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"A human being is a part of the whole called by us universe, a part limited in
time and space. He experiences himself, his thoughts and feeling as something
separated from the rest, a kind of optical delusion of his consciousness. This
delusion is a kind of prison for us, restricting us to our personal desires
and to affection for a few persons nearest to us. Our task must be to free
ourselves from this prison by widening our circle of compassion to embrace
all living creatures and the whole of nature in its beauty"

Albert Einstein (1876 - 1955)



Acknowledgments

First, I thank my family, especially my parents Ary Izá and Cleide Adorno. I would
like to express my sincere gratitude to them for everything that they did for me, giving
me the opportunity to study, supporting me and helping me during my whole life. I thank
my wife, Juliana Lemes, for being by my side for the last 5 years. I can not imagine my
life without her. I thank her for the good moments and also for the bad ones that we
stayed together. Based on these years, I can say that the best choice in my life was you.
Thank you so much for everything that you did for me.

I thank Professor Andrey Chaves for being my promoter the long time of the my Ph.D.
It has been hard to work with completely different tools, but you have always tried to
direct me to the right path. I thank you for being sincere in all the stages of my academic
trajectory.

I thank Professor Gil de Aquino Farias for the motivation that he gave me. I had
some tough moments during my the academic path, but the few words I heard from him
during these times were enough to make me confident that I could get over the problems
and make a good job at the end.

I thank Professor François M. Peeters by the support that he gave me in Antwerp
along the time of the my sandwich Ph.D.

I thank Professor Teldo Anderson da Silva Pereira for kindly helping me every time I
had trouble solving the problem he suggested, and for positively encouraging me to keep
going.

I thank the other member of the jury, Prof. Nilson Almeida, for the time spent review-
ing this work, as well as for their very important comments, corrections and suggestions
that made possible to improve the quality of the final version of this thesis. In view of
my academic background, I appreciate the discussions and exchanges of this thesis.

I thank my undergraduate friends in mathematics at Universidade Estadual de Goiás:
Airton, Prof. Arnaldo, Prof. Carlos Santos, Delma, Edimeire, Edson, Emerson, Prof. Jair
Jr., Jorge, Prof. Lucelene, Prof. Massako, Prof. Nilcyneia, Prof. Paulo Henrique, San-
dra, Welligton, and my undergraduate friends in Physics at Universidade Federal do Mato
Grosso: Prof. Alberto, Alessandro Henrique, Adriana Dussel, Ana Paula, Celso Ferst, Ed-
son Ferreira, Prof. Denilton, Prof. Fabio Ramos, Fernanda Royo, Gideão, Prof. Harold,
Heloisa, Prof. Hulk, Izabela, João Valim, José Divino, José Filho, Jones Queiroz, Júlio
Cesar, Layane, Lucas Jorge, Marcelo Machado, Marcelo Pastor, Prof. Mauricio Godoy,
Regiana, Prof. Ricardo, Rodrigo químico, Prof. Romildo, Tarsila, Welton, Wescley. I
also thank my friends of the Universidade Federal do Ceará and University Antwerp
where I made my Ph.D: Alan, Bruno Goldim, Cristiano Balbino, Davi Soares, David
Figueiredo, Davoud, Diego Lucena (maluco), Yierpan, Esterfferson, Gardenia, Gustavo
Gusmão, Hasan, Prof. Jeanlex, Joel Castro, Jonas Nascimento, Jorge Capuan, José



viii

Gadelha, Khosrow, Levi Leite, Lucian Covaci, Massoud Masir, Mehdi, Rebeca de Holanda,
Rodrigo Almeida, Silvia Helena, Slavisa Milovanovic, Vagner Bessa, Victor Fernández,
Willian Muñoz. I can not forget my several friends out of the university: Angélica Silva,
Derivânia, Dulce, Eduardo, Eliezel, Everaldo, Luciano Guerra, Ricardo, Rosa Pereira,
Rosana, Taciana and my close relatives.

In special, I thank my close friends Diego Rabelo, Thiago de Melo and Thiago Bonelli.
Diego Rabelo and I worked together for three years and half, where I faced the challenges
of science with a very good friend that he was and I thank him for all his support. Thiago
de Melo is a great person with admirable personality, and Thiago Bonelli is a good boy,
he is “Palmeirense”.

I would like to thank all the agencies that gave me financial support like: Brazilian
agency CAPES for the financial support during my stay in Belgium through the sandwich
program fellowship, under agreement number, BEX-7177/13-5, the Flemish Science Foun-
dation (FWO-VI), the Bilateral programme between CNPq and FWO-VI, and Brazilian
Science Without Borders (CsF).

Finally, I thank all those who helped me directly or indirectly, for the preparation and
conclusion of this work.



Resumo

Os avanços nas técnicas de crescimento tornaram possível a fabricação de estruturas
semicondutoras quase-unidimensionais em escalas nanométricas, chamadas pontos, fios,
poços e anéis quânticos. Interesse nessas estruturas tem crescido consideravelmente, não só
devido às suas possíveis aplicações em dispositivos eletrônicos e à sua manipulação química
fácil, mas também porque eles oferecem a possibilidade de explorar experimentalmente
vários aspectos de confinamento quântico, espalhamento e fenômenos de interferência. Em
particular, neste trabalho, investigamos as propriedades eletrônicas e de transporte em
poços quânticos, fios e anéis, cujas dimensões podem ser alcançados experimentalmente.
Para isto, resolvemos a equação de Schrödinger dependente do tempo utilizando o método
Split-operator em duas dimensões.

Nesta tese, abordamos quatro trabalhos, sendo o primeiro uma analogia ao Paradoxo
de Braess para um sistema mesoscópico. Para isso, utilizamos um anel quântico com um
canal adicional na região central, alinhado com os canais de entrada e saída. Este canal
extra faz o papel do caminho adicional em uma rede de tráfego na teoria dos jogos, similar
ao caso do paradoxo de Braess. Calculamos as auto-energias e a evolução temporal para o
anel quântico. Surpreendentemente, o coeficiente de transmissão para algumas larguras do
canal extra diminuiu, semelhante ao que acontece com redes de tráfego, onde a presença
de uma via extra não necessariamente melhora o fluxo total. Com a analise dos resultados
obtidos, foi possível determinar que neste sistema o paradoxo ocorre devido a efeitos de
interferência e de espalhamento quântico.

No segundo trabalho, foi feita uma extensão do primeiro, (i) aplicando-se um campo
magnético, onde foi possível obter o efeito Aharonov-Bohm para pequenos valores do
canal extra e controlar efeitos de interferência responsáveis pelo paradoxo mencionado, e
(ii) fazendo também a aplicação de um potencial que simula a ponta de um microscópio
de força atômica (AFM) interagindo com a amostra - este potencial é repulsivo e sim-
ula um possível fechamento do caminho em que o pacote de onda se propaga. Assim,
neste trabalho, realizamos uma contra-prova do primeiro, onde observamos que com o
posicionamento da ponta do AFM sobre canal extra, se diminui o efeito de redução de
corrente devido ao paradoxo de Braess.

No terceiro trabalho, realizamos uma análise de tunelamento entre dois fios quânticos
separados por uma certa distância e calculamos qual a menor distância para qual ocorre
tunelamento significativo nesse sistema eletrônico. Este trabalho é de fundamental im-
portância para o manufaturamento de dispositivos nanoestruturados, porque nos permite
investigar qual a distância mínima para a construção de um circuito eletrônico sem que
haja interferências nas transmissões das informações.

No quarto e último trabalho desta tese, investigamos a energia de ligação do elétron-
impureza em GaN/HfO2 para um poço quântico. Consideramos simultaneamente as con-
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tribuições de todas as interações das auto-energias devido ao descasamento das constantes
dielétricas entre os materiais. Foram estudados poços largos e estreitos, comparando os
resultados para diferentes posições da impureza e a contribuição da auto-energia para o
sistema.



Abstract

Advances in growth techniques have made possible the fabrication of quasi one-dimensional
semiconductor structures on nanometric scales, called quantum dots, wires, wells and
rings. Interest in these structures has grown considerably not only due to their possi-
ble applications in electronic devices and to their easy chemical manipulation, but also
because they offer the possibility of experimentally exploring several aspects of quantum
confinement, scattering and interference phenomena. In particular, in this work, we in-
vestigate the electronic and transport properties in quantum wells, wires and rings, whose
dimensions can be achieved experimentally. For this purpose, we solve the time-dependent
Schrödinger equation using the split-operator method in two dimensions.

We address four different problems: in the first one, the electronic transport proper-
ties of a mesoscopic branched out quantum ring are discussed in analogy to the Braess
Paradox of game theory, which, in simple words, states that adding an extra path to a
traffic network does not necessarily improves its overall flow. In this case, we consider
a quantum ring with an extra channel in its central region, aligned with the input and
output leads. This extra channel plays the role of an additional path in a similar way as
the extra roads in the classical Braess paradox. Our results show that in this system, sur-
prisingly the transmission coefficient decreases for some values of the extra channel width,
similarly to the case of traffic networks in the original Braess problem. We demonstrate
that such transmission reduction in our case originates from both quantum scattering
and interference effects, and is closely related to recent experimental results in a similar
mesoscopic system.

In the second work of this thesis, we extend the first system by considering different
ring geometries, and by investigating the effects of an external perpendicular magnetic
field and of obstructions to the electrons pathways on the transport properties of the
system. For narrow widths of the extra channel, it is possible to observe Aharonov-Bohm
oscillations in the transmission probability. More importantly, the Aharonov-Bohm phase
acquired by the wave function in the presence of the magnetic field allows one to verify
in which situations the transmission reduction induced by the extra channel is purely due
to interference. We simulate a possible closure of one of the paths by applying a local
electrostatic potential, which can be seen as a model for the charged tip of an atomic
force microscope (AFM). We show that positioning the AFM tip in the extra channel
suppresses the transmission reduction due to the Braess paradox, thus demonstrating
that closing the extra path improves the overall transport properties of the system.

In the third work, we analyze the tunneling of wave packets between two semiconductor
quantum wires separated by a short distance. We investigate the smallest distance at
which a significant tunneling between the semiconduting wires still occur. This work is
of fundamental importantance for the manufacturing of future nanostructured devices,
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since it provides information on the minimum reasonable distances between the electron
channels in miniaturized electronic circuits, where quantum tunnelling and interference
effects will start to play a major role.

In the last work of this thesis, we investigate the binding energy of the electron-
impurity pair in a GaN/HfO2 quantum well. We consider simultaneously the contributions
of all interactions in the self-energy due to the dielectric constant mismatch between
materials. We investigate the electron-impurity bound states in quantum wells of several
widths, and compared the results for different impurity positions.



Abstracte

Vooruitgang in groeitechnieken heeft het mogelijk gemaakt de vervaardiging van quasi-
ééndimensionale halfgeleiderstructuren op nanometer schaal, genaamd quantum dots,
draden en ringen. De interesse in deze structuren is aanzienlijk gegroeid niet alleen
vanwege hun mogelijke toepassingen in elektronische apparaten en hun gemakkelijke
chemische manipulatie, maar ook omdat ze de mogelijkheid bieden voor experimenteel
onderzoek van verschillende aspecten van kwantumopsluiting, verstrooiing en interfer-
entie verschijnselen. In het bijzonder, in dit werk onderzoeken we de elektronische en
transport eigenschappen van kwantumputten, draden en ringen, met afmetingen die ex-
perimenteel kunnenworden gerealizeerd. Voor dit doel, lossen we de tijdsafhankelijke
Schrödingervergelijking op met behulp van de split-operator methode in twee dimensies.

We beschouwen vier projecten: in de eerste, werden de transport eigenschappen van
een mesoscopisch vertakte quantum ring bestudeerd in analogie met de Braess Paradox
van speltheorie, die, in eenvoudige woorden, stelt dat het toevoegen van een extra pad
naar een verkeersnetwerk niet per se een verbetering geeft van de totale stroom. In dit
geval beschouwen we een quantum ring met een extra kanaal in het centrale gebied,
dat een verbinding geeft tussen de input en output kanalen. Dit extra kanaal speelt de
rol van een extra geleidingspad op soortgelijke wijze als de extra wegen in de klassieke
Braess paradox. Onze resultaten tonen aan dat in dit systeem, de transmissie coëfficiënt
verrassend vermindert voor sommige waarden van de extra kanaalbreedte, vergelijkbaar
met het geval van verkeersnetwerken in het oorspronkelijke Braess probleem. We tonen
aan dat zulke transmissie vermindering een gevolg is van zowel quantum verstrooiing
als interferentie effecten, en dit resultaat is nauw verwant met recente experimenten aan
vergelijkbare mesoscopische systemen.

Het tweede deel van dit proefschrift is een uitbreiding van het eerste deel waarbij
verschillende ring geometrieën worden onderzocht en het effect van een extern loodrecht
magnetisch veld. Voor smalle breedtes van het extra kanaal, vinden we dat het mogelijk
is om Aharonov-Bohm oscillaties waar te nemen in de transmissie waarschijnlijkheid.
Belangrijker, met behulp van de Aharonov-Bohm fase van de golffunctie verkregen in
aanwezigheid van het magnetische veld is het mogelijk om na te gaan in welke situaties de
verlaging van de transmissie zoals geïnduceerd door het extra kanaal louter een gevolg is
van interferentie. We simuleren de mogelijke sluiting van één van de paden doormiddel van
een lokaal elektrostatische potentiaal, die kan worden beschouwd als een model voor de tip
van een geladen atomaire kracht microscoop (AFM). Wanneer de AFM tip gepositioneerd
is in het extra kanaal onderdrukt het de transmissie vermindering vanwege de Braess
paradox, waaruit blijkt dat het sluiten van het extra pad een verbetering geeft van de
algehele transport eigenschappen van het systeem.

In het derde deel, analyseren we de tunneling van golfpakketten tussen twee halfgelei-



xiv

der quantumdraden die gescheiden zijn door een eindige korte afstand. In deze studie
onderzoeken we de minimale afstand waarbij een aanzienlijke tunneling tussen de halfgelei-
derdraden optreedt. Dit is van fundamenteel belang voor de productie van toekomstige
nanostructuur apparaten, want het geeft informatie over de minimale toegestane afstand
tussen elektronkanalen in geminiaturiseerde elektronische schakelingen, waarbij quantum
tunneling en interferentie-effecten een belangrijke rol gaan spelen.

In het laatste deel van dit proefschrift onderzoeken we de bindingsenergie van het
elektron-onzuiverheidspaar in een GaN / HfO2 quantumput. We beschouwen tegelijkertijd
de bijdragen van alle interacties tot de zelf-energie vanwege de mismatch in diëlektrische
constante tussen de materialen. We onderzoeken de elektron-onzuiverheid gebonden toe-
standen in kwantumputten van verschillende breedtes, en vergelijken de resultaten voor
verschillende onzuiverheidsposities.
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1
Introduction

1.1 Brief Historical Overview

In recent decades, technical advances have enabled a large number of experimental
studies of semiconductor heterostructures [1, 2, 3, 4, 5]. The pioneers in manufacturing
devices based on semiconductors were John Bardeen, William Shockley and Walter H.
Brattain, and the transistor they produced is known as the point-contact transistor [6].
Figure 1.1 shows the three researchers (a), the first transistor they developed (b), and
the first integrated circuit (c). Through these and other technological advances, we now
have extremely efficient electronic devices. Semiconductor devices presents very interest-
ing optical and transport properties, which lead to several technological application and
represent the vanguard of the electronic devices manufacturing.

Figure 1.1: (a) Scientists John Bardeen (standing left), Walter Houser Brattain (standing
right) and William Bradford Shockley (seated); (b) first transistor in history based on
semiconductors, manufactured by Bardeen, Brattain and Houser; and (c) first integrated
circuit, produced and developed by Jack S. Kilby. Both were invented in the last century
[6].

At the end of the 1960s, researchers Tsu and Esaki[7, 8] proposed an innovative theoret-
ical work in the study of heterostructured systems composed of different materials. They
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proposed the fabrication of an artificial periodic structure consisting of alternate layers of
two dissimilar semiconductors with layer thickness of the order of nanometers nowadays
knows Superlattices . This work enabled numerous subsequent studies that continue to
bring great technological advances.

Techniques such as MBE [2] (molecular beam epitaxy), MOCVD [3] (metalorganic
chemical vapor deposition), CVD [4] (chemical vapor deposition) in addition to VLS [5]
(vapor-liquid-solid) constitute the vanguard of growth of semiconductor devices, allowing
not only the fabrication of Tsu and Esaki’s superlattices, but also artificial lattices of
quantum dots, nanowires and rings [9, 10, 11, 12]. This brought the possibility to observe
and control the optical and electronic properties of theses semiconductor nanostructures
[13, 14, 15, 16]. Theoretical Ab initio works have also successfully described properties
by ab initial calculations, tight-binding models, k · p Hamiltonians and effective mass
approximation, based on the envelope function [17, 18, 19].

1.2 Energy Bands

In order to understand the mechanism responsible for the electrical current in semi-
conductor materials and their applications in nanotechnology, a study of energy bands in
these materials is necessary. Electrons in an isolated atom are characterized by discrete
and quantized energy levels, which correspond to the atomic orbitals 1s, 2s, 2p, 3p, 3d, ...
and satisfy the Pauli exclusion principle. In an isolated atom, the calculation is based on
the Schrödinger equation, and the solution is exact for low atomic number elements. In
a solid, where there is a large number of atoms close to each other, the exact calculation
becomes very complicated. This is because the electrons and nucleus of each atom inter-
act with the electrons and the nuclei of neighboring atoms. An electron in level 1s in one
of these atoms can also occupy this same level in another atom: it will have two distinct
wave functions that describe the two possible states, but sharing the same energy, i.e.,
have a double degeneracy. The degeneracy is “broken” when several atoms are proximate,
thereby forming an almost continuous energy band.

Because there are a lot of atoms (N ∼ 1023cm−3) disposed periodically in the crystal
lattice, energy states are distributed through continuous energy bands, which are sepa-
rated from each other by a prohibited zone. The allowed energy states are defined as
energy bands and the forbidden zone is the gap, as shown in Fig. 1.2.

Semiconductors at 0 K temperature behave as insulators, having all allowed energy
states occupied below the Fermi level, while all allowed energy states above the Fermi
level are unoccupied 1. The lowest energy states are in the so called valence band, while
the states with the highest energy are in the conduction band. The semiconductor gap
is the energy corresponding to the difference between the top of the valence band and the

1The Fermi wavelength is given by: λF = 2π/
(
3π2n

)1/3, where n is electronic density.



1.3. ADIABATIC APPROXIMATION AND EFFECTIVE MASS 25

discrete

levels

Conduction band

Valence band

Gap

Distance between atoms

E
n

er
g
y

(a)

Conduction band

Valence band

hh

lh

el

so

<100>

Ex

E(K)

K
<111>

GX L

Eg

E
SO

(b)

Figure 1.2: (a) Formation of energy bands due to the approach of a large number of
atoms in a solid semiconductor (b)Electron’s energy bands (el), light hole (lh), heavy hole
(hh) and split-off (so) in a semiconductor with gap Eg. The hatched regions illustrate
the occupation of electrons with T > 0 K [20].

minimum of the conduction band, and the Fermi energy in an intrinsic semiconductor 2

is the center of the energy gap [20].
Figure 1.2 (a) illustrates the allowed energy states that fills the bands in a semicon-

ductor when a large number of ions are made closer. Figure 1.2 (b) represents the energy
bands as a function of the k wave vector.

1.3 Adiabatic Approximation and Effective Mass

In order to understand the electronic properties of semiconductor materials, it is nec-
essary to investigate the behavior of their electrons when subjected to external fields. To
describe such many bodies system, we will initially neglect the spin-orbit interaction and
other relativistic contributions [20, 21].

An ideal crystal consists of an infinite set of ions located near the sites a lattice,
forming an electron gas that move in the ion field. The basic properties of the crystal
depend on the electron dynamics in this lattice and the understanding of this problem
depends on the solution of the Schrödinger equation, including electron-electron, electron-
ion and ion-ion interactions. That allows us to study different aspects of the crystal such
as its electronic and ionic dynamics and their interactions with various perturbations,
including impurities and external fields.

The complete Schrödinger equation for n electrons and N ions, written in terms of
the electronic coordinates, r1, r2, r3, ..., rn and ionic coordinates R1, R2, R3, ..., RN are:

2An intrinsic semiconductor is a pure semiconductor, free of doping.
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Ψ (r1, ..., rn, R1, ..., RN) = EΨ (r1, ..., rn, R1, ..., RN) , (1.1)

where the first term is the electrons kinetic energy, the second is the kinetic energy of
ions, the third is the electron-electron Coulomb interaction potential, the fourth term
is the ion-ion Coulomb interaction potential, and the fifth is the potential energy of
Coulomb interaction between the electron and the ions. |ri − rj|, |RI −RJ |, |RI − ri|
are, respectively the distances between the electron i and the electron j, ion I and ion J ,
and between the ion I and the electron i.

As the electron mass is less than the ion mass by a factor of approximately 1/1800

(mi ≈ 1.8× 10−3MI), the electron’s kinetic energy is much higher than that of the ions.
The electronic distribution continually adjusts itself with the positions of the ions, which
at any time can be considered the same. This suggests that the ions remain approximately
at rest. This hypothesis is called adiabatic approximation (Born and Oppenheimer 1927)
[22]. It can be expressed by writing the wave function Ψ (r1, ..., rn, R1, ..., RN), where
electron coordinates are collectively represented by r and the ionic coordinates collectively
represented by R:

Ψ (r,R) = ψ (r,R)ϕ (R) , (1.2)

where ψ (r,R) is the electronic eigenfunction, which depends on the coordinated r of
electrons and coordinate R of ions, appearing as a fixed parameter. This eigenfunction
satisfies the Schrödinger equation :

[
−
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∇2
i−

n∑

i<j=1

1

4πε0
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−
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]
ψ (r,R) = Ee(R)ψ (r,R) ,

(1.3)

where Ee(R) is the electronic eigenvalues, which depend on the coordinate R. The func-
tion ϕ(R) is the ionic eigenfunction and satisfies

[
−

N∑

I=1

~2

2MI

∇2
I + Φ (R)

]
ϕ (R) = Eϕ (R) , (1.4)

where
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Φ (R) = Ee +
N∑

I<j

ZIZJ
4πε0

e2

|Ri −Rj|
(1.5)

is the effective potential energy of the ions and E is the total energy. Eq. 1.4 is the ionic
Schrödinger equation and arises from the substitution of eq. 1.2 in eq. 1.1.

The ionic coordinates R in eq. 1.4 are arbitrary. Nevertheless, if ions occupy the
equilibrium position R0 of the crystal structure, the electron-ion interaction potential be-
comes periodic, with the same periodicity as the crystal lattice. The number of terms in
eq. 1.4 is much smaller that in Eq. 1.1; however, even with the adiabatic approximation,
the exact solution of eq. 1.3 is not possible. We then consider that electrons are indistin-
guishable and independent particles and that each electron moves under the influence an
average potential Vcr(r), which describes the electron-ion interactions. Thus, the motion
of a single electron can be described by the Schrödinger equation:

(
p2

2m0

+ Vcr (r)

)
ψn,k (r) = En,kψn,k (r) . (1.6)

In an ideal crystal structure, the potential Vcr(r) is periodic, and the wave function
describes a Bloch state:

ψn,k (r) = eikrun,k (r) , (1.7)

where eik.r is a plane wave function, and un,k (r) is a Bloch function, which has periodic-
ity of the crystal lattice (un,k (r) = un,k (r + R)) and describes the behavior of the wave
function within an unit cell. Substituting eq. 1.4 in eq. 1.3, we have:

H un,k (r) = En,kun,k (r) , (1.8)

where we identify the Hamiltonian as

H =

(
− ~2

2m0

∇2 + Vcr (r) +
~2k2

2m0

+
~
m0

k.p
)
. (1.9)

If we take the center of the Brillouin zone, at the point Γ (k = 0), the solution to eq. 1.8
form a complete set of function un,0 (r) (for n=1,2,3,...) which allows us to calculate the
wave function for any k 6= 0 as a linear combination of Bloch functions.

un,k (r) =
∞∑

n′

cn,n′un′,0 (r), (1.10)

where the coefficient cn,n′ , is known as the envelope function [23].
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As our interest is focused on the study of electrons that are located in the conduction
band, which is quite far from the valence band (except for narrow gap semiconductors
which are not investigated here) we can simplify the model by considering a single of a
band. The wave function of an excited state of an electron in the conduction band is
formed by a Bloch function and the corresponding envelope function. In this way the k ·p
Hamiltonian is expanded into a basic element given by eq. 1.10

〈un,0 |Hkp| un,0〉 = En,0 +
~2k2

2m∗i
, (1.11)

This model leads to a form of energy dispersion occurring in the equivalent model of
free electrons, or conduction band region near the point k =0 is approximately parabolic
shape. However, the curvature differs from that of the parabolic free electrons dispersion,
and depends on the specific composition and structure of the semiconductor. This curva-
ture is introduced by means of an empirical parameter called effective mass (m∗e), which
can be calculated by applying perturbation theory to the k·p Hamiltonian. In this sense,
the unperturbed Hamiltonian and the perturbative term are defined, respectively, as

H0 = − ~
2m0

∇2 + Vcr(r), (1.12)

and

H′ = ~2

2m0

|k2|+ ~
m0

k · p, (1.13)

The energy En,k, corrected up to the second order, is given by:

En,k = En,0 +
∑

α=x,y,z

~2kα2

2

[
1

m0

+
2

m2
0

∑

n′

∣∣Pα
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∣∣2

En,0 − En′,0

]
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where the term Pα
n,n′ is an empirical parameter determined either experimentally or by first

principles calculating, and the term in brackets, identified as the inverse of the effective
mass, can be condensed as

1

m∗
=

1

m0

+
2

m2
0

∑

n′

∣∣Pα
n,n′
∣∣2

En,0 − En′,0
. (1.15)

Thus, the energy obeys

E(k) = En,0 +
~2k2

2m∗
. (1.16)
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Therefore, in the case of an infinite periodic crystal, which has no confining direction
(Bulk), the envelope function of the conduction band is a plane wave, according to the
Bloch theorem, eq. 1.7. From the point of view of kinematics, a Bloch electron, has
acceleration given by:

ak =
∂vk

∂t
=

1

~
∂

∂t
[∇kE(k)],

ak =
1

~
∂

∂t

∂E(k)

∂p
, (1.17)

where we use the relation vk = ∇kωk = 1
~∇kE(k), that is, the electron velocity in the

state k is equal to the gradient of the energy band in reciprocal space. The acceleration
can be rewritten as:

ak =
1

~
∂

∂t

∂E(k)

∂k

dk

dt
=

1

~2
∂2

∂ki∂kj
· F, (1.18)

where we use p = ~k and F = dp/dt = ~dk/dt. Comparing the latter equation with
Newton’s second law, we have:

F = ~2
[
∂2E(k)

∂ki∂kj

]−1
a. (1.19)

so that the effective mass can be expressed as:

m∗i,j = ~2
[
∂2E(k)

∂ki∂kj

]−1
. (1.20)

Eq. 1.20 is the effective mass tensor for an electron band, whose components are:

1

mi,j

=
1

~2
∂2E(k)

∂ki∂kj
, (1.21)

Thus, a Bloch electron excited by an external force field behaves as if it had an
anisotropic mass, that differs from the free electron mass me. The effective mass implic-
itly incorporates all the information about the lattice structure that leads to the energy
band E(k). For some crystals, non-diagonal components of the effective mass tensor are
nonzero. Thus, an applied electric field in a certain direction of the crystal can cause
electron acceleration in a different direction. In most semiconductors the effective mass
tensor is diagonal and in isotropic crystals in particular, the tensor reduces to a scalar:

m∗ =
~2(

∂2E(k)/∂k2
) . (1.22)
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Note that the valence band normally has three branches, called light hole, heavy hole
and split-off, due to their different effective masses, as one can see in Fig. 1.2(b). The
theoretical expressions found for the electrons effective mass are also valid for holes, and
in general, their values change as the crystal structure, periodicity of the lattice and the
chemical composition of the material. Within the so-called effective mass approximation,
the electrons (holes) in the conduction (valence) band of a material are considered as free
moving particles, where the influence of any external potential is added to the effective
continuum model Hamiltonian, and interactions with other electrons and lattice ions are
all taken into account by introducing of the effective mass 3

1.4 The Envelope-Function Approximation

The envelope-function approximation is a mathematical formalism which allows the
use of the effective mass approximation to study heterostructures materials, through the
Hamiltonian

H =
p2

2m∗
+ V (r). (1.23)

The method assumes as an approximation that all materials constituting the het-
erostructure have similar type of crystalline lattice and similar network structure so that
we can assign the same Bloch function on the entire system.

In this work, we use the effective-mass approach, which considers a crystal infinite size.
For calculation purposes, we will now consider limited heterostructures nanoscale sizes,
because when we consider that the system is limited by the crystal size, the electron is
also confined within the limits of this heterostructure. This is what divides the quantized
energy spectrum into discrete levels at the bottom of the conduction band. The spatial
confinement potential is defined by V (r), which in turn is defined by the energy bands
mismatch between materials forming the heterostructure.

A great advantage of using these approximations is in the fact that they simplify the
inclusion additional perturbations, such as electric or magnetic fields, in the theoreti-
cal description of the charge carriers dynamics. This task often resorts simply to the
introduction of an extra potential term in the Hamiltonian of eq. 1.23 [22, 23, 24].

1.5 Low-Dimensional Semiconductor Systems

It is impossible to think of modern physics or solid state physics and not to refer
semiconductor heterostructures, particularly quantum wells, wires and dots [25]. The

3For a different approach to the effective mass , the reader should refer to References [26, 27, 28, 29, 30].
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possibility of nanomanufacturing these devices was the fundamental piece for numerous
articles published since the 70’s [7, 8].

The carriers confinement potential in these systems arises from the mismatch between
the energy bands in the heterostructures, since the heterostructure materials are separated
by different gaps and different electronic properties, such mismatch attracts carriers to the
region where the potential is lower. The fraction of the difference between the gaps which
is responsible for confining electrons, is called conduction band-offset. The band-offset is
a parameter usually obtained from experimental results, but it can also be calculated by
means of the electron affinity, using the vacuum level as reference[20].

The carriers confinement can occur in one, two or three dimensions, as shown in
Table 1.1 where the mathematical rule Gconf + Gfreedom = 3 is kept. In one dimensional
confinement, the system has two degrees of freedom (2-D), as in quantum wells; in two
dimensional confinement, electrons are free to move only in 1-D, such as in quantum wires,
or nanowires. Finally, when there is confinement in all directions, the carriers have zero
degrees of the freedom, 0-D, as in quantum dots, which are sometimes called artificial
atoms [31].

Table 1.1: - Number and degree of confinement for different degrees of freedom of
heterostructures [30]

System Gconf Gfreedom

Bulk 0 3
Quantum Wells 1 2
Quantum Wires 2 1
Quantum Dots 3 0

1.5.1 Quantum Dot

Quantum dot is a semiconductor structure with a size comparable to the Fermi wave-
length. Its charge carriers are confined in all directions, so that electronic states are fully
quantized [32]. Quantum dots are also known as artificial atoms because their electronic
behavior is similar to that of an atom, but differs regarding the potential: in the the case
of a quantum dot, the potential is step-like, while for the atom, the potential is Coulombic
[30]. Recently, self-organized quantum dots have been grown by the Stranski-Krastanow
method [33]. Quantum dots grown using this technique have the symmetry of a semi-
ellipsoid, where the deposited materials are grown from the bottom up. Fig. 1.3 shows
three quantum dots grown by the self-assembly process.

A self-grown quantum dot has at its base dimensions much greater than its height,
enabling us to make an approach to a disk contained in the (x, y)-plane. This approach is



1.5. LOW-DIMENSIONAL SEMICONDUCTOR SYSTEMS 32

Figure 1.3: Micrograph image obtained by scanning an electron to three types of quantum
dots: circular, square and triangular, manufactured by self-assembly method [36].

widely used in theoretical works [34, 35]. This implies that the energy spectrum in the z
direction have energy levels transitions with higher energy than those in the (x, y)-plane.
In this way, we justify the study of the electronic behavior only in the (x, y)-plane, saving
considerable computational time to obtain results.

1.5.2 Quantum Wires

Wires with diameters of a few nanometers, which can be considered effectively as 1-D
structures have been recently manufactured [37, 38] and studies of carriers (electrons and
holes) confinement effects have been demonstrated with different levels of sophistication
[15, 18, 39, 40]. For application as non-volatile memories, Zhu et al [13] have recently
shown that silicon nanowires (Si) surrounded by a dielectric with high constant dielectric
(high-k dielectric), as shown in Figure 1.4, exhibit excellent recording operations and
good resistance. This shows that materials with high dielectric constant, growing around
low-dimensional structures continues to attract the attention of researchers in order to
extend Moore’s Law [41].

Silva et al [15] presented a study of excitons properties in cylindrical nanowires Si1−xGex
surrounded by a silicon matrix, assuming the two known forms of band alignments, namely
type-I and type-II 4. The method used by the authors is based on the effective mass and
envelope function approximations. Actually in general, theoretical studies on this subject
are based on: (i) the use of the effective mass approximation, (ii) self-consistent solution
of the Schrödinger and Poisson equations in cylindrical coordinates, providing theoretical
descriptions of electronic and optical properties of the quantum wires [15]; (iii) methods
based on first principles calculations (ab-initio methods) [45], which require high compu-
tational cost and, therefore, are limited for studies of nanowires with diameters between

4Regarding the type of quantum wires, they may be classified as type-I or type-II. When the alignment
of the bands occurs in such way that in the same layer we have a quantum well both for electrons and
for holes, this configuration presents features of type-I. But in case that we do not have this type of
alignment, i.e. when the electrons and holes are confined in different semiconductor layers, the potential
structure is characterized by a semiconductor of type-II . see more in Refs. [42, 43, 44]
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c D

Figure 1.4: Quantum wires (a) SEM’s image for the GaAs material with wire radius 50
nm grown with LCG techniques, [37](b)SEM image for the GaP material with radius 50
nm grown with LGC techniques, [37] (c) TSEM Image for AlGaAs nanowire perpendic-
ular growth of Al, Ga, As and O, respectively, reference bar equals 50 nm grown with
techniques MBE, [38] and (d)AFM image of a Si nanowire on the Au substrate with radius
10 nm grown with techniques VLS, [47]

1 and 2 nm; (iv) tight-binding, Approximating the electronic wave functions in the solid
by linear combinations of the atomic wave function, this approach is known as the tight-
binding approximation or Linear Combination of Atomic Orbitals (LCAO) approach [46],
and (v) k ·p, the pseudopotential method is not the only method of band structure calcu-
lation which requires a small number of input parameters obtainable from experimental
results. In the empirical pseudopotential method the inputs are usually energy gaps. The
k · p method can be derived from the one-electron Schrodinger equation. Using the Bloch
theorem the solutions are expressed, in the reduced zone scheme [46]

1.5.3 Quantum Wells

If the nanostructure is composed of a thin semiconductor layer, grown by epitaxy be-
tween two layers of different alloy, a confining potential ∆E appears in only one direction,
as shown in Fig. 1.5, due to the bands mismatch between the materials. This formed
nanostructure is called quantum well.

Quantum wells are one of the most investigated semiconductor based structures, after
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Figure 1.5: Physical structure of a quantum well of AlGaAs/GaAs and representation
of the potential profile of this heterostructure. In the right side, (I) represents the alloy
AlGaAs and (II) represents the GaAs.

the development of the heterostructures by Esaki and Tsu. This is due to their great po-
tential for technological application and the countless physical properties they can provide,
such as interband electronic transmission, excitonic properties, electron correlation of the
charge carriers, strain-induced properties, among other various possibilities [48, 49, 50].
Besides, quantum well heterostructures require one of the less complex growth procedure,
facilitating research in experimental laboratories [51, 52]

The achievement of a sharp interface imposes very stringent requirements on the
growth conditions, such as purity of the source materials, substrate temperature and
many others too numerous two dissimilar materials A and B, known as a heterojunction,
is determined by their chemical and physical properties [46].

1.5.4 Quantum Rings

Quantum ring nanostructures regarding confinement dimensions are similar to quan-
tum dots, but they have very interesting properties coming from their topology that allow,
for example, experimental observation of the Aharonov-Bohm effect [53]. One method of
growing quantum rings is through anodic oxidation. (See Fig 1.6). The anodic oxida-
tion is oxidation by applying a potential difference between the probe of an atomic force
microscope and the sample [54]. Another way of fabricating a quantum ring consists of
quantum annealing (annealing) of a self-grown quantum dot, which causes a slippage from
its center, thus forming the ring.

One of the systems that we will investigate further on in this thesis consists of pla-
nar quantum rings, with an input channel and one or two output channels so that the
electronic motion occurs in the two-dimensional (x, y)-plane.
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Figure 1.6: (a) Image obtained by atomic force microscopy (AFM) of a quantum ring
grown with the anodic oxidation technique, (b) experiment the potential profile, where
the dark curves represent the oxides lines [55].

1.6 The Aharonov-Bohm Effect

We will discuss in our work the problem of an electron in a quantum ring under the
influence of an external magnetic field, so it is necessary to briefly overview the Aharanov-
Bohm effect, which has been discussed widely in recent years for systems with cylindrical
symmetry [56, 57, 58].

Path 1

Path 2

B 0¹

s
c
r
e
e
n

Electron

Figure 1.7: Illustration of experience proposed by Aharonov-Bohm. Between two slits a
magnetic field B is applied. It is different from zero only in the inner region of the applied
field, but the vector potential (shown by solid lines) is different from zero in all space,
with cylindrical symmetry causing opposite effects on the path 1 and 2.

Figure 1.7 illustrates a scheme of the Aharanov-Bohm gedanken experiment. The
electron beam can take two possible paths to reach the screen generating an interference
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pattern. Between the two slits is placed a cylindrical coil (permanent magnet or solenoid),
that generates a magnetic field B only inside it. The possible electron paths are in the
region where the field is zero.

Even in the absence of magnetic field in the path where the electrons pass, there is a
potential vector A in this region given by: B = ∇×A = 0, causing the momentum of the
electron to assume p→ p−qA. Taking the magnetic field of the material as B = Bk̂, the
vector potential can be expressed by a symmetric gauge A = 1

2
Bρêθ. Observing Fig. 1.7,

the vector potential points to the same direction as path 2, and in the opposite direction
to path 1. This implies that the electrons that pass by 1 will have their momentum p
different from electrons that pass by 2; this fact changes the interference pattern generated
in the screen. This difference observed in the screen due to the application of the external
magnetic field is know as Aharanov-Bohm effect (AB) [59, 60].

In this approach, we have chosen a potential vector with a specific gauge; however,
more extensive descriptions show that this effect does not depend on the choice of the
gauge, for the vector potential [27, 29, 46, 60].

Further in this thesis, we will investigate fluctuations in transmission probabilities of
an electron in a quantum ring under an external magnetic field applied perpendicular to
its plane direction (x, y), where such AB effect is expected to occur. When the magnetic
flux located between paths 1 and 2 reaches the value of φ = (n + 0.5)φ0 , where n is
an integer and φ0 = h/e is the elementary flux, wave functions following different paths
interfere in the area of the ring-leads junctions and undergo a destructive interference,
causing a lower electronic transmission. Thus we can see that the transmission in terms
of the magnetic flux has a frequency φ0 , presented here as AB oscillations [61]. In an
actual nanodevice, at low temperatures, the inelastic scattering length is much larger than
the sample dimensions and, as a result, the transport is completely phase coherent, i.e.,
it is dominated by quantum interference effects, allowing for experimental observation of
the AB oscillations. On other hand, at very high temperatures, the inelastic scattering
length is much smaller than the sample size, which brings the system back to the classical
behavior, thus losing the interference effects. [62, 63]

Interestingly, the AB phase also have strong influence in the energy spectrum of a
quantum ring. Let us consider an electron in planar ring system, which is infinitesimally
small in the z-direction, so that only one bound state in this direction plays a role. We
can write the Hamiltonian of this system as

H =
P2

2m∗
, (1.24)

as previously defined using the momentum modified by the magnetic field: P − qA we
have:

H = (P− qA)
1

2m∗
(P− qA) , (1.25)

where we take q = −e, so we can write the Hamiltonian as:
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H =
1

2m∗
(
P2 + 2eA ·P + e2A ·A

)
, (1.26)

taking a symmetric gauge for the vector potential A = 0.5Bρeθ, we have for each term of
eq. 1.26:

P2

2m∗ (R)
= − ~2

2R

∂

∂R

(
R

m∗(R)

∂

∂R

)
− ~2

2m∗(R)R2

∂2

∂R2
(1.27)

1

2m∗ (R)
(2eA ·P) =

~
i

eB

2m∗ (R)

∂

∂θ
(1.28)

and finally:

e2A ·A
2m∗ (R)

=
e2B2

8m∗ (R)
R2 (1.29)

Replacing the eqs. 1.27, 1.28 and 1.29 in 1.26 and taking only the radial terms, we
have:

H = − ~2

2m∗(R)R2

∂2

∂θ2
+

~ωc
2i

∂

∂θ
+

1

8
mω2

cR
2, (1.30)

where ωc = eB/m∗ is defined as frequency cyclotron and m∗ is effective mass of elec-
tron. Using the definition of elementary magnetic flux and magnetic flux, we write the
Hamiltonian of eq. 1.30 as:

H = − ~2

2m∗R2

[
−i ∂
∂θ

+
φ

φ0

]2
. (1.31)

The eigenfunctions for the Hamiltonian of eq. 1.31 are written as:

ψ(θ) =
exp (inθ)

2
√

2π
, (1.32)

where n = 0,±1,±2, ... and eigenstates are obtained:

En(φ) =
~2

2m∗R2

[
n+

φ

φ0

]
(1.33)

from eq. 1.33 we can see that energy is a function of magnetic flux and has a parabolic
shape having minimum at φ = −nφ0. Thus, we can conclude that there are fluctuations
AB with period φ0, and that there is an exchange of angular momentum in the ground
state to flow in φ = (n+ 0.5)φ0.

1.7 Braess paradox and game theory

In the following chapters of this thesis, we present results concerning the transport
inefficiency caused by the addition of an extra path to a mesoscopic network, observed in
recent experiments with semiconductor nanostructures [64, 65]. This is in contrast to the
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common sense that adding extra paths should always improve the flow, and appear to be
similar to the Braess paradox in game theory. In order to understand this paradox, it is
necessary to review some concepts of game theory.

John Nash, in the mid 1950s, proposed a theory for n players, each with i possible
moves, in which there is at last one equilibrium point satisfying all players. This point
is known as Nash equilibrium, and presents applications in economic science and game
theory[66]. Conceptually, the ideal game is one where no player receives incentive to
change strategy after the opponents have made their choices, so that no other strategy
taken by any player after this point will result in benefit. Even for players that do
not cooperate, it is possible to individually find the best strategy for the game, leading
to stability, provided there is no incentive for players to change their behavior. This
possibility stems from the predictions that the players can make about the behavior of
their opponents. Thus, the Nash equilibrium corresponds to a combination of strategies
so that each player makes the best possible move for him(her)self, taking into account
the strategy chosen by the opponents. In this context, the result pleases all players, so
that none of them have an incentive to change the initiated strategy [66]. In general,
the Nash equilibrium is achieved when the system is in a Pareto optimal. The Pareto
optimal occurs when there is no way to improve the payoff of one of the players without
reducing the payoff of another player; for example, when Companies A and B sell different
products on the market in a way that the sale of each of their products do not affect the
final corporate profits [67, 68].

The Braess paradox is credited to German mathematician Dietrich Braess. In his
publication in 1968s, he concludes that the addition of an extra path in a traffic network
can, in some situations, reduce the overall flow. This is a situation where the system can
be in a Nash equilibrium, but out of Pareto optimality [69].

As an example, suppose that people have to travel in a road from point A to point
B, with two possibilities to perform this activity, see Figure 1.8. Each individual chooses
a route minimizing the traffic time between the inlet and the outlet, which, of course,
depend on the number of people going through a given route. Equilibrium occurs when
time is equal for both routes. This case would be the one where there is the same amount
of people passing through each path. Let us now discuss this situation in terms of game
theory. In the case of Figure 1.8, defining f as the relative frequency of people who decided
to go by a given path, we can take a fixed time t, representing the time required to pass
through the parts of the roads where flow does not depend on the amount of players who
pass through it, and t′ = ft and t′′ = (1 − f)t, representing the times necessary to go
through the parts of the road where flow depends on the amount people passing through
it. Total travel time for the upper (lower) path is Tu = t + t′ (Tl = t + t′′). Thus, the
individuals on the network can be seen as players of a non-cooperative game, where each
one seeks to minimize the time traffic between the inlet and the outlet of the pathway.
We now reason about it: (i) upper path is the best if t+ f ≤ t+ (1− f), i.e. if f ≤ 1/2;
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Figure 1.8: Scheme to the paradox of Braess (a) A network paths systems starting at
point A and ends at point B and (b) Systems paths adding an extra path in the central
region with fixed time in extra path.

(ii) lower path is the best if t + ft ≥ t + (1 − f)t, i.e. if f ≥ 1/2. But if f < 1/2,
everybody will seek for the upper path (supposed to be the best), so f → 1, leading to
Tu = t+ t = 2t and Tl = t < Tu, which is inconsistent with the idea that the upper path
is the best. Similar conclusion is drawn for f > 1/2, were f → 0. Therefore, equilibrium
situation is attained only if f = 1/2 and everybody gets a delay Tu = Tl = t+ 0.5t = 1.5t.

Now, let us add an extra road with fixed time 0.1t connecting the pathways in the
central region, which would allow an escape route between upper and lower paths. Com-
mon sense would say that more options means better results. However, taking up-
per path until the end, one gets ft + t delay; but taking the extra path, one gets
Textra = ft + flt + 0.1t = 1.1t (fl is the fraction of players that change to the lower
path) or even a bit less, if not everybody takes the extra path. It turns out this is always
better than Tu or Tl, since, if one takes first the upper path, one is left with a variable
component flt + 0.1t, which is, at most, 1t + 0.1t = 1.1t < 1.5t. But then, everybody
will take this path, since this is a dominant strategy - it will always lead to better results
for each individual than the other options. In this way, everybody makes the same move,
f = fl = 1 and finally Textra = 2.1t, which is larger than the 1.5t we had before the
extra path was added! Thus, the addition of this path would clearly change the Nash
equilibrium point. In Ref. [70], this is demonstrated with computational simulation of
a data collection, obtaining the optimal of the system where Nash equilibrium and the
real equilibrium (from Braess theory) points are compared. In summary, depending on
the strategy taken by the majority of players, this extra path can reduce the overall flow.
This effect has been verified a number of times in traffic systems.[71] We note then that
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the overall flow depends on the strategy of players and not just the addition of an extra
route [70, 72].

1.8 Quantum wire devices

Modern technology is characterized by its on miniaturization. These reductions in
the size are made up to the nanoscale, which is useful in the development of modern
transistors. With that, it is possible to increase the number of transistors that fit into
a chip-set. Gordon Moore, co-founder and current director emeritus of Intel, made a
prediction in 1965 that every two years, the increase in computer processing power would
double, this led him to predict that this trend should be continued over the years. This
fact became known as Moore’s law. Today, we observe that these values are doubling (in
average) every eighteen months [41, 73]

Figure 1.9: (a) A scanning electron micrograph of a 2 µm× 2 µm silicon nitride paddle.
The supporting rods are 230 nm wide and 3 µm long, and the thickness of the device
layer is 240 nm. (b) A scanning electron micrograph of silicon nitride suspended wires.
The length of the wires varies form 1 to 8 µm. Adapted from [78].

Nowadays, manufacturing of nano-devices is fundamentally based in semiconductors
heterostructures, such as quantum wires and quantum dots - specifically, the former have
electrons free to move in one-direction and is especially important on the field of medical,
optoelectronic applications, di-electrophoretic manipulation and photovoltaics devices [74,
75, 76, 77]. Figure 1.9 shows a semiconductor quantum wire device, where 400 nm of silicon
dioxide were grown by thermal oxidation, then 230-250 nm of silicon-rich amorphous
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silicon nitrade was deposited on it, by low-pressure chemical vapor deposition (LPCVD)
[78]. In this context of smaller and smaller semiconductor devices, quantum tunnelling
between electronic pathways becomes an important topic of discussion, which can be
investigated by wave packet propagation and scattering, as we will demonstrate further
in this thesis.

1.9 Outline of this thesis

In chapter 1 we have introduced briefly some historical facts about the discovery
and manufacturing of semiconductors nanostructures and their relevance in condensed
matter physics and new technological applications. We discussed about energy bands and
the approximations used in this thesis. We described the must important low-dimensional
semiconductors systems, such as, quantum dots, quantum wires, quantum wells and quan-
tum rings.

In the chapter 2 we give a brief introduction to the calculations tools used in this
thesis, specially the so called Split-operator technique. In this chapter, we show how
calculate the propagation using this method and how it is adapted for computational
codes. Using real time propagation, we calculated the transmissions probabilities and the
currents on system. Finally, we discuss over imaginary time evolution, the technique that
was used on the fourth work of this thesis.

In the chapter 3 we theoretically demonstrate that the transport inefficiency recently
found experimentally for branched-out mesoscopic networks can also be observed in a
quantum ring of finite width with an attached central horizontal branch. This is done
by investigating the time evolution of an electron wave packet in such a system. Our
numerical results show that the conductivity of the ring does not necessary improves if
one adds an extra channel. This ensures that there exists a quantum analogue of the
Braess Paradox, originating from quantum scattering and interference.

In the chapter 4 We theoretically investigate the effect of opening and closing path-
ways on the dynamics of electron wave packets in semiconductor quantum rings with
semi-circular, circular, and squared geometries. Our analysis is based on the time evolu-
tion of an electron wave packet, within the effective-mass approximation. We demonstrate
that opening an extra channel in the quantum ring does not necessarily improve the elec-
tron transmission and, depending on the extra channel width, may even reduce it, either
due to enhancement of quantum scattering or due to interference. In the latter case,
transmission reduction can be controlled through the Aharonov-Bohm phase of the wave
function, adjusted by an applied magnetic field. On the other hand, closing one of the
channels of the branched out quantum ring systems surprisingly improves the transmission
probability under specific conditions.

In the chapter 5 we theoretically investigate the electronic transport properties of
two closely spaced L-shaped semiconductor quantum wires, for different configurations
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of the output channel widths as well as the distance between the wires. Within the
effective-mass approximation, we solve the time-dependent Schrödinger equation using
the split-operator technique that allows us to calculate the transmission probability, the
total probability current, the conductance and the wave function scattering between the
energy subbands. We determine the maximum distance between the quantum wires below
which a relevant non-zero transmission is still found. The transmission probability and
the conductance show a strong dependence on the width of the output channel for small
distances between the wires.

In the chapter 6 in this work, we investigate electron-impurity binding energy in
GaN/HfO2 quantum wells. The calculation considers simultaneously all energy contribu-
tions caused by the dielectric mismatch: (i) image self-energy (i.e., interaction between
electron and its image charge), (ii) the direct Coulomb interaction between the electron-
impurity and (iii) the interactions among electron and impurity image charges. The
theoretical model involves for the solution of the time-dependent Schrödinger equation
and the results show how the magnitude of the electron-impurity binding energy depends
on the position of impurity in the well-barrier system. The role of the large dielectric con-
stant in the barrier region is exposed with the comparison of the results for GaN/HfO2

with those of a more typical GaN/AlN system, for two different confinement regimes:
narrow and wide quantum wells.

In chapter 7, we provide our conclusions and future perspective for new works using
the same theoretical techniques described in this thesis.



2
Theoretical Model

In this chapter, we will discuss in greater details the split-operator method, which will
be widely used in the present thesis to solve the time-dependent Schrödinger equation

i~
∂

∂t
Ψ (r, t) = HΨ (r, t) . (2.1)

Here, Ψ(r, t) is the wave function that solves the Schrödinger equation at the instant t.
Within initial conditions Ψ(r, t0), the wave function at any later time t can be given by
using a time-evolution operator Û(t, t0)

Ψ (r, t) = Û(t, t0)Ψ (r, t0) . (2.2)

This time-evolution operator can be represented in three different ways [60]:

1. If the Hamiltonian is a time-independent operator, which means V = V (r), the
time-evolution operator is defined as

Û(t, t0) = exp

[
− i
~
Ĥ(t− t0)

]
. (2.3)

2. If the Hamiltonian H is a time-dependent operator and the initial and final time
Hamiltonian commute

[
Ĥ(t), Ĥ(t′)

]
= 0, for any t and t′, the time-evolution oper-

ator is defined as

Û(t, t0) = exp

[
− i
~

∫ t

t0

H(t′)dt′
]
. (2.4)

3. If the Hamiltonian does not commute with itself in a different time
[
Ĥ(t), Ĥ(t′)

]
6= 0,

then

Û(t, t0) = 1 +
∞∑

n=1

(
− i
~

)n t∫

t0

dt1

t1∫

t0

dt2...

tn−1∫

t0

dtnĤ(t1)Ĥ(t2)...Ĥ(tn). (2.5)
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For all systems investigated in this work, the potential is time-independent V = V (r).
We thus use the time-evolution operator given by eq. 2.3 and solve eq. 2.2 numerically
through the split-operator method, which will be discussed in detail in the following
section.

2.1 The split-operator technique

The split-operator method consists in writing the time-evolution operator as a product
between exponential. This method was investigated by Feit et. al. [79] to determine
the eigenvalues and eigenfunctions of the Schrödinger equation for a one-dimensional
asymmetric double quantum well potential and for the two-dimensional Henon-Heiles
potential, and improve in several papers in order to investigated finite semiconductor
superlattice in the presence of an external static electric field [80, 81]. The main problem
is: how to compute an exponential operator given by a sum of two operators that do not
commute?, once that

exp
[
Â+ B̂

]
= exp(Â)exp(B̂), (2.6)

if, and just if [Â, B̂] = 0. M. Suzuki [82] proposed a scheme to compute the exponential
operators of a sum of that do not commute, by using an approximant fm

(
Â1, Â2, ..., Âq

)

as

exp

[
ε

q∑

j=1

Âj

]
= fm

(
Â1, Â2, ..., Âq

)
+O

(
εm+1

)
, (2.7)

withO (εm+1) as an error of order (m+1). The functions fm
(
Â1, Â2

)
and fm

(
Â1, Â2, Â3

)
,

for m = 1, 2 can be expanded as [83]

f1

(
Â1, Â2

)
= exp

[
εÂ1

]
exp

[
εÂ2

]
, (2.8)

f2

(
Â1, Â2

)
= exp

[ε
2
Â1

]
exp

[
εÂ2

]
exp

[ε
2
Â1

]
, (2.9)

f1

(
Â1, Â2, Â3

)
= exp

[
εÂ1

]
exp

[
εÂ2

]
exp

[
εÂ3

]
, (2.10)

f2

(
Â1, Â2, Â3

)
= exp

[ε
2
Â1

]
exp

[ε
2
Â3

]
exp

[
εÂ2

]
exp

[ε
2
Â3

]
exp

[ε
2
Â1

]
. (2.11)

This process writes the function in terms of linear combinations of the exponential
exp

∑
Âj. This makes it possible to reduce the solution process for the time-dependent
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Schrödinger equation to a successive applications of exponential multiplication of these
operators as we will demonstrate as follows. For the problems proposed here, the time-
evolution operator U (t+ ∆t, t) is expressed as

Û (t+ ∆t, t) = exp

[
− i

2~
V (r)∆t

]
exp

[
− i

2m~
P̂ 2∆t

]
exp

[
− i

2~
V (r)∆t

]
+O

(
∆t3
)
.

(2.12)
Numerically performing this process, we obtain the wave function for any instant of

time. The error O (∆t3) is on the order of ∆t3, where ∆t =0.2 fs. By applying the eq.
2.12, the wave function in eq. 2.2 can be written as

Ψ (r, t0 + ∆t) = exp

[
−iV (r)

2~
∆t

]
exp

[
− iP̂ 2

2m~
∆t

]
exp

[
−iV (r)

2~
∆t

]
Ψ (r, t) +O

(
∆t3
)
.

(2.13)
Here, eq. 2.13 can be solved by acting separately each operator over the wave function.

First, we define a function Θ (r, t0 + ∆t) as the solution for the first part,

Θ (r, t0 + ∆t) = exp

[
−iV (r)

2~
∆t

]
Ψ (r, t) , (2.14)

and as result, we have

Ψ (r, t0 + ∆t) ' exp

[
−iV (r)

2~
∆t

]
exp

[
− iP̂ 2

2m~
∆t

]
Θ (r, t0 + ∆t) . (2.15)

Second, we define a function Ξ (r, t0 + ∆t) as the solution for the kinetic energy operator
over the function Θ (r, t0 + ∆t),

Ξ (r, t0 + ∆t) = exp

[
− iP̂ 2

2m~
∆t

]
Θ (r, t0 + ∆t) . (2.16)

By defining the momentum operator P̂ in Cartesian coordinates P̂ 2 = P̂ 2
x + P̂ 2

y + P̂ 2
z ,

as components of the momentum operator commute
[
P̂x, P̂y

]
=
[
P̂x, P̂z

]
=
[
P̂z, P̂y

]
= 0,

we can write

Ξ (r, t0 + ∆t) = exp

[
−i P̂

2
x

2m~
∆t

]
exp

[
−i P̂

2
y

2m~
∆t

]
exp

[
−i P̂

2
z

2m~
∆t

]
Θ (r, t0 + ∆t) .

(2.17)
or

Ξ (r, t0 + ∆t) = exp

[
i~
2m

∂2

∂x2
∆t

]
exp

[
i~
2m

∂2

∂y2
∆t

]
exp

[
i~
2m

∂2

∂z2
∆t

]
Θ (r, t0 + ∆t) .

(2.18)
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Solving eq. 2.18 by three parts, we obtain

ϑ (r, t0 + ∆t) = exp

[
i~
2m

∂2

∂z2
∆t

]
Θ (r, t0 + ∆t) , (2.19)

υ (r, t0 + ∆t) = exp

[
i~
2m

∂2

∂y2
∆t

]
ϑ (r, t0 + ∆t) , (2.20)

ζ (r, t0 + ∆t) = exp

[
i~
2m

∂2

∂x2
∆t

]
υ (r, t0 + ∆t) . (2.21)

The exponential function can be approximated as1, we obtain

exp

[
i~∆t

2m

∂2

∂z2

]
=

[
1− i~∆t

4m

∂2

∂z2

]−1 [
1 +

i~∆t

4m

∂2

∂z2

]
+O

(
∆t4
)
. (2.22)

Replacing eq. 2.22 in eq. 2.19, gives 2

ϑ (r, t0 + ∆t) =

[
1− i~∆t

4m

∂2

∂z2

]−1 [
1 +

i~∆t

4m

∂2

∂z2

]
Θ (r, t0 + ∆t) +O

(
∆t4
)
, (2.23)

and after a reorganizing some terms,

[
1− i~∆t

4m

∂2

∂z2

]
ϑ (r, t0 + ∆t) =

[
1 +

i~∆t

4m

∂2

∂z2

]
Θ (r, t0 + ∆t) +O

(
∆t4
)
, (2.24)

or

ϑ (r, t0 + ∆t)− i~∆t

4m

∂2

∂z2
ϑ (r, t0 + ∆t) = Θ (r, t0 + ∆t) +

i~∆t

4m

∂2

∂z2
Θ (r, t0 + ∆t) . (2.25)

From the last equation, on wards the error term is omitted, since ∆t is considered to
be small enough to have no significant improve in accuracy by adding these terms.

1

Given the exponential function

exp
[
AB̂

]
=

[
exp

(
−
AB̂

2

)]−1 [
exp

(
−
AB̂

2

)]
exp

(
AB̂

)
such that we can rewrite it as

exp
[
AB̂

]
=

[
exp

(
−
AB̂

2

)]−1

exp

(
AB̂

2

)

and using a relationship for an exponential expansion exp [J] =
∞∑

n=0

Jn

n!
, we can rewrite the above expression as

exp
[
AB̂

]
=

[
1−

AB̂

2
+O

(
A

2
)]−1 [

1 +
AB̂

2
+O

(
A

2
)]

and finally we obtain:

exp
[
AB̂

]
=

[
1−

AB̂

2

]−1 [
1 +

AB̂

2

]
+O

(
A

4
)

2We used A = ∆t and B̂ =
i~
2m

∂2

∂z2
.
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Since Θ (r, t0 + ∆t) comes from an arbitrary wave function wich we imposed on the
system, we proceed by calculating eq. 2.25 within a numerical discretization technique
to evaluate the function ϑ (r, t0 + ∆t). The physical system can be considered three
dimensional, and the space is discretized in steps in each direction

∆x =
Lx
Nx

, (2.26a)

∆y =
Ly
Nt

, (2.26b)

∆z =
Lz
Nz

. (2.26c)

Given a function G(x, y, x), the definition of derivative in the continuum case can be
used to approximate the derivative in the discrete case

∂

∂z
Gi,j,k (x, y, z) =

Gi,j,k+1 −Gi,j,k−1

2∆z
+O

(
∆z2

)
, (2.27)

which represent a finite differences approximation for first derivative and

∂2

∂z2
Gi,j,k (x, y, z) =

Gi,j,k+1 − 2Gi,j,k +Gi,j,k−1

2∆z2
+O

(
∆z2

)
, (2.28)

for second derivative. Using the finite difference scheme in the eq. 2.25 we obtain

− i~∆t

4m∆z2
ϑi,j,k−1 (r, t0 + ∆t) +

(
1 +

i~∆t

2m∆z2

)
ϑi,j,k (r, t0 + ∆t) +

− i~∆t

4m∆z2
ϑi,j,k+1 (r, t0 + ∆t) =

i~∆t

4m∆z2
Θi,j,k−1 (r, t0 + ∆t) +

(
1 +

i~∆t

2m∆z2

)
Θi,j,k (r, t0 + ∆t) +

i~∆t

4m∆z2
Θi,j,k+1 (r, t0 + ∆t) (2.29)

Taking the finite boundary conditions, Ψ (r, t0 + ∆t)|z=0 = Ψ (r, t0 + ∆t)|z=lz = 0, or
periodic boundary conditions, Ψ (r, t0 + ∆t)|z=0 = Ψ (r, t0 + ∆t)|z=lz we can rewrite the
eq. 2.29 for the n-th z term (k = nz), as

− i~∆t

4m∆z2
ϑi,j,1 (r, t0 + ∆t)− i~∆t

4m∆z2
ϑi,j,Nz−1 (r, t0 + ∆t) +

+

(
1 +

i~∆t

2m∆z2

)
ϑi,j,Nz (r, t0 + ∆t) =

i~∆t

4m∆z2
Θi,j,1 (r, t0 + ∆t) +

i~∆t

4m∆z2
Θi,j,Nz−1 (r, t0 + ∆t) +

(
1− i~∆t

2m∆z2

)
Θi,j,Nz (r, t0 + ∆t) , (2.30)

likewise we can represent this equation system, eq. 2.30, as matrix product
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


α β 0 · · · · · · δzβ

β α β
. . . · · · 0

0 β α
. . . . . . ...

... 0
. . . . . . . . . . . .

...
...

... . . . . . . β

δzβ 0 · · · · · · β α







ϑi,j,1

ϑi,j,2
...
...

ϑi,j,Nz−1

ϑi,j,Nz




=




γ −β 0 · · · · · · −δzβ
−β γ −β . . . · · · 0

0 −β γ
. . . . . . ...

... 0
. . . . . . . . . . . .

...
...

... . . . . . . −β
−δzβ 0 · · · · · · −β γ







Θi,j,1

Θi,j,2

...

...
Θi,j,Nz−1

Θi,j,Nz




, (2.31)

where we define

α = 1 +
i~∆t

2m∆z2
, (2.32a)

β = − i~∆t

4m∆z2
, (2.32b)

γ = 1− i~∆t

2m∆z2
, (2.32c)

δz =

{
0, for a finit system
1, for a periodic system

, (2.32d)

the index ranging as i = 1, 2, 3, ..., Nx and j = 1, 2, 3, ..., Ny. The solution is a tridi-
agonal matrix equation, which can be solved by various available and easily accessible
subroutines. For periodic systems, the matrix described in eq. 2.31 requires the numer-
ical routine CYCLIC, available on Numerical Recipes. In cases where the system is, the
finite more convenient routine is TRIDAG, also available on Numerical Recipes [84]. Both
routines are based on lower and upper (LU) decomposition method.

Repeating previous steps to obtain ϑ(r, t0 + ∆t) in eq. 2.19, we can obtain the results
for υ (r, t0 + ∆t), eq. 2.20 and ζ (r, t0 + ∆t), eq. 2.21 and finally to obtain the final wave
function applying the last operator in the function ζ (r, t0 + ∆t), i.e.

Ψ (r, t0 + ∆t) = exp

[
−iV̂ (r)∆t

2~

]
ζ (r, t0 + ∆t) . (2.33)

The dynamics of one electron wave packet in quantum system can be investigated by
proceeding with above explained numerical method, implemented with a previously cited
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subroutines, and looking to the time evolution of the wave function with a time step ∆t.
The advantages of using the split-operator method are due to its simplicity, computation
speed and because it is easy to adapt for solving problems related to dynamics of electrons
in low dimensional systems, allowing the use of imaginary absorbing potentials and the
calculus of eigenstates through the evolution in imaginary time. Instead of using split-
operator method, to study the dynamics of wave functions, it is possible to use the Cayley
formula to solve a seven diagonal matrix, which is more complicated and requires a long
computational time [85], whereas the split operator technique requires only a solution of
linear systems with tridiagonal matrices leading to short computational time.

2.2 Real-time Evolution

The description of electrons transports can be started through the probability current,
directly extracted from the wave functions

Jx =
~

2ime

(
Ψ∗
∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)
, (2.34)

written here for x-direction. The transmission T and reflection R coefficients are de-
termined by integrating the current at a specific point: the transmission coefficient is
calculated usually in the output region (most of cases considered to be at right side of
the system), and reflection coefficient is calculated in the input region (left side of the
system), by respectively using

T =

∫ ∞

0

∫ +∞

−∞
Jx (xR, y, t) dydt, (2.35)

and

R = −
∫ ∞

0

∫ +∞

−∞
Jx (xL, y, t) dydt. (2.36)

The errors observed in the sum R + T , presented by the numerical results is ∼ 0.1%
which demonstrate that there is a good precision in the results. If a magnetic field is
applied in the system, the probability current receives an additional term (e/meAx|ψ|2),
related to the potential vector Ax. For the systems that we are investigating in this
work, the external magnetic field is applied perpendicular to the (x, y) plane, and the
potential vector is given by a Coulomb gauge A = (−y, x, 0)B/2. If the energy of the
propagation wave packet is high enough, it can be scattered to more energetic sub-bands.
The probability current will then present contribution from more energetic states in the
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output leads [53]. It is possible to investigate the projections of the j − th output wave
function on the initial wave packet by fixing a point in the output lead and performing
the integral

Pj (xi, t) = 〈Ψ |ϕj〉 =

∫ +∞

−∞
Ψ (xi, y, t)ϕjdy. (2.37)

which gives the contribution of the wave packet at each sub-band. The current calculation
localized will help us to understand the wave packet propagation

JT (xi, y, t) =

∫ ∞

−∞
Jx(xi, y, t)dy, (2.38)

within a appropriated boundary conditions.
When a wave packet is propagating on a finite system with a discrete grid, for any point

outside the grid, or located on its edges, the wave function must vanish. One possibility
to circumvent this problem is to ensure that the wave function never reaches the system’s
edge. On the other hand, in some systems, like quantum rings, the wave packet propagates
in loops leading to a lost of information as time evolves, due to spurious transmissions and
reflections at the grid’s edge. In this case, the regions outside the grid works as infinite
potentials for wave packet propagation. Among the several existing techniques to work
around this boundary condition [86, 87, 88], in this work we apply an imaginary potential
[89] at the edges of the input and output channels and, therefore, absorb the transmitted
and reflected packets, in order to prevent these spurious reflections at the boundaries of
the computational box. The imaginary potential used in this work reads

Vim = −iEmin
(
ax̄− bx̄3 +

4

(c− x̄)2
− 4

(c+ x̄)2

)
, (2.39)

where

a = 1− 1

c3
, (2.40a)

b =

(
1− 1

c3

)
/c2, (2.40b)

c =

∫ ∞

0

dz

(1 + z2)3/4
=
√

2K
(

1/
√

2
)
, (2.40c)

K is defined as an elliptic integral with arguments K(k) = F (π/2, k) [90], resulting in
c = 2.62206. Emin is the minimum energy that can be considered for the electron, and
may be written as [53, 89]

Emin =
~2

2me

[
c

2 (x2 − x1) δ

]2
, (2.41)
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for the points located between x1 e x2. The parameter δ account for the accuracy of the
absorbent potential. Here, we use δ = 0.2 in order to obtain a small reflections at x1. The
variable x̄, in eq. 2.39, has dependence in x, and can be written as

x̄ = 2kminδ/(x− x1), (2.42)

where kmin =
√

2m∗Emin/~2. The eq. 2.42 gives the point where the absorbing potential
begins. The systems investigated in this thesis consists of a planar quantum structures in
which the electron motion is constrained to be in (x, y) plane, whose dimension is 4200 x
4200 Å. The absorbing potential has width of 420 Å, fixed at the left and right edges of
the grid. This width gives a minimum energy in eq. 2.41 of ∼ 25 meV [91].

2.3 Imaginary-time evolution

The imaginary-time evolution technique will be used to calculate the eigenstates of
a given Hamiltonian. For a time-independent potential, the eigenstates are obtained
with good accuracy by using the propagation in imaginary time. The propagation of all
states of interest can be obtained simultaneously using the ortho-normalization modified
algorithm of Gram-Schmidt, which guarantee the ortho-normalization of all eigenstates. A
wave function can be expressed as a linear combination of its eigenstates of a Hamiltonian,
since it forms a complete orthogonal basis

|Ψ〉t =
∞∑

n=0

ane
− iEnt~ |Φn〉, (2.43)

or,

|Ψ〉t = a0e
− iE0t

~ |Φ0〉+
∞∑

n=1

ane
− iEnt~ |Φn〉, (2.44)

where φn and En are the n-th eigenfunctions and eigenenergies, respectively. Defining
τ = it , we get

|Ψ〉t = e−
E0τ
~

[
a0 |Φ0〉+

∞∑

n=1

ane
− (En−E0)τ

~ |Φn〉
]
. (2.45)

After several imaginary-time steps of propagation (τ → ∞), the term of the ground
state, e−

E0τ
~ a0 |ϕ0〉, becomes strongly dominant over the other terms of the sum, since

En − E0 > 0 for n > 0. Therefore, starting with any wave function, this function
should converge to the ground state of the system as τ increases. We can consider as
a very long time those in which τ � ~/ (En − E0). The excited states are obtained
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adding to the algorithm the Gram-Schmidt orthonormalization method which will assure
orthonormality between all states in each time step

|Φ1〉 =
|Ψ〉 − b0 |Φ0〉
||Ψ〉 − b0 |Φ0〉|

, (2.46)

where

b0 = 〈Φ0 |Ψ〉 . (2.47)

The first state φ1 will be excited if

b1 = 〈Φ1 |Ψ〉 6= 0. (2.48)

Taking a new propagation on imaginary time, and using a new initial wave function,
perpendicular to Φ0 and φ1 we have

|Φ2〉 =
|Ψ〉 − b0 |Φ0〉 − b1 |Φ1〉
||Ψ〉 − b0 |Φ0〉 − b1 |Φ1〉|

(2.49)

where

b1 = 〈Φ1 |Ψ〉 . (2.50)

The second excited state Φ2 will be obtained if

b2 = 〈Φ2 |Ψ〉 6= 0. (2.51)

Thus, we can get all the accessible states of the system, retracing the propagation in
imaginary time again and again, since the propagated wave function for the n-th state is
orthonormal to auto previous functions.



3
Braess paradox at the mesoscopic scale

Suppose that two points A and B of a network are connected only by two possible paths
(e.g. roads in a traffic network, or wires in an electricity network). One would intuitively
expect that adding to the network a third path connecting these two points would lead
to an improvement of the flux through the pre-existing roads and, consequently, to a
transmission enhancement. However, the so-called Braess paradox [66, 67, 68, 69, 70, 72,
92] of games theory states that this is not necessarily the case: under specific conditions,
[93] adding a third path to a network may lead to transport inefficiency instead. This
effect has been even observed in traffic networks in big cities, where closing roads improves
the flux in traffic jams, [71] or in electricity networks, where it has been demonstrated that
adding extra power lines may lead to power outage, due to desynchronization. [94, 95, 96]

A recent paper [65] showed both experimental and theoretical evidence of a very similar
effect, but on a mesoscopic scale: they observed that branching out a mesoscopic network
does not always improve the electrons conductance through the system. As they were
dealing with a system consisting of wide transmission channels, quantum interference
effects are not expected to be relevant. [97]

In this chapter, we demonstrate that the transport inefficiency in branched out devices
also occurs on a nano scale, when only few sub-bands are involved, and transport is
strongly influenced by quantum effects. For this purpose, we investigate wave packet
propagation through a circular quantum ring attached to input (left) and output (right)
leads, [53] in the presence of an extra channel passing diametrically through the ring. Our
results demonstrate that increasing the extra channel width does not necessarily improve
the overall current. The fundamental reasons behind this effect, which are related to
quantum scattering and interference, are discussed in details in the following Sections.



3.1. THEORETICAL MODEL 54

3.1 Theoretical model

We consider an electron confined in a circular quantum ring attached to input (left)
and output (right) leads, [53] in the presence of an extra channel passing diametrically
through the ring, as sketched in Fig. 3.1(a). Both the ring and the leads are assumed to
have the same width W = 10 nm, whereas different values of the extra channel width Wc

are considered.
As initial wave packet, we consider a plane wave with wave vector k0 =

√
2meε/~,

where ε is the energy and me is the electron effective mass, multiplied by a Gaussian
function in the x-direction, and by the ground state φ0(y) of the input channel in the
y-direction,

Ψ(x, y, 0) = exp

[
ik0x−

(x− x0)2
2σ2

x

]
φ0(y). (3.1)

Several papers have reported calculations on wave packet propagation in nanostructured
systems, [98, 99, 100, 101] hence, a number of numerical techniques for this kind of
calculation is available in the literature, such as the expansion of the time evolution
operator in Chebyshev polynomials, [102] and Crank-Nicolson based techniques. [103] In
the present work, the propagation of the wave packet in Eq. (3.1) is calculated by using
the split-operator technique [53, 104, 105] to perform successive applications of the time-
evolution operator, i.e. Ψ(x, y, t + ∆t) = exp [−iH∆t/~] Ψ(x, y, t), where ∆t is the time
step. The Hamiltonian H is written within the effective mass approximation, describing
an electron constrained to move in the (x, y)-plane and confined, by external potential
barriers of height V0, to move inside the nanostructured region represented in gray in Fig.
3.1(a), where the potential is set to zero. The interface between the confinement region and
the potential barrier is assumed to be abrupt. Nevertheless, considering smooth potential
barriers would not affect the qualitative behavior of the results to be presented here, since
the effect of such smooth interfaces has been demonstrated to be mainly a shift on the
eigenenergies of the system. [106, 107] The (x, y)-plane is discretized in a ∆x = ∆y = 0.4

nm grid, and the finite differences technique is used to perform the derivatives coming
from the kinetic energy terms of the Hamiltonian. Imaginary potentials [89] are placed
on the edges of the input and output channels, in order to absorb the propagated wave
packet and avoid spurious reflection at the boundaries of the computational box. As the
wave packet propagates, we compute the probability density currents at the input and
output leads, which, when integrated in time, gives us the reflection and transmission
probabilities, respectively, from which the conductance can be calculated.

As the fabrication of InGaAs quantum ring structures have already been reported
in the literature, [108] we assume that the ring, channel and leads in our model are
made out of this material, so that the electron effective mass is taken as me = 0.041m0.
Nevertheless, the qualitative features of the results presented in the following Section does
not depend on specific material parameters.
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Figure 3.1: (a) Sketch of the system under investigation: a quantum ring with average
radius R, attached to input (left) and output (right) channels with the same width as the
ring (W = 10 nm), and to an extra horizontal channel of width Wc. (b) Contour plots of
the transmission probabilities as a function of the extra channel width and ring radius.
The solid, dashed and dotted lines indicate seven minima that are discussed in the text.
A zoom of the 4 nm < Wc < 16 nm region with the logarithm of the transmission is
shown in (c).

3.2 Results and discussion

Contour plots of the calculated transmission probabilities are shown in Fig. 3.1(b)
as a function of the ring radius R and the width Wc of the extra channel. Notice that
the extra channel in the system is opened in the horizontal direction, namely, parallel to
the input and output leads, being practically just a continuation of these leads. Even so,
instead of improving the transmission, the existence of such a channel surprisingly reduces
the transmission probability for specific values of Wc, leading to several minima in each
curve. In what follows, we discuss the origin of several of these minima, indicated by the
solid, dashed and dotted curves in Fig. 1(b).

The position of the minima labeled as 1, 2 and 3 in Figs. 3.1 (b,c) changes with the
ring radius, which indicates that these minima are related to a path difference, i.e. to
an interference effect. Let us provide other arguments to support this indication: in a
very simplistic model, consider that part of the wave packet travels through the central
channel, while the other part passes through the ring arms. The latter runs a length
≈ πR while going from the input to output leads, whereas the former runs through the
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2R diameter of the ring. The condition for destructive interference is:

γ
πR

λ
− 2R

λ̄
= n+

1

2
, (3.2)

where λ = 2π
/√

2meε/~2 (λ̄ = 2π
/√

2me(E − Ēj)/~2) is the wave length in the ring
arms (extra channel), Ei (Ēj) is the energy of the i-th (j-th) eigenstate of the input lead
(extra channel), and E = ε + Ei is the total energy of the wave packet. The parameter
γ is close to one and accounts for the fact that the effective arm length may be slightly
different from πR [see Fig. 1(a)]. By substituting these expressions for λ and λ̄ in Eq.
(3.2), one obtains
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Hence, this equation gives the condition for the interference related minima in the trans-
mission probability. The extra channel eigenstates Ēj depend on Wc - which can be fairly
well approximated by Ēj ' β/W 1.85

c for large Wc (notice that the structure has finite
potential barriers, therefore, the infinite square well relation Ēj ∝ 1/W 2

c , is no longer
valid). Therefore, the minima for large Wc are expected to occur for
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which are shown in Fig. 3.1(b) by black dashed lines for n = 1, 2 and 3. The model
fits very well the numerically obtained positions for these minima for γ = 0.865. The
n = 0 minimum occurs outside of the investigated range Wc. The wave packet in this
case has total energy E = 124 meV, with ε = 70 meV and E0 = 54 meV (ground state
of the W = 10 nm input lead). For the 26 nm < Wc < 42 nm range in Fig. 3.1(b), the
eigenstates of the channel, which are accessible by the electron with this energy, are the
ground state and the second excited state. The first and third excited states, although
still having energy lower than 124 meV for this range of Wc, are not accessible by the
wave packet because of the even symmetry of the initial wave packet with respect to the
x-axis, while these excited states of the channel are odd. Therefore, the part of the wave
packet that goes through the central channel under these conditions populates mostly the
second excited state, but has also some projection on the ground state and none on the
other states. The fitting of Ēj for the second excited state (j = 2) has β ≈ 3000 meV
nm1.85, which is the value used in Eq. (3.4) to obtain the dashed curves in Fig. 3.1(b).

The n = 1, 2 and 3 minima occurring for 7 nm < Wc < 15 nm in Fig. 3.1(b) can
also be obtained from Eq. (3.4) but, since this is a lower Wc range, the dependence of
Ēj on Wc will have a different exponent, one needs to replace 1.85 by 1.50 in Eq. (3.4).
Besides, for such low Wc, the wave function travels predominantly through the ground
state sub-band of the extra channel, so that one must consider the j = 0 state of this
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Figure 3.2: Snapshot of the propagating wave function at t = 900 fs for two values of
the extra channel width: 19 nm (a) and 20 nm (b).

channel, which has β ≈ 56.99 meV nm1.50 in this range. The results for this model are
shown as black dotted lines in Fig. 3.1(b). To show these minima more clearly, we present
in Fig. 3.1 (c), a magnification of the logarithm of the probability in the low Wc region.
The numerically obtained minima are well fitted by the model of Eq. (3.4) for γ = 0.925

with n = 1, 2, ...4 (see dotted lines).
In order to demonstrate that for lower (higher) values of Wc the wave function inside

the extra channel is predominantly in its ground (second excited) state, Fig. 3.2 shows
a snapshot of the propagating wave function at t = 900 fs for two values of the extra
channel width: Wc = 19 nm (a) and 20 nm (b). In the former case, the wave function
inside the extra channel exhibits predominantly a single maximum peak around y = 0,
which suggests a large contribution of the ground state eigenfunction in the wave packet
within this region. Similar results are obtained for lower values of the channel width
Wc. However, the results for a slightly larger Wc = 20 nm are qualitatively different,
exhibiting three peaks along the y-direction inside the extra channel, which implies a
higher contribution of the second excited state on the wave function in this region.

Differently from the other minima, the position of the first minimum M in Fig. 3.1(b)
appears around Wc = 5 nm and does not change with the radius R. Therefore, this mini-
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Figure 3.3: Probability density currents as a function of time, calculated (a) in the input
lead and (b) in the extra channel, for different values of the extra channel width Wc, for
wave packet energy ε = 70 meV.

mum cannot be related to the above discussed interference effect. In order to understand
the origin of the M minima, we show in Fig. 3.3 the integrated current Jt in the input
lead and the extra channel. Fig. 3.3(a) exhibits a high negative peak for Wc = 2 nm and
5 nm at ≈ 100 fs and ≈ 140 fs, respectively, which represents a strong reflection of the
wave packet at the ring - channel junction 1. This is confirmed by the very low currents
observed for these cases inside the extra channel, in Fig. 3.3(b). On the other hand, for
Wc = 7 nm the reflection peak in the input lead becomes very weak, while for Wc = 10
nm, almost no reflection is observed. For the latter two cases instead, large current peaks
are observed inside the extra channel. This is a clear indication that the transmission in-
efficiency in the low Wc case is not related to interference effects, but rather to scattering
at the ring-channel junction, since the wave packet barely enters the extra channel when
it is too narrow.

We discuss now the possibility of having part of the incoming wave packet passing
through a narrow extra channel. Both the leads and the extra channel have discrete
eigenstates due to the quantum well confinement in the y-direction, whose energy levels
are shown in Fig. 3.3(a) as a function of the well width. In the x-direction, parabolic
sub-bands stem from these eigenstates, as illustrated in Fig. 3.3(b). The incoming wave
packet considered in Figs. 3.1 - 3.3 has ε = 70 meV on top of its ground state energy in
the input lead, E0 = 54 meV (for W = 10 nm). This energy is represented by the dotted
horizontal lines in Figs. 3.3(a) and (b). The wave packet has a Gaussian distribution

1The high positive peak in the input channel is just the incoming wave packet.
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of energies of width ∆E = ~2/mek0∆k, where ∆k = 2
√
ln2/σx is the full width at

half maximum (FWHM) of the wave vector distribution, which is represented by the
shaded area around the dotted line in Fig. 3.3(a). A narrow extra channel has a very
high ground state sub-band energy, so that no component of the incoming wave packet
energy has enough energy to pass through the channel. As the extra channel width Wc

increases, its sub-band energies decrease, allowing the incoming wave packet to travel
through this channel. These two situations are illustrated in the upper and lower figures
of Fig. 3.3(b), respectively. Notice that the upper boundary of the energy distribution
(shaded area) in Fig. 3.3(a) is crossed by the second excited state energy curve (blue
triangles) approximately at W = 20 nm. This explains the drastic difference between
the wave functions within the extra channel with Wc = 19 nm and 20 nm, observed in
Fig. 3.2: in the latter case, the wave function has a significantly larger part of its energy
distribution above the second excited state energy, allowing it to have a larger projection
on this state.

Therefore, the counter-intuitive result observed in Figs. 3.1, namely, the transmission
reduction as the extra channel width increases for lower values of Wc, is a pure quantum
scattering effect. For classical particles, such an extra channel with any width would
allow the passage of the particles and, consequently, improve the transmission. However,
a quantum channel has a confinement energy (ground state) and, if the energy of the
incoming particle is lower than this minimum, the particle is not allowed to pass through
the channel. Therefore, adding a narrow extra channel to the system, which effectively
also adds extra scattering, does not add an extra path for the wave packet, because of the
very high ground state energy of the narrow channel. This mechanism, which is illustrated
by the band diagrams in Fig. 3.3(b), leads to the strong reflections observed in Fig. 3.3 for
Wc = 2 nm and 5 nm. For Wc > 5 nm, a significant part of the E = 70 meV wave packet
has enough energy to go through the extra channel, explaining the increasing transmission
as Wc increases above 5 nm. This also suggests that incoming wave packets with higher
energy would need lower extra channel widths to pass, which is indeed observed, as we
will discuss further on.

In fact, the position ofM strongly depends on the wave packet energy, as shown in Fig.
3.5(a), where the transmission probability in the vicinity of M is plotted as a function
of the channel width Wc for several values of the energy, ranging from 70 meV (bottom
curve) to 120 meV (top curve), with 10 meV intervals. The ring radius is fixed as R = 60

nm, and each consecutive curve in this figure is shifted by 0.1. If the energy dependence
of the position of M is due to the above discussed quantum effect, it should be possible
to predict the position of these minima from the following argument: the highest energy
components of the wave packet have energy around ≈ E + ∆E/2. These components
would be allowed to pass through the extra channel, consequently improving the current,
provided the channel width is wide enough to have a ground state energy as low as their
energy, i.e. if Ē0 < E + ∆E/2. For low values of Wc, the ground state energy of the
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Figure 3.4: (a) Eigenstates of a finite quantum well as a function of its width. (b)
Diagram representing the energy sub-bands in the input lead and in the extra channel.
The horizontal dotted line is the average energy of the wave packet used in Figs. 3.1 and
3.3, and the shaded area in (a) illustrates the FWHM of the energy distribution of this
wave packet.

channel is well approximated by Ē0 = α/W 1.04
c , for α = 8.65 eV, as shown by the green

dashed line (f2(W ) function) in Fig. 3.5(b). Notice it is a different power from the one
used in Eq. (3.4), which is valid only for higher Wc values. The red dotted line (f1(W )

function) in Fig. 3.5(b) is an example of fitting for high values of Wc, which was used in
Eq. (3.4). Figure 3.5(b) is in log-log scale, so that the power laws in f1(W ) and f2(W ) are
shown as straight curves, whose slopes are the functions’ exponents. Using this expression
for Ēj, one obtains the following approximate expression for the position of theM minima

W (M)
c =

6103
(
ε+ E0 + ~

√
ε

2me
∆k
)1/1.04 , (3.5)

which is shown by the solid curve in Fig. 3.5(c). Notice the rather good agreement with
the numerically obtained positions of the M minima, represented by the symbols.

It is important to point out that the exponents 1.85, 1.50 and 1.04, as well as the
values of α and β, found for the fitting functions for the eigenstate energies as a function
of the well width and used in Eqs. (3.4) and (3.5), were obtained for an abrupt interface
between the potential barriers and the confining region. These values must be slightly
modified in the case of smooth potential barriers.

Our results, therefore, demonstrate that the M minima in Figs. 3.1 and 3.5 are a
consequence of a competition between two effects: (i) the quantum scattering in the ring-
channel junction, which increases the reflection when a narrow extra channel is added,
and (ii) the improvement in the transmission resulting from the part of the wave packet
that has enough energy to propagate through the sub-bands of the extra channel. The for-
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M

Figure 3.5: (a) Transmission probabilities as a function of the extra channel width in
the vicinity of the minimum labeled as M in Fig. 3.1(a), for several values of the wave
packet energy ε = 70 (bottom curve), 80, ... 180 meV (top curve). The curves were
shifted 0.1 up from each other, in order to help visualization. (b) Energy levels (solid) as
a function of the channel width, plotted in a log scale, along with two fitting functions
(dashed curves), for large (f1) and small (f2) values of the channel width. (c) Numerically
obtained (symbols) positions of the M minima as a function of the wave packet energy,
along with the results (solid curve) of the analytical model, given by Eq. (3.5).

mer suggests that adding extra scatterers at the input lead-ring junction leads to a larger
reflection back into the input lead. In order to verify this, we consider two situations that
mimic the appearance of an extra “blind" channel (see insets of Fig. 3.6): one is the pres-
ence of an attractive Gaussian potential [53] Va(x, y) = −VG exp {[(x− xg)2 + y2]/2σ2

G}
close to the lead-ring junction, and the other is a circular bump of radius Rb in the inner
boundary of the ring. Fig. 3.6 shows the transmission probabilities for ε = 70 meV as a
function of the Gaussian potential depth VG (bottom axis) and the radius Rb (top axis) of
the circular bump. In both cases, the transmission is reduced in the presence of the extra
scatterer, which supports the idea that the transmission reduction in the low Wc range
in Figs. 3.1 and 3.5 is indeed a consequence of extra scattering created by the opening of
the extra channel, which is however effectively blind, since the bottom of the ground state
sub-band of the a narrow channel has energy higher than that of the incoming electron
wave packet.

All the results in this work were calculated for sharp connections between the ring,
the extra channel, and the input and output leads. However, qualitatively similar results
are also obtained for smooth junctions [53] between these parts of the system. Moreover,
different ring geometries would shift the high Wc minima, which are related to quantum
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interference, by effectively changing the electronic paths, while impurities in the ring could
suppress these minima, by destroying phase coherence. However, neither impurities nor
different ring geometries can affect the low Wc minimum (M), since it is related only
to quantum scattering in the input lead-ring junction, which does not depend on these
features.
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Figure 3.6: Transmission probabilities for a ε = 70 meV wave packet scattered by two
kinds of defects in the lead-ring junction: a Gaussian attractive potential of depth VG

(solid, bottom axis) and width σG = 5 nm, and a circular bump of radius Rb (dashed, top
axis), which are schematically illustrated in the lower and upper insets, respectively.

The original version of the Braess paradox, described in details in Ref. [69], discusses
how the travel time between two points connected by only two possible roads, A and
B, changes if these two roads are inter-connected by a third road C. If one considers
that the traffic at specific parts of A and B depend on the number of drivers in these
roads, then, depending on the (partial) travel time through this new connection C, the
dominant strategy turns out to consist in starting in one road and changing to the other
road through the connection C, and therefore, all players (drivers) would take this path.
This strategy, though leading to the Nash equilibrium situation of this system, represents
an increase in the travel time - lower travel times could even be reached if the drivers
agree not to use the connection C a priori, but in a scenario of selfish drivers, they would
switch roads until the equilibrium is reached, despite the reduction in overall performance.
Therefore, the classical Braess paradox is closely related to an unsuccessful attempt to
optimize the travel time through a traffic network by the drivers. The transport properties
of the branched out mesoscopic network investigated in Refs. [65, 97] is reminiscent of
those of the roads network in the original Braess paper just in the sense that it exhibits a
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reduced overall current when an extra channel is added to the network, depending on the
channel width. However, the fundamental reason behind this phenomenon is not clear in
Refs. [65, 97] - it cannot be an interference effect, since this is not a coherent system, but
it is not also due to an optimization of the currents, as in the classical paradox, since the
model in these papers does not involve non-linear equations or iterative calculations of the
overall current flow. On the other hand, for the quantum case investigated here, where
such a transmission reduction in the presence of an extra channel is also observed, the
main reason behind this Braess-like paradoxical behavior is quite clear: for small values
of the channel width, it is due to quantum scattering effects at the ring-channel junction,
whereas for larger widths, it is due to interference effects. Therefore, if one includes the
transmission reduction phenomena described here into the category of analogs of Braess
paradox, one must keep in mind that, just like most of the other analogs suggested in
the literature [69, 94, 95, 96], although presenting results similar to those of the original
Braess network, in the sense that more paths leads to reduced performance, the reason
behind this reduction is not related to an attempt to optimize the flux, but to other
fundamental physical properties of the investigated system.



4
Wave packet propagation through branched

quantum rings

In the previous chapter, we demonstrated that transport inefficiency in branched out
devices also occurs on a quantum scale, when few subbands are involved in the transport.
[64] The transport properties are strongly influenced by quantum scattering and interfer-
ence, so that a similar reduction in transmission can be found in a quantum ring with
a central branch. In this chapter, we extend the previous one [64] and investigate: (i)
the effect of the geometry of the quantum ring, by considering, semi-circular, circular and
squared rings, (ii) the effect of an Aharonov-Bohm (AB) phase, induced by an external
magnetic field, and (iii) the effect of the position of an AFM tip potential which is able
to obstruct one of the system channels. For this purpose, we investigate wave packet
propagation through these branched quantum rings, attached to input and output leads,
by numerically solving the time-dependent Schrödinger equation. Our results show that
the so-called quantum analog of the Braess paradox is robust in these nano scale devices
and that it is a correspondence of effects related to a combination between quantum in-
terference and scattering events. We also shown here the Braess effect can be tuned by
magnetic and electric fields.
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4.1 Theoretical model

We consider here four different planar quantum rings, attached to input (left) and
output (right) leads for electrons injection, in the presence of an extra channel. We
assume that the rings and the leads have the same width W = 10 nm, while the width of
the extra branch Wc, will be varied from 0 to 50 nm. Figure 4.1 shows a schematic view
of our systems under investigation: in (a), (b) and (d) the ring has a circular symmetry
with average radius Rave = 60 nm, while in (c) the ring has a rectangular symmetry with
width and height given by 60 nm and 30 nm, respectively. From now onwards, we will
refer to theses systems by their labels (a-d).
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Figure 4.1: Sketch of the systems under investigation. (a) Half quantum ring with leads
and channel aligned, (b) circular quantum ring with an extra channel in the perpendicular
direction, (c) square ring with non-aligned leads and channel, and (d) circular quantum
ring with leads and channel aligned.

An electron confined in such a quasi-one-dimensional channel with width W has sub-
band energy given by

En(kx) = E(y)
n +

~2k2x
2me

. (4.1)

Here me is the electron effective mass and eigenenergies of the confining well E(y)
n are

numerically calculated for a finite potential Ve. For the initial wave packet (WP), we
assumed a plane wave with wave vector k0 =

√
2meε/~, where ε is the average kinetic

energy, multiplied by a Gaussian function with width σx in the x direction and by the
ground state wave function φ0(y) of the input lead in the y-direction

Ψ(x, y, t = 0) = exp

[
ik0x−

(x− x0)2
2σ2

x

]
φ0(y). (4.2)
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There are several techniques to numerically solve the time dependent Schrödinger
equation.[98, 99, 100, 102, 103, 109] In this work we opted for the split-operator technique,
which consists in separating the time evolution [53, 104, 105] operator as

Ψ(x, y, t+ ∆t) = exp [−iH∆t/~] Ψ(x, y, t)

= exp [−iV∆t/2~] exp [−iTx∆t/~]

× exp [−iTy∆t/~] exp [−iV∆t/2~]

×Ψ(x, y, t) +O(∆t3),

(4.3)

where ∆t is the time step, Tx(y) is the kinetic-energy operator for the x(y)-direction, and
the error O(∆t3) is due to the noncommutativity of the potential and kinetic terms. [82]
Nevertheless, this error can be neglected provided we use a very small time step, that in our
case is ∆t = 0.1 fs. The HamiltonianH is written within the effective mass approximation,
describing an electron constrained to move in the (x, y)-plane and confined by an external
in-plane potential of height V0, which allows the electron to move only within the leads,
arms and channels regions, illustrated by shaded areas in Fig. 4.1, where the potential
is zero. The potential step is assumed here to be abrupt, but smooth interfaces will not
qualitatively affect the results. [106, 107] The (x, y)-plane is discretized in ∆x = ∆y = 0.4

nm steps, and the finite difference scheme is used to write the derivatives coming from the
kinetic energy terms of the Hamiltonian. We apply an imaginary potential at the edges
of the input and output channels and, in order to, absorb the transmitted and reflected
packets, and to prevent spurious reflections at the boundaries of the computational box.
[89]

The transmission and reflection probabilities are calculated by integrating the proba-
bility density current at specific points of the system, namely, at the output lead (xR = 158

nm), for the former, and at the input lead (xL = −158 nm), for the latter. Thus, the
expressions for transmission and reflection are, respectively,

T =

∫ ∞

0

dt

∫ +∞

−∞
dyJx (xR, y, t) (4.4)

and

R = −
∫ ∞

0

dt

∫ +∞

−∞
dyJx (xL, y, t). (4.5)

The component of the probability current in the x−direction is given by

Jx (x, y, t) =
~

2mei

(
Ψ∗

∂

∂x
Ψ−Ψ

∂

∂x
Ψ∗
)

+
e

me

Ax|Ψ|2.
(4.6)

For a magnetic field applied perpendicularly to the ring plane, i.e. in the z direction, the
vector potential is taken in the Coulomb gauge A = (−y, x, 0)B/2. In order to quantify
the scattering of the electron into different subbands, we project the wave function on the
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j -th subband at a fixed point xi of the quantum well,

Pj (xi, t) = |〈Ψ| ϕj〉|2

=

∣∣∣∣
∫ +∞

−∞
dyΨ (xi, y, t)ϕj(y)

∣∣∣∣
2

.
(4.7)

Equation (5.7) gives the probabilities to find an electron in the j -th subband at position
xi at time t. The contribution from each subband to the total probability current is given
by

J (j)
x (x) =

∫
~

2mei

(
P̄ ∗j

∂

∂x
P̄j − P̄j

∂

∂x
P̄ ∗j

)

+
e

me

Ax
∣∣P̄j
∣∣2dt.

(4.8)

Notice that Eq. (5.7) is not normalized, and therefore the values assumed by J (j)
x can be

larger than one. We assume ballistic transport and, for the sake of simplicity, all kinds of
disorder are neglected.
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Figure 4.2: Transmission probability as function of channel width Wc. The frames (a),
(b), (c) and (d) refer collectively as the corresponding systems presented in Fig. 4.1. The
WP have kinetic energies ε1 (black, dotted line), ε2 (red, dashed line), ε3 (blue, solid line),
propagating in the subband ground state, while the other is in the first excited state with
kinetic energy ε3 (green dash-dotted line).

4.2 Results and Discussion

We consider materials parameters for InGaAs and InAlAs, in which the band-offset
and electron effective mass are taken as Ve = 600 meV and me = 0.041m0, respectively.
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Three values of kinetic energy for the WP are used: ε1 = 70, ε2 = 140 and ε3 = 180 meV.
These WP were propagated in the ground state E(y)

0 ' 58 meV and, specifically for ε3,
we also propagated it in the first excited state of the channel, E(y)

1 ' 226 meV.
Figure 4.2 shows the transmission probabilities as function of the channel width Wc

for kinetic energies ε1 (black, dotted line), ε2 (red, dashed line), and ε3 (blue, solid
curve), for the initial WP in the ground state, and ε3 in the first excited state (green,
dash-dotted line). Each curve shown in Fig. 4.2 is vertically shifted up by 0.2. The
disposition of the frames (a), (b), (c) and (d) presented in Fig. 4.2 follows one of Fig. 4.1.
For all systems investigated, the existence of an extra channel surprisingly reduces the
transmission probability for some width Wc, instead of improving it. This decreasing is
either an effect of quantum scattering at the channel-ring junctions, or a WP interference
effect. Both possibilities will be discussed now in more detail.

Notice that the extra channels for the profiles in Figs. 4.1(b) and (c) are not aligned
with respect to input and output leads, as in Figs. 4.1(a) and (d). Thus, transmission
probabilities in Figs. 4.2(a) and (d) present some similarities in their patterns, and the
same is observed in Figs. 4.2 (b) and (c). The curves clearly exhibit minima for all kinetic
energies, and transmission probability always start decreasing as the extra channel width
increases for WP propagating in the ground state subband, although the extra chan-
nel represents an alternative for the electron to bypass through the central region which
should, in principle, improve the transmission. The positions of most of the minima in
Wc strongly depend on of WP energy. In Figs. 4.2(b) and (c), besides the minima, trans-
mission probabilities also exhibit an overall decreasing trend with increasing of channel
width Wc, specifically for low kinetic energy. Moreover, transmission probability patterns
are strongly dependent on the geometry of the ring, which indicates that there are nu-
merous possibilities of WP interference in these cases, where the system geometry is more
complex than that in Fig. 4.2(a) and (d).

For a better understanding of WP dynamics in these systems, Fig. 4.3 shows the time-
dependent probability current through the extra channel as a function of time. The WP
propagates in the lowest subband from left to right with kinetic energy given by ε1. Three
different values for channel width Wc are considered: 5, 10, and 20 nm. In all studied
cases we observe initially a positive peak of current followed by a negative peak, which
is more acute in Figs. 4.3(b) and (c). In these cases, a sequence of positive and negative
peaks clearly demonstrates that the WP is repeatedly reflected at the extra channel-ring
junctions, propagating back and forth within the extra channel. Thus, the time that
electrons are kept in the structure is increased, contributing to an overall reduction of the
electric current. For Wc = 5 nm, only a a small part of the WP propagates through the
extra channel, because the average value of the kinetic energy is lower than the ground
state of this channel. In addition, the input and output leads are not aligned, which also
harness the WP propagation through this channel. For cases in which the extra channel
is aligned with input and output leads, as in Fig. 4.3 a) and (d), a somewhat larger part
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Figure 4.3: Time-dependent probability current through the extra channel, calculated
for kinetic energy ε1. The different frames refer to the systems in Fig. 4.1.

of the WP can propagate through the extra channel even in the Wc = 5 nm case.
Figure 4.4 shows snapshots of the squared modulus of the wave functions at t = 460

fs, for kinetic energy ε1, and Wc = 0, 5, 7, 10, and 20 nm, respectively, in each column.
The wave function presents just one peak in the confinement direction within the ring
arms, input and output leads, which indicates that the propagation is kept in the ground
state subband in all these regions. Along the extra channel, however, the wave function
propagates in the ground state subband only for Wc = 5 nm, while for larger Wc, it is
scattered to excited states and exhibits multiples peaks and even different parities, due
to the lower confinement energies in this channel.

The contributions of each subband to the total transmission probability is shown in
Fig. 4.5, where J (1)

x (top) and J
(2)
x (bottom) calculated in the output lead (at x = 158

nm), are depicted as function of Wc. Other states were omitted because they do not
significantly contribute for the WP energies considered here. The systems sequence used
here is the same as in previous figures. The projected density current exhibits minima with
patterns similar to those in Fig. 4.2. As mentioned above, the output lead has a width of
w = 10 nm and the energy difference between the first two states, E(y)

1 −E(y)
0 = 168 meV,

is higher than the kinetic energy ε1. For this reason, in all systems, the contribution J (2)
x

in Fig. 4.5 is zero when the kinetic energy is ε1 (black, dotted line). Moreover, the WP is
a gaussian distribution in energy space, whose width allows for non-zero projection on P2

with energy the ε2. We observe in Figs. 4.5(b) and (d) that the WP in output lead does
not propagate in the subband excited states in these systems, regardless of the kinetic
energy or channel width Wc, even when the wave function projections are non-zero for
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Figure 4.4: Snapshots of the squared wave function at t = 460 fs, for different channel
width Wc and kinetic energy ε1.

excited states in the extra channel, as shown in Fig. 4.4 . In these systems, the quantum
ring has a circular symmetry and the WP propagate in subbands of the top and bottom
arms with a phase difference given by π, which leads to an interference that cancels the
projection P2 on the output lead.[53]

The contribution J (2)
x of the second subband to the probability density current in Figs.

5.5(a) and (c) does not vanish, despite of the interference, due to the asymmetry in the
potential of these systems. They lead to additional peaks and valleys in the transmission
probabilities as a function of the extra channel width for theses systems in Fig. 4.2(a)
and (c). Notice that the position of these peaks and valleys are completely independent
of the WP energy, whereas the minima observed for J (1)

x are significantly shifted as the
energy varies. Therefore, the former minima cannot be interpreted in terms of quantum
scattering and interference as done here for the latter, as they are just a consequence of
inter-subband scattering by the channel-junctions.
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Figure 4.5: Projection of the wave function on the ground state (top graphics) and first-
excited subbands (bottom graphics) as function of channel width Wc, calculated at the
output lead. Kinetic energy ε1 (black dotted line), ε2 (red short-dot line), and ε3 (blue
solid line). This figure is ordered in the same sequence Fig. 4.1.

4.2.1 Influence of an external magnetic field

Let us now turn our attention to the minima in the transmission probabilities shown
in Fig. 4.2. One may expect that these minima come from interference, and therefore
we should be able to change the position of the minima not only by changing the kinetic
energy, but also by applying an external magnetic field. This magnetic field adds a phase
in the wave function through the vector potential A. If the minima are due to interference,
their position will change in the presence of the field, since the vector potential induces
an additional phase to the wave function. Fig. 4.6 displays a color map of transmission
probabilities as function of channel width Wc and magnetic field B. In Fig. 4.6(a), for
B = 0, as Wc increases, minima (red and yellow regions) are observed around Wc = 5 nm
and some intermediate values of Wc ≈ 23 nm. In these cases, then, enlarging the extra
channel reduces the current. As the magnetic field increases, the minima positions are not
significantly affected, which indicates that these minima are not related to interference,
but rather to pure quantum scattering. For Wc between 5 and 10 nm, there are also other
minima (green regions), equally spaced in B, that are affected by the magnetic field, due
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to the AB effect. In this case, the WP passes through both channels, now connected as
a semi-circular ring-like path, which explains the observed AB oscillations. For Wc < 5

nm, subband energies are higher than the kinetic energy, and the WP can not propagate
through the extra channel. The Wc width and the magnetic field can change the AB
period. The system in (a) thus proves to be a good example of the quantum analog of
the Braess paradox, where more channels (surprisingly) means less current, and which is
not simply due to quantum interference effects.
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Figure 4.6: Contour plots of the transmission probabilities as a function of the extra
channel width Wc and magnetic field B. This figure is ordered in the same sequence as
Fig. 4.1.

AB oscillations are evident in Figs. 4.6(b), (c) and (d), as B increases in the range
of small Wc width. As Wc increases, two rings are effectively formed in system (b), and
this yields a reduction in the AB period in Fig. 4.6 (b). In Fig. 4.6 (c), the minima
observed for B = 0 are strongly affected by the magnetic field, which indicates that
these minima are a result of destructive interference. In Fig. 4.6 (d) the minima around
Wc ∼ 5 nm for B = 0 do not change with the magnetic field, whereas the next minima,
around WC ∼ 35 nm, shift to the right as the magnetic field increases, showing that the
first minima is due to scattering while the latter is due to WP interference. In order
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to improve the visualisation of the transmission in Fig. 4.6(c) and (d), we show the
respective transmission as function of Wc width in Fig. 4.7(a) and (b), corresponding to
the systems of Figs. 4.1(c) and (d), respectively. Each contour (or on-line color) represents
a transmission for a specific applied magnetic field, ranging from 0 to 1 T, and reproduce
the behaviour of the minima, as discussed above.

4.2.2 Effect of extra (obstructing) potentials

In order to test the robustness of the Braess paradox analog, observed here in the
context of quantum mechanics, we add a perturbing potential, which can be seen as a
model for an AFM tip [108], we consider three different configurations for each of the
systems of Fig. 4.1 to analyse the behaviour of the transmissions, see Fig. 4.8: the tip
potential (1) is fixed at the central region (x, y) = (0,0); the tip potential (2) is placed
at x = 0 and moved from bottom to top along the y−axis, and the tip potential (3)
is placed at y = 0 and moved from left to right along the x−axis. This perturbative
potential, which depends on the tip position and is assumed to be isotropic, is expressed
as a Gaussian distribution centered at (xp, yp),

Vgau = VG exp

{
− 1

2σ2
G

[
(x− xp)2 + (y − yp)2

]}
, (4.9)

where, VG is the potential intensity and σG (= 5 nm) represents the width of the Gaussian
potential.

Figure 4.9 shows transmission probabilities for a WP with kinetic energy ε1 propa-
gating in the first subband. This figure is spatially arranged in four groups, in the same
sequence of geometries as in Figs. 4.1(a-d), with three panels each: panel (1) shows
the transmission probability as function of the tip potential intensity VG, with the tip
potential fixed at the central region of the system; whereas panels (2) and (3) are the
transmission probabilities for the tip potential moving from bottom to top side, at x =

0, and from left to right at y = 0, respectively, as mentioned above. The black solid line
represents the transmission calculated for a system with a central channel width Wc =

10 nm. The red dotted line represents the transmission probability calculated with Wc

given by the respective minima of the transmission, depicted in Fig. 4.2, i.e., the Wc

width is 23 nm in Fig. 4.9(a), 24 nm in (b), 22 nm in (c), 5.5 nm (related to the minima
due to WP quantum scattering), and 39 nm (related to the minima due to WP quantum
interference) in (d). For (2) and (3) tips, we use VG = 300 meV, because the red curves
(minima) present a large transmission probability for this potential, as we can see in Figs.
4.9 (1) for all four systems investigated.

For all systems investigated here, increasing VG for the tip in situation (1), i.e. closing
the path in the central channel, improves the transmission probability when Wc is chosen
as one of the minima mentioned above, as one can see by the red curves in any of the
panels labelled as (1) of Fig. 4.9. In Fig. 4.9 (a)(1), the minimum of the transmission
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Figure 4.7: Transmission probability as function of the channel width Wc for quantum
rings depicted in (a) Fig. 4.1(c) and (b) Fig. 4.1(d), respectively. The kinetic energy used
was ε1 and each color curve represents a transmission probability for a specific magnetic
field, ranging from 0 (purple) to 1 T (red).

(red, dotted line) increases as the potential intensity VG increases, raising from 0.3 at
VG = 0 to around 0.6 at VG = 100 meV and 300 meV. On the other hand, for the solid
black line, except for the oscillations around VG = 250 and 500 meV, the transmission
has no significant changes. This result reflects the fact that when the transmission in
system (a) is in its minimum at Wc = 23 nm, a larger part of the WP moves through the
extra channel, while for Wc = 10 nm, the WP has a large part propagating through the
upper arm of the ring, therefore, the tip potential in situation (1) cannot affect much the
transport in the latter case. Moreover, this result brings even closer resemblance with the
Braess paradox: counter intuitively, the presence of the tip potential, which in practice
shuts down the extra channel, raises the overall transmission back to the higher value it
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Figure 4.8: Schematic diagram for an AFM tip potential over quantum rings represented
by the dots (1), (2) and (3). The solid arrows indicate the direction of the tip displacement,
while the dash line arrows indicate the final position of the tip. Tip (1) is fixed in the
central region for each system.

had without this channel in the Wc = 23 nm (minimum) case. In other words, for this
value of channel width, having an extra channel is worse, in terms of conductivity. In
Fig. 4.9 (a)(2) a significant change occurs when the tip is over the bottom edge of the
channel, at (x, y) = (0,0): the minimum of the transmission increases from 0.3 to 0.6,
while for Wc = 10 nm, the transmission decreases from 0.6 to 0.4. Therefore, if Wc = 10

nm, shutting the extra channel decreases the transmission, as expected from a classical
point of view, and in contrast with the behaviour observed for Wc = 23 nm. Notice
that as the tip moves up, the transmission probability minimum for Wc = 23 nm (red
dotted) decreases to 0.3 at the center of the channel and increases back to 0.6 as the tip
moves to the upper edge of the channel. This is due to the fact that, for such larger Wc,
the wave packet enters the extra channel through its first excited state subband, whose
eingenfunction is zero at y = 0, which is not the case for Wc = 10 nm (black solid).
Out of the central channel, even when the tip is over the upper arm, the potential has no
significant effects on the minima transmission, since the largest part of the WP propagates
through the extra channel for largeWc. In Fig. 4.9(a)(3) when the tip potential is over the
input or output leads there is no transmission in the ring. Nevertheless, the transmission
minimum increases to 0.6 when the tip potential is over the central channel, in accordance
with the results discussed above for Fig. 4.9 (a)(2) and (1).

The time-dependent probability current through the extra channel of the system in Fig.
4.1 (b) is very small, as depicted in Fig. 4.3 (b). Therefore, when the tip potential is over
the extra channel in this system, the transmission probability has no significant change, as
it can be seen in Fig. 4.9 (b) where the oscillations in the transmission probability exhibit
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a rather small amplitude ∼ 0.2 in the extra channel region. In Fig. 4.9(b)(3), when the
tip is over the extra channel, the transmission presents a small oscillation around (x, y) =
(0,0). The displacement of the tip (2) over the system (c) closes the arm of the squared
ring at y ≈ ±60 nm and closes the extra channel at y ≈ 0 nm. Over the ring arms, the
tip potential reduces the transmission probability to 0.2 for the minimum Wc = 24 nm,
and to 0.4, for the channel width Wc = 10 nm, whereas over the extra channel, the tip
potential increase the transmission to 0.3 for the minimum and more than 0.1 for Wc =
10 nm, when compared to the case where the tip potential is absent in the system. The
displacement of the tip (3) closes the extra channel and the ring arms at x ≈ ±30 nm.
When the tip is over the extra channel, the minimum transmission increases, while it
decreases when the tip is over the ring arms, as was discussed for the tip (2).
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Figure 4.9: Transmission as a function of (1) intensity of the Gaussian potential, (2) and
(3) tip position. The order of the figures refer to the form different depicted in Fig. 4.1.
The curves width black color are for Wc = 10 nm, while the curves width red colors are
for the minima of the transmission shown in Fig. 4.2. The WP kinetic energy is ε1.

In Fig. 4.9(d) two minima of the transmission probability are investigated: the first
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one, red dotted line, is for an extra channel width Wc = 39 nm, and the second one, green
dashed line, for an extra channel width Wc = 5 nm. These minima have their origins
in quantum interference and scattering, respectively, as previously discussed. For the
minimum coming from interference, the tip potential (1) strongly affects the transmission
probability, which changes from ∼ 0.4 to ∼ 0.8. On the other hand, for the minimum due
to quantum scattering, the tip potential (1) does not significantly change the transmission.
For Wc = 10 nm, when the tip potential closes the extra channel, it produces interference
of the WP that propagate though the ring arms, decreasing the transmission probability.
The tip (2) does not affect the transmission when it is moving over the bottom or top
ring arms. When the tip potential is over the extra channel, the minima which came from
interference increase to 0.2, while for Wc = 10 nm, the transmission decreases from ∼ 0.6
to ∼ 0.3. Moreover, when closing the extra channel, the tip (3) increases the minimum
0.6 which comes from interference, but it does not affect either the other transmission
minimum, which is due to scattering, and or transmission for Wc = 10 nm.



5
Quantum tunneling between bent semiconductor

nanowires

Advances in the fabrication and nanostructuring of semiconductor compounds opens
up opportunities for combination of different shapes of devices on a nanometric scale
[110, 111, 112]. There are numerous experimental methods and techniques of fabricating
these semiconductor nanostructures, such as self-organized growth in a MBE chamber
[113, 114, 115], split-gate technique used to fabricate narrow quantum channels for elec-
trons [116], and AFM lithography, which can be used to create different nanostructures.
[55, 117] On a nanometric scale, transport properties of one-dimensional structures are of
great interest and a large number of novel phenomena have been predicted and observed
in recent years. [118, 119] Here, we shall mention for example investigations on the trans-
port properties through confined states in a 1D wire were performed by Auslaender et
al. [120] Tserkovnyak et al. [121] gave a detailed experimental investigation and theoret-
ical explanation of a set of interference patterns in the nonlinear tunneling conductance
between two parallel wires that were first reported by Auslaender in 2002. [122]

From a theoretical point of view, the attempt to model increasingly smaller semicon-
ductor systems that is driven by the miniaturization of technological devices has led to
more systematic studies with the aim to describe in more detail the different physical
effects, such as tunneling in transistor gate oxides [123, 124] and energy quantization in
nanometer scale MOSFETs. [125, 126] In addition, different systems used to calculate the
scattering probabilities per unit of time under the effect of perturbative potentials have
been proposed and investigated. Some cases of interest here are those when adding an ex-
tra path in the system [64], an effective potential simulating a Scanning Gate Microscopy
tip [109, 127] as well as the effect of a smooth potential in path’s connections. [53]

In this chapter, we investigate the wave packet scattering in two L-shaped quantum
wires (QW) separated by a distance W2, see Fig. 5.1. The aim is to find the minimum
separation distance between two bent wires with acceptable values for tunneling. For this
purpose, we inject a Gaussian wave packet in the left-lead and calculate the transmission
into the bottom lead and the tunnelling into the second wire. Our theoretical model is



79

based on the solution of the time dependent Schrödinger equation within the effective
mass approach using the split-operator technique. [53, 128] We consider different values
of the wave packet kinetic energy and W2 distances between the quantum wires as well
as different width values for the second wire L. We then analyse how the conductivity
depends on these parameters (W2 and L).
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5.1 Theoretical model

Our model describes electrons in the (x, y) plane moving from left to right in a region
with a L-shaped wire (see left side of Fig. 5.1). The effective-mass approximation was
considered and all electrons are confined by a step like potential, i.e., V (x, y) = 0 inside
the QW and V (x, y) = V0 otherwise. Abrupt interfaces between the confinement region
and the potential barrier are assumed. Similarly, in the right side of our set up, another
L-shaped QW is considered. The left QW is assumed to have fixed width W1 = 10 nm,
whereas for right QW, three different widths L (= W1/2, W1 and 2W1). The smooth
edges of the QWs are draw by circles of radius RW = W1/2 and RL = L/2 for the left
and right wire, respectively, in order to approach more realistic systems. The left side
is separated from the right by a distance W2 which ranges from 0 nm to 4.8 nm in this
work. In the transverse cross section, the QW behaves as a quasi-one-dimensional channel
where an electron confined in this region has a subband energy

Figure 5.1: Potential profile scheme for the QWs studied in this work. The two QWs
are separated from each other by a distance W2, ranging from 0 to 4.8 nm. The smooth
connections between vertical and horizontal wire are described by circles of radius RW =

W1/2 and RL = L/2.

En(kx) = E(y)
n +

~2k2x
2me

, (5.1)

where E(y)
n are the y components of the eigenvalues which were obtained numerically

for a potential of V0 = 600 meV. These eigenvalues are lower than the corresponding
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eigenvalues calculated for an infinite potential, E(y)
n = n2π2~2/2meW

2
1 , although this

analytical expression can be used for an estimate of energies in a quantum well of W1

width. A combination of a Gaussian function with a plane wave is injected from the left
to the right along the x direction, so that at t = 0 the wave packet is given by

Ψ(x, y) = exp

[
ik0x−

(x− x0)2
2σ2

x

]
φ0(y). (5.2)

Here, k0 =
√

2meε/~ is a wave vector corresponding to the kinetic energy ε, and φ0(y) is
the ground state wave function of the quantum well in the y direction. The width of the
wave packet in the x direction is fixed by σ. The time evolution of the wave packet is
studied with the split-operator technique, which allows to separate the kinetic terms for
each direction. This separation is important for systems with many degrees of freedom.
We follow the approach of Refs. [53] and [128], the details of which will not be reproduced
here.

The (x, y)-plane is discretized by a squared grid ∆x = ∆y = 0.4 nm, and the fi-
nite difference scheme is used to solve the derivatives in the kinetic energy terms of the
Hamiltonian. To avoid spurious reflection when the wave packet reaches the edges of our
set up, we applied an imaginary potential, as discussed in Ref. [53] and suggested by
Manolopoulos. [89] The current of the system is given by

J = − i~
2me

(Ψ∗∇Ψ−Ψ∇Ψ∗) . (5.3)

The transmission T probabilities are calculated in three different positions at vertical
(T1 and T3) and horizontal (T2) axis, as shown in Fig. 5.1. For horizontal axis we fixed
a point xr, localized in the right side and the transmission T2 is calculated as

T =

∞∫

0

dt

∞∫

−∞

dyJx (xr, y, t). (5.4)

For vertical axis we fixed a point yB in the bottom wire and a point yT in the top wire
and calculated the transmission T1 and T3 through Eq. (5.4), changing Jx (xr, y, t) for
Jy (x, yT , t) and Jy (x, yB, t), respectively, and the above spatial integral is now evaluated
along x-direction. The reflection probability R is calculated in the left side by fixing a
point xl in the left side and evaluating the integrals in dt and dy. More precisely

R = −
∞∫

0

dt

∞∫

−∞

dyJx(xL, y, t), (5.5)

where Jx is the x component of the probability current.
In order to investigate the scattering of an electron into different subbands of the

wires, we project the wave function on the jth eigenstate of the quantum well at a fixed
point xi, using the relation

Pj(xi, t) = |〈Ψ| φj〉|2 =

∣∣∣∣
∫ +∞

−∞
dyΨ (xi, y, t)φj (y)

∣∣∣∣
2

. (5.6)
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Eq. (5.6) is the probability density of finding an electron in the jth subband at position
xi per length in the x direction. Moreover, the contribution of each subband state to the
probability current can be calculated by

j(j)x (x, t) =
~

2mei

(
P̄ ∗j

∂

∂x
P̄j − P̄j

∂

∂x
P̄ ∗j

)
, (5.7)

where P̄j(x, t) = 〈φj |Ψ〉 gives the time-dependent wave function within the jth subband.
Notice that, since P̄j(x, t) is not normalized, its value can be larger than one. Finally, the
time-dependent probability current at xi is given by

Jt(xi, t) =

∫ +∞

−∞
Jx(xi, y, t)dy. (5.8)

Solution of Eqs. (5.6-5.8) form the basis to understand the conductivity and the
trajectory of the wave packet through the wires.

5.2 Transport properties

0.0 0.8 1.6 2.4 3.2 4.0 4.8
0.0

0.2

0.4

0.6

0.8

0.0 0.8 1.6 2.4 3.2 4.0 4.8

0.0

0.2

0.4

0.6

0.8
0.0 0.8 1.6 2.4 3.2 4.0 4.8

0.0

0.2

0.4

0.6

0.8

-50 -25 0 25 50

-25

0

25

(b)

T
ra

n
sm

is
si

on (a)

(c)

W
2
(nm)

(d)

x (nm)

y
(n

m
)

T
2

T2R

T1

T3

T2

w = 1.2 nm2

R

T1

T3

Figure 5.2: (a)-(c) Wave packet transmissions (T ) and reflexion (R) probabilities as
function of W2 for a well width of L = W1. The transmissions are calculated in three
different points in the QWs: bottom T1 (green, dash dot line), top T3 (red, dash line)
right T2 (black, solid line), while the reflexion R (blue, dash dot dot line) is calculated at
the left side, as shown in (d). The wave packet energies used are (a) ε1, (b) ε2 and (c) ε3.
(d) Snapshot of the wave function calculated at t = 160 fs for L = W1 and W2 = 1.2 nm
as depicted by the vertical dash line in (b).
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For all cases considered in this work, we consider material parameters for InGaAs
(wire) and GaAs (barrier material), in which the conduction band of the InGaAs/GaAs
heterostructure has a band-offset of 600 meV. Morover, for InGaAs the electron effective
mass is me = 0.041 m0. [108] The wave packets are injected from left to right at t = 0,
in the lowest subband φn=1(y). Three different values of the kinetic energy of the wave
packets are considered: ε1 = 70 meV, ε2 = 140 meV and ε3 = 200 meV.
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Figure 5.3: The same result as shows in Fig. 5.2, but now for L = 2W1.

Transmission and reflection probabilities obtained with our method are presented in
Fig. 5.2 and Fig. 5.3 as function of the distanceW2 for L = W1 and L = 2W1, respectively.
The transmission probabilities are calculated on the left-bottom wire T1 (green, dash dot
line), right-output wire T2 (black, solid line) and right-top wire T3 (red, dash line). The
reflection R (blue, dash dot dot line) is calculated on the input left-wire. We checked
numerically that the sum R +

∑
Ti = 1 is satisfied up to a maximum error of 0.1 %.

Figs. 5.2(d) and 5.3(d) are snapshots of the wave function with kinetic energy 70 meV,
calculated at t = 160 fs for W2 = 1.2 nm, as indicated by the vertical dashed-gray line
in Fig. 5.2(b) and Fig. 5.3(b), respectively. For a wave packet with kinetic energy ε1
(Figs. 5.2(a) and 5.3(a)) the transmission coefficient T2 decreases faster than the one with
kinetic energy ε3, (Figs. 5.2(c) and 5.3 (c)), i.e., the tunnelling through the barrier W2

is in general larger for higher kinetic energy. Furthermore, the transmission T2 decreases
towards zero with increasing width W2, and as a consequence, the transmission T1 and
reflection R increase such that T1 + R ' 1 for wide W2. The tunnelling T3 through the
top-right side is less than 10%, but nonzero even for high kinetic energy of the wave packet
and for different W2 distance. This behavior is shown in Figs. 5.2 and 5.3 by dashed red
lines for L = W1 and L = 2W1, respectively, and occurs because the quantum wire shape
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spreads the wave function around the position x = 0, specially for W2 = 0, where the
transmission is about 70 % through T1 and the other 30 % are reflected R or tunnel
through T2 and T3, as shown in Fig. 5.3(c). The transmission probability T2 in Figs.
5.2 and 5.3 is perfectly fitted by an exponential function f(W2) = A0 exp (−W2/τ)−A1,
where τ , A0 and A1 are fitting parameters given in Table 5.1.

Table 5.1: - Exponential fitting to transmission probabilities T2 shown in Figs. 5.2 and
5.3, for different energies ε and widths of the second wire L.

L = 10 nm L = 20 nm
ε A0 A1 τ A0 A1 τ

ε1 0.33 11.46 0.01 0.49 9.89 0.01
ε2 0.512 15.108 0.035 0.70 13.32 0.03
ε3 0.620 15.384 0.038 0.80 14.65 0.04
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Figure 5.4: Transmission coefficient (T2 + T3) as function of the well width L, for wave
packet energies (a) ε1 and (b) ε3. Three W2 distance were considered: 0 nm (black, solid
line), 1.2 nm (red, dash line) and 2.4 nm (blue, dotted line).

In order to clarify the role of the well width L in the output lead on the transmission
probabilities in Fig. 5.4 we display the transmission coefficient on the right side (T2 +
T3) as function of L for two different wave packet kinetic energies ε1 (a) and ε3 (b). Three
different W2 distances were considered namely, 0 nm (black, solid line), 1.2 nm (red, dash
line) and 2.4 (blue, dotted line). The transmission increase with increasing L which is a
consequence of the lowering of the subband energy states in the right side over which the
tunnelled wave function can be distributed. For a lower wave packet kinetic energy ε1 the
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transmission stays below 20 % for W2 distance above 1.2 nm, and for ε3 the transmission
keep below 40 %.

L = 5 nm L = 20 nm

E(kx)

E1(y)

70 meV

200 meV

L = 10 nm

E(kx) E(kx)

E2(y) E1(y) E3(y) E2(y) E1(y)

k
(1)

2k
(2)

2k
(3)

2k
(1)

2k
(2)

2k
(1)

2 kxkxkx

(b)(a) (c) (d)

Figure 5.5: (a) Bottom energy of the different subbands as function of the quantum
well width L. Schematic diagrams that represents the subband energies as function of
the wave vector kx in the x direction, for output width of (b) L = 5 nm, (c) L = 10 nm,
and (d) L = 20 nm. The horizontal dashed-dot lines represents the average energy of the
wave packet, ε1 and ε3.

Let us now discuss the contribution of each subband of the output lead to its overall
current. In order to have a better understanding of this problem, we display in Fig. 5.5(a)
the eigenenergies of the output lead as a function of its width. The average wave vector
kix of the wave packet is schematically shown in Figs. 5.5(b) for L = W1/2, 5.5(c) for
L = W1, and in 5.5(d) for L = 2W1. Here, the highest kinetic energy was chosen to
cover the first three subbands in the output lead, where the bottom of the subband is
found to be around ε3, for an output width of L = 2W1. This kinetic energy allows us to
calculate the influence of the subbands on the scattering of the wave packet. The number
of kx values allowed for each kinetic energy ε, at each subband, depends on the width L,
which in the case illustrated in Fig. 5.5 (b) is k(1)2 when L = W1/2. However, it take
values k(1)2 , k(2)2 , and k

(3)
2 for ε2 with L = 2W1 (see Fig. 5.5(d)). As for our Gaussian

wave packet, the initial wave functions with distributions of kx’s around k
(i)
x , that yields

an energy distribution ∆E as illustrated in Figs. 5.5(d). More details regarding the
initial wave package width in kx-space can be obtained by Fourier transform and this is
explained in details in Ref. [53]. In the case proposed here, where the wave function is
also Gaussian in reciprocal space, it is possible to determine the energy distribution of
the wave packet as ∆E = ~2∆k/mek0, where ∆k = 2

√
ln 2/σx is the full width at half

maximum (FWHM).[53]
In Fig. 5.6 we show the projection of the time-dependent wave packet on the ground

(P1), first-excited (P2), and second-excited state subband (P3) of the right-lead. The
projections are calculated numerically as function of W2 at the point x = 158 nm in the
right side, for output widths L = W1 (a) and L = 2W1 the (b). The results are shown
for wave packet kinetic energies of ε1 (black, solid line), ε2 (red, dash line) and ε3 (blue,
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dotted line). Initially the wave packet propagates in the lowest subband. As expected, all
projections decrease towards zero as W2 increases, since the overall current also exhibits
this decreasing behavior. For narrow wells, the packets with kinetic energies ε2 and ε3

scatter to the first excited state, while for energy ε1 this projection is almost zero for any
W2 value. The projection for the second excited state is only possible for wave packets
with an energy of ε3, as shown in Fig. 5.5(c). For quantum wells with L = 2W1, the
subbands energies get closer to each other such that the wave packet scatter to excited
states even for energy ε1, Fig. 5.6(b).
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Figure 5.6: Projection of the wave function on the ground state P1, first-excited P2

and second-excited subbands P3 integrated in time, for the output width L = W1, panels
column (a) and L = 2W1, panels column (b), as function of the distance W2 calculated
at position 158 nm in the right-lead.

An analysis of the time-dependent current probability for the wave packet as a function
of time is illustrated in Fig. 5.7. The wave packet propagates in the lowest subband from
the left to the right side with kinetic energy given by ε1 (blue, dotted line), ε2 (red, dash
line) and ε3 (black, solid line). Around y = 0 and along the x-axis, the potential is similar
to a simple quantum barrier with height of 600 meV. Calculated at x = 158 nm across
the potential barrier, the time-dependent current probability is a tunnelling current that
can give an estimate about the leakage current through the barrier. In Fig. 5.7 we plot
the tunnelling current probabilities for two different W2 distances: (a) W2 = 0 nm and
(b) 2.4 nm. For each W2 distance we consider three different output widths L, from top
to bottom L = W1/2 in the first row, L = W1 in the second, and L = 2W1 in the third
row. Clearly, the peak in the probability current is lower at low energies, and it also



5.2. TRANSPORT PROPERTIES 87

decreases (increases) with increasing distance (width) W2 (L). Particularly, in the case of
L = W1, Fig. 5.7 emphasizes the oscillatory behaviour of the probability current for the
two distances W2 used in our calculations. This probability current oscillation is due to
wave function scattering in the central region of the wires, as illustrated in Figs. 5.2 and
5.3 (d).It is easy to see that the current peak occurs faster as the energy increases, as a
consequence of the higher Fermi velocity in this case. Besides, increasing L for fixed W2

slightly shift the peaks to lower times, which is due to the fact that larger widths lead to
lower subband energies and consequently, higher momentum for fixed wave packet energy.
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Figure 5.7: The total time-dependent probability current for wave packet energy of ε1
(black, solid line), ε2 (red, dash line) and ε3 (blue, dotted line). Results for different
distances W2 are plotted in column (a) W2 = 0 nm, and column (b) W2 = 2.4 nm. The
output width L is in the first row L = W1/2, second row L = W1, and third row L = 2W1.

Finally, from a practical point of view, it is important to investigate the behaviour of
the conductance for different values of the kinetic energy, W2 distance and output width
L. With this in mind, we express the conductance as a particular case of the multiband
Landauer formalism [129, 130]

G(xt, yt) =
2e2

h

∑

n

Tn(xt, yt), (5.9)

where the output lead index l is 1, 2 or 3 for conductance calculated with T1, T2 and T3,
respectively, and the index n account for different occupied subbands in the input lead.
The quantum conductance (G0 = 2e2/h) is used here as unit of electrical conductance,
and the transmission coefficients T (n)

(xt,yt)
(ε) are calculate by setting the wave packet at the
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initial time in a given subband n, with average energy ε, and integrating the probability
current at the axis defined by (xt, yt), as in Eq. (5.4).
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Figure 5.8: Conductance in the output quantum wire as a function of the distance W2.
Wavepacket energy is ε1 (black, solid lines), ε2 (red, dashed lines) and ε3 (blue, dotted
lines) for quantum well L width of (a) 10 nm and (b) 20 nm.

Figure 5.8 displays the conductance versus the distance W2 calculated for three wave
packet kinetic energies ε1 (solid black), ε2 (dashed red) and ε3 (dotted blue). The con-
ductance was computed by taking into account the transmission probability of the first
three subbands for the T2 coefficient at x = 158 nm on the output lead, with output width
L = W1 in Fig. 5.8(a) and L = 2W1 in Fig. 5.8(b). The conductance depends strongly
on the distance W2. We observe that when the distance W2 increases the transmission
probability decreases, hence decreasing the conductance in the output region. The wave
packet scattering is larger for the case where L = W1, resulting in a larger reflection
probability, as can be seen in Figs. 5.2 and 5.3, which explains why G is higher in 5.8(b),
as compared to Fig. 5.8(a). Also, the conductance changes with the kinetic energy of
the wave function even for W2 = 0 nm, as observed in Fig. 5.8(a), as a consequence of
quantum scattering at the junction between the wires.

All results presented so far were made for fixed wave packet average energies ε = ε1,
ε2 or ε3. It is important to discuss how these results relate to possible future experiments
aiming to verify the quantum tunnelling effects investigated here. In fact, at temper-
ature T = 0K, Landauer formula for conductance is exactly given by Eq. (5.9), but
with transmission probabilities calculated for a plane wave with energy ε3. For non-zero
temperature, however, the transmission probability must be multiplied by the derivative
of the Fermi’s energy distribution and then integrated in energy, so that there will be
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a temperature dependent range of energies around the Fermi level that effectively con-
tribute to the overall conduction. Notice that in our calculations, since we do not consider
plane waves, results are never for a single ε3 and, consequently, they do not describe a
zero-temperature situation. Actually, the Gaussian wave packet considered here yields
a Gaussian distribution of momenta or, equivalently, a combination of plane waves with
different energies. Therefore, in a sense, our results for conductance are closely related to
those for non-zero temperature, where the width of the Gaussian wave packet in reciprocal
space is related to the width of the energy distribution and, consequently, plays the role
of the temperature. Finding the exact relation between temperature and the wave packet
width is, however, a difficult task, which is left for future works, whereas here we restrict
ourselves to a more qualitative discussion of this matter.

Having stated that, we now use our method to calculate the steps in conductance
as a function of the electron energy, as expected for a quantum channel such as the
one considered here. These steps cannot be sharp, since we are dealing with a non-zero
temperature simulation. This is shown in Fig. 5.9 for energies ranging from ε1 to ε3,
for three different W2 width: (a) 0 nm, (b) 1.2 nm, and (c) 2.4 nm. The conductance is
calculated between the input lead and the three possible output leads, namely, with T1

(dotted), T2 (solid) and T3 (dashed). Well widths are L = 5 nm (blue), 10 nm (black),
and 20 nm (red). Conductance to the upper lead G3 (dashed) is always close to zero and
reaches, at most, ≈ 0.15 for W2 = 0, as expected from the low transmission probabilities
for this lead observed in previous results in Figs. 5.2 and 5.3. Notice that for the widest
L width, three subbands are involved in the output lead for a wave packet kinetic energy
around ε3, as shown in Fig. 5.5 (d). On the other hand, for narrow widths, one subband
is involved for L = 5 nm, Fig. 5.5 (b), and two subbands are involved for L = 10 nm, Fig.
5.5 (c). For this reason, the conductances G2 in Fig. 5.9 (a) and (b) are clearly spaced for
different values of L. Since G2 is directly related to the current leak, it is responsible for
reducing the conductance through the original channel G1. For lower values of energy ε,
conductance G1 is reduced as the energy increases, due to the increasing current leakage
G2. This effect is reduced either as the distance between wires increases or as the second
wire width L is made narrower, thus hindering the quantum tunnelling between wires.
Furthermore, the differences between conductance G1 (dotted) for different values of L
become negligible as the W2 distance becomes too large, see Fig. 5.9 (c). The quantized
steps of conductance are also observed in the leakage current G2, but much lower than
those for G1, which suggests that states in the first excited subband of the input lead
have lower contribution for the leakage current as compared to those coming from the
first subband.



6
Dielectric mismatch and shallow donor impurities in

GaN/HfO2 quantum wells

When an impurity is introduced into a low dimensional structure, such as quantum
wells (QW), nano wires (NW) and quantum dots (QD) the calculation of the electronic
properties in this structures becomes considerably more complex if compared to that of a
doped three-dimensional crystal [131, 132, 133, 134, 135, 136]. This occurs because of the
restricted movement in the structure growth direction, which is imposed by the potential
due to band edges discontinuities ∆E. First, the binding energy of the carrier-impurity
in the structure depends on the confinement potential ∆E, and second, both the binding
energy and wave function of the carrier and impurity depends on the impurity position
in the structure growth direction. On the other hand, due to recent progress in epitaxial
crystal growth techniques, such as molecular beam epitaxy (MBE), research focusing on
impurity and electronic states in nano-structures has attracted great attention [137, 138].
However, effects caused by image charges due to the dielectric mismatch at the structure
interface have been overlooked. Indeed, donor binding energy can be significantly modi-
fied by additional confinement effects that image charges distribution produce [139, 140].
Thus, recent research focusing on high-k dielectrics based QWs and NWs reveals inter-
esting results related to carrier confinement [17, 141, 142, 143]. We recently demonstrate
that the interaction between carriers and their image charge, induced by the dielectric
mismatch (εr = εGaN/εHfO2 = 9.5 / 25 = 0.38), strongly modifies the electronic structure
in GaN/HfO2 QWs (and NWs) and for wide QWs (wide radii NWs) heavy holes are con-
fined in interfacial regions, similar to that observed in type-II heterostructures [17, 143].
Such interfacial confinement leads to drastic modification on the electronic properties of
the QWs and NWs. Particularly, for NWs under an applied magnetic field, where angular
momentum transitions occur in the ground state due to the Aharonov-Bohm effect [143].
A decrease in the oscillator strength of electron-hole pairs in εr < 1 QWs and NWs is also
predicted for wide QW and larger wire radii, which directly affects their recombination
rates [17, 143].

In this chapter, we investigate electron-impurity binding energy in GaN/HfO2 Qws.
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As for illustration we compared this results with those of a more typical AlN/GaN system.
The presence of a point charge in a region where the dielectric constant is discontinuous
induces polarization charges at the QW interfaces, and this problem can be solved by the
image charges method [144]. As shown here, The electron energy, electron wave func-
tion and the electron-impurity binding energy can change significantly due to additional
confinement effects produced by the image charge distribution. Our calculation consid-
ers simultaneously all energy contributions caused by the dielectric mismatch: (i) image
self-energy (interaction between electron and its image charges), (ii) the direct Coulomb
interaction between electron and the actual impurity, as well as (iii) the interactions
among electron and impurity image charges. Moreover, from practical means, we also in-
vestigate Stark effect and electron-impurity binding energy for two different confinement
regimes: narrow (5 nm) and wide (10 nm) QWs. When compared to the effective Bohr’s
radius for the GaN bulk a?B (= aBεGaN/m

∗
e = 2.65 nm; where aB = 0.53 is the Bohr’s ra-

dius) narrow and wide QWs used in this work are twice and four times the effective Bohr’s
radius, respectively. The binding energy of an electron bound to a hydrogenic impurity
is obtained as function of the impurity position, by solving a fully three-dimensional time
dependent Schrödinger equation using a method with neither adjustable parameters nor
restrictive basis expansions as employed by almost all theoretical approaches in the liter-
ature [104, 105, 145]. For simplicity, we address zinc blende GaN instead of its wurtzite
crystalline structure in order to avoid more complicated polarizations effects observed in
this phase [146].
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6.1 Theoretical Model

1. Time-dependent Schrödinger equation

The theoretical method used to calculate the binding energy of an electron bound
to a hydrogenic impurity is based on the adiabatic approximation. The time-dependent
Schrödinger equation [53, 128, 147, 148] is consistent with the effective mass approach
and the envelope function formalism

i~
∂

∂t
ψ (r, t) = Hψ (r, t) , (6.1)

and describes the quantized states of a single particle coupled to a quantum well under the
effect of impurity Coulomb potential and potential due to image charges. The Hamiltonian
H is given by

H =
1

2
P

1

m∗(r)
P + V (r), (6.2)

where P = −i~∇ is the kinetic energy operator and V (r) is the potential energy operator.
The initial solution Ψ(r, t) given by the method is

Ψ(r, t) = exp


− i

~

t∫

0

Hdt


Ψ(r, 0). (6.3)

The Hamiltonian of Equation (6.2) does not depend on time, so the integral in Equation
(6.3), solved in the range between t and t+ ∆t is given by

Ψ(r, t+ ∆t) = exp

(
− i
~
H∆t

)
Ψ(r, t), (6.4)

which is approximated by the expression

Ψ (r, t+ ∆t) = exp [−iV (r) ∆t/2~]

×exp
[
−ip2∆t/2~m∗

]

× exp [−iV (r) ∆t/2~] +O
(
∆t3
)
. (6.5)

The error introduced in this expression, when we drop the term O (∆t3), results from
the noncommutability of the kinetic and potential operators. The potential operator
V (r), with r = (ρe, ze, zim) and ρ =

√
x2 + y2, is given by
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Figure 6.1: (a) Energy potential ∆Ee(ze) due to conduction band edge descontinuity (red
dashed line) and the potential Σe(ze) due to self-energy corrections (black solid line). (b) Total
potential V (r) = ∆Ee (ze) + Σe (ze) +Ve−im (r) in the z direction (black solid line) and electron
ground state wave function (blue dashed line). (c) Coulomb potential Ve−m(r) of electron-
impurity interaction in 3D plot. (d) Total potential V (r) in 3D plot.

V (r) = ∆Ee (ze) + Σe (ze) + Ve−im (r) , (6.6)

where ∆Ee (ze) is the heterostructure band edge confinement, Σe (ze) is the self-energy
potential and Ve−im (r) is the direct electron-impurity Coulomb interaction. The last
term includes direct eletron-impurity Coulomb interaction and the interactions between
electron and impurity image charges. This contribution to the total potential was deduced
from solutions of the Poisson equation in 2D quantum structures, as shown in Eqs. (A21)-
(A25) of Reference [149]. Fig. 6.1 shows each potential given by Equation (6.6), for a 5
nm QW: Fig. 6.1(a) shows the potential due to band edges confinement ∆Ee (ze) (red
dashed line) and the self-energy potential Σe(ze) (black solid line), which is attractive
(repulsive) for charge on the low (high) dielectric constant side (εGaN < εHfO2). The
attractive potential on the well region produce cusps that appears near the edges of the
interface transition layers, shown in the total potential depicted in Fig. 6.1(b). For the
pourpose of our analyses, we plot in Fig. 6.1(c) and 6.1(d) the potential Ve−im (r),
due to direct electron-impurity Coulomb interaction, and the total potential V (r) in a
three-dimensional space, respectively.
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The eigenstates of the Hamiltonian are calculated by usin a propagation scheme in the
imaginary time domain. [148] Any wave function can be written as a linear combination
of the eigenstates of a Hamiltonian, since it forms a complete orthogonal basis

|Ψ〉t =
∞∑

n=0

ane
− iEnt~ |ϕn〉, (6.7)

where ϕn and En are the eigenfunction and eigenenergy of the nth eigenstate, respectively.
Using τ = it,

|Ψ〉t =
∞∑

n=0

ane
−Enτ~ |ϕn〉

= e−
E0τ
~

[
a0 |ϕ0〉+

∞∑

n=1

ane
− (En−E0)τ

~ |ϕn〉
]
. (6.8)

After several imaginary-time steps of propagation (τ →∞), the term of the ground state,
e−

E0τ
~ a0 |ϕ0〉, becomes strongly dominant over the terms of the sum, since En − E0 > 0

for n > 0. Therefore, starting with any wave function, this function should converge to
the ground state of the system as τ increases. We can consider as a very long time those
in which τ � ~/ (En − E0). The excited states are obtained adding to the algorithm the
Gram-Schmidt orthonormalization method which will assure orthonormality between all
states in each time step.

2. Self-energy potential

In order to calculate the effects of the self-energy potential Σe(ze), shown in Fig. 6.1(a)
(black solid line), on the electron energy we use the method based on image charges. The
electrostatic potential due to a charge Q located at r = (0, 0, z0), in a medium where the
dielectric constant ε(z) depends on the position is given by

∇ · [ε(z)∇φ(r)] = −Qδ(r − r0). (6.9)

The solution in cylindrical coordinates is independent of the azimuth angle (see detail
in References [17, 144]). In this case, we can write φ(r) in the general series as

φ(r) =

∞∫

0

qJ0(qR)Aq(z)dq, (6.10)

where J0(qR) is the Bessel function of the zeroth order, Aq(z) is a function determined by
the boundary conditions of φ(r) at the interfaces. The solution for the image self-energy
potential Σe(ze) is
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Figure 6.2: (Color online) Waves functions projection in the (yz) plane for the ground state,
first and second excited states. In (a) the impurity is located in zim = 0 nm and in (b) the
impurity is zim = 5 nm far from the center of the QW. The z-projection of the total potential
V (z), in eV, are depicted for QWs with width of L = 5 nm.

Σe(ze) =
Q

2

∞∫

0

q
[
Aq(z0)− A0

q(z0)
]
dq, (6.11)

whereA0
q(z0) is solution of Equation (6.10) if ε is z independent. Without loss of generality,

we shall here consider QWs with abrupt interface. The self energy potential Σe(ze) diverges
at the interface z = ±L/2 and we employ a numerical grid such that the coordinate in
z = ±L/2 does not sit at a grid point in order to avoid the divergence problem. The
major results for Σe(ze) can be seen in the Reference [17] and will not be repeat here.

6.2 Results and Discussion

As in the case of a model structure, QWs are formed by a zinc blende GaN layer
ranging in the region |z| ≤ a between two HfO2 layers in the region |z| ≥ a. Between
these materials, we consider the existence of abrupt interfaces at a position along the z
axis. The GaN electron effective mass were taken from experiments (m∗e = 0.19) [146],
and for simplicity, we have considered the electron effective mass invariable along z.
Although photoemission spectroscopy experiments demonstrated that ∆Ee = 2.1 eV for
wurtzite GaN/HfO2 interfaces [150], the absence of this information for the zinc blende
heterojunction leads us to estimate these quantities through the simple electron affinity
model [151, 152], for which we obtain ∆Ee = 0.9 eV. As shown in Fig. 6.1, the quantum
well has mirror symmetry from the origin in the z direction, at z = 0, and the reference
of the total potential V (z) in Equation (6.6) is taken with respect to the zero level of the
potential ∆Ee(z), as shown in Fig. 6.1(a).
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Figure 6.3: (Color online) Left panels: Electron energy for ground state (black solid line), first
(blue dashed line) and second (red doted line) excited state in QW for (a) narrow L = 5 nm QW
width and (b) wide L = 10 nm HfO2/GaN QW width. Right panels: Electron-impurity binding
energy for ground state (black solid line), first (blue dashed line) and second (red dotted line)
excited state energy as function of impurity position for a (c) narrow (L = 5 nm) QW and (d)
wide L = 10 nm HfO2/GaN QW. The dark yellow line-sphere depict the electron energy (left)
and electron-impurity binding energy (right) in narrow (top) and wide (bottom) AlN/GaN QW,
and the green dash-dot line shows the effect of the image charges in GaN/HfO2 QW.

The impurity can be placed at any position along z direction, and two particular
positions are show in the Fig. 6.2. Fig. 6.2(a) depicted the total potential V (z) projeted
along z direction, where the impiruty is located at the center of the QW in (xim, yim, zim) =

(0.0, 0.0, 0.0) nm. Fig. 6.2(b) shows the total potential V (z) with the impiruty located at
the interface in (xim, yim, zim) = (0.0, 0.0, 2.5) nm. These figures also display the energy
and the projection of the electron wave function in the (y, z) plane, for ground state
ψ0(y, z), first ψ1(y, z) and second ψ2(y, z) excited states, confined in a 5 nm QW. For
example, when the impurity is located in the center of the QW the ground state energy
is about 8.71 meV upward of potential energy reference, and goes up to 25.40 meV when
the impurity is placed at the interface of the QW. Noteworthy the potential energy V (z)

is attractive in the well region due to both electron-impurity interaction and attractive
behavior of the image self-energy. This potential move the electron to the center of the
QW and the wave function is concentrated in that region, as depicted in Fig. 6.2(a).
When the impurity is located at the interface, for a 5 nm QW, the electron is pushed
towards to the right interface, as shown by the ground state ψ0(y, z) and first excited state
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Figure 6.4: Schematic diagram of different interactions between electron and their image
charges, electron and impurity as well as electron and impurity image charges for GaN/AlN
(a)-(c) and in GaN/HfO2 (b)-(d) QWs. In (a)-(b) the impurity is located in the well region while
in (c)-(d) the impurity is located in the barrier region.

ψ1(y, z) wave fuction. Interestingly, the second excited state ψ2(y, z) is weakly attracted
by the impurity.

Figures 6.3(a) and 6.3(b) ilustrate the electron energy as function of the impurity
position along z axis, in narrow (L = 5 nm) and wide (L = 10 nm) QWs, respectively, for
the ground state energy (solid lines), first (dashed lines) and second (dotted lines) excited
states. Our result shows that the ground state energy increases asymptotically until the
point where it reaches values with less pronounced variations from zim ≈ 2 nm in narrow
QW and from zim ≈ 5 nm in wide QW. For zim > 2 nm in narrow QW and zim > 5 nm in
wide QW the ground state energy is invariant with zim position, which indicates that the
effect of the impurity potential is small when the impurity is located in the region of the
barrier. Excited states are, on the other hand, weakly affected by the impurity position.

The n-th electron-impurity binding energy level is calculated, with appropriate image
charge contribution take into consideration, by the difference

En,b = En(Ve−im 6= 0)− En(Ve−im = 0), (6.12)

where the term En(Ve−im 6= 0) means the n-th electron energy level calculated considering
Ve−im 6= 0 and En(Ve−im = 0) is the n-th electron energy level calculated considering
Ve−im = 0, in Equation (6.4). The absolute value of the electron-impurity binding energy,
as function of the impurity position, is depicted in Fig. 6.3(c) and Fig. 6.3(d) for
narrow (L = 5 nm) and wide (L = 10 nm) QWs, respectively. The curves are shown for
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Figure 6.5: Electron center-of-mass as function of the impurity position (zim) for (a) narrow
(L = 5 nm) and (b) wide (L = 10 nm) QWs. The ground state, first and second excited states are
represented by black solid, blue dashed and red dotted lines, respectively. The gray line-sphere
depict the standard deviation in position σx for narrow and wide QWs.

the ground state (black solid line), first exited state (blue dashed line) and second exited
state (red dotted line). As seen, the binding energy changes with impurity position in the
QW structure. The maximum ground state electron-impurity binding energy value occurs
in the center of the QW, for zim = 0 nm and decreases when the impurity moves towards
the interface (in both cases L = 5 nm and L = 10 nm) of the well region. For impurity at
the interface region, the electron is weakly bound and the binding energy is about 5 meV,
for the zim values investigated in this work. Excited states are always weakly bound to
impurities, independent of the zim position.

In order to help us to understand the role of the large dielectric constant in the barrier
region we compare the results for GaN/HfO2 with those of a more typical GaN/AlN
system, where we have εr = εGaN/εAlN = 9.5 / 8.5 = 1.12. Figure 6.3 show in dark yellow
line-sphere the electron energy and electron-impurity binding energy in narrow and wide
AlN/GaN QWs. Different from GaN/HfO2 (εr < 1) in a GaN/AlN (εr > 1) quantum well
the electron fell a repulsive potential in the well region due to the dielectric mismatch.
To elucidate the results presented in Figure 6.3(a) and (b) we show in Figure 6.4 a
schematic diagram of different interactions between electron, impurity and image charges
for GaN/AlN (a)-(c) and GaN/HfO2 (b)-(d) QWs. For the impurity at the well region,
this picture clearly shows that the coulomb potential of impurity and image charges is
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more attractive in GaN/AlN QW compared to that in GaN/HfO2 QW. For the impurity
located at barrier region the coulomb potential becomes more attractive in GaN/HfO2.
This explains why the electron energy is smaller (larger) at the GaN/AlN system when the
impurity is located in the well (barrier) region, as shown in Fig. 6.3(a) and (b). Without
dielectric mismatch, or even for εr > 1, the confinement energy is always positive since
the reference of confinement potential V (z) is always either zero or larger. The energy
En(Ve−im = 0) shown in the equation 6.12 is bigger in GaN/AlN than that in GaN/HfO2,
giving rise to a difference in the binding energy as it is shown in Fig. 6.3(c) and (d).
Aside from this difference this energy is essentially due to the band offset and the self
energy potential, as it is shown in the Fig. 6.1(a). Further more, as the impurity position
zim increase to the barrier region, the stationary states inside the well tends to discrete
states analogous to the case of a quantum well without impurity, as we can see in Fig.
6.3(a) and (b) for zim > 5 nm. In the binding energy En,b both contribution band offset
and self energy potentials are not take into account and the states collapse near to zim =

10 nm, as shown in Fig. 6.3(c) and (d).
To clarify the role played by the high dielectric mismatch at the interfaces we add in the

Fig. 6.3 (a) and (b), in dash-dot green lines the difference in the electron energy take into
account image charges and does not take into account the image charges contributions
for a GaN/HfO2 quantum well. This results show essentially the contribution due to
image self-energy (interaction between electron and its image charges) as well as the
interactions among electron and impurity image charges. As the impurity position increase
this difference increase asymptotically until reach the maximum value around the interface
position and decrease toward negative values in narrow quantum wells due to the attractive
character of the self energy in systems with εr < 1, as it can see on the Reference [141]
and [142].

To further elucidate here, the expectation value of the electron position 〈ze〉, along of
z axis, is ploted as function of the impurity position zim, for narrow (L = 5 nm) and wide
(L = 10 nm) QWs in Fig. 6.5(a) and Fig. 6.5(b), respectively. For wells with L = 5 nm
(L = 10 nm), the 〈ze〉 of the ground state (solid lines) has maximum displacement around
0.12 nm (1.0 nm) when the impurity is located in zim = 1 nm (zim = 3 nm). Moving
the impurity towards the barrier region, 〈ze〉 tends to return to the QW center. In this
case 〈ze〉 of the excited states are also weakly affected by the impurity position. We also
present in the Fig. 6.5 in gray line-sphere the standard deviation in the position, namely

the square root of the variance σx =
√
〈z2〉 − 〈z〉2. This quantity illustrate better the

transition from strong binding to weak binding as zin goes into the barrier, illustrating
the big variance at the interface position.

Finally, from practical point of view, it is important to investigate the effects of external
electric fields on the electronic structure of GaN/HfO2 QWs. In Fig. 6.6, we show the
stark shift ∆Ee = Ee(F 6= 0)−Ee(F = 0) of the three first electron energy states, for (a)
narrow and (b) wide QWs. The electron energy Ee(F 6= 0) is calculated by considering
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Figure 6.6: Stark shift of the ground state energy (solid lines), first excited state energy (dashed
lines) and second excited state energy in (a) narrow (5 nm) and (b) wide (10 nm) QWs.

an electric field F, pointing along the z direction, by including the term eFz on Equation
(6.6). Here, it is important to notice that the shift on the electron energy ∆Ee can be
underestimated by several meV with the applied electric field, i.e., ' 6 meV for narrow
QWs and ' 50 meV for wide QWs.



7
Summary

7.1 Concluding remarks of the thesis

In this thesis, we studied and computationally developed the Split-operator technique
for time dependent Schödinger equation in order to investigate transport and electronic
properties of semiconductor nanostructures. These nanostructures consist of quantum
rings, with different geometries (circular, semi-circular and squared) with central branches,
and under applied of magnetic field; L-shaped quantum wires and quantum wells with
external static electric field and impurities.

In first work, we investigated the propagation of a wave packet through a quantum
ring with an extra channel along its diameter. Surprisingly, our results demonstrate that
even when an extra channel is added in the horizontal direction, as a continuation of the
input and output leads, the transmission through the whole system can be lower than in
the absence of such an extra current path. This is evidence of the ”Braess paradox ana-
log” observed recently for mesoscopic networks. Nevertheless, while the original Braess
paradox in games theory is explained in terms of an attempt to optimize the flux, which
eventually leads to transport inefficiency in the equilibrium situation, the transport ineffi-
ciency observed for the wave packet propagation in quantum systems originates from two
possible effects: (i) the quantum scattering of the wave packet in the input channel-ring
junction, along with the absence of an allowed energy sub-band for propagation in the
central channel when it is too narrow, and (ii) the quantum interference between parts
of the wave packets that passed through the central channel and those that propagated
through the rings arms.

In second work, we investigated the WP propagation through rings with different
circular and squared shapes, adding an extra channel along their respective diameters,
and calculated the transmission probabilities as function of parameters like magnetic field
and extra channel width Wc. In the presence of an external magnetic field, the position
of the transmission probability minima owing to quantum interference are clearly shifted,
and Aharanov-Bohm oscillations are observed as well. Moreover, a charged AFM tip
placed over the systems, acts as an obstruction to some of the quantum pathways, is
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found to favor enhancement of the transmission probability in its minima under specific
conditions. Results shown here, therefore, not only allow us to discuss transport properties
of a branched out quantum ring in close resemblance with the Braess paradox, but also
provides tools to control the transmission probability minima in such systems.

In the third work, we presented a theoretical investigation of the electron tunneling and
the consequent current leakage between two bent quantum wires, based on the propagation
of a Gaussian wave packet. The two L-shaped semiconductor quantum wires are separated
by a distance W2. We discussed how changes in the distance between the two QWs
W2 affect the tunneling probability and current for different values of kinetic energy
wave packet. The wave packet scattered by the potential is reflected and transmitted
through the barrier. The tunneling current provides an estimate of the leakage current
in the system, which becomes larger as W2 is reduced. It is of fundamental and practical
importance to control these undesired leakage currents in miniaturized electronic devices
and circuits, thus, we believe the results presented here might contribute to help future
experimental investigations of carrier transport in low dimensional circuits and their future
applications in nanotechnology.

In the last work, we studied impurity stats with image charges effects in GaN/HfO2

quantum wells. Our results show that the electron-impurity binding energy is highest
when the impurity is located at the center of the quantum well and decreases when the
impurity moves towards the interface. When the impurity is located on the barrier region
the binding energy has a smaller intensity. Moreover, when a electric field is applied
perpendicularly to the QW plane the electron energy can be shifted by about 50 meV in
wide quantum wells. These results are lacking experimental confirmation, and we expect
that our predictions induce the realization of such experiments.

7.2 Future prospects

Regarding the study of charge carriers dynamics in semiconductor nanostructure, using
the wave packet propagation, we propose several interesting problems to be investigate
near future. So, as a short-term perspective, we intend to address a study about the
following problems:

• The wave packet propagation through a quantum dot with a localized magnetic
field, simulating a “Scanning Gate Microscopy” (SGM) experiment, where we hope
to calculate the transmission probabilities map as a function a magnetic field for
different positions of the magnetic tip;

• Investigate infrared photocurrent with one and two -photon absorptions in a quan-
tum dot: in this case, the wave packet propagation is in imaginary time, in order
to obtain the eigenstates of the system, and after that propagation in real time, to
calculate the interaction between the electron and the photon.
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• Investigate a quantum channel with impurities in order to obtain the interaction
of a photon with series of eigenstates of the system. We hope to obtain results to
compare with current experiments and help news works in this subject.

• As a last proposal, we suggest a multi terminals system, in order to observe which
channel will be preferential by the Gaussian wave packet, in the presence of an
uniform magnetic field. The to the system field will add a phase in the wave function,
changing the trajectory when compared to the system without magnetic field.
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We theoretically demonstrate that the transport inefficiency recently found experimentally for branched-out
mesoscopic networks can also be observed in a quantum ring of finite width with an attached central horizontal
branch. This is done by investigating the time evolution of an electron wave packet in such a system. Our
numerical results show that the conductivity of the ring does not necessary improve if one adds an extra channel.
This ensures that there exists a quantum analog of the Braess paradox, originating from quantum scattering and
interference.

DOI: 10.1103/PhysRevB.88.245417 PACS number(s): 73.63.−b, 85.35.Ds

I. INTRODUCTION

Suppose that two points A and B of a network are
connected only by two possible paths (e.g., roads in a traffic
network, or wires in an electricity network). One would
intuitively expect that adding a third path to the network that
connects these two points would lead to an improvement of
the flux through the preexisting roads and, consequently, to
a transmission enhancement. However, the so-called Braess
paradox1–3 of game theory states that this is not necessarily
the case: Under specific conditions,4 adding a third path to
a network instead may lead to transport inefficiency. This
effect has been observed even in traffic networks in big cities,
where closing roads improves the flux in traffic jams,5 or
in electricity networks, where it has been demonstrated that
adding extra power lines may lead to power outages, due to
desynchronization.6–8

A recent paper9 showed both experimental and theoretical
evidence of a very similar effect, but on a mesoscopic scale:
They observed that branching out a mesoscopic network does
not always improve the electrons’ conductance through the
system. As they were dealing with a system consisting of wide
transmission channels, quantum interference effects are not
expected to be relevant.10

In this paper, we demonstrate that the transport inefficiency
in branched-out devices also occurs on a nanoscale, when
only a few subbands are involved, and transport is strongly
influenced by quantum effects. For this purpose, we investigate
wave packet propagation through a circular quantum ring
attached to input (left) and output (right) leads,11 in the
presence of an extra channel passing diametrically through the
ring. Our results demonstrate that increasing the extra channel
width does not necessarily improve the overall current. The
fundamental reasons behind this effect, which are related to
quantum scattering and interference, are discussed in detail in
the following sections.

II. THEORETICAL MODEL

We consider an electron confined in a circular quantum
ring attached to input (left) and output (right) leads,11 in the
presence of an extra channel passing diametrically through
the ring, as sketched in Fig. 1(a). Both the ring and the leads

are assumed to have the same width W = 10 nm, whereas
different values of the extra channel width Wc are considered.

As the initial wave packet, we consider a plane wave with
wave vector k0 = √

2meε/h̄, where ε is the energy and me is
the electron effective mass, multiplied by a Gaussian function
in the x direction, and by the ground state φ0(y) of the input
channel in the y direction,

�(x,y,0) = exp

[
ik0x − (x − x0)2

2σ 2
x

]
φ0(y). (1)

Several papers have reported calculations on wave packet
propagation in nanostructured systems,12–15 hence, a number
of numerical techniques for this kind of calculation is available
in the literature, such as the expansion of the time-evolution
operator in Chebyshev polynomials,16 and Crank-Nicolson
based techniques.17 In the present work, the propagation
of the wave packet in Eq. (1) is calculated by using the
split-operator technique11,18,19 to perform successive applica-
tions of the time-evolution operator, i.e., �(x,y,t + �t) =
exp [−iH�t/h̄] �(x,y,t), where �t is the time step. The
Hamiltonian H is written within the effective mass approxima-
tion, describing an electron constrained to move in the (x,y)
plane and confined, by external potential barriers of height
V0, to move inside the nanostructured region represented in
gray in Fig. 1(a), where the potential is set to zero. The
interface between the confinement region and the potential
barrier is assumed to be abrupt. Nevertheless, considering
smooth potential barriers would not affect the qualitative
behavior of the results to be presented here, since the effect of
such smooth interfaces has been demonstrated to be mainly
a shift on the eigenenergies of the system.20,21 The (x,y)
plane is discretized in a �x = �y = 0.4 nm grid, and the
finite difference technique is used to perform the derivatives
coming from the kinetic energy terms of the Hamiltonian.
Imaginary potentials22 are placed on the edges of the input
and output channels in order to absorb the propagated wave
packet and avoid spurious reflection at the boundaries of
the computational box. As the wave packet propagates, we
compute the probability density currents at the input and output
leads, which, when integrated in time, gives us the reflection
and transmission probabilities, respectively, from which the
conductance can be calculated.

245417-11098-0121/2013/88(24)/245417(6) ©2013 American Physical Society
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FIG. 1. (Color online) (a) Sketch of the system under investi-
gation: A quantum ring with average radius R, attached to input
(left) and output (right) channels with the same width as the ring
(W = 10 nm), and to an extra horizontal channel of width Wc. (b)
Contour plots of the transmission probabilities as a function of the
extra channel width and ring radius. The solid, dashed, and dotted
lines indicate seven minima that are discussed in the text. A zoom of
the 4 nm < Wc < 16 nm region with the logarithm of the transmission
is shown in (c).

As the fabrication of InGaAs quantum ring structures has
already been reported in the literature,23 we assume that the
ring, channel, and leads in our model are made out of this
material, so that the electron effective mass is taken as me =
0.041m0. Nevertheless, the qualitative features of the results
presented in the following section do not depend on specific
material parameters.

III. RESULTS AND DISCUSSION

Contour plots of the calculated transmission probabilities
are shown in Fig. 1(b) as a function of the ring radius R and the
width Wc of the extra channel. Notice that the extra channel
in the system is opened in the horizontal direction, namely,
parallel to the input and output leads, being practically just
a continuation of these leads. Even so, instead of improving
the transmission, the existence of such a channel surprisingly
reduces the transmission probability for specific values of Wc,
leading to several minima in each curve. In what follows, we
discuss the origin of several of these minima, indicated by the
solid, dashed, and dotted curves in Fig. 1(b).

The position of the minima labeled as 1, 2, and 3 in
Figs. 1(b) and 1(c) changes with the ring radius, which
indicates that these minima are related to a path difference,
i.e., to an interference effect. Let us provide other arguments
to support this indication: In a very simplistic model, consider
that part of the wave packet travels through the central channel,
while the other part passes through the ring arms. The latter
runs a length ≈πR while going from the input to output leads,
whereas the former runs through the 2R diameter of the ring.
The condition for destructive interference is

γ
πR

λ
− 2R

λ̄
= n + 1

2
, (2)

where λ = 2π
/√

2meε/h̄
2 [λ̄ = 2π

/√
2me(E − Ēj )/h̄2] is

the wavelength in the ring arms (extra channel), Ei (Ēj ) is
the energy of the ith (j th) eigenstate of the input lead (extra
channel), and E = ε + Ei is the total energy of the wave
packet. The parameter γ is close to one and accounts for
the fact that the effective arm length may be slightly different
from πR [see Fig. 1(a)]. By substituting these expressions for
λ and λ̄ in Eq. (2), one obtains

Ēj = E − h̄2π2

2me

[
γ

2

√
2me

h̄2 ε −
(

n + 1

2

)
1

R

]2

. (3)

Hence, this equation gives the condition for the interference
related minima in the transmission probability. The extra
channel eigenstates Ēj depend on Wc—which can be fairly
well approximated by Ēj � β/W 1.85

c for large Wc (notice that
the structure has finite potential barriers, therefore, the infinite
square well relation Ēj ∝ 1/W 2

c is no longer valid). Therefore,
the minima for large Wc are expected to occur for

W (n)
c =

⎧⎪⎨
⎪⎩

β

E − h̄2π2

2me

[
γ

2

√
2me

h̄2 ε − (
n + 1

2

)
1
R

]2

⎫⎪⎬
⎪⎭

1/1.85

, (4)

which are shown in Fig. 1(b) by black dashed lines for
n = 1, 2, and 3. The model fits very well the numerically
obtained positions for these minima for γ = 0.865. The n = 0
minimum occurs outside of the investigated range Wc. The
wave packet in this case has a total energy E = 124 meV,
with ε = 70 meV and E0 = 54 meV (ground state of the
W = 10 nm input lead). For the 26 nm < Wc < 42 nm range in
Fig. 1(b), the eigenstates of the channel, which are accessible
by the electron with this energy, are the ground state and the
second excited state. The first and third excited states, although
still having energy lower than 124 meV for this range of Wc,
are not accessible by the wave packet because of the even
symmetry of the initial wave packet with respect to the x axis,
while these excited states of the channel are odd. Therefore, the
part of the wave packet that goes through the central channel
under these conditions populates mostly the second excited
state, but has also some projection on the ground state and
none on the other states. The fitting of Ēj for the second
excited state (j = 2) has β ≈ 3000 meV nm1.85, which is the
value used in Eq. (4) to obtain the dashed curves in Fig. 1(b).

The n = 1, 2, and 3 minima occurring for 7 nm < Wc <

15 nm in Fig. 1(b) can also be obtained from Eq. (4) but, since
this is a lower Wc range, the dependence of Ēj on Wc will
have a different exponent, and one needs to replace 1.85 by
1.50 in Eq. (4). Besides, for such low Wc, the wave function
travels predominantly through the ground state subband of the
extra channel, so that one must consider the j = 0 state of
this channel, which has β ≈ 56.99 meV nm1.50 in this range.
The results for this model are shown as black dotted lines in
Fig. 1(b). To show these minima more clearly, we present in
Fig. 1(c) a magnification of the logarithm of the probability
in the low Wc region. The numerically obtained minima are
well fitted by the model of Eq. (4) for γ = 0.925 with n =
1,2, . . . ,4 (see dotted lines).

In order to demonstrate that for lower (higher) values of Wc

the wave function inside the extra channel is predominantly
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FIG. 2. (Color online) Snapshot of the propagating wave function
at t = 900 fs for two values of the extra channel width: (a) 19 nm and
(b) 20 nm.

in its ground (second excited) state, Fig. 2 shows a snapshot
of the propagating wave function at t = 900 fs for two values
of the extra channel width: Wc = 19 nm (a) and 20 nm (b).
In the former case, the wave function inside the extra channel
exhibits predominantly a single maximum peak around y = 0,
which suggests a large contribution of the ground state
eigenfunction in the wave packet within this region. Similar
results are obtained for lower values of the channel width
Wc. However, the results for a slightly larger Wc = 20 nm
are qualitatively different, exhibiting three peaks along the
y direction inside the extra channel, which implies a higher
contribution of the second excited state on the wave function
in this region.

Differently from the other minima, the position of the first
minimum M in Fig. 1(b) appears around Wc = 5 nm and does
not change with the radius R. Therefore, this minimum cannot
be related to the above discussed interference effect. In order
to understand the origin of the M minima, we show in Fig. 3
the integrated current Jt in the input lead and the extra channel.
Figure 3(a) exhibits a high negative peak for Wc = 2 and 5 nm
at ≈100 and ≈140 fs, respectively, which represents a strong
reflection of the wave packet at the ring-channel junction.24

This is confirmed by the very low currents observed for these
cases inside the extra channel, in Fig. 3(b). On the other hand,
for Wc = 7 nm the reflection peak in the input lead becomes
very weak, while for Wc = 10 nm almost no reflection is
observed. For the latter two cases instead, large current peaks
are observed inside the extra channel. This is a clear indication
that the transmission inefficiency in the low Wc case is not
related to interference effects, but rather to scattering at the
ring-channel junction, since the wave packet barely enters the
extra channel when it is too narrow.
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FIG. 3. (Color online) Probability density currents as a function
of time, calculated (a) in the input lead and (b) in the extra channel,
for different values of the extra channel width Wc, for wave packet
energy ε = 70 meV.

We discuss now the possibility of having part of the
incoming wave packet pass through a narrow extra channel.
Both the leads and the extra channel have discrete eigenstates
due to the quantum well confinement in the y direction, whose
energy levels are shown in Fig. 4(a) as a function of the
well width. In the x direction, parabolic subbands stem from
these eigenstates, as illustrated in Fig. 4(b). The incoming
wave packet considered in Figs. 1–3 has ε = 70 meV on top
of its ground state energy in the input lead, E0 = 54 meV
(for W = 10 nm). This energy is represented by the dotted
horizontal lines in Figs. 4(a) and 4(b). The wave packet has a
Gaussian distribution of energies of width �E = h̄2/mek0�k,
where �k = 2

√
ln 2/σx is the full width at half maximum

(FWHM) of the wave vector distribution, which is represented
by the shaded area around the dotted line in Fig. 4(a). A
narrow extra channel has a very high ground state subband
energy, so that no component of the incoming wave packet
energy has enough energy to pass through the channel. As

FIG. 4. (Color online) (a) Eigenstates of a finite quantum well as
a function of its width. (b) Diagram representing the energy subbands
in the input lead and in the extra channel. The horizontal dotted line
is the average energy of the wave packet used in Figs. 1 and 3, and the
shaded area in (a) illustrates the FWHM of the energy distribution of
this wave packet.
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the extra channel width Wc increases, its subband energies
decrease, allowing the incoming wave packet to travel through
this channel. These two situations are illustrated in the upper
and lower figures of Fig. 4(b), respectively. Notice that the
upper boundary of the energy distribution (shaded area) in
Fig. 4(a) is crossed by the second excited state energy curve
(blue triangles) approximately at W = 20 nm. This explains
the drastic difference between the wave functions within the
extra channel with Wc = 19 and 20 nm, observed in Fig. 2:
In the latter case, the wave function has a significantly larger
part of its energy distribution above the second excited state
energy, allowing it to have a larger projection on this state.

Therefore, the counterintuitive result observed in Fig. 1,
namely, the transmission reduction as the extra channel width
increases for lower values of Wc, is a pure quantum scattering
effect. For classical particles, such an extra channel with
any width would allow the passage of the particles and,
consequently, improve the transmission. However, a quantum
channel has a confinement energy (ground state) and, if the
energy of the incoming particle is lower than this minimum,
the particle is not allowed to pass through the channel.
Therefore, adding a narrow extra channel to the system, which
effectively also adds extra scattering, does not add an extra
path for the wave packet, because of the very high ground
state energy of the narrow channel. This mechanism, which
is illustrated by the band diagrams in Fig. 4(b), leads to the
strong reflections observed in Fig. 3 for Wc = 2 and 5 nm. For
Wc > 5 nm, a significant part of the E = 70 meV wave packet
has enough energy to go through the extra channel, explaining
the increasing transmission as Wc increases above 5 nm. This
also suggests that incoming wave packets with higher energy
would need lower extra channel widths to pass, which is indeed
observed, as we will discuss further on.

In fact, the position of M strongly depends on the wave
packet energy, as shown in Fig. 5(a), where the transmission
probability in the vicinity of M is plotted as a function of the
channel width Wc for several values of the energy, ranging
from 70 meV (bottom curve) to 120 meV (top curve), with
10 meV intervals. The ring radius is fixed as R = 60 nm, and
each consecutive curve in this figure is shifted by 0.1. If the
energy dependence of the position of M is due to the above
discussed quantum effect, it should be possible to predict the
position of these minima from the following argument: The
highest energy components of the wave packet have energy
around ≈E + �E/2. These components would be allowed to
pass through the extra channel, consequently improving the
current, provided the channel width is wide enough to have
a ground state energy as low as their energy, i.e., if Ē0 <

E + �E/2. For low values of Wc, the ground state energy of
the channel is well approximated by Ē0 = α/W 1.04

c , for α =
8.65 eV, as shown by the green dashed line [f2(W ) function]
in Fig. 5(b). Notice it is a different power from the one used
in Eq. (4), which is valid only for higher Wc values. The
red dotted line [f1(W ) function] in Fig. 5(b) is an example
of fitting for high values of Wc, which was used in Eq. (4).
Figure 5(b) is in log-log scale, so that the power laws in f1(W )
and f2(W ) are shown as straight curves, whose slopes are
the functions’ exponents. Using this expression for Ēj , one
obtains the following approximate expression for the position

M

FIG. 5. (Color online) (a) Transmission probabilities as a function
of the extra channel width in the vicinity of the minimum labeled as
M in Fig. 1(a), for several values of the wave packet energy ε = 70
(bottom curve), 80, . . . ,180 meV (top curve). The curves were shifted
0.1 up from each other in order to help visualization. (b) Energy levels
(solid) as a function of the channel width, plotted in a log scale, along
with two fitting functions (dashed curves), for large (f1) and small
(f2) values of the channel width. (c) Numerically obtained (symbols)
positions of the M minima as a function of the wave packet energy,
along with the results (solid curve) of the analytical model, given by
Eq. (5).

of the M minima,

W (M)
c = 6103(

ε + E0 + h̄
√

ε
2me

�k
)1/1.04 , (5)

which is shown by the solid curve in Fig. 5(c). Notice the rather
good agreement with the numerically obtained positions of the
M minima, represented by the symbols.

It is important to point out that the exponents 1.85, 1.50,
and 1.04, as well as the values of α and β, found for the
fitting functions for the eigenstate energies as a function of
the well width and used in Eqs. (4) and (5) were obtained
for an abrupt interface between the potential barriers and the
confining region. These values must be slightly modified in
the case of smooth potential barriers.

Our results, therefore, demonstrate that the M minima in
Figs. 1 and 5 are a consequence of a competition between
two effects: (i) the quantum scattering in the ring-channel
junction, which increases the reflection when a narrow extra
channel is added, and (ii) the improvement in the transmission
resulting from the part of the wave packet that has enough
energy to propagate through the subbands of the extra channel.
The former suggests that adding extra scatterers at the input
lead-ring junction leads to a larger reflection back into the
input lead. In order to verify this, we consider two situations
that mimic the appearance of an extra “blind” channel (see the
insets of Fig. 6): One is the presence of an attractive Gaussian
potential11 Va(x,y) = −VG exp{[(x − xg)2 + y2]/2σ 2

G} close
to the lead-ring junction, and the other is a circular bump of
radius Rb in the inner boundary of the ring. Figure 6 shows

245417-4



BRAESS PARADOX AT THE MESOSCOPIC SCALE PHYSICAL REVIEW B 88, 245417 (2013)

0 100 200 300 400
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5

Tr
an

sm
iss

io
n

VG (meV)

Rb(nm)

FIG. 6. (Color online) Transmission probabilities for a ε =
70 meV wave packet scattered by two kinds of defects in the lead-ring
junction: A Gaussian attractive potential of depth VG (solid, bottom
axis) and width σG = 5 nm, and a circular bump of radius Rb (dashed,
top axis), which are schematically illustrated in the lower and upper
insets, respectively.

the transmission probabilities for ε = 70 meV as a function
of the Gaussian potential depth VG (bottom axis) and the
radius Rb (top axis) of the circular bump. In both cases, the
transmission is reduced in the presence of the extra scatterer,
which supports the idea that the transmission reduction in the
low Wc range in Figs. 1 and 5 is indeed a consequence of extra
scattering created by the opening of the extra channel, which
is, however, effectively blind, since the bottom of the ground
state subband of the narrow channel has energy higher than
that of the incoming electron wave packet.

All the results in this work were calculated for sharp
connections between the ring, the extra channel, and the input
and output leads. However, qualitatively similar results are also
obtained for smooth junctions11 between these parts of the
system. Moreover, different ring geometries would shift the
high Wc minima, which are related to quantum interference,
by effectively changing the electronic paths, while impurities
in the ring could suppress these minima by destroying phase
coherence. However, neither impurities nor different ring
geometries can affect the low Wc minimum (M), since it
is related only to quantum scattering in the input lead-ring
junction, which does not depend on these features.

The original version of the Braess paradox, described in
detail in Ref. 1, discusses how the travel time between two
points connected by only two possible roads, A and B, changes
if these two roads are interconnected by a third road C. If one
considers that the traffic at specific parts of A and B depends
on the number of drivers on these roads, then, depending on
the (partial) travel time through this new connection C, the
dominant strategy turns out to consist in starting on one road
and changing to the other road through the connection C,

and therefore all players (drivers) would take this path. This
strategy, though leading to the Nash equilibrium situation of
this system, represents an increase in the travel time—lower
travel times could even be reached if the drivers agree not to
use the connection C a priori, but in a scenario of selfish
drivers, they would switch roads until the equilibrium is
reached, despite the reduction in overall performance. There-
fore, the classical Braess paradox is closely related to an
unsuccessful attempt to optimize the travel time through a
traffic network by the drivers. The transport properties of
the branched-out mesoscopic network investigated in Refs. 9
and 10 is reminiscent of those of the road network in the
original Braess paper just in the sense that it exhibits a
reduced overall current when an extra channel is added to
the network, depending on the channel width. However, the
fundamental reason behind this phenomenon is not clear in
Refs. 9 and 10—it cannot be an interference effect, since
this is not a coherent system, but it is not also due to an
optimization of the currents, as in the classical paradox, since
the model in these papers does not involve nonlinear equations
or iterative calculations of the overall current flow. On the other
hand, for the quantum case investigated here, where such a
transmission reduction in the presence of an extra channel
is also observed, the main reason behind this Braess-like
paradoxical behavior is quite clear: For small values of the
channel width it is due to quantum scattering effects at the
ring-channel junction, whereas for larger widths it is due to
interference effects. Therefore, if one includes the transmission
reduction phenomena described here into the category of
analogs of the Braess paradox, one must keep in mind that,
just as most of the other analogs suggested in the literature,6–9

although presenting results similar to those of the original
Braess network, in the sense that more paths lead to reduced
performance, the reason behind this reduction is not related
to an attempt to optimize the flux, but to other fundamental
physical properties of the investigated system.

IV. CONCLUSIONS

We have investigated the propagation of a wave packet
through a quantum ring with an extra channel along its
diameter. Surprisingly, our results demonstrate that even when
an extra channel is added in the horizontal direction, as a
continuation of the input and output leads, the transmission
through the whole system can be lower than in the absence
of such an extra current path. This is evidence of the “Braess
paradox analog” observed recently for mesoscopic networks.
Nevertheless, while the original Braess paradox in game theory
is explained in terms of an attempt to optimize the flux, which
eventually leads to transport inefficiency in the equilibrium
situation, the transport inefficiency observed for the wave
packet propagation in quantum systems originates from two
possible effects: (i) the quantum scattering of the wave packet
in the input channel-ring junction, along with the absence
of an allowed energy subband for propagation in the central
channel when it is too narrow, and (ii) the quantum interference
between parts of the wave packets that passed through the
central channel and those that propagated through the ring
arms.
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a b s t r a c t

In this work we investigate electron–impurity binding energy in GaN/HfO2 quantum wells. The calcu-
lation considers simultaneously all energy contributions caused by the dielectric mismatch: (i) image
self-energy (i.e., interaction between electron and its image charge), (ii) the direct Coulomb interaction
between the electron–impurity and (iii) the interactions among electron and impurity image charges.
The theoretical model account for the solution of the time-dependent Schrödinger equation and the
results shows how the magnitude of the electron–impurity binding energy depends on the position of
impurity in the well-barrier system. The role of the large dielectric constant in the barrier region is
exposed with the comparison of the results for GaN/HfO2 with those of a more typical GaN/AlN system,
for two different confinement regimes: narrow and wide quantum wells.

& Elsevier B.V. All rights reserved.

1. Introduction

When an impurity is introduced into a low dimensional
structure, such as quantum wells (QW), nano wires (NW) and
quantum dots (QD) the calculation of the electronic properties in
this structures becomes considerably more complex if compared
to that of a doped three-dimensional crystal [1–6]. This occurs
because of the restricted movement in the structure growth di-
rection, which is imposed by the potential due to band edges
discontinuities ΔE. First, the binding energy of the carrier-impurity
in the structure depends on the confinement potential ΔE, and
second, both the binding energy and wave function of the carrier
and impurity depends on the impurity position in the structure
growth direction. On the other hand, due to recent progress in
epitaxial crystal growth techniques, such as molecular beam epi-
taxy (MBE), research focusing on impurity and electronic states in
nano-structures has attracted great attention [7,8]. However, ef-
fects caused by image charges due to the dielectric mismatch at
the structure interface have been overlooked. Indeed, donor
binding energy can be significantly modified by additional con-
finement effects that image charges distribution produce [9,10].
Thus, recent research focusing on high-k dielectrics based QWs
and NWs reveals interesting results related to carrier confinement
[11–14]. We recently demonstrate that the interaction between

carriers and their image charge, induced by the dielectric mis-
match ε ε ε= = =( / 9.5/25 0.38)r GaN HfO2

, strongly modifies the elec-
tronic structure in GaN/HfO2 QWs (and NWs) and for wide QWs
(wide radii NWs) heavy holes are confined in interfacial regions,
similar to that observed in type-II heterostructures [13,14]. Such
interfacial confinement leads to drastic modifications on the
electronic properties of the QWs and NWs. Particularly, for NWs
under an applied magnetic field, where angular momentum
transitions occur in the ground state due to the Aharonov–Bohr
effect [14]. A decrease in the oscillator strength of electron–hole
pairs in ε < 1r QWs and NWs is also predicted for wide QW and
larger wire radii, which directly affects their recombination rates
[13,14].

In this work, we investigate electron–impurity binding energy
in GaN/HfO2 Qws. As for illustration we compared this results with
those of a more typical AlN/GaN system. The presence of a point
charge in a region where the dielectric constant is discontinuous
induces polarization charges at the QW interfaces, and this pro-
blem can be solved by the image charges method [15]. As shown
here, The electron energy, electron wave function and the elec-
tron–impurity binding energy can change significantly due to
additional confinement effects produced by the image charge
distribution. Our calculation considers simultaneously all energy
contributions caused by the dielectric mismatch: (i) image self-
energy (interaction between electron and its image charges), (ii)
the direct Coulomb interaction between electron and the actual
impurity, as well as (iii) the interactions among electron and im-
purity image charges. Moreover, from practical means, we also
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investigate stark effect and electron–impurity binding energy for
two different confinement regimes: narrow (5 nm) and wide
(10 nm) QWs. When compared to the effective Bohr's radius for
the GaN bulk ε= =⋆ ⁎a a m( / 2.65 nmB B eGaN ; where aB¼0.53 Å is the
Bohr's radius) narrow and wide QWs used in this work are twice
and four times the effective Bohr's radius, respectively. The bind-
ing energy of an electron bound to a hydrogenic impurity is ob-
tained as function of the impurity position, by solving a fully
three-dimensional time dependent Schrödinger equation using a
method with neither adjustable parameters nor restrictive basis
expansions as employed by almost all theoretical approaches in
the literature [16–18]. For simplicity, we address zinc blende GaN
instead of its wurtzite crystalline structure in order to avoid more
complicated polarizations effects observed in this phase [19].

2. Theoretical model

2.1. Time-dependent Schrödinger equation

The theoretical method used to calculate the binding energy of
an electron bound to a hydrogenic impurity is based on the
adiabatic approximation. The time-dependent Schrödinger equa-
tion [20–23] is consistent with the effective mass approach and
the envelope function formalism:

ψ ψ=∂
∂i r t H r t? ( , ) ( , ), (1)t

and describes the quantized states of a single particle coupled to a
quantum well under the effect of impurity Coulomb potential and
potential due to image charges. The Hamiltonian H is given by

= +⁎H P
m r

P V r
1
2

1
( )

( ),
(2)

where = − ∇P i? is the kinetic energy operator and V(r) is the
potential energy operator. The initial solution Ψ r t( , ) given by the
method is

⎛
⎝⎜

⎞
⎠⎟∫Ψ Ψ= −r t

i
H dt r

?
( , ) exp ( , 0).

(3)

t

0

The Hamiltonian of Eq. (2) does not depend on time, so the
integral in Eq. (3), solved in the range between t and + Δt t is given
by

⎛
⎝⎜

⎞
⎠⎟Ψ Ψ+ Δ = − Δr t t

i
H t r t

?
( , ) exp ( , ),

(4)

which is approximated by the expression:

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

Ψ + Δ = − Δ × − Δ
× − Δ + Δ

⁎

( )
r t t iV r t ip t m

iV r t O t

? ?

?

( , ) exp[ ( ) /2 ] exp /2

exp ( ) /2 . (5)

2

3

The error introduced in this expression, whenwe drop the term
ΔO t( )3 , results from the noncommutability of the kinetic and po-

tential operators. The potential operator V r( ), with ρ=r z z( , , )e e im

and ρ = +x y2 2 , is given by

Σ= Δ + + −V r E z z V r( ) ( ) ( ) ( ), (6)e e e e e im

where ΔE z( )e e is the heterostructure band edge confinement, Σ z( )e e

is the self-energy potential and −V r( )e im is the direct electron–im-
purity Coulomb interaction. The last term includes direct electron–
impurity Coulomb interaction and the interactions between elec-
tron and impurity image charges. This contribution to the total
potential was deduced from solutions of the Poisson equation in
2D quantum structures, as shown in Eqs. (A21)–(A25) of Ref. [24].
Fig. 1 shows each potential given by Eq. (6), for a 5 nm QW: Fig. 1

(a) shows the potential due to band edges confinement ΔE z( )e e (red
dashed line) and the self-energy potential Σ z( )e e (black solid line),
which is attractive (repulsive) for charge on the low (high)
dielectric constant side ε ε<( )GaN HfO2

. The attractive potential on
the well region produce cusps that appears near the edges of the
interface transition layers, shown in the total potential depicted in
Fig. 1(b). For the purpose of our analyses, we plot in Fig. 1(c) and
(d) the potential −V r( )e im , due to direct electron–impurity Coulomb
interaction, and the total potential V r( ) in a three-dimensional
space, respectively.

The eigenstates of the Hamiltonian are calculated by using a
propagation scheme in the imaginary time domain. [22] Any wave
function can be written as a linear combination of the eigenstates
of a Hamiltonian, since it forms a complete orthogonal basis:

∑Ψ φ= | 〉
=

∞
−a e ,

(7)
t

n
n

iE t
n

?

0

/n

where φn and En are the eigenfunction and eigenenergy of the nth
eigenstate, respectively. Using τ = it ,

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑ ∑Ψ φ φ φ| 〉 = | 〉 = | 〉 + | 〉τ τ τ

=

∞
− −

=

∞
− −a e e a a e .

(8)
t

n
n

E
n

E

n
n

E E
n

? ? ?

0

/ /
0 0

1

( ) /n n0 0

After several imaginary-time steps of propagation τ → ∞( ), the
term of the ground state, φ| 〉τ−e aE ?/

0 0
0 , becomes strongly dominant

over the terms of the sum, since − >E E 0n 0 for >n 0. Therefore,
starting with any wave function, this function should converge to
the ground state of the system as τ increases. We can consider as a
very long time those in which τ ≫ −E E?/( )n 0 . The excited states
are obtained adding to the algorithm the Gram-Schmidt ortho-
normalization method which will assure orthonormality between
all states in each time step.

2.2. Self-energy potential

In order to calculate the effects of the self-energy potential
Σ z( )e e , shown in Fig. 1(a) (black solid line), on the electron energy
we use the method based on image charges. The electrostatic
potential due to a charge Q located at =r z(0, 0, )0 , in a medium

Fig. 1. (Color online) (a) Energy potential ΔE z( )e e due to conduction band edge
discontinuity (red dashed line) and the potential Σ z( )e e due to self-energy correc-
tions (black solid line). (b) Total potential Σ= Δ + + −V r E z z V r( ) ( ) ( ) ( )e e e e e im in the z
direction (black solid line) and electron ground state wave function (blue dashed
line). (c) Coulomb potential −V r( )e m of electron–impurity interaction in 3D plot.
(d) Total potential V(r) in 3D plot.
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where the dielectric constant ε z( ) depends on the position is given
by

ε ϕ δ∇· ∇ = − −z r Q r r[ ( ) ( )] ( ). (9)0

The solution in cylindrical coordinates is independent of the
azimuth angle (see detail in References [15,13]). In this case, we
can write ϕ r( ) in the general series as

∫ϕ = ∞
r qJ qR A z dq( ) ( ) ( ) , (10)q

0 0

where J qR( )0 is the Bessel function of the zeroth order, A z( )q is a
function determined by the boundary conditions of ϕ r( ) at the
interfaces. The solution for the image self-energy potential Σ z( )e e is

⎡
⎣⎢

⎤
⎦⎥∫Σ = −∞

z
Q

q A z A z dq( )
2

( ) ( ) ,
(11)e e q q

0
0

0
0

where A z( )q
0

0 is solution of Eq. (10) if ε is z independent. Without
loss of generality, we shall here consider QWs with abrupt inter-
face. The self-energy potential Σ z( )e e diverges at the interface

= ±z L/2 and we employ a numerical grid such that the coordinate
in = ±z L/2 does not sit at a grid point in order to avoid the
divergence problem. The major results for Σ z( )e e can be seen in the
Reference [13] and will not be repeat here.

3. Results and discussion

As in the case of a model structure, QWs are formed by a zinc
blende GaN layer ranging in the region | | ≤z a between two HfO2

layers in the region | | ≥z a. Between these materials, we consider
the existence of abrupt interfaces at a position along the z axis. The
GaN electron effective mass were taken from experiments

=⁎m( 0.19)e [19], and for simplicity, we have considered the elec-
tron effective mass invariable along z. Although photoemission
spectroscopy experiments demonstrated that Δ =E 2.1 eVe for
wurtzite GaN/HfO2 interfaces [25], the absence of this information
for the zinc blende heterojunction leads us to estimate these
quantities through the simple electron affinity model [26,27], for
which we obtain Δ =E 0.9 eVe . As shown in Fig. 1, the quantum
well has mirror symmetry from the origin in the z direction, at
z¼0, and the reference of the total potential V z( ) in Eq. (6) is taken
with respect to the zero level of the potential ΔE z( )e , as shown in
Fig. 1(a).

The impurity can be placed at any position along z direction,
and two particular positions are shown in Fig. 2. Fig. 2(a) depicted
the total potential V(z) projected along z direction, where the
impurity is located at the center of the QW in

=x y z( , , ) (0.0, 0.0, 0.0)im im im nm. Fig. 2(b) shows the total potential
V(z) with the impurity located at the interface in

=x y z( , , ) (0.0, 0.0, 2.5) nmim im im . These figures also display the
energy and the projection of the electron wave function in the (y,z)
plane, for ground state ψ y z( , )0 , first ψ y z( , )1 and second ψ y z( , )2
excited states, confined in a 5 nm QW. For example, when the
impurity is located in the center of the QW the ground state en-
ergy is about 8.71 meV upward of potential energy reference, and
goes up to 25.40 meV when the impurity is placed at the interface
of the QW. Noteworthy the potential energy V(z) is attractive in
the well region due to both electron–impurity interaction and
attractive behavior of the image self-energy. This potential move
the electron to the center of the QW and the wave function is
concentrated in that region, as depicted in Fig. 2(a). When the
impurity is located at the interface, for a 5 nm QW, the electron is
pushed towards to the right interface, as shown by the ground
state ψ y z( , )0 and first excited state ψ y z( , )1 wave function. Inter-
estingly, the second excited state ψ y z( , )2 is weakly attracted by the
impurity.

Fig. 3(a) and (b) illustrates the electron energy as function of
the impurity position along z axis, in narrow (L¼5 nm) and wide
(L¼10 nm) QWs, respectively, for the ground state energy (solid
lines), first (dashed lines) and second (dotted lines) excited states.
Our result shows that the ground state energy increases asymp-
totically until the point where it reaches values with less pro-
nounced variations from ≈z 2 nmim in narrow QW and from

≈z 5 nmim in wide QW. For >z 2 nmim in narrow QW and
>z 5 nmim in wide QW the ground state energy is invariant with

zim position, which indicates that the effect of the impurity po-
tential is small when the impurity is located in the region of the
barrier. Excited states are, on the other hand, weakly affected by
the impurity position.

The nth electron–impurity binding energy level is calculated,
with appropriate image charge contribution taken into con-
sideration, by the difference

= ≠ − =− −E E V E V( 0) ( 0), (12)n b n e im n e im,

where the term ≠−E V( 0)n e im means the n-th electron energy level
calculated considering ≠−V 0e im and =−E V( 0)n e im is the n-th elec-
tron energy level calculated considering =−V 0e im , in Eq. (4). The
absolute value of the electron–impurity binding energy, as func-
tion of the impurity position, is depicted in Fig. 3(c) and (d) for
narrow (L¼5 nm) and wide (L¼10 nm) QWs, respectively. The

Fig. 2. (Color online) Waves functions projection in the yz( ) plane for the ground
state, first and second excited states. In (a) the impurity is located in =z 0 nmim and
in (b) the impurity is =z 5 nmim far from the center of the QW. The z-projection of
the total potential V(z), in eV, are depicted for QWs with width of L¼5 nm.
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curves are shown for the ground state (black solid line), first exited
state (blue dashed line) and second exited state (red dotted line).
As seen, the binding energy changes with impurity position in the
QW structure. The maximum ground state electron–impurity
binding energy value occurs in the center of the QW, for

=z 0 nmim and decreases when the impurity moves towards the
interface (in both cases L¼5 nm and L¼10 nm) of the well region.
For impurity at the interface region, the electron is weakly bound
and the binding energy is about 5 meV, for the zim values
investigated in this work. Excited states are always weakly bound
to impurities, independent of the zim position.

In order to help us to understand the role of the large dielectric
constant in the barrier region we compare the results for
GaN/HfO2 with those of a more typical GaN/AlN system, where we
have ε ε ε= = =/ 9.5/8.5 1.12r GaN AlN . Fig. 3 shows in dark yellow
line-sphere the electron energy and electron–impurity binding

energy in narrow and wide AlN/GaN QWs. Different from
GaN/HfO2 ε <( 1)r in a GaN/AlN ε >( 1)r quantum well the electron
fell a repulsive potential in the well region due to the dielectric
mismatch. To elucidate the results presented in Fig. 3(a) and
(b) we show in Fig. 4 a schematic diagram of different interactions
between electron, impurity and image charges for GaN/AlN (a)–
(c) and GaN/HfO2 (b)–(d) QWs. For the impurity at the well region,
this picture clearly shows that the coulomb potential of impurity
and image charges is more attractive in GaN/AlN QW compared to
that in GaN/HfO2 QW. For the impurity located at barrier region
the coulomb potential becomes more attractive in GaN/HfO2. This
explains why the electron energy is smaller (larger) at the GaN/
AlN system when the impurity is located in the well (barrier) re-
gion, as shown in Fig. 3(a) and (b). Without dielectric mismatch, or
even for ε > 1r , the confinement energy is always positive since the
reference of confinement potential V(z) is always either zero or
larger. The energy =−E V( 0)n e im shown in Eq. (12) is bigger in GaN/
AlN than that in GaN/HfO2, giving rise to a difference in the
binding energy as it is shown in Fig. 3(c) and (d). Aside from this
difference this energy is essentially due to the band offset and the
self-energy potential, as it is shown in Fig. 1(a). Further more, as
the impurity position zim increase to the barrier region, the sta-
tionary states inside the well tends to discrete states analogous to
the case of a quantum well without impurity, as we can see in
Fig. 3(a) and (b) for >z 5 nmim . In the binding energy En b, both
contribution band offset and self-energy potentials are not taken
into account and the states collapse near to =z 10 nmim , as shown
in Fig. 3(c) and (d).

To clarify the role played by the high dielectric mismatch at the
interfaces we add in the Fig. 3(a) and (b), in dash-dot green lines
the difference in the electron energy taken into account image
charges and does not taken into account the image charges con-
tributions for a GaN/HfO2 quantum well. This results show es-
sentially the contribution due to image self-energy (interaction
between electron and its image charges) as well as the interactions
among electron and impurity image charges. As the impurity po-
sition increase this difference increase asymptotically until reach
the maximum value around the interface position and decrease
toward negative values in narrow quantum wells due to the at-
tractive character of the self-energy in systems with ε < 1r , as it
can see on the References [12] and [13].

Fig. 3. (Color online) Left panels: Electron energy for ground state (black solid line),
first (blue dashed line) and second (red doted line) excited state in QW for
(a) narrow L¼5 nm QW width and (b) wide L¼10 nm HfO2/GaN QW width. Right
panels: Electron–impurity binding energy for ground state (black solid line), first
(blue dashed line) and second (red dotted line) excited state energy as function of
impurity position for a (c) narrow (L¼5 nm) QW and (d) wide L¼10 nm HfO2/GaN
QW. The dark yellow line-sphere depict the electron energy (left) and electron–
impurity binding energy (right) in narrow (top) and wide (bottom) AlN/GaN QW,
and the green dash-dot line shows the effect of the image charges in GaN/HfO2 QW.

Fig. 4. (Color online) Schematic diagram of different interactions between electron and their image charges, electron and impurity as well as electron and impurity image
charges for GaN/AlN (a)–(c) and in GaN/HfO2 (b)–(d) QWs. In (a)–(b) the impurity is located in the well region while in (c)–(d) the impurity is located in the barrier region.
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To further elucidate here, the expectation value of the electron
position ze , along of z axis, is plotted as function of the impurity
position zim, for narrow (L¼5 nm) and wide (L¼10 nm) QWs in
Fig. 5(a) and (b), respectively. For wells with L¼5 nm (L¼10 nm),
the ze of the ground state (solid lines) has maximum displace-
ment around 0.12 nm (1.0 nm) when the impurity is located in

= =z z1 nm ( 3 nm)im im . Moving the impurity towards the barrier
region, ze tends to return to the QW center. In this case ze of the
excited states are also weakly affected by the impurity position.
We also present in the Fig. 5 in gray line-sphere the standard
deviation in the position, namely the square root of the variance

σ = −z zx
2 2 . This quantity illustrate better the transition

from strong binding to weak binding as zin goes into the barrier,
illustrating the big variance at the interface position.

Finally, from practical point of view, it is important to in-
vestigate the effects of external electric fields on the electronic
structure of GaN/HfO2 QWs. In Fig. 6, we show the stark shift
Δ = ≠ − =E E F E F( 0) ( 0)e e e of the three first electron energy states,
for (a) narrow and (b) wide QWs. The electron energy ≠E F( 0)e is
calculated by considering an electric field F, pointing along the z
direction, by including the term eFz in Eq. (6). Here, it is important
to notice that the shift on the electron energy ΔEe can be under-
estimated by several meV with the applied electric field, i.e.,
≃6 meV for narrow QWs and ≃50 meV for wide QWs.

4. Conclusions

In conclusion, we have studied impurity state with image
charges effects in GaN/HfO2 quantum wells. Our results show that

the electron–impurity binding energy is highest when the im-
purity is located at the center of the quantum well and decreases
when the impurity moves towards the interface. When the im-
purity is located on the barrier region the binding energy has a
smaller intensity. Moreover, when a electric field is applied on z
direction the electron energy can be shifted by about 50 meV in
wide quantum wells. These results are lacking experimental con-
firmation, and we expect that our predictions induce the realiza-
tion of such experiments.
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We theoretically investigate the effect of opening and closing pathways on the dynamics of electron
wave packets in semiconductor quantum rings with semi-circular, circular, and squared geometries.
Our analysis is based on the time evolution of an electron wave packet, within the effective-mass
approximation. We demonstrate that opening an extra channel in the quantum ring does not
necessarily improve the electron transmission and, depending on the extra channel width, may even
reduce it, either due to enhancement of quantum scattering or due to interference. In the latter
case, transmission reduction can be controlled through the Aharonov-Bohm phase of the wave
function, adjusted by an applied magnetic field. On the other hand, closing one of the channels of
the branched out quantum ring systems surprisingly improves the transmission probability under
specific conditions.

PACS numbers: 73.63.-b, 85.35.Ds, 73.63.Nm

I. INTRODUCTION

Carrier transport is a very important property of meso-
scopic and nanoscopic physical systems, for both aca-
demic and technological applications. In particular, the
transport inefficiency caused by the addition of an extra
path to a network1–3 have been subject of recent interest
in the literature. This behaviour is in contrast to com-
mon sense and was both experimentally and theoretically
demonstrated in a branched out mesoscopic network,4

and theoretically confirmed in a quantum dots system
coupled by multi-leads in a mesoscopic setup.5 In the
first case, the system under investigation was of microm-
eter scale with wide transmission channels and conse-
quently quantum interference effects are expected not to
be relevant.6 In the second case, the system consists of
two quantum dots, each one coupled to ideal electronic
leads with an independent number of open propagating
channels. These effects appear to be similar to the Braess
paradox of games theory,7 but now on a mesoscopic scale.
The paradox lies in the fact that, as demonstrated in Ref.
7, adding an extra road in a traffic network does not
necessarily improve the overall traffic flow. In a more
general interpretation of the paradox, recent works have
proposed further examples of systems where better con-
ditions leads to worse performance.8,9

From a nanoscopic point of view, the dynamics of
waves in nanodevices with multiterminals is affected
quantum effects.10 In a previous work, we demonstrated
that transport inefficiency in branched out devices also
occurs on a quantum scale, when few subbands are in-
volved in the transport.11 The transport properties are
strongly influenced by quantum scattering and interfer-
ence, so that a similar reduction in transmission can
be found in a quantum ring with a central branch. In
the present paper, we extend our previous work in Ref.
[11] and investigate: (i) the effed of the geometry of the

quantum ring, by considering, semi-circular, circular and
squared rings, (ii) the effect of an Aharonov-Bohm (AB)
phase, induced by an external magnetic field, and (iii)
an AFM tip potential which is able to the effect of the
position of obstruct one of the system channels. For this
purpose, we investigate wave packet propagation through
these branched quantum rings, attached to input and
output leads, by numerically solving the time-dependent
Schrödinger equation. Our results show that the so-called
quantum analog of the Braess paradox is robust in these
nano scale devices and that it is a correspondence of ef-
fects related to a combination between quantum inter-
ference and scattering events. We also shown here the
Braess effect can be tuned by magnetic field and electric
fields

II. THEORETICAL MODEL

We consider here four different planar quantum rings,
attached to input (left) and output (right) leads for elec-
trons injection, in the presence of an extra channel. We
assume that the rings and the leads have the same width
W = 10 nm, while the width of the extra branch Wc, will
be varied from 0 to 50 nm. Figure 1 shows a schematic
view of our systems under investigation: in (a), (b) and
(d) the ring has a circular symmetry with average radius
Rave = 60 nm, while in (c) the ring has a rectangular
symmetry with width and height given by 60 nm and
30 nm, respectively. From now onwards, we will refer to
theses systems by their labels (a-d).
An electron confined in such a quasi-one-dimensional

channel with width W has subband energy given by

En(kx) = E(y)
n +

~2k2x
2me

. (1)

Here me is the electron effective mass and eigenenergies
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FIG. 1: Sketch of the systems under investigation. (a) Half
quantum ring with leads and channel aligned, (b) circular
quantum ring with an extra channel in the perpendicular di-
rection, (c) square ring with non-aligned leads and channel,
and (d) circular quantum ring with leads and channel aligned.

of the confining well E
(y)
n are numerically calculated for a

finite potential Ve. For the initial wave packet (WP), we
assumed a plane wave with wave vector k0 =

√
2meε/~,

where ε is the average kinetic energy, multiplied by a
Gaussian function with width σx in the x direction and
by the ground state wave function φ0(y) of the input lead
in the y-direction

Ψ(x, y, t = 0) = exp

[
ik0x− (x− x0)

2

2σ2
x

]
φ0(y). (2)

There are several techniques to numerically solve the
time dependent Schrödinger equation.12–17 In this work
we opted for the split-operator technique, which consists
in separating the time evolution18–20 operator as

Ψ(x, y, t+∆t) = exp [−iH∆t/~] Ψ(x, y, t)

= exp [−iV∆t/2~] exp [−iTx∆t/~]
× exp [−iTy∆t/~] exp [−iV∆t/2~]
×Ψ(x, y, t) +O(∆t3),

(3)

where ∆t is the time step, Tx(y) is the kinetic-energy

operator for the x(y)-direction, and the error O(∆t3) is
due to the noncommutativity of the potential and ki-
netic terms.21 Nevertheless, this error can be neglected
provided we use a very small time step, that in our case
is ∆t = 0.1 fs. The Hamiltonian H is written within
the effective mass approximation, describing an electron
constrained to move in the (x, y)-plane and confined by
an external in-plane potential of height V0, which allows
the electron to move only within the leads, arms and
channels regions, illustrated by shaded areas in Fig. 1,
where the potential is zero. The potential step is assumed

here to be abrupt, but smooth interfaces will not qual-
itatively affect the results.22,23 The (x, y)-plane is dis-
cretized in ∆x = ∆y = 0.4 nm steps, and the finite
difference scheme is used to write the derivatives coming
from the kinetic energy terms of the Hamiltonian. We ap-
ply an imaginary potential at the edges of the input and
output channels and, in order to, absorb the transmitted
and reflected packets, and to prevent spurious reflections
at the boundaries of the computational box.24

The transmission and reflection probabilities are cal-
culated by integrating the probability density current at
specific points of the system, namely, at the output lead
(xR = 158 nm), for the former, and at the input lead
(xL = −158 nm), for the latter. Thus, the expressions
for transmission and reflection are, respectively,

T =

∫ ∞

0

dt

∫ +∞

−∞
dyJx (xR, y, t) (4)

and

R = −
∫ ∞

0

dt

∫ +∞

−∞
dyJx (xL, y, t). (5)

The component of the probability current in the
x−direction is given by

Jx (x, y, t) =
~

2mei

(
Ψ∗ ∂

∂x
Ψ−Ψ

∂

∂x
Ψ∗

)

+
e

me
Ax|Ψ|2.

(6)

For a magnetic field applied perpendicularly to the ring
plane, i.e. in the z direction, the vector potential is taken
in the Coulomb gauge A = (−y, x, 0)B/2. In order to
quantify the scattering of the electron into different sub-
bands, we project the wave function on the j -th subband
at a fixed point xi of the quantum well,

Pj (xi, t) = |〈Ψ| ϕj〉|2

=

∣∣∣∣
∫ +∞

−∞
dyΨ(xi, y, t)ϕj(y)

∣∣∣∣
2

.
(7)

Equation (7) gives the probabilities to find an electron in
the j -th subband at position xi at time t. The contribu-
tion from each subband to the total probability current
is given by

J (j)
x (x) =

∫
~

2mei

(
P̄ ∗
j

∂

∂x
P̄j − P̄j

∂

∂x
P̄ ∗
j

)

+
e

me
Ax

∣∣P̄j

∣∣2dt.
(8)

Notice that Eq. (7) is not normalized, and therefore the

values assumed by J
(j)
x can be larger than one. We as-

sume ballistic transport and, for the sake of simplicity,
all kinds of disorder are neglected.
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FIG. 2: (Online color) Transmission probability as function
of channel width Wc. The frames (a), (b), (c) and (d) refer
collectively as the corresponding systems presented in Fig. 1.
The WP have kinetic energies ε1 (black, dotted line), ε2 (red,
dashed line), ε3 (blue, solid line), propagating in the subband
ground state, while the other is in the first excited state with
kinetic energy ε3 (green dash-dotted line).

III. RESULTS AND DISCUSSION

We consider materials parameters for InGaAs and In-
AlAs, in which the band-offset and electron effective mass
are taken as Ve = 600 meV and me = 0.041m0, respec-
tively. Three values of kinetic energy for the WP are
used: ε1 = 70, ε2 = 140 and ε3 = 180 meV. These WP

were propagated in the ground state E
(y)
0 ≃ 58 meV and,

specifically for ε3, we also propagated it in the first ex-

cited state of the channel, E
(y)
1 ≃ 226 meV.

Figure 2 shows the transmission probabilities as func-
tion of the channel width Wc for kinetic energies ε1
(black, dotted line), ε2 (red, dashed line), and ε3 (blue,
solid curve), for the initial WP in the ground state, and ε3
in the first excited state (green, dash-dotted line). Each
curve shown in Fig. 2 is vertically shifted up by 0.2. The
disposition of the frames (a), (b), (c) and (d) presented in
Fig. 2 follows one of Fig. 1. For all systems investigated,
the existence of an extra channel surprisingly reduces the
transmission probability for some width Wc, instead of
improving it. This decreasing is either an effect of quan-
tum scattering at the channel-ring junctions, or a WP
interference effect. Both possibilities will be discussed
now in more detail.
Notice that the extra channels for the profiles in Figs.

1(b) and (c) are not aligned with respect to input and
output leads, as in Figs. 1(a) and (d). Thus, trans-
mission probabilities in Figs. 2(a) and (d) present some
similarities in their patterns, and the same is observed in
Figs. 2 (b) and (c). The curves clearly exhibit minima for
all kinetic energies, and transmission probability always
start decreasing as the extra channel width increases for
WP propagating in the ground state subband, although
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FIG. 3: (Online color) Time-dependent probability current
through the extra channel, calculated for kinetic energy ε1.
The different frames refer to the systems in Fig. 1.

the extra channel represents an alternative for the elec-
tron to bypass through the central region which should,
in principle, improve the transmission. The positions of
most of the minima in Wc strongly depend on of WP
energy. In Figs. 2(b) and (c), besides the minima, trans-
mission probabilities also exhibit an overall decreasing
trend with increasing of channel width Wc, specifically
for low kinetic energy. Moreover, transmission probabil-
ity patterns are strongly dependent on the geometry of
the ring, which indicates that there are numerous pos-
sibilities of WP interference in these cases, where the
system geometry is more complex than that in Fig. 2(a)
and (d).

For a better understanding of WP dynamics in these
systems, Fig. 3 shows the time-dependent probability
current through the extra channel as a function of time.
The WP propagates in the lowest subband from left to
right with kinetic energy given by ε1. Three different
values for channel width Wc are considered: 5, 10, and
20 nm. In all studied cases we observe initially a posi-
tive peak of current followed by a negative peak, which
is more acute in Figs. 3(b) and (c). In these cases, a
sequence of positive and negative peaks clearly demon-
strates that the WP is repeatedly reflected at the ex-
tra channel-ring junctions, propagating back and forth
within the extra channel. Thus, the time that electrons
are kept in the structure is increased, contributing to an
overall reduction of the electric current. For Wc = 5 nm,
only a a small part of the WP propagates through the
extra channel, because the average value of the kinetic en-
ergy is lower than the ground state of this channel. In ad-
dition, the input and output leads are not aligned, which
also harness the WP propagation through this channel.
For cases in which the extra channel is aligned with input
and output leads, as in Fig. 3 a) and (d), a somewhat
larger part of the WP can propagate through the extra
channel even in the Wc = 5 nm case.
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FIG. 4: (Online color) Snapshots of the squared wave function
at t = 460 fs, for different channel width Wc and kinetic
energy ε1.

Figure 4 shows snapshots of the squared modulus of
the wave functions at t = 460 fs, for kinetic energy ε1,
and Wc = 0, 5, 7, 10, and 20 nm, respectively, in each
column. The wave function presents just one peak in the
confinement direction within the ring arms, input and
output leads, which indicates that the propagation is kept
in the ground state subband in all these regions. Along
the extra channel, however, the wave function propagates
in the ground state subband only for Wc = 5 nm, while
for largerWc, it is scattered to excited states and exhibits
multiples peaks and even different parities, due to the
lower confinement energies in this channel.
The contributions of each subband to the total trans-

mission probability is shown in Fig. 5, where J
(1)
x (top)

and J
(2)
x (bottom) calculated in the output lead (at x

= 158 nm), are depicted as function of Wc. Other states
were omitted because they do not significantly contribute
for the WP energies considered here. The systems se-
quence used here is the same as in previous figures. The
projected density current exhibits minima with patterns
similar to those in Fig. 2. As mentioned above, the out-
put lead has a width of w = 10 nm and the energy differ-

ence between the first two states, E
(y)
1 −E

(y)
0 = 168 meV,

is higher than the kinetic energy ε1. For this reason, in

all systems, the contribution J
(2)
x in Fig. 5 is zero when

the kinetic energy is ε1 (black, dotted line). Moreover,
the WP is a gaussian distribution in energy space, whose
width allows for non-zero projection on P2 with energy
the ε2. We observe in Figs. 5(b) and (d) that the WP in
output lead does not propagate in the subband excited
states in these systems, regardless of the kinetic energy or
channel width Wc, even when the wave function projec-
tions are non-zero for excited states in the extra channel,
as shown in Fig. 4 . In these systems, the quantum
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FIG. 5: (Online color) Projection of the wave function on
the ground state (top graphics) and first-excited subbands
(bottom graphics) as function of channel widthWc, calculated
at the output lead. Kinetic energy ε1 (black dotted line), ε2
(red short-dot line), and ε3 (blue solid line). This figure is
ordered in the same sequence Fig. 1.

ring has a circular symmetry and the WP propagate in
subbands of the top and bottom arms with a phase dif-
ference given by π, which leads to an interference that
cancels the projection P2 on the output lead.18

The contribution J
(2)
x of the second subband to the

probability density current in Figs. 5(a) and (c) does not
vanish, despite of the interference, due to the asymmetry
in the potential of these systems. They lead to additional
peaks and valleys in the transmission probabilities as a
function of the extra channel width for theses systems
in Fig. 2(a) and (c). Notice that the position of these
peaks and valleys are completely independent of the WP

energy, whereas the minima observed for J
(1)
x are signifi-

cantly shifted as the energy varies. Therefore, the former
minima cannot be interpreted in terms of quantum scat-
tering and interference as done here for the latter, as they
are just a consequence of inter-subband scattering by the
channel-junctions.

A. Influence of an external magnetic field

Let us now turn our attention to the minima in the
transmission probabilities shown in Fig. 2. One may
expect that these minima come from interference, and
therefore we should be able to change the position of the
minima not only by changing the kinetic energy, but also
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FIG. 6: Contour plots of the transmission probabilities as a
function of the extra channel width Wc and magnetic field B.
This figure is ordered in the same sequence as Fig. 1.

by applying an external magnetic field. This magnetic
field adds a phase in the wave function through the vec-
tor potential A. If the minima are due to interference,
their position will change in the presence of the field,
since the vector potential induces an additional phase
to the wave function. Fig. 6 displays a color map of
transmission probabilities as function of channel width
Wc and magnetic field B. In Fig. 6(a), for B = 0, as
Wc increases, minima (red and yellow regions) are ob-
served around Wc = 5 nm and some intermediate values
of Wc ≈ 23 nm. In these cases, then, enlarging the ex-
tra channel reduces the current. As the magnetic field
increases, the minima positions are not significantly af-
fected, which indicates that these minima are not related
to interference, but rather to pure quantum scattering.
ForWc between 5 and 10 nm, there are also other minima
(green regions), equally spaced in B, that are affected by
the magnetic field, due to the AB effect. In this case, the
WP passes through both channels, now connected as a
semi-circular ring-like path, which explains the observed
AB oscillations. For Wc < 5 nm, subband energies are
higher than the kinetic energy, and the WP can not prop-
agate through the extra channel. The Wc width and the
magnetic field can change the AB period. The system
in (a) thus proves to be a good example of the quantum
analog of the Braess paradox, where more channels (sur-
prisingly) means less current, and which is not simply
due to quantum interference effects.

AB oscillations are evident in Figs. 6(b), (c) and (d),
as B increases in the range of small Wc width. As Wc

increases, two rings are effectively formed in system (b),
and this yields a reduction in the AB period in Fig. 6 (b).
In Fig. 6 (c), the minima observed for B = 0 are strongly
affected by the magnetic field, which indicates that these

minima are a result of destructive interference. In Fig.
6 (d) the minima around Wc ∼ 5 nm for B = 0 do not
change with the magnetic field, whereas the next minima,
around WC ∼ 35 nm, shift to the right as the magnetic
field increases, showing that the first minima is due to
scattering while the latter is due to WP interference. In
order to improve the visualisation of the transmission in
Fig. 6(c) and (d), we show the respective transmission as
function of Wc width in Fig. 7(a) and (b), corresponding
to the systems of Figs. 1(c) and (d), respectively. Each
contour (or on-line color) represents a transmission for
a specific applied magnetic field, ranging from 0 to 1 T,
and reproduce the behaviour of the minima, as discussed
above.

B. Effect of extra (obstructing) potentials

In order to test the robustness of the Braess paradox
analog, observed here in the context of quantum mechan-
ics, we add a perturbing potential, which can be seen as a
model for an AFM tip25, we consider three different con-
figurations for each of the systems of Fig. 1 to analyse
the behaviour of the transmissions, see Fig. 8: the tip
potential (1) is fixed at the central region (x, y) = (0,0);
the tip potential (2) is placed at x = 0 and moved from
bottom to top along the y−axis, and the tip potential
(3) is placed at y = 0 and moved from left to right along
the x−axis. This perturbative potential, which depends
on the tip position and is assumed to be isotropic, is ex-
pressed as a Gaussian distribution centered at (xp, yp),

Vgau = VG exp

{
− 1

2σ2
G

[
(x− xp)

2
+ (y − yp)

2
]}

, (9)

where, VG is the potential intensity and σG (= 5 nm)
represents the width of the Gaussian potential.
Figure 9 shows transmission probabilities for a WP

with kinetic energy ε1 propagating in the first subband.
This figure is spatially arranged in four groups, in the
same sequence of geometries as in Figs. 1(a-d), with
three panels each: panel (1) shows the transmission prob-
ability as function of the tip potential intensity VG, with
the tip potential fixed at the central region of the system;
whereas panels (2) and (3) are the transmission probabil-
ities for the tip potential moving from bottom to top side,
at x = 0, and from left to right at y = 0, respectively,
as mentioned above. The black solid line represents the
transmission calculated for a system with a central chan-
nel width Wc = 10 nm. The red dotted line represents
the transmission probability calculated with Wc given by
the respective minima of the transmission, depicted in
Fig. 2, i.e., the Wc width is 23 nm in Fig. 9(a), 24 nm
in (b), 22 nm in (c), 5.5 nm (related to the minima due
to WP quantum scattering), and 39 nm (related to the
minima due to WP quantum interference) in (d). For
(2) and (3) tips, we use VG = 300 meV, because the red
curves (minima) present a large transmission probability
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FIG. 7: (Online color) Transmission probability as function of
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FIG. 8: Schematic diagram for an AFM tip potential over
quantum rings represented by the dots (1), (2) and (3). The
solid arrows indicate the direction of the tip displacement,
while the dash line arrows indicate the final position of the
tip. Tip (1) is fixed in the central region for each system.

for this potential, as we can see in Figs. 9 (1) for all four
systems investigated.
For all systems investigated here, increasing VG for the

tip in situation (1), i.e. closing the path in the central
channel, improves the transmission probability when Wc

is chosen as one of the minima mentioned above, as one
can see by the red curves in any of the panels labelled
as (1) of Fig. 9. In Fig. 9 (a)(1), the minimum of the

transmission (red, dotted line) increases as the potential
intensity VG increases, raising from 0.3 at VG = 0 to
around 0.6 at VG = 100 meV and 300 meV. On the other
hand, for the solid black line, except for the oscillations
around VG = 250 and 500 meV, the transmission has
no significant changes. This result reflects the fact that
when the transmission in system (a) is in its minimum
at Wc = 23 nm, a larger part of the WP moves through
the extra channel, while for Wc = 10 nm, the WP has
a large part propagating through the upper arm of the
ring, therefore, the tip potential in situation (1) cannot
affect much the transport in the latter case. Moreover,
this result brings even closer resemblance with the Braess
paradox: counter intuitively, the presence of the tip po-
tential, which in practice shuts down the extra channel,
raises the overall transmission back to the higher value
it had without this channel in the Wc = 23 nm (min-
imum) case. In other words, for this value of channel
width, having an extra channel is worse, in terms of con-
ductivity. In Fig. 9 (a)(2) a significant change occurs
when the tip is over the bottom edge of the channel, at
(x, y) = (0,0): the minimum of the transmission increases
from 0.3 to 0.6, while for Wc = 10 nm, the transmission
decreases from 0.6 to 0.4. Therefore, if Wc = 10 nm,
shutting the extra channel decreases the transmission, as
expected from a classical point of view, and in contrast
with the behaviour observed for Wc = 23 nm. Notice
that as the tip moves up, the transmission probability
minimum for Wc = 23 nm (red dotted) decreases to 0.3
at the center of the channel and increases back to 0.6 as
the tip moves to the upper edge of the channel. This is
due to the fact that, for such larger Wc, the wave packet
enters the extra channel through its first excited state
subband, whose eingenfunction is zero at y = 0, which
is not the case for Wc = 10 nm (black solid). Out of
the central channel, even when the tip is over the up-
per arm, the potential has no significant effects on the
minima transmission, since the largest part of the WP
propagates through the extra channel for large Wc. In
Fig. 9(a)(3) when the tip potential is over the input or
output leads there is no transmission in the ring. Never-
theless, the transmission minimum increases to 0.6 when
the tip potential is over the central channel, in accor-
dance with the results discussed above for Fig. 9 (a)(2)
and (1).

The time-dependent probability current through the
extra channel of the system in Fig. 1 (b) is very small, as
depicted in Fig. 3 (b). Therefore, when the tip potential
is over the extra channel in this system, the transmission
probability has no significant change, as it can be seen
in Fig. 9 (b) where the oscillations in the transmission
probability exhibit a rather small amplitude ∼ 0.2 in the
extra channel region. In Fig. 9(b)(3), when the tip is
over the extra channel, the transmission presents a small
oscillation around (x, y) = (0,0). The displacement of the
tip (2) over the system (c) closes the arm of the squared
ring at y ≈ ±60 nm and closes the extra channel at y ≈ 0
nm. Over the ring arms, the tip potential reduces the
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FIG. 9: (Online color) Transmission as a function of (1) in-
tensity of the Gaussian potential, (2) and (3) tip position.
The order of the figures refer to the form different depicted
in Fig. 1. The curves width black color are for Wc = 10 nm,
while the curves width red colors are for the minima of the
transmission shown in Fig. 2. The WP kinetic energy is ε1.

transmission probability to 0.2 for the minimum Wc =
24 nm, and to 0.4, for the channel width Wc = 10 nm,
whereas over the extra channel, the tip potential increase
the transmission to 0.3 for the minimum and more than
0.1 forWc = 10 nm, when compared to the case where the
tip potential is absent in the system. The displacement
of the tip (3) closes the extra channel and the ring arms
at x ≈ ±30 nm. When the tip is over the extra channel,
the minimum transmission increases, while it decreases
when the tip is over the ring arms, as was discussed for
the tip (2).
In Fig. 9(d) two minima of the transmission probabil-

ity are investigated: the first one, red dotted line, is for
an extra channel width Wc = 39 nm, and the second one,
green dashed line, for an extra channel width Wc = 5 nm.
These minima have their origins in quantum interference
and scattering, respectively, as previously discussed. For
the minimum coming from interference, the tip potential
(1) strongly affects the transmission probability, which
changes from ∼ 0.4 to ∼ 0.8. On the other hand, for
the minimum due to quantum scattering, the tip poten-
tial (1) does not significantly change the transmission.
For Wc = 10 nm, when the tip potential closes the extra
channel, it produces interference of the WP that
propagate though the ring arms, decreasing the

transmission probability. The tip (2) does not affect
the transmission when it is moving over the bottom or
top ring arms. When the tip potential is over the ex-
tra channel, the minima which came from interference
increase to 0.2, while for Wc = 10 nm, the transmission
decreases from ∼ 0.6 to ∼ 0.3. Moreover, when closing
the extra channel, the tip (3) increases the minimum 0.6
which comes from interference, but it does not affect ei-
ther the other transmission minimum, which is due to
scattering, and or transmission for Wc = 10 nm.

IV. CONCLUSIONS

In summary, we have investigated the WP propaga-
tion through rings with different circular and squared
shapes, adding an extra channel along their respective
diameters, and calculated the transmission probabilities
as function of parameters like magnetic field and extra
channel width Wc. Contrary to common sense, our re-
sults have demonstrated that even when an extra chan-
nel is added as alternative path for the WP to pass, the
transmission probability through the whole system can
be depreciated, when compared to the transmission in
a system in the absence of such an extra current path.
Such a reduction in the transmission probability can be
seen as an evidence for the quantum analog of the Braess
paradox in the nanostructures investigated here, and is
closely related to transport inefficiency recently demon-
strated both theoretical and experimentally for different
branched-out mesoscopic networks. In the presence of an
external magnetic field, the position of those transmis-
sion probability minima owing to quantum interference
are clearly shifted, and Aharanov-Bohm oscillations are
observed as well. Moreover, a charged AFM tip placed
over the systems, acts as an obstruction to some of the
quantum pathways, is found to favor enhancement of the
transmission probability in its minima under specific con-
ditions. Results shown here, therefore, not only allow us
to discuss transport properties of a branched out quan-
tum ring in close resemblance with the Braess paradox,
but also provides tools to control the transmission prob-
ability minima in such systems.
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10 M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986).
11 A. A. Sousa, A. Chaves, G. A. Farias and F.M. Peeters,

Phys. Rev. B 88, 245417 (2013).
12 S. S. Buchholz, S. F. Fischer, U. Kunze, D. Reuter, and A.

D. Wieck, Appl. Phys. Lett. 94, 022107 (2009).
13 C. Kreisbeck, T. Kramer, S. S. Buchholz, S. F. Fischer,

U. Kunze, D. Reuter, and A. D. Wieck, Phys. Rev. B 82,
165329 (2010).

14 H. Fehske, J. Schleede, G. Schubert, G. Wellein, V. S. Fil-
inov, and A. R. Bishop, Phys. Lett. A 373, 2182 (2009).

15 B. Szafran and F. M. Peeters, Phys. Rev. B 72, 165301
(2005).

16 A. Alvermann and H. Fehske, Phys. Rev. B 77, 045125
(2008).

17 M. R. Poniedzialek and B. Szafran, J. Phys.: Condens.
Matter 24, 085801 (2012).

18 A. Chaves, G. A. Farias, F. M. Peeters, and B. Szafran,
Phys. Rev. B 80, 125331 (2009).

19 M. H. Degani, Appl. Phys. Lett. 59, 57 (1991).
20 M. H. Degani and M. Z. Maialle, J. Comp. Theor. Nanosci.

7, 454 (2010).
21 M. Suzuki, Phys. Lett. A 146, 319 (1990).
22 H. Wang, G. A. Farias, and V. N. Freire, Superlatt. Mi-

crostruct. 25, 307 (1999).
23 J. A. K. Freire, G. A. Farias, and V. N. Freire, Sol. Stat.

Comm. 106, 559 (1998).
24 D. E. Manolopoulos, J. Chem. Phys. 117, 9552 (2002).
25 B. Hackens, F. Martins, T. Ouisse, H. Sellier, X. Wallart,

A. Cappy, J. Chevrier, V. Bayout, and S. Huant, Natura
Phys. 2, 826 (2006).



Quantum tunneling between bent semiconductor nanowires

A. A. Sousa,1, 2, ∗ Andrey Chaves,1, † T. A. S. Pereira,3, ‡ G. A. Farias,1, § and F. M. Peeters2, 1, ¶

1Departamento de F́ısica, Universidade Federal do Ceará,
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We theoretically investigate the electronic transport properties of two closely spaced L-shaped
semiconductor quantum wires, for different configurations of the output channel widths as well as the
distance between the wires. Within the effective-mass approximation, we solve the time-dependent
Schrödinger equation using the split-operator technique that allows us to calculate the transmission
probability, the total probability current, the conductance and the wave function scattering between
the energy subbands. We determine the maximum distance between the quantum wires below which
a relevant non-zero transmission is still found. The transmission probability and the conductance
show a strong dependence on the width of the output channel for small distances between the wires.

PACS numbers: 73.63.-b, 85.35.Ds, 73.63.Nm

I. INTRODUCTION

Advances in the fabrication and nanostructuring of
semiconductor compounds opens up opportunities for
combination of different shapes of devices on a nano-
metric scale1–4. There are numerous experimental meth-
ods and techniques of fabricating these semiconductor
nanostructures, such as self-organized growth in a MBE
chamber5–7, split-gate technique used to fabricate narrow
quantum channels for electrons8, and AFM lithography,
which can be used to create different nanostructures.9,10

On a nanometric scale, transport properties of one-
dimensional structures are of great interest and a large
number of novel phenomena have been predicted and ob-
served in recent years.11,12 Here, we shall mention for ex-
ample investigations on the transport properties through
confined states in a 1D wire were performed by Auslaen-
der et al.13 Tserkovnyak et al.14 gave a detailed experi-
mental investigation and theoretical explanation of a set
of interference patterns in the nonlinear tunneling con-
ductance between two parallel wires that were first re-
ported by Auslaender in 2002.15

From a theoretical point of view, the attempt to model
increasingly smaller semiconductor systems that is driven
by the miniaturization of technological devices has led
to more systematic studies with the aim to describe in
more detail the different physical effects, such as tunnel-
ing in transistor gate oxides16,17 and energy quantization
in nanometer scale MOSFETs.18,19 In addition, differ-
ent systems used to calculate the scattering probabilities
per unit of time under the effect of perturbative poten-
tials have been proposed and investigated. Some cases
of interest here are those when adding an extra path in
the system20, an effective potential simulating a Scan-
ning Gate Microscopy tip21,22 as well as the effect of a
smooth potential in path’s connections.23

In this work, we investigate the wave packet scatter-
ing in two L-shaped quantum wires (QW) separated by
a distance W2, see Fig. 1. The aim is to find the min-

FIG. 1: (Color online) Potential profile scheme for the QWs
studied in this work. The two QWs are separated from each
other by a distance W2, ranging from 0 to 4.8 nm. The
smooth connections between vertical and horizontal wire are
described by circles of radius RW = W1/2 and RL = L/2.

imum separation distance between two bent wires with
acceptable values for tunneling. For this purpose, we in-
ject a Gaussian wave packet in the left-lead and calculate
the transmission into the bottom lead and the tunnelling
into the second wire. Our theoretical model is based
on the solution of the time dependent Schrödinger equa-
tion within the effective mass approach using the split-
operator technique.23,25 We consider different values of
the wave packet kinetic energy and W2 distances between
the quantum wires as well as different width values for
the second wire L. We then analyse how the conductivity
depends on these parameters (W2 and L).

This remainder of this organized as follows: In Sec. II,
we describe our theoretical model and numerical tech-
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nique to solve the time-dependent Schrödinger equation.
In Sec. III, we discuss the transport properties of the
system and we present our conclusions in Sec. IV.

II. THEORETICAL MODEL

Our model describes electrons in the (x, y) plane mov-
ing from left to right in a region with a L-shaped wire
(see left side of Fig. 1). The effective-mass approxi-
mation was considered and all electrons are confined by
a step like potential, i.e., V (x, y) = 0 inside the QW
and V (x, y) = V0 otherwise. Abrupt interfaces between
the confinement region and the potential barrier are as-
sumed. Similarly, in the right side of our set up, another
L-shaped QW is considered. The left QW is assumed to
have fixed width W1 = 10 nm, whereas for right QW,
three different widths L (= W1/2, W1 and 2W1). The
smooth edges of the QWs are draw by circles of radius
RW = W1/2 and RL = L/2 for the left and right wire,
respectively, in order to approach more realistic systems.
The left side is separated from the right by a distance W2

which ranges from 0 nm to 4.8 nm in this work. In the
transverse cross section, the QW behaves as a quasi-one-
dimensional channel where an electron confined in this
region has a subband energy

En(kx) = E(y)
n +

~2k2x
2me

, (1)

where E
(y)
n are the y components of the eigenvalues which

were obtained numerically for a potential of V0 = 600
meV. These eigenvalues are lower than the corresponding

eigenvalues calculated for an infinite potential, E
(y)
n =

n2π2~2/2meW
2
1 , although this analytical expression can

be used for an estimate of energies in a quantum well of
W1 width. A combination of a Gaussian function with a
plane wave is injected from the left to the right along the
x direction, so that at t = 0 the wave packet is given by

Ψ(x, y) = exp

[
ik0x−

(x− x0)2

2σ2
x

]
φ0(y). (2)

Here, k0 =
√

2meε/~ is a wave vector corresponding to
the kinetic energy ε, and φ0(y) is the ground state wave
function of the quantum well in the y direction. The
width of the wave packet in the x direction is fixed by
σ. The time evolution of the wave packet is studied with
the split-operator technique, which allows to separate the
kinetic terms for each direction. This separation is im-
portant for systems with many degrees of freedom. We
follow the approach of Refs. 23 and 25, the details of
which will not be reproduced here.

The (x, y)-plane is discretized by a squared grid ∆x =
∆y = 0.4 nm, and the finite difference scheme is used
to solve the derivatives in the kinetic energy terms of
the Hamiltonian. To avoid spurious reflection when the
wave packet reaches the edges of our set up, we applied

an imaginary potential, as discussed in Ref. 23 and sug-
gested by Manolopoulos.27 The current of the system is
given by

J = − i~
2me

(Ψ∗∇Ψ−Ψ∇Ψ∗) . (3)

The transmission T probabilities are calculated in
three different positions at vertical (T1 and T3) and hor-
izontal (T2) axis, as shown in Fig. 1. For horizontal axis
we fixed a point xr, localized in the right side and the
transmission T2 is calculated as

T =

∞∫

0

dt

∞∫

−∞

dyJx (xr, y, t). (4)

For vertical axis we fixed a point yB in the bottom wire
and a point yT in the top wire and calculated the trans-
mission T1 and T3 through Eq. (4), changing Jx (xr, y, t)
for Jy (x, yT , t) and Jy (x, yB , t), respectively, and the
above spatial integral is now evaluated along x-direction.
The reflection probability R is calculated in the left side
by fixing a point xl in the left side and evaluating the
integrals in dt and dy. More precisely

R = −
∞∫

0

dt

∞∫

−∞

dyJx(xL, y, t), (5)

where Jx is the x component of the probability current.
In order to investigate the scattering of an electron

into different subbands of the wires, we project the wave
function on the jth eigenstate of the quantum well at a
fixed point xi, using the relation

Pj(xi, t) = |〈Ψ| φj〉|2 =

∣∣∣∣
∫ +∞

−∞
dyΨ (xi, y, t)φj (y)

∣∣∣∣
2

.

(6)
Eq. (6) is the probability density of finding an electron
in the jth subband at position xi per length in the x
direction. Moreover, the contribution of each subband
state to the probability current can be calculated by

j(j)x (x, t) =
~

2mei

(
P̄ ∗j

∂

∂x
P̄j − P̄j

∂

∂x
P̄ ∗j

)
, (7)

where P̄j(x, t) = 〈φj |Ψ〉 gives the time-dependent wave
function within the jth subband. Notice that, since
P̄j(x, t) is not normalized, its value can be larger than
one. Finally, the time-dependent probability current at
xi is given by

Jt(xi, t) =

∫ +∞

−∞
Jx(xi, y, t)dy. (8)

Solution of Eqs. (6-8) form the basis to understand
the conductivity and the trajectory of the wave packet
through the wires.
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FIG. 2: (Color online) (a)-(c) Wave packet transmissions (T )
and reflexion (R) probabilities as function of W2 for a well
width of L = W1. The transmissions are calculated in three
different points in the QWs: bottom T1 (green, dash dot line),
top T3 (red, dash line) right T2 (black, solid line), while the
reflexion R (blue, dash dot dot line) is calculated at the left
side, as shown in (d). The wave packet energies used are
(a) ε1, (b) ε2 and (c) ε3. (d) Snapshot of the wave function
calculated at t = 160 fs for L = W1 and W2 = 1.2 nm as
depicted by the vertical dash line in (b).

III. RESULTS AND DISCUSSION

For all cases considered in this work, we consider ma-
terial parameters for InGaAs (wire) and GaAs (bar-
rier material), in which the conduction band of the In-
GaAs/GaAs heterostructure has a band-offset of 600
meV. Morover, for InGaAs the electron effective mass
is me = 0.041 m0.26 The wave packets are injected from
left to right at t = 0, in the lowest subband φn=1(y).
Three different values of the kinetic energy of the wave
packets are considered: ε1 = 70 meV, ε2 = 140 meV and
ε3 = 200 meV.

Transmission and reflection probabilities obtained with
our method are presented in Fig. 2 and Fig. 3 as func-
tion of the distance W2 for L = W1 and L = 2W1, re-
spectively. The transmission probabilities are calculated
on the left-bottom wire T1 (green, dash dot line), right-
output wire T2 (black, solid line) and right-top wire T3
(red, dash line). The reflection R (blue, dash dot dot
line) is calculated on the input left-wire. We checked nu-
merically that the sum R+

∑
Ti = 1 is satisfied up to a

maximum error of 0.1 %. Figs. 2(d) and 3(d) are snap-
shots of the wave function with kinetic energy 70 meV,
calculated at t = 160 fs for W2 = 1.2 nm, as indicated by
the vertical dashed-gray line in Fig. 2(b) and Fig. 3(b),
respectively. For a wave packet with kinetic energy ε1
(Figs. 2(a) and 3(a)) the transmission coefficient T2 de-
creases faster than the one with kinetic energy ε3, (Figs.
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FIG. 3: (Color online) The same result as shows in Fig. 2,
but now for L = 2W1.

2(c) and 3 (c)), i.e., the tunnelling through the barrier
W2 is in general larger for higher kinetic energy. Further-
more, the transmission T2 decreases towards zero with
increasing width W2, and as a consequence, the transmis-
sion T1 and reflection R increase such that T1+R ' 1 for
wide W2. The tunnelling T3 through the top-right side is
less than 10%, but nonzero even for high kinetic energy
of the wave packet and for different W2 distance. This
behavior is shown in Figs. 2 and 3 by dashed red lines
for L = W1 and L = 2W1, respectively, and occurs be-
cause the quantum wire shape spreads the wave function
around the position x = 0, specially for W2 = 0, where
the transmission is about 70 % through T1 and the other
30 % are reflected R or tunnel through T2 and T3, as
shown in Fig. 3(c).
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FIG. 4: (Color online) Transmission coefficient (T2 + T3) as
function of the well width L, for wave packet energies (a) ε1
and (b) ε3. Three W2 distance were considered: 0 nm (black,
solid line), 1.2 nm (red, dash line) and 2.4 nm (blue, dotted
line).
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FIG. 5: (Color online) (a) Bottom energy of the different subbands as function of the quantum well width L. Schematic
diagrams that represents the subband energies as function of the wave vector kx in the x direction, for output width of (b) L =
5 nm, (c) L = 10 nm, and (d) L = 20 nm. The horizontal dashed-dot lines represents the average energy of the wave packet,
ε1 and ε3.

In order to clarify the role of the well width L in the
output lead on the transmission probabilities in Fig. 4
we display the transmission coefficient on the right side
(T2 + T3) as function of L for two different wave packet
kinetic energies ε1 (a) and ε3 (b). Three different W2 dis-
tances were considered namely, 0 nm (black, solid line),
1.2 nm (red, dash line) and 2.4 (blue, dotted line). The
transmission increase with increasing L which is a con-
sequence of the lowering of the subband energy states in
the right side over which the tunnelled wave function can
be distributed. For a lower wave packet kinetic energy ε1
the transmission stays below 20 % for W2 distance above
1.2 nm, and for ε3 the transmission keep below 40 %.

Let us now discuss the contribution of each subband
of the output lead to its overall current. In order to
have a better understanding of this problem, we display
in Fig. 5(a) the eigenenergies of the output lead as a
function of its width. The average wave vector kix of
the wave packet is schematically shown in Figs. 5(b) for
L = W1/2, 5(c) for L = W1, and in 5(d) for L = 2W1.
Here, the highest kinetic energy was chosen to cover the
first three subbands in the output lead, where the bottom
of the subband is found to be around ε3, for an output
width of L = 2W1. This kinetic energy allows us to
calculate the influence of the subbands on the scattering
of the wave packet. The number of kx values allowed for
each kinetic energy ε, at each subband, depends on the
width L, which in the case illustrated in Fig. 5 (b) is

k
(1)
2 when L = W1/2. However, it take values k

(1)
2 , k

(2)
2 ,

and k
(3)
2 for ε2 with L = 2W1 (see Fig. 5(d)). As for our

Gaussian wave packet, the initial wave functions with

distributions of kx’s around k
(i)
x , that yields an energy

distribution ∆E as illustrated in Figs. 5(d). More details
regarding the initial wave package width in kx-space can
be obtained by Fourier transform and this is explained in
details in Ref. 23. In the case proposed here, where the

wave function is also Gaussian in reciprocal space, it is
possible to determine the energy distribution of the wave
packet as ∆E = ~2∆k/mek0, where ∆k = 2

√
ln 2/σx is

the full width at half maximum (FWHM).23

In Fig. 6 we show the projection of the time-dependent
wave packet on the ground (P1), first-excited (P2), and
second-excited state subband (P3) of the right-lead. The
projections are calculated numerically as function of W2

at the point x = 158 nm in the right side, for output
widths L = W1 (a) and L = 2W1 the (b). The results
are shown for wave packet kinetic energies of ε1 (black,
solid line), ε2 (red, dash line) and ε3 (blue, dotted line).
Initially the wave packet propagates in the lowest sub-
band. As expected, all projections decrease towards zero
as W2 increases, since the overall current also exhibits
this decreasing behavior. For narrow wells, the packets
with kinetic energies ε2 and ε3 scatter to the first excited
state, while for energy ε1 this projection is almost zero
for any W2 value. The projection for the second excited
state is only possible for wave packets with an energy of
ε3, as shown in Fig. 5(c). For quantum wells with L =
2W1, the subbands energies get closer to each other such
that the wave packet scatter to excited states even for
energy ε1, Fig. 6(b).

An analysis of the time-dependent current probability
for the wave packet as a function of time is illustrated in
Fig. 7. The wave packet propagates in the lowest sub-
band from the left to the right side with kinetic energy
given by ε1 (blue, dotted line), ε2 (red, dash line) and ε3
(black, solid line). Around y = 0 and along the x-axis,
the potential is similar to a simple quantum barrier with
height of 600 meV. Calculated at x = 158 nm across the
potential barrier, the time-dependent current probability
is a tunnelling current that can give an estimate about
the leakage current through the barrier. In Fig. 7 we
plot the tunnelling current probabilities for two different
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FIG. 6: (Color online) Projection of the wave function on the
ground state P1, first-excited P2 and second-excited subbands
P3 integrated in time, for the output width L = W1, panels
column (a) and L = 2W1, panels column (b), as function of
the distance W2 calculated at position 158 nm in the right-
lead.

W2 distances: (a) W2 = 0 nm and (b) 2.4 nm. For each
W2 distance we consider three different output widths L,
from top to bottom L = W1/2 in the first row, L = W1 in
the second, and L = 2W1 in the third row. Clearly, the
peak in the probability current is lower at low energies,
and it also decreases (increases) with increasing distance
(width) W2 (L). Particularly, in the case of L = W1, Fig.
7 emphasizes the oscillatory behaviour of the probability
current for the two distances W2 used in our calcula-
tions. This probability current oscillation is due to wave
function scattering in the central region of the wires, as
illustrated in Figs. 2 and 3 (d). It is easy to see that
the current peak occurs faster as the energy increases, as
a consequence of the higher Fermi velocity in this case.
Besides, increasing L for fixed W2 slightly shift the peaks
to lower times, which is due to the fact that larger widths
lead to lower subband energies and consequently, higher
momentum for fixed wave packet energy.

Finally, from a practical point of view, it is impor-
tant to investigate the behaviour of the conductance for
different values of the kinetic energy, W2 distance and
output width L. With this in mind, we express the con-
ductance as a particular case of the multiband Landauer
formalism28,29

Gl(ε) =
2e2

h

∑

n

T
(n)
l (ε), (9)

where the output lead index l is 1, 2 or 3 for conduc-
tance calculated with T1, T2 and T3, respectively, and
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FIG. 7: (Color online) The total time-dependent probability
current for wave packet energy of ε1 (black, solid line), ε2 (red,
dash line) and ε3 (blue, dotted line). Results for different
distances W2 are plotted in column (a) W2 = 0 nm, and
column (b) W2 = 2.4 nm. The output width L is in the first
row L = W1/2, second row L = W1, and third row L = 2W1.

the index n account for different occupied subbands in
the input lead. The quantum conductance (G0 = 2e2/h)
is used here as unit of electrical conductance, and the

transmission coefficients T
(n)
(xt,yt)

(ε) are calculate by set-

ting the wave packet at the initial time in a given subband
n, with average energy ε, and integrating the probability
current at the axis defined by (xt, yt), as in Eq. (4).
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dotted lines) for quantum well L width of (a) 10 nm and (b)
20 nm.
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Figure 8 displays the conductance versus the distance
W2 calculated for three wave packet kinetic energies ε1
(solid black), ε2 (dashed red) and ε3 (dotted blue). The
conductance was computed by taking into account the
transmission probability of the first three subbands for
the T2 coefficient at x = 158 nm on the output lead,
with output width L = W1 in Fig. 8(a) and L = 2W1

in Fig. 8(b). The conductance depends strongly on the
distance W2. We observe that when the distance W2

increases the transmission probability decreases, hence
decreasing the conductance in the output region. The
wave packet scattering is larger for the case where L =
W1, resulting in a larger reflection probability, as can be
seen in Figs. 2 and 3, which explains why G is higher in
8(b), as compared to Fig. 8(a). Also, the conductance
changes with the kinetic energy of the wave function even
for W2 = 0 nm, as observed in Fig. 8(a), as a consequence

of quantum scattering at the junction between the wires.

All results presented so far were made for fixed wave
packet average energies ε = ε1, ε2 or ε3. It is impor-
tant to discuss how these results relate to possible future
experiments aiming to verify the quantum tunnelling ef-
fects investigated here. In fact, at temperature T = 0K,
Landauer formula for conductance is exactly given by Eq.
(9), but with transmission probabilities calculated for a
plane wave with energy ε. For non-zero temperature,
however, the transmission probability must be multiplied
by the derivative of the Fermi’s energy distribution and
then integrated in energy, so that there will be a tem-
perature dependent range of energies around the Fermi
level that effectively contribute to the overall conduc-
tion. Notice that in our calculations, since we do not
consider plane waves, results are never for a single ε and,
consequently, they do not describe a zero-temperature
situation. Actually, the Gaussian wave packet consid-
ered here yields a Gaussian distribution of momenta or,
equivalently, a combination of plane waves with different
energies. Therefore, in a sense, our results for conduc-
tance are closely related to those for non-zero temper-
ature, where the width of the Gaussian wave packet in
reciprocal space is related to the width of the energy dis-
tribution and, consequently, plays the role of the temper-
ature. Finding the exact relation between temperature
and the wave packet width is, however, a difficult task,
which is left for future works, whereas here we restrict
ourselves to a more qualitative discussion of this matter.

Having stated that, we now use our method to calcu-
late the steps in conductance as a function of the electron
energy, as expected for a quantum channel such as the
one considered here. These steps cannot be sharp, since
we are dealing with a non-zero temperature simulation.
This is shown in Fig. 9 for energies ranging from ε1 to ε3,
for three different W2 width: (a) 0 nm, (b) 1.2 nm, and
(c) 2.4 nm. The conductance is calculated between the
input lead and the three possible output leads, namely,
with G1, G2 and G3, showed in Fig. 9 by arrows. Well
widths are L = 5 nm (dotted red), 10 nm (dashed blue),
and 20 nm (solid black). Conductance to the upper lead
G3 is always close to zero and reaches, at most, ≈ 0.15 for
W2 = 0, as expected from the low transmission probabil-
ities for this lead observed in previous results in Figs. 2
and 3. Notice that for the widest L width, three subbands
are involved in the output lead for a wave packet kinetic
energy around ε3, as shown in Fig. 5 (d). On the other
hand, for narrow widths, one subband is involved for L =
5 nm, Fig. 5 (b), and two subbands are involved for L =
10 nm, Fig. 5 (c). For this reason, the conductances G2

in Fig. 9 (a) and (b) are clearly spaced for different values
of L. Since G2 is directly related to the current leak, it
is responsible for reducing the conductance through the
original channel G1. For lower values of energy ε, con-
ductance G1 is reduced as the energy increases, due to
the increasing current leakage G2. This effect is reduced
either as the distance between wires increases or as the
second wire width L is made narrower, thus hindering the
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quantum tunnelling between wires. Furthermore, the dif-
ferences between conductance G1 for different values of L
become negligible as the W2 distance becomes too large,
see Fig. 9 (c). The quantized steps of conductance are
also observed in the leakage current G2, but much lower
than those for G1, which suggests that states in the first
excited subband of the input lead have lower contribu-
tion for the leakage current as compared to those coming
from the first subband.

IV. CONCLUSIONS

We have presented a theoretical investigation of the
electron transmission between two bent quantum wires
that is based on the propagation of a Gaussian wave
packet. The two L-shaped semiconductor quantum wires
are separated by a distance W2. We showed how a
changes in the distance between the two QWs W2 affects
the tunneling probability and the time-dependent prob-
ability current for different values of kinetic energy wave
packet. The wave packet scattered by the potential is re-

flected and transmitted through the barrier. The tunnel-
ing current provides an estimate of the leakage current in
the system, which becomes larger as W2 is reduced. It is
of fundamental and practical importance to control these
undesired leakage currents in miniaturized electronic de-
vices and circuits, thus, we believe the results presented
here might contribute to help future experimental inves-
tigations of carrier transport in low dimensional circuits
and their future applications in nanotechnology.
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We theoretically investigate the role of the dielectric mismatch between materials on the energy

levels and recombination energies of a core-shell nanowire. Our results demonstrate that when the

dielectric constant of the core material is lower than that of the shell material, the self-image

potential pushes the charge carriers towards the core-shell interface in such a way that the ideal

confinement model is no longer suitable. The effects of this interfacial confinement on the

electronic properties of such wires, as well as on its response to applied magnetic fields, are

discussed. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4720402]

Great attention has been devoted to the investigation of

the electronics and optical properties of core-shell nanowires

(NW). In particular, the applications of these low dimensional

structures in optoelectronic and photonic devices are of inter-

est for the electronics industry, and much effort has been dedi-

cated to their fabrication.1–4 In addition, studies of low

dimensional systems surrounded by high dielectric constant

materials continue to attract attention from many research-

ers5,6 towards a continuation of the Moore’s law. Recently,

wire diameters of a few nanometers were experimentally

achieved,7 and carrier confinement effects in these nanowires

have been reported with different levels of sophistication.8–10

This work aims to investigate the dielectric mismatch

effects on core-shell NW, focusing on the possibility of inter-

facial confinement of the carriers. As for the model structure,

we consider a semiconductor cylindrical nanowire (core

region) of radius R, surrounded by a different material (shell

region). The interface between core and shell regions is

assumed to be abrupt, i.e., the materials parameters change

abruptly from the core to the shell regions. For the hetero-

structure materials considered in this paper, the bands mis-

match creates a high potential barrier for the charge carriers

in the shell, leading to a short penetration of the wave func-

tions in this region. This rules out the role of the shell width

on the energy states of the NW since the wave function does

not reach the outer edge of the shell. The nanowire electronic

structure is obtained by solving numerically a Schrödinger-

like equation within the adiabatic approach and the effective

mass framework.11 The total confinement potential Vi
TðqiÞ

¼ DEiðqiÞ þ RiðqiÞ is given by the sum of band edges

discontinuities DEiðqiÞ and the self-energy potential RiðqiÞ,
where i¼ e, lh, hh represents the carrier types (electron,

light hole, and heavy hole, respectively). The latter term

appears due to the dielectric mismatch, and its calculation

is based on the method of the image charges. The details of

this calculation can be seen in our supplementary mate-

rial.11 In a nutshell, the self-energy potential RiðqiÞ inside

the core region, due to a carrier located in the core region,

is given by Eq. (19) of Ref. 10, whereas when the carrier is

located in the shell region, the self-energy potential inside

this region can be obtained using a similar expression, just

by changing the modified Bessel functions of the first type,

I2
mðkqeÞ and I2

mðkqhÞ, by those of the second type, K2
mðkqeÞ

and K2
mðkqhÞ, respectively.

The electron-hole recombination energy, Ee�h
R ¼ EG

þEe þ Eh (h¼ lh or hh), given by the sum of the band gap

energy EG on the core region with the electron Ee and hole

Eh confinement energies, is calculated for the radial ground

state quantum number n¼ 1 and zero angular momentum

l¼ 0, allowing us to analyze the effects caused by the self-

energy potential on the ground state energy of the electron-

hole pair. Figure 1(a) shows the role of the dielectric mis-

match on the value of the electron-hole recombination

energy DEe�h
R ¼ ER;RiðqiÞ6¼0 � ER;RiðqiÞ¼0, as a function of the

ratio er ¼ e1=e2 between dielectric constants of the core (e1)

and shell (e2) materials, considering several values of nano-

wire radii R, for different materials. This quantity denotes

the difference between the recombination energies with

(ER;RiðqiÞ6¼0) and without (ER;RiðqiÞ¼0) the self-energy correc-

tions. The analysis of this difference gives us the advantage

of excluding the effect of quantum confinement due to the

band edge mismatch DEi, remaining exclusively the confine-

ment due to the dielectric mismatch. The material parameters

are the same as in Ref. 12.

As in the case of quantum wells, shown by Pereira

et al.,12 if the dielectric constant in core region e1 is smaller

than that of the shell region e2, the potential in the core

region is attractive and its contribution to the recombination

energy is negative DER< 0. On the other hand, for a larger

dielectric constant in core region, as compared to the one in

the shell region, the potential in the core region is repulsive,

so that its contribution to the recombination energy is posi-

tive DER> 0, as clearly shown in Fig. 1(a). The resulting

DEe�h
R for both light and heavy holes are the same, as this

quantity only contains the effects of RiðqiÞ on the carrier

charge. On the other hand, by plotting Ee�h
R , it is possible to

observe the difference between e–lh and e–hh pairs, caused

by the different light hole and heavy hole effective masses.

Note that the AlGaAs/GaAs heterostructure has er� 1,

i.e., the dielectric mismatch in this case is negligible. In fact,

one can verify in Fig. 1(a) that for AlGaAs/GaAs, DER� 0

for any value of wire radius. AlGaAs/GaAs core-shell wires
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have been widely experimentally studied for many reasons,

e.g., the possibility of obtaining lattice matched defect-free

samples, where the AlGaAs shell reduces the surface-related

nonradiative recombination, by passivating the GaAs core.13

However, the results in Fig. 1(a) suggest that this hetero-

structure is actually not the best choice for investigating

dielectric mismatch effects. As we will demonstrate

onwards, the case of GaN/HfO2 heterostructures is particu-

larly interesting.

The growth of nitride-based cylindrical core wires,7 as

well as HfO2 shells,6 has been reported recently, which

makes us believe that such a structure could be experimen-

tally realized in near future. Figure 1(b) shows the ground

state energies E0 (i.e., for n¼ 1 and l¼ 0) for each carrier in

a core-shell GaN/HfO2 heterostructure as a function of the

core radius. As usual, as the radius increases, the carrier con-

finement becomes weaker, leading to a reduction in the

ground state energy, which is clearly observed for the elec-

tron and the light hole in this case. Conversely, the heavy

hole energy shows a non-monotonic dependence on the ra-

dius, namely, it decreases for smaller radii but starts to

increase as the radius becomes larger, suggesting a different

confinement regime for this carrier. In fact, such a behavior

is analogous to the one reported in the literature for GaN/

HfO2 quantum wells.14 In the quantum wells case, such a

non-monotonic behavior of the confinement energy was

demonstrated to be a consequence of the fact that er < 1 in

this heterostructure, leading to an attractive potential which

pulls the carrier towards the interface between the materials.

Analogously, this suggests the existence of an interfacial

confinement of the heavy hole in the NW. For smaller radii,

the quantum confinement due to the bands mismatch is still

dominant, but as the radius is enlarged, the energy decreases

and eventually enters the negative energy domain, where the

hh becomes bound to the core-shell interface due to the self-

image potential. Being compressed towards the interface, the

hh experiences an increase in its energy as the radius is fur-

ther enlarged.

Notice that the sign of the confinement energy indicates

whether a charge carrier is confined in the core or at the

interfacial region. Without dielectric mismatch, or even for

er > 1, the confinement energy is always positive since the

bottom of the confinement potential Vi
T is always either

zero or larger. Conversely, the presence of a er < 1 mis-

match is responsible for negative cusps on the potential at

the interfacial region.10,12 Hence, a negative confinement

energy suggests an interfacial confinement. In fact, the heavy

hole is the only carrier with negative energy in Fig. 1(b), and

it is indeed the only one exhibiting non-monotonic behavior

of the confinement energy as the radius increases.

The consequences of the interfacial confinement are

numerous. For instance, for some combinations of core-shell

materials, one might find holes in the interface and electrons

in the core. Such an electron-hole spatial separation leads to

a reduction of the overlap between their wavefunctions,

reducing the oscillator strength and, consequently, the

recombination rate. The overlaps between electron and light

(lh, top) and heavy (hh, bottom) hole wave functions are

shown as a function of the core wire radius R in Fig. 2(a), for

the same combinations of core and shell materials in Fig.

1(a). For all the heterostructures shown, the overlap value is

slightly lower than unit for small radii. This is just a conse-

quence of the fact that wave functions for different charge

carriers penetrate with different depths into the barriers, and

this effect is more pronounced when the NW radius is small.

In the AlGaAs/GaAs (blue), GaAs/ZnSe (green), and Si/

SiO2 (black) cases, where the dielectric constants ratios are

er > 1, the overlaps for both el–lh and el–hh pairs simply

converge to 1 as the radius increases, which means that elec-

trons and holes are practically equally distributed in space

for larger wire radius. However, the overlaps in the er < 1

heterostructures exhibit a maximum at moderate R (around

10–20 nm) and decrease after this value, indicating different

distributions of electron and holes functions for large R.

Although this effect is also present for the Si/HfO2 hetero-

structure, it is much stronger in the GaN/HfO2 case (red),

specially for the el–hh pair.

In order to help us to understand the heavy hole interfa-

cial confinement and the consequently different spatial distri-

bution of charge carriers, Fig. 2(b) illustrates the total

confinement potential (black solid), along with the normal-

ized ground state wave functions, for electrons (top) and

heavy holes (bottom) in a R¼ 30 nm GaN/HfO2 core-shell

NW. The electron wave function considering dielectric mis-

match effects (black dashed) is still confined mostly in the

vicinity of the central axis of the core, even at such a large

radius, and its width is wider than that without dielectric mis-

match (blue dash dotted). On the other hand, the heavy hole

wave functions, depicted in the bottom panel of Fig. 2(b) for

different values of the core wire radius R, are clearly

FIG. 1. (a) Effect of the self-energy potential on the

recombination energy of an electron-hole pair, for dif-

ferent wire radii: 4 nm (�), 6 nm (�), 8 nm (~), and

10 nm (n). (b) Ground state energies as a function of

the core radius for carriers confined in a GaN/HfO2

core-shell heterostructure.
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confined at the interface, due to the cusp formed in this

region by the self-energy potential (see black solid line).

Note that as the radius increases, the hh wave function is

squeezed towards the interface, explaining the increase of

the energy in the heavy hole E0 curve in Fig. 1(b). Due to its

larger effective mass, as compared to that of the other charge

carriers, the heavy hole is indeed expected to be more

strongly confined in the interfacial cusps. Moreover, heavy

holes in GaN/HfO2 also have larger effective mass as com-

pared to any charge carrier in Si/HfO2, explaining why the

interfacial confinement effect is weaker in the latter case.

Another interesting effect arising from the interfacial

confinement in quantum wires comes from their topology:

systems where the charge carriers are confined around a core

are known to produce an interesting effect when a magnetic

field is applied perpendicular to the confinement plane,

namely, angular momentum transitions occur, even for the

ground state, as the magnetic field intensity increases, which

is reminiscent of the Aharonov-Bohm (AB) effect.9 In order

to illustrate this, the electron and hole energy behaviors

under such a magnetic field were numerically9 calculated

and shown in Fig. 3 as a function of the field amplitude B for

the GaN/HfO2 NW. All the carriers have E0< 0, suggesting

that their ground states are all interfacially confined. A large

(R¼ 30 nm) radius is considered, in order to enhance the

interfacial confinement effect (see Fig. 2(b)) and reduce the

AB period, since this period is inversely proportional to the

average radius of the carrier wave function. Indeed, the

ground state energy exhibits AB oscillations for all carriers

in this case, although they are much more evident for the hh.

Due to their considerably smaller effective masses,15 el and

lh are just weakly confined in the interface and still have a

large wave function tail spreading inside the core, explaining

the large AB period. The first ground state transition for

these carriers is not so visible in Figs. 3(a) and 3(b) and

occurs at B� 6 T. On the other hand, for the hh, the AB tran-

sitions are quite clear, occurring at smaller magnetic fields,

with a period B� 2.5 T. One easily verifies that the results

neglecting the self-energy term in Fig. 3(d) are qualitatively

different, showing a more conventional behavior with the

magnetic field for a core-shell NW, namely, without angular

momentum transitions for the ground state.

The interfacial confinement is also expected to have an

important role on the electrons mobility along the core axis

since this property depends on the electrons density in the

central region of the wire, which is suppressed in the case of

interfacial confinement. However, a more detailed investiga-

tion on this issue is left for future works.

In summary, we have theoretically investigated the

charge carrier confinement in core-shell nanowires with

FIG. 3. Confinement energies as a function of the magnetic field for (a)

electrons, (b) light, and (c) heavy holes, considering n¼ 1 and different val-

ues of angular momentum index l, in a R¼ 30 nm GaN/HfO2 NW. (d) The

results for a heavy hole in the same system, but neglecting image charge

effects.

FIG. 2. (a) Overlap between the electron

(el) and the light (lh) and heavy (hh)

hole wave functions as a function of the

core radius R, for several heterostructure

materials with different ratios between

dielectric constants �r , represented by

different colors. (b) Effective confine-

ment potentials Vi
T (solid) for R¼ 30 nm

in the GaN/HfO2 case for electrons and

heavy holes, along with some examples

of their wave functions. Electron wave

functions are shown with (dashed) and

without (dashed-dotted) taking image

charge effects into account, for compari-

son. Hole wave functions (for R 6¼ 0) are

depicted for R¼ 15 nm (blue dashed),

20 nm (red dash dotted), 25 nm (green

dotted), and 30 nm (black short dash

dotted).
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strong dielectric mismatch. Our results predict that, for spe-

cific configurations of the system, the carriers may be con-

fined at the core-shell interface. Such interfacial confinement

leads to drastic modifications on the electronic properties of

the NW, especially under an applied magnetic field, where

angular momentum transitions occur for the ground state,

due to the AB effect. A decrease in the oscillator strength of

the electron-hole pairs in er < 1 core-shell quantum wires is

also predicted for larger wire radii, which directly affects

their recombination rates. We believe that our results will

spur on future experimental investigations on core-shell

wires made out of high-k materials, contributing for a better

understanding of these systems.
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