)(py) = nlim (H (N, 9)) (pr).

From equation ([14)) jointly with Lemma [3| we have that
0 = lim |Vh|(pr) = 111£n<N, o) (pr) — 1.
Thus, since (N, ;) < —1,
li]?l(N, ) (pr) = —1.

Consequently,
0 < lim A(=h)(pk) = —nlim H(p) <0

and, hence, we conclude that
liin H(px) = 0.

If H < 0, with the aid of equations and then applying Lemma |3 , we have a
sequence q € X" such that

0< 1il£n Ah(qr) = —nlilf;n (H(N,0)) (qr)
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and
lim(N, 8, () = —1.

Therefore, we conclude again that H is not globally bounded away from zero. H
Remark 2 We observe that Example shows that the spacelike hypersurface X" to lie
between two slices of —R x M™ is a necessary hypothesis in Theorem[3 to conclude that
the mean curvature of X" can not be globally bounded away from zero.

In what follows, let us consider the product model of the Minkowski space
L+ that is, L™ ~ —R x R".

Taking into account Remark [1| and that the only complete maximal spacelike
hypersurfaces in L"™! are the spacelike hyperplanes (see (CALABI, 1970), for n < 4,
and (CHENG and YAU, [1976), for arbitrary n), from Theorem [3[ we get the following
Corollary 4 (Theorem 1 in (ALEDO and ALIAS)|, 2000)) Let 1) : £" — L**! be a
complete spacelike hypersurface with constant mean curvature H and which lies between
two parallel spacelike hyperplanes of L™, Then, X" is a hyperplane.

Let ¢ : ¥® — L™ be a spacelike hypersurface. We note that the future-
pointing timelike unit normal vector field N € X(X) can be regarded as the Gauss map

N : 3" — H" of X", where H" denotes the n-dimensional hyperbolic space, that is,

H" = {x € L™ (v, 2) = —1, 1., > 1}.

In this setting, the image N(X) is called the hyperbolic image of ¥". Furthermore, given
a hyperbolic geodesic ball B(a, ¢) C H" of radius ¢ > 0 and centered at a point a € H",

we recall that B(a, o) is characterized as the following
Bl(a,0) = {p € H"; — cosh ¢ < (p,a) < —1}.
So, if the hyperbolic image of 3™ is contained into some B(a, ¢), then
1 < [(N,a)| < cosh .

From Theorem (3| we obtain the following result, which can be regarded as a
sort of extension of the result due to Xin (1991) and Aiyama (1992]).
Corollary 5 (Theorem 1.1 in (De LIMA| [2011))) Let ¢ : X" — L™ be a complete
spacelike hypersurface which lies between two parallel spacelike hyperplanes of L™ . Sup-
pose that the mean curvature H is bounded and that it does not change sign on ¥". If the
hyperbolic image of X" is contained in the closure of a hyperbolic geodesic ball of radius o

which satisfies cosh o < 1+ infy, |H|, then X" is a hyperplane.
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Let S5 denote the second elementary symmetric function on the eigenvalues of

the second fundamental form A of X", and

2
= n(n — 1)52

denotes the mean value of S;. Elementary algebra gives
|A? =n?H? —n(n — 1)H,. (41)

Our next result is an extension of Theorems 3.1 and 3.2 in (ALBUJER, CA-
MARGO, and de LIMA| 2010).
Theorem 4 Let ¢ : X" — —R x M™ be a complete spacelike hypersurface immersed
with constant mean curvature H in a Lorentzian product space —R x M™, whose sectional
curvature Ky of its fiber M™ is such that —x < Ky for some positive constant k. Suppose

that one of the following conditions is satisfied:
(a) The height function h of X" is such that

n

k(n—1)

(b) Hy is bounded from below on X" and the height function h of X" is such that, for some
constant 0 < o < 1,

|Vh]? < H>. (42)

«
|AJ*

2
<=
VA" < k(n—1)

(43)

Then, ¥™ is a slice.

Proof. First, let us suppose that the condition of item (a) is satisfied. From
hypothesis , we get

N.ON2 =1 214" 2

Consequently, we have that the infimum inf, 5 (N, 0;)(p) exists and is a negative number.

We easily see that (N*, N*), = |Vh|?, where N* = N + (N,0,)0; is the
projection of N onto the fiber M™. Consequently, taking a local orthonormal frame
{Ey, -, E,} on M" we have that the Ricci curvature Ricy; of M™ is such that

Ricy(N*,N*) = > (Ry(N*, E;)N*, Ej)y

= D KN E) (NN — (N*, )3

> —/{Z ((N*,N*)p — (N*, E;)3))

= —k(n—1)|Vh|
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where we have used our restriction on the sectional curvature K, of M™. Thus, using
again hypothesis , from Lemma [1| and equation ({41]) we obtain

A(N,8,) < (n®H?—n(n—1)H, — k(n —1)[Vh|*) (N, )
(nH? + n(n— 1)(H? — Hy) — k(n — 1)|VA|*) (N, 8;)

< n(n—1)(H* — Hy)(N,9,).

Now, taking into account Lemma [2| we can apply Lemma [3] to obtain a se-

quence of points pr € X" such that
0 < lim A(N. 93)(px) < nln — 1) (N, 3)(p) lim(H? — Hy)(py) < .
pe

Consequently,
h}ga(H2 — Hy)(py) = 0.

Moreover, since |A]*> = nH? +n(n — 1)(H? — Hy), we get
li]£n|A]2(pk) = nH?>.

At this point, we recall that |[A]* = 3, k7, where &; are the eigenvalues of A. Thus, up

to subsequence, for all 1 < ¢ < n we have that limy, x;(px) = &} for some k} € R.

We set 1
n p—
= S
1<J
We note that H = —1 3. k7. Then, we have H*> = H, and, for all 1 <i <n, x} = —H.
So, let {e;} be a local orthonormal frame of eigenvectors associated to the eigenvalues

{k;} of A. In this setting, we can write Vh = ). \;e; for some smooth functions \; on

3", Thus, up to subsequence, from Lemma [3| we get
0 = hm |A(Vh)[? Z lim ( k)
— ; 2 — .
= Z (k)2 11]£n N (py) = H? Zhin M (pr).

If H =0, from hypothesis , we have immediately that X" is a slice. If H? > 0 then, for
all 1 <14 < n, we have that limy \;(px) = 0. Thus, limy |Vh|(px) = 0 and, from equation

(9.

inf (N0 (p) = (N, 0) () = 1.

Therefore, (N,0;) = —1 on X", that is, 3" is a slice.
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Let us consider the case that the item (b) is satisfied. Reasoning as in the

previous case, we show that inf,ex (N, 0;)(p) exists and it is negative. Moreover, using

again that Ricy (N*, N*) > —r(n — 1)|Vh|?, from Lemma [I] and hypothesis we get

AN, 0 < (AP = w(n = 1)[VA[?) (N, )

< (1—a)|A]*(N,0,) <0.

Taking into account once more Lemma [2, we can use Lemma [3] to guaran-
tee the existence of a sequence of points p, € X" such that limy A(N, ;) (px) > 0 and
limy (N, 0;) (pr) = infpex (N, ;). Consequently, limy, (N, 9;)*(pr) = sup,ex (N, 0;)>.

Thus,

0 < lim AN, 9)(pi) < (1 - ) hm!A\ §2%) mf<N o) <

It follows that limy |A|*(pr) = 0. Now, by using the hypothesis , we

obtain that limy |VA|*(pr) = 0, what it implies by equation that sup,es,(N, 9;)* =
lim (N, 3;)%(pr) = 1. But (N,9;)? > 1, hence, (N, 9;)? = 1 on ¥ and, therefore, 3" is a
slice. W
Remark 3 As observed in (ALBUJER, CAMARGO, and de LIMA| |2010), in Theo-
rems[3 and [, a geometrical interpretation of our restriction on the norm of the gradient
of the height function h involves the notion of normal hyperbolic angle. More precisely,
if 0 X" — —R x M"™ is a spacelike hypersurface oriented by the timelike unit vector
field N such that (N, d;) < 0, the normal hyperbolic angle 6 of 1 is the smooth function
0 :¢(X) — [0,+00) such that coshf = —(N,8;) > 1. Thus, from equation (1{]), we have
that [Vh|? = cosh® 0 —1. Consequently, the conditions on the growth of the height function
h can be interpreted geometrically as a boundedness of the normal hyperbolic angle 6 of
the spacelike hypersurface 3.
Theorem 5 Let ¢ : X" — —R x M™ be a complete spacelike hypersurface such that
its mean curvature H does mot change sign. If |[Vh| € LY(3), then X" is mazimal. In
addition, if Hy is bounded from below on X" and the Ricci curvature Ricy, of the fiber M™
is non-negative, then X" is totally geodesic. Moreover, if Ricys is strictly positive, then
3™ s a slice.

Proof. Since we are supposing that H does not change sign on »", from
equation ((19)) we conclude that Ah also does not change sign on ¥". Thus, from Lemma @,
our hypothesis |[Vh| € L}(X) guarantees that h is harmonic and, using again equation

(119), we conclude that ¥" is maximal.

From and we have that

X ((N,0)) = —(A(X),0,) = —(X, A(9)")) = (X, A(Vh)),
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for all X € X(X). Thus,
V(N,0) = A(Vh).

Consequently, since H = 0 and Hy bounded from below imply that |A| is bounded on X",
we get
|V(N,9,)| < |A||Vh| € LY(X).

So, if the Ricci curvature Ricy, of the fiber M™ is non-negative, from Lemmas [1] and [6]
we conclude that (N, d;) is harmonic. Hence, using Lemma [I] we have |[4] = 0 on X7,
that is, X" is totally geodesic. Moreover, if Ricy, is strictly positive, Ricp (N*, N*) = 0
implies that N* = 0 on X". Therefore, N is parallel to 0;, that is, X" is a slice. H

From Theorem 5 jointly with Theorem 3.3 in (ALBUJER and ALIAS, 2009))
(see also (ALBUJER) 2008a)) for another approach of such result), we get the following
Corollary 6 Let M? be a complete Riemannian surface with nonnegative Gaussian cur-
vature Kyr, and let 1 : X2 — —R x M? be a complete spacelike hypersurface such that its
mean curvature H does not change sign. If [Vh| € LY(X), then X? is totally geodesic. In
addition, if Ky > 0 at some point on M?, then X2 is a slice.

As another consequence of Theorem [5 we also obtain a sort of extension of
the classical theorem of Cheng-Yau (1976)).
Corollary 7 Let ¢ : X" — L™ be a complete spacelike hypersurface such that the mean
curvature H does not change sign. If |Vh| € L1(X), then X" is a hyperplane.

4.2 Entire spacelike vertical graphs in —R x M"

In this context, we obtain a non-parametric version of Theorem [3]
Corollary 8 Let ¥"(u) be an entire spacelike vertical graph in a Lorentzian product space
—R x M™, whose fiber M™ is complete and such that its sectional curvature Ky; satisfies
—k < Ky <0 for some positive constant k. Suppose that 3" (u) lies between two slices
of =R x M™. If |Du| < a, for some constant 0 < a < 1, and H does not change sign
on X"(u), then X™(u) is complete and H is not globally bounded away from zero. In
particular, if H is constant, then X™(u) is maximal.

Proof.

Observe first that, under the assumptions of the theorem, ¥"(u) is a complete

hypersurface. In fact, from and the Cauchy-Schwarz inequality we get
for every tangent vector field X on ¥"(u). Therefore,

(X, X) > (1 -a®)(X, X)u.
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This implies that L > /cLys, where L and L), denote the length of a curve on X" (u)
with respect to the Riemannian metrics (,) and (, )y, respectively, and ¢ = 1 — o?. As
a consequence, since we are supposing that M"™ is complete, then the induced metric on
Y™(u) from the metric of —R x M™ is also complete.

Since N = —(N,0;)0; + N* where N* denotes the projection of N onto the
fiber M™, from equation (13)) we get

N*T = —(N,9,)Vh

and

|Vh|? = (N*, N*) .
Thus, since

1
N = ——————=(0;, + Du),

/1 —|Du|?

we obtain that Dyl )
U
Vhi?= ——— .
IVl 1 — |Dul?

Therefore, if |Du| < « for some constant 0 < o < 1, we conclude that

CY2

hl? <
VA < 2

and, hence, the result follows from Theorem [

In an analogous way, we can also obtain the following non-parametric version
of Theorems [4] and [}
Corollary 9 Let X" (u) be an entire spacelike vertical graph immersed with constant mean
curvature H in a Lorentzian product space —R x M"™, whose fiber M™ is complete and
such that its sectional curvature Ky satisfies —k < Ky; for some positive constant k.

Suppose that one of the following conditions is satisfied:

H2
Dul? < z .
() 1Dul = = e
A 2
(b) Hy is bounded from below on ¥"(u) and |Du|* < ( 041|> —‘i— VIR for some constant
k(n — a
0<a<l.

Then, ¥™(u) is a slice.

Corollary 10 Let X"(u) be an entire spacelike vertical graph in a Lorentzian product
space —R x M™, whose fiber M"™ is complete. Suppose that the mean curvature H does
not change sign on X" (u). If |Du| < «, for some constant 0 < a < 1, and |Du| € L' (M),
then X"(u) is complete and mazximal. In addition, if H is constant, Hy is bounded from
below on X" (u) and the Ricci curvature Ricyy of the fiber M™ is non-negative, then 3™ (u)

is totally geodesic. Moreover, if Ricyy is strictly positive, then X" (u) is a slice.
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Remark 4 Salavessa (2008) have described an explicit foliation of —R x H™ by complete
spacelike graphs with constant mean curvature c, for any constant c.

Proceeding as before from Corollary and the results in (ALBUJER and
ALIAS, 2009) and (ALBUJER and ALIAS, 2011))), we obtain
Corollary 11 Let X2(u) be an entire spacelike vertical graph in a Lorentzian product space
—R x M?, whose fiber M? is a complete Riemannian surface with nonnegative Gaussian
curvature Ky;. Suppose that the mean curvature H does not change sign on Y*(u). If
|Du| < «, for some constant 0 < o < 1, and |Du| € LY(M), then X*(u) is complete and
totally geodesic. In addition, if Ky > 0 at some point of M?, then ¥*(u) is a slice.
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5 UNIQUENESS FOR SPATIALLY CLOSED SPACES

5.1 Introduction

It was conjectured by Goddard (1977) that in the de Sitter space S, the only complete
spacelike hypersurfaces with constant mean curvature should be the totally umbilical ones.
This conjecture, regardless the veracity, motivated the work of an impressive number
of authors who considered the problem of characterizing the totally umbilical spacelike
hypersurfaces of de Sitter space in terms of some appropriate geometric assumptions. In
particular, Akutagawa (1987) showed that Goddard’s conjecture is true if the constant
mean curvature H of the hypersurface satisfies H* < 4(n — 1)/n?. As an application of
it, Akutagawa also proved that when n = 2 Goddard’s conjecture is also true under the
additional hypothesis of the compactness of the surface (see also (RAMANATHAN] |1987)
for a simultaneous and independent alternative proof for n = 2). Afterwards, Montiel
(1988) extended this last result to the general case by showing that the only compact
spacelike hypersurfaces in de Sitter space are the totally umbilical round spheres.

Later on, Aledo and Alfas (2002)) studied complete spacelike hypersurfaces in
S" whose image of the Gauss mapping is contained in a geodesic ball of the hyperbolic
space H"!, showing that such a hypersurface X" is necessarily compact and obtaining
sharp estimates concerning the n-dimensional volume of ¥™. As an application of their
result, they also concluded that Goddard’s conjecture is true under the assumption that
the image of the Gauss mapping of the spacelike hypersurface is bounded. Next, S.
Montiel (2003) have proved that if a complete spacelike hypersurface ¥ in S+ with
constant mean curvature H > 1 is such that the image of its Gauss mapping is contained
in the closure of the interior domain enclosed by a horosphere of H"*! then its mean
curvature is, in fact, equal to 1. When n = 2, this implies that X2 is also an umbilical
surface.

In this chapter, we study the geometry of complete hypersurfaces immersed
with constant mean curvature in a spatially closed Lorentzian product space —R x M™,
that is, the Riemannian fiber M" is compact; for a thorough discussion about this class
of spacetimes, see for example (ALIAS, ROMERO, and SANCHEZ, [1995) and (ALIAS
and COLARES) 2007)).

5.2 Characterization of CMC hypersurfaces on spatially closed

spaces

Recall that the normal hyperbolic angle 6 of the spacelike hypersurface " is defined by
cosh = —(N, 0;), where N stands for the future-pointing Gauss map of " and 9, denotes
the coordinate vector field induced by the universal time on the Lorentzian product space
—R x M™ . The following results are in (AQUINO, De LIMA, and LIMA| [2014).
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Theorem 6 Let X be a complete spacelike hypersurface immersed with constant mean
curvature in a spatially closed Lorentzian product space —R x M™, whose fiber M™ has
positive sectional curvature. If the normal hyperbolic angle of X" is bounded, then %" is
a slice {to} x M™ for some ty € R.

Proof.

From the Gauss equation (1)), taking a (local) orthonormal frame {E}, - - - , E,,}
in X(X), we have that the Ricci curvature Ric of ¥" is given by

Ric(X, X) = i@(x, E)NX, E) +nH{AX, X) + |AX ]2, (44)

i=1
for X € X(X). Moreover, we have that

(R(X,E)X, E)) = (R(X", E))X", Ef)m (45)
= KM(X*7E:>(<X*7X*>M<E:7EZ*>M_<X*>Ez*>?\4)

where X* = X + (X,0,)0, and Ef = E; + (E;,0;)0, are the projections of the tangent
vector fields X and FE; onto the fiber M™, respectively.
Now, taking into account , with a straightforward computation we see that

(X", XYW(E] B = (14 (B, VR (X + (X, VIR)?)
and

(X* EN3, = (X, E)?+2(X,Vh){E;, Vh)(X, E;)
+(X, V)2 (E;, Vh)?.

Thus, since M"™ is compact with Kj,; > 0, there exists a positive constant x such that

Y (R(X,E)X,E;) > r((n—1DIXP+ (n—2)(X,Vh)>+[X]’|[Vh]*).  (46)

i=1
Hence, from and we obtain

Ric(X,X) > k((n—1|X]*+ |VA|IX] + (n—2)(X,Vh)?) (47)
+nH(AX, X) + |AX]?.

Here we can observe that we can write

H _ |2 2H?
nH{AX, X) + |AX)? = [ax + "0 x| -
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Thus, from equation and we obtain that

n?>H?

Ricn(X, X) > ——

X%, (49)

for all X € X(¥). Thus, since H is constant, we conclude from that the Ricci
curvature of X" is bounded from below. Now consider Bochner’s formula, (BOCHNER|
1946]),

%A (VAP) = [V2hP? + Ric(Vh, Vh) + (V(AR), VA). (50)

Since H is constant, from and we also have
V(Ah) = —nHA(Vh). (51)

Thus, from and we get
Ric(Vh, Vh) > (n — 1)s|VA[* (1 + |Vh|]?) + nH(A(Vh), Vh) + |A(Vh)|. (52)
Then from , and we get
%A (IVA?) = [V?h? + (n — 1)&|VAP (1 + [VR|?) + |A(VA)|*. (53)

At this point, we observe that from ((16)) our hypothesis that the normal hyperbolic angle
of ¥" is bounded implies that the function |Vh|? is also bounded on X". Hence, from

Lemma (3| we have that there exists a sequence of points (pi)r>1 in X" such that
liin IVh|?(pr) = sups|VA|? and lilgnsupA (IVA?) (pr) < 0.
Thus, from we have that

0> lilgnsupA (IVA?) (pk) > Ksup [VR|* > 0.
s

Consequently, we obtain that supy, |[VA|?> = 0 and, hence, h is constant on X". Therefore,
¥ is a slice {tp} x M"™ for some to € R. A

The next result deals with the half space property, that is, when hypersurface
is vertically half bounded it must be a slice.
Theorem 7 Let X" be a complete spacelike hypersurface immersed with constant mean
curvature in Lorentzian product space —Rx M™, whose fiber M™ has non-negative sectional
curvature. If the normal hyperbolic angle of X" is bounded, then 3" is mazximal. Moreover
if X(u) is vertically half bounded then it is a slice {to} x M™ for some t, € R.

Proof.  Analogously to the proof of Theorem [6] we see that the Ricci cur-

vature is bounded from below and by the same bounds. Thus, taking into account that
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n|V2h|? > (Ah)? from (53)) we get

2
A|VR|> > =(Ah)? (54)
n
From ((19) and (54)) we get
A|Vh|? > 2nH?*(N, 0;)* > 2nH>. (55)

As before for a sequence (pg)r>1 € X" given by Lemma [3| we have from that

0> lilgnsupA (IVA?) (pk) = 2nH? > 0.

Then » is Maximal. Consequently, from we obtain that Ric is non-negative on 3
and from (51)) we get h is harmonic. Using Lemma h must be constant. W

As observed by Espinar and Rosenberg (2009)), we see that our restriction
on # can be interpreted as the image N(X) of the Gauss map N of X" being bounded.
Consequently, Theorem |§| can be regarded as a natural version of theorems of Xin (1991))
and Aiyama (1992), and Aledo-Alfas (2002)) to the context of Lorentzian product spaces.
Through Example 4.4 in (De LIMA| 2014) we see that Theorem |§| does not hold when
the fiber M™ of the ambient spacetime —R x M™ has negative sectional curvature.

Using the integrability condiction we can also obtain the following:
Theorem 8 Let X be a complete spacelike hypersurface immersed with constant mean
curvature in a spatially closed Lorentzian product space —R x M™, whose fiber M"™ has
positive sectional curvature. If Vh € L' N L>®(X) and A € L>®(X) then X" is a slice
{to} x M™ for some ty € R.

Proof. From inequality we get

1
ol (IVA?) = (n — 1)&|VA* + |A(VA) . (56)
Note that
V|IVh]? = V(N,0,)* = 2(N,9,)V(N, ;) = 2(N, 9,) A(Vh)

So it is integrable. Integrating obtain
0> / k| Vh2dY.
>

Since k > 0 we see that h must be constant. W

Remark 5 Albujer and Alias (2009) established Calabi-Bernstein results for mazimal
surfaces immersed into a Lorentzian product space —R x M?. In particular, when M? is a
Riemannian surface with nonnegative Gaussian curvature, they proved that any complete

mazimal surface in —R x M? must be totally geodesic. Besides, if M? is non-flat, the
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authors concluded that it must be a slice {t} x M?. Li and Salavessa (2009) generalized
such results of Albujer and Alias to higher dimension and codimension.

From inequality , we can apply Hopf’s theorem in order to obtain the
following:
Corollary 12 The only compact spacelike hypersurfaces immersed with constant mean
curvature in a spatially closed Lorentzian product space —R x M™, whose fiber M™ has

positive sectional curvature, are the slices {t} x M™.
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6 BOUNDED HYPERSURFACES IN VERTICAL REGION OF —R x M™

6.1 CMC Graphs in —R x M"

The next results shows that we can improve the Calabi-Bernstein results in Chapter [4] for

the case the graphs are vertically bounded these results are accepted to be published in

(De LIMA and LIMA JR [2015)).
Theorem 9 Let M = —Rx M™ be a Lorentzian product space, such that the sectional
curvature Ky of its Riemannian fiber M™ satisfies Ky > —k, for some positive constant

k. Let ¥(u) be an entire H-graph over M", with u and Hy bounded from below. If

A

Dul?, <
b = L= A

(57)

then u = to for some ty € R.

Proof.

Observe first that, under the assumptions of the theorem, ¥ (u) is indeed a
complete spacelike hypersurface. In fact, from and the Cauchy-Schwarz inequality
we get

(X, X) = (X, X*)s — (Du, X*)3, = (1= [Duld) (X, X, (58)

for every tangent vector field X on X(u).
Recall that the Hilbert-Schmidt norm of the shape operator A of ¥(u) satisfies
the following algebraic identity

|A]? = n?H? — n(n — 1)H,. (59)

Since H is constant and H, is supposed to be bounded from below, from it holds
that sup,cs ) |A,]? < +00. From 1} we see that there exists a constant 0 < o < 1 such
that |Du|y < a. Hence, from ([58]) we get

(X, X) > (1 —a®)(X*, X"

This implies that L > +/cLy;, where L and Ly, denote the length of a curve on X (u)
with respect to the Riemannian metrics (,) and (, )y, respectively, and ¢ = 1 — a?. As
a consequence, since M™ is complete, the induced metric on ¥(u) from the metric of
—R x M™ is also complete.

Now, let us consider on ¥(u) the functions n = 1—e ® and W = /1 — |Dul?,.
Since we are supposing that u is bounded from below, we have that the function ¥ = nW
is bounded from below. We claim that the Ricci curvature of 3(u) is also bounded from

below. Hence, we are in conditions to apply Lemma |3 to the function ¢, obtaining a
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sequence of points {p; .} in X(u) such that, for each fixed k > 0,

Volpee) <& s Vpre) S ifv+e and  Ad(pee) = —.

Hence, along this minimizing sequence {p .}, we have
VI =VnW = VW + evy ., (60)
for vy . vectors satisfying |vg | < 1. Computing AY we obtain
AY = A(nW) = WAn +nAW +2(VW, Vn) (61)

Therefore, from and we get

VIV
W

2
AV =WAn+n (AW -2 ) + Wg(VT/V, Vke)- (62)
Since N = —(N, ;)0 + N* where N* denotes the projection of N onto the
fiber M™, from equation it is not difficult to see that N*' = —(N,8,)Vh where T
denotes the tangent part with respect to the graph. From (26| we obtain

1
IVh|? = (N*, N*)5 and (N, 0,) = W (63)
Here we used that Duf?
h 2 _ Ulpm ) 4
VA = it (64)
Hence, taking into account that
1 1 2IVIV|?
Al —=|=—— (AW —
() == (2= 55),
we can use formula to rewrite as
2
AD = WAR — n(Ricy (N*, N*) + [AP)W + Wgww, Ve, (65)
Hence, along the minimizing sequence {py .}, we get
2
— e < WA= n(Rica (N, N+ [AP)W + = (VW 0.) (66)

Since we are assuming that K,; > —k for some positive constant x, we have

Ricyr(N*, N*) > —k(n — D)|N* = —k(n — 1)|VA|%.
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But, from and it holds that

A 2
o< MAE
k(n—1)
Consequently,
Ricy (N*, N*) 4+ |A]> > —k(n — 1)|VA|* + |A]* > 0. (67)

Using inequalities and ([67)), on the minimizing Omori-Yau sequence {ps . }
we obtain W2V
+
() <o

or, equivalently,
W+ 2|VIV|

Hence, taking into account and , from we must have

) < e M(kAh — K*|Vh]?). (68)

— e (W +2|VW|) < (—nHEW — k*|Dul3,). (69)

We claim that VI is also bounded. In fact, from (63) we have that

1
VW = —— V(N
<N76t>2 < ’at>

and, hence,
Kl

Ve —1)

Thus, letting ¢ — 0 in and taking the lim inf on €, we obtain the following

IVW| < W23 A||Vh| < W?

estimate
0 < n|H|liminf W — klimsup | Dul3,. (70)
e—0 e—0
1
Now, multiplying by z and making £ — oo as we take the liminf over k
we get the next

lim sup lim sup | Dul3; = 0. (71)

k—o0 e—0
Consequently, since W? = 1 — |Dul3,, we have

lim inf lim inf W? = 1. (72)

k—o0 e—0

Since these sequences are minimizing, by Lemma [3[ on an arbitrary point we

have the ensuing
nQ(pk,s)WQ(pk,s) S 772W2 + g,



48

which implies that

|Dul?, < 1—77—3W2( )+£
U’M -~ 2 pk‘,E 2
n n
—kus\2 2 €
< 1-(1—e )W(pk,e)+m7

where 7, = infy(,) 7 and u, = infy(,)u. Without loss of generality we can suppose that
u > uy, > 0. Thus,

3

9 —ku\271/2
|Duf?, < 1— (1 — e )2W2(py.) L=l

(73)
Since & does not appear in the left hand side of (73)), we can take limsup,_,,
on both sides of that obtaining

|Dul?, <1— (1 — e Fu)? lim inf W2(pre)- (74)

In an analogous way, taking lim supy_,., on (74]), we finally conclude that |Du|3, = 0 on
Y (u), that is, u = to for some ty > 0.

It just remains to prove our claim that the Ricci curvature of ¥ (u) is bounded
from below. Since H is constant and taking into account the hypothesis jointly with
that follows directly from Lemma [2f we conclude that Ric is bounded from below. W
Remark 6 We recall that the Cheeger constant b(M) of a complete Riemannian manifold
M™ is given by
A(0D)

V(D) "’
where D ranges over all open submanifolds of M™ with compact closure in M™ and smooth
boundary, and where V (D), A(OD) are the volume of D and the area of 0D, respectively,

relative to the metric of M".

b(M) = 1%f

Returning to the context of Theorem [9, assuming that there exists an entire
H-graphs with H > 0 and such that holds, from (@) we can apply an argument due
to Salavessa (|1989) to get

Du
nHV (D) < /anV:/DiV —_— | dV
( ) D D <\/1—|Du|?\4>

Du n
_ £D<m,y>d/1g R HAED),

where v is the outward unit normal of 0D. Yielding the following lower estimate for the
Cheeger constant of the fiber M™

vn(n—1)k < b(M).
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Furthermore, recalling the stability operator J = A + Ric(N,N) — |A]%, a
H -hypersurface X" s said to be stable if

/ Jf.f>0, VfeCix). (75)
>

We also note that, under the stated hypothesis of Theorem[9, entire H-graph is, in fact,
a slice and therefore Ric(d;,0;) = 0 and |A|*> = 0. Hence, in this case, from we see
that such graph is stable.

Remark 7 According to Ezample[8.1] originally in (De LIMA and LIMA JR| [2013), that
family of complete vertical H-graphs given by

Y(u) = {(alny,z,9);y > 0} C —R x H?

with H = —L, Hy =0 and satisfying

2v/1 — a?

|AJ?
1+ |A]?

Shows that the semi-bound on u is actually necessary on Theorem @ Furthermore (N, O;)

is constant on X(u), from @, and (@, we get
A(N,8;) = (|A]* = [Vh[*){N,8;) = 0. (77)

Consequently, according to the stability criteria given in , from equation we
also conclude that Y(u) constitutes a nontrivial example of stable surface in —R x H2.
Therefore, concerning the context of Theorem [9, we see that the stability of the entire

H-graph cannot alone guarantee the uniqueness result.
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7 MAXIMAL SURFACES IN A LORENTZIAN PRODUCT

7.1 Introduction

Albujer and Alias (2011)), established Calabi-Bernstein results for maximal surfaces in a
Lorentzian product space —R x M?2. In particular, when the Riemannian surface M? has
non-negative Gauss curvature, they proved that any complete maximal surface must be
totally geodesic. Besides, if M? is non-flat, the authors have concluded that it must be a
slice {t} x M?. The necessity of the assumption on the Gauss curvature can be observed
from the examples of maximal surfaces in —R x H?, constructed in (ALBUJER, 2008b)).

In (De LIMA and LIMA JR. 2013) see Example the author and de Lima
exhibit a (non totally geodesic) complete spacelike surface of constant mean curvature
(CMC) in —R x H? such that the hyperbolic angle function is constant. Caballero,
Romero and Rubio (2013) worked in the generalized Robertson-Walker spaces considering
maximal surfaces with uniqueness results for the case the fiber is of non-negative Gauss
curvature generalizing results of Albujer and Alias (2011))].

The main aim of this section is to present Calabi-Bernstein properties of ma-
ximal surfaces in a Lorentzian product space where the Gauss curvature of the fiber M2
satisfies Ky > —k for some Kk € R , k > 0.

Since it is known that there are complete maximal surfaces which are not
totally geodesic in —R x H2. That naturally arises the question to decide what additional
assumptions are needed to conclude that a complete maximal surface in —R x M2, where
ky > —k, must be totally geodesic.

Our technique is based on a proper extension of a result by Nishikawa (1984)
and relies within the applications of the generalized maximum principle due to Yau (1975))
to complete Riemannian manifolds. In fact, we previously proved an extension of (NISHI-
KAWA[[1984) Lemma 2) to the case the Ricci curvature is no longer bounded by a constant
but by a more general function of the distance on the manifold (Lemma , that will also
be in (LIMA JR and ROMERO, 2015)).

7.2 Gauss equation

The Gauss curvature K, of the surface ¥ is described in terms of A and the curvature of

the ambient spacetime by the Gauss equation, which is given by
Ky =K + Kg, (78)

where K denotes the sectional curvature in —R x M? of the tangent plane to ¥ and

Kg = —det A. We can also write K in terms of the Gauss curvature of M as

K = k(1 +|Vh]?) (79)
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where, for simplicity, x,; stands for the Gauss curvature of M along the surface X for the
projection of the tangent plane to ¥ onto the tangent plane to M.
Combining equations and we obtain

Ks, = kyrcosh? 0 + K, (80)

where 6 is the hyperbolic angle between N and d;. We also have the relation

|A|I> =2H? + 2(H? + Kg). (81)

7.3 An Omori-Yau-Borbély-Nishikawa generalized maximum prin-
ciple

The following Lemma is a generalization of a result due to Nishikawa (1984). Using a
generalized maximum principle given by Borbély (2012).
Lemma 7 Let M be a complete Riemannian manifold such that Ric > —G*(r) for G
such that G(0) > 1, G > 0 and G™' ¢ L'[0,00]. If u is a non-negative function on M
satisfying

Au > pu®, B >0, (82)

then u = 0.
Proof. Under this conditions (M, g) satisfies the Omori-Yau-Borbély gene-

ralized maximum principle. Since u € C*°(M) and non-negative, consider the following

function
F = ;1, FeC®M), F>0, inf(F) > 0.
(14 u)2

Therefore

Vu = —%VF
and

AF — Au 4 \VF|: ’

2(1+u)z (14 wu)2FS

then
FAF = —%F4Au+3|VF|2. (83)

Then for an Omori-Yau sequence we have

IVE|(pm) <

3=3=

AF(pp) > —

and .
0 <inf FF < F(p,) <inf F + —. (86)
m
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By definition of F
lim F(p,,) = inf FF < lim u(p,,) = sup u. (87)

Combining [82] R3] and [84] we obtain

1 1
__Fm _2mF4m
—F(pm) + e (Pm) 7 (pm) <

S=3=

1 1 v’ (pm)
o )+ S L)

Letting m — oo we get lim u(p,,) = 0 therefore u=0. W

7.4 Maximal surfaces in products with Gauss curvature bounded

from below on the fiber

In order to use Lemma [7| note that if we assume K, > —k for some positive constant x,
then gives the following inequality

Ky > —k(1 +|Vh|?) + Kg. (88)

Theorem 10 Let M = —R x M? be a Lorentzian product spacetime, such that the Gauss
curvature Ky of its Riemannian fiber M? satisfies Ky > —k, for some positive constant
k. Let ¥ be a complete mazimal surface such that Ko < G(r). If

A

A
[Vh? < PR (89)

then X is a slice.
Proof.

Initially we prove that the Gauss curvature of ¥ is bounded from below by
G(r). From it is enough to prove that |Vh|? is bounded by G(r). Using we need
to show that |A|? has such a bound. This follows directly from (81). Therefore we can
use Lemma |3 in the function |Vul|?.

Now we recall the classical Bochner-Lichnerowicz’s formula which holds for

any smooth function on a Riemannian manifold X
1
§A|Vu|2 = |Hess u|* + Ric(Vu, Vu) + (Vu, VAu),

where A stands for the Laplacian operator, Hess(u) the Hessian of v and Ric the Ricci
tensor on ..

This formula specializes in our case applied to the height function as follows

1
5A|Vh\2 = |Hess(h)|* + Kx|Vh|* + (Vh, VAR) (90)
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From (LATORRE and ROMERO, 2002) we have
|Hess(h)[* = cosh? 0] A|? (91)
Moreover, from and we have
%A sinh®f > |A|? cosh® f — k cosh® fsinh” @ + 1| A|? sinh® 0

Making use of and
Asinh® 6 > xsinh? 0 (92)

therefore using Lemma, [7| we obtain case # = 0. W

Corollary 13 Let M = —R x M? be a Lorentzian product spacetime, such that the
Gauss curvature Ky of its Riemannian fiber M? satisfies Ky > —k, for some positive
constant k. Let X2 be a complete H-surface such that Kg < G(r). If

K

then X is a slice.

With an analogous argument of the proof of Theorem [10] we obtain that such

a surface must be maximal and then we use directly the previous result.
Corollary 14 Let M’ = —R x M? be a Lorentzian product spacetime, such that the
Gauss curvature Ky, of its Riemannian fiber M? satisfies Ky > —k, for some positive
constant k. Let 3 be a complete mazximal surface such that K¢g is bounded from above. If
holds then ¥ is a slice.

The principal theorem uses three main hypothesis: maximality, the inequality
and the controlled growth of K. From the proof of Theorem (10| we observe that the
condition on the growth of K can be replaced by the same condition on the growth of
the norm of gradient of the height function ( see Corollary .

In order to see that the assumptions in Theorem cannot be dropped, it
suffices to see in the Chapter |S| the three examples of spacelike graphs in —R x H?, for
H? given by the Poincaré model of half plane. Example originally in (De LIMA and
LIMA JR)} 2013): w(z,y) = alny with |a| < 1. It shows that maximality cannot be
removed in Theorem [I0} In fact, we cannot even replace it by constant mean curvature.
We also consider two examples from (ALBUJER) [2008b) the first one is Example [8.2}
u(z,y) = aln(2? + y?) for a < . Tt lacks only the hypothesis of the inequality .
There is also Example : u(x,y) = In(y++/a + y?) where a > 0. It satisfies maximality
and the inequality however fails the control in the growth, in reality its growth is

more than exponential. For more details see Chapter [§| and the original paper.
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Remark 8 In the proof of Theorem we notice that the bound on Kg bounded can be
replaced by a bound on the hyperbolic angle. Indeed, the assumption Kg < G(r) is used
only to guarantee that cosh® @ has such a bound, when we have this for granted we obtain
the following consequence.

Corollary 15 Let M’ = —R x M? be a Lorentzian product spacetime, such that the
Gauss curvature Ky, of its Riemannian fiber M? satisfies Ky > —k, for some positive
constant k. Let ¥ be a complete maximal surface such that the hyperbolic angle between
N and 0y is bounded by G(r) and additionally inequality holds then ¥ is a slice.

For the special case when (N, ;) is constant we have the following result.
Corollary 16 A complete maximal surface with constant hyperbolic angle in —R x H?
must be a slice.

Remark 9 In Ezample we have all hypothesis of Corollary except the inequality
showing that we cannot withdraw this hypothesis even when the fiber is of constant
Gauss curvature —1. That example also shows Corollary cannot be extended to the

case bounded hyperbolic angle.

7.5 Calabi-Bernstein’s type results

As a direct consequence of the previous results we have non-parametric uniqueness results.
Corollary 17 Let M’ = —R x M? be a Lorentzian product spacetime, such that the
Gauss curvature Ky, of its Riemannian fiber M? satisfies Ky > —k, for some positive

constant r. Let X(u) be an entire graph over X M? such that Ky is bounded from below.

If

Vul? < i (94)
T k4 |A]P
then ¥ is a slice.
Analogously to the previous section we have the following
Corollary 18 Let M’ = —R x M? be a Lorentzian product spacetime, such that the

Gauss curvature Ky of its Riemannian fiber M? satisfies Ky > —k, for some positive
constant r. Let ¥(u) be an entire maximal graph over M? such that the hyperbolic angle
between N and 0y is bounded and additionally inequality holds then u is constant.
For the special case when (N, 0,) is constant we have the following result.
Corollary 19 A complete mazimal graph with constant hyperbolic angle in —R x H? must

be a slice.
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In order to give the examples we consider the hyperbolic space with the model of half

space in R? given by

H* = {(z,y) € R*y > 0}
with the metric

da? + dy?
ds]%lz == Ty

Therefore for a graph in —R x H?, X(u) = {(u(z,y),z,y); (z,y) € H?} we evaluate in

coordinates the second fundamental form as the following

AX, = aX,+bX,
AX, = cX,+dX,

here X, = 0, + (N,0,)N and X, = 0, + (N, 9,)N. Therefore we obtain the following

<AX:E,XI> = a(Xx,Xm> + b(Xy,Xm>
<AXaraXy> a<XaraXy> + b<Xy’Xy>
<AXy,Xx> o(Xe, X)) + d(Xy,Xm>
<AXy=Xy> = C<XmaXy> + d<Xy=Xy>

In this way we have

det(A) = ad — bec = —a® — b,

since A is traceless and then d = —a. Observing that X, and X, are linearly independent

we can solve this system using only the first three equations and obtain:

o = gy (AXe, X)X, 2 = (AX,, X,)(Xa, X,))
b = grxy (AXe, X)) [ Xo? — (AX,, Xo)(Xe, X))

Q(X;Xy) (<AXI’Xy>|Xy|2 o <AX$’X$><Xz7Xy>%>

For Q(X,, X,) = (X, X, )(Xa, X)) — <Xaf7Xy>2-

Combining the previous equations we obtain

— det(A) = m ((AX,, X025, P2 + (X, X,)2)

A2 QX X) — HAXa XN AXe X)X, P X))

(95)
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The following example shows that the assumption on the norm of gradient
of the height function in Theorem [T and in Theorem [4 can not be extended for o = 1.
Example 8.1 Let us consider the smooth function u : H? — R given by u(z,y) = alny,

and its respective entire vertical graph
Y2 (u) = {(alny, z,y);y > 0} C R x H2.

We have that Du(z,y) = (0,ay) and, hence, |Du(z,y)|* = |a|?. If we take 0 < |a| < 1,
we have that X*(u) will be a complete spacelike surface in —R x H?. Moreover, its height

function h satisfies

|Vh’2 — |Du|2 _ |CL|2
1+e€lDul? 1+ ¢€lal?
Consequently,
1
<N, 8t> — €

V14 ela?

The mean curvature H of ¥2(u) is given by

nH — —Div | %)
1+ €|Dul?

where Div is the divergent on H2. So, using that Div = Divy — %dy, where Divy denotes

the divergent on R?, we get

2H7* = r*y* Agu — ey (yQ(u) + uy | Doul}), (96)

where r = \/1+ €|Dul? = V/1+ ea?, Ay, Dy and |.|o are the Laplacian, the gradient and
the norm in the Euclidian metric, and Q(u) = u2ug, + 2Up Uy Uy + uf]uyy. Replacing
u(z,y) = alny in equation (9€)), we obtain

a

2v/1 + €a?

and, since (N, ;) is constant, from Lemma [1] we get

H=c¢

0=A(N,0,) = —€(JA]* = [VA*)(N, D).

Consequently,

Vh? = |AP.

Furthermore, from equation we easily see that Hy = 0 on X*(u). But, Hy = k1Ko,

where ki, ko denote the eigenvalues of A. Therefore, considering ko = 0 and using that

— chkitK2 _ K1 ) — a
H = ™3 €5, we obtain that ki T

Now follow two examples of maximal surfaces in R x H? given by Albujer (2008b),
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Example 8.2 Consider the function u : H? — R given by u(z,y) = aln(z?+ y?), and its

respective entire graph

S(u) = {(aln(a® +y*), z,y);y > 0} C —R x H”.

2

We have that Du(z,y) = 2a 5z (x,y) and, hence, |Du(x,y)|* = 4a2m2yjy2. If we take

0<lal < %, we have that X(u) will be a complete spacelike surface in —R x H2.

Notice that [Vh|? = % is bounded. Making use of (@) gives Ay =0

and |Vh|?07y) = A 5, Therefore, inequality does not hold for this example.

1—4a?

Meanwhile, |Ag,,»|* = O(y*) fory big enough, which implies det(A) is not bounded from

below.

The following example presented here is not complete even though it is maxi-
mal.
Example 8.3 Here the function u is given by u(z,y) = In(y + m), for a a positive
constant. Observing that u depends only of y, we obtain from @) that (AX,, X,) =0

we also have (X, X,) = 0. Since this graph is mazimal, the norm of A is given by

2

AP = 2| X, | HAX,, X,)? = nguz (97)
Since )
IVh|? = % = %QQU;
we obtain .
VAP = S|AP.

Therefore inequality holds for this example, in fact for any mazimal graph in —R x H?
such that u depends only ony . It shows that we cannot drop out the condition Ko < G(r).
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9 CONCLUSION

The examples show the necessity of the main hypothesis in all the study.
However there are many more options to be explored since we can see example and
counter examples arises naturally in this context. In2 the context of surfaces in Chapter [7]
we see that the hypothesis: maximality, |[Vh|?* < |A—| and K¢ < G(r), cannot be dropped
out, meanwhile it leaves room to examine the sameﬁresults for bigger dimensions since the

technique is specific for surfaces.
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