
A Binary Particle Swarm Optimization Algorithm for a Variant

of the Maximum Covering Problem

Bruno Prata ∗ † Jorge Pinho de Sousa † Teresa Galvão †

April 14, 2009

∗ Center of Technological Sciences, University of Fortaleza - UNIFOR

Avenida Washington Soares, 1321, CEP 60811-905. Fortaleza, CE - Brazil

Email: baprata@unifor.br

† FEUP, Faculdade de Engenharia da Universidade do Porto

Rua Dr. Roberto Frias, 4200-465, Porto, Portugal

Email: {bruno.prata, tgalvao, jsousa}@fe.up.pt

1 Introduction

The Maximum Covering Problem (MCP) is a widely studied Combinatorial Optimization problem,
with several applications, such as facility location (including health centers, emergency vehicles and
commercial bank branches) and scheduling (flexible manufacturing systems, mass transit services,
telecommunications)[1], [3], [4]. Practical instances of the problem are in general quite difficult to
solve. Thus, approximate heuristic methods are used to achieve satisfactory solutions in acceptable
computational times.

A GRASP approach for the MCP is presented in [1], while in [3] and [4] Genetic Algorithms are ap-
plied for the problem. The GRASP metaheuristic proposed by Feo and Resende [2] has been successfully
tested in randomly generated instances of MCP. Arakaki and Lorena [3] propose a constructive Genetic
Algorithm for the Maximum Covering Location Problem, using both real and theoretical instances in
their computational experiments. Park and Ryu [4] present a Genetic Algorithm with unexpressed
genes for the MCP, using real instances of a subway system. In the unexpressed genes, the chromo-
somes consist of an expressed part and an unexpressed part. The expressed part is used in evaluation
of an individual and the unexpressed part preserve the information of an individual, maintaining the
diversification.

Park and Ryu [4] describe a MCP approach for the crew pairing problem. The MCP can be a
good model for the Vehicle and Crew Scheduling Problem (VCSP), if the changeovers (the change of a
vehicle of a driver) are forbidden.

Given a matrix A, in which aij ∈ {0, 1}, the MCP consists in covering the largest number of rows
of matrix A with a number of columns of matrix A less or equal to d. The variables yi are associated
with the rows of matrix A, so that yi = 1 if the ith row is not covered in a solution, being yi = 0
otherwise. The variables xj represent the columns of matrix A, so that xj = 1 if the jth column is part
of the solution, being xj = 0 otherwise. Obviously the xj are decision variables, the yi being auxiliary
variables required for the definition of the objective function.



EUMEeting 2009 2

It should be noted that our version is a simplified version of the MCP, as the weights of the rows
(considered by other authors) are here ignored. In this formulation, a maximum cover occurs when a
minimum number of rows are left uncovered.The abovementioned formulation was adopted in scheduling
problems of transport planning [4].

The variant of the MCP can be formulated mathematically as follows:

min z =
n∑

i=1

yi (1)

subject to,
m∑

j=1

xj ≤ d (2)

n∑
j=1

aijxj + yi ≥ 1, i = 1, . . . ,m (3)

xj ∈ {0, 1} (4)
yi ∈ {0, 1} (5)

(6)

The objective function represented by equation (1) aims at minimizing the number of uncovered
rows of matrix A. The set of constraints (2) impose that a maximum number of d columns of matrix A
be selected in the solution. The constraints of type (3) are used to define the auxiliary variables yi. It
is easy to show that constraints (5) are redundant and can therefore be replaced by simply bounds on
the variables yi. Therefore in our computational implementation, the number of binary variables is m.

The MCP is similar to the Set Covering Problem (SCP). While in the SCP the goal is to cover the
rows of matrix A with minimum cost, in the MCP the goal is to minimize the number of uncovered
rows of A, with no type of cost being measured. It seems that constraint (2) makes the problem really
difficult to solve.

The objective of the work reported on this paper was to create a Binary Particle Optimization
Algorithm for the Maximum Covering Problem. This work should obviously be viewed as a preliminary
stage of a larger research project.

2 Particle Swarm Optimization

Evolutionary Algorithms are inspired by the theory of evolution of species, by recombining solutions,
and thus aiming at performing an intelligent search of the solution space. As examples we have Genetic
Algorithms (GA) and optimization based on colonies of socials insects, such as ants, bees, and termites.

Kennedy and Ebehart [5] proposed a new meta-heuristic for solving unconstrained problems of non-
linear optimization they have called Particle Swarm Optimization (PSO). The philosophy of PSO is
the following: an initial population of particles is generated, each one in an initial position of the space
of solutions and with a certain initial velocity. Each particle i is characterized by its position and a
vector of change in position called velocity [9].

A particle is a candidate solution of the swarm in a step of the search. The swarm is the whole set of
particles in a given iteration. The velocity is a number that leads the movement of the particles. Each
particle will go through the n-dimensional search space and will have its velocity updated according to
the velocity of the other particles.

Porto, Portugal, April 29-30, 2009



EUMEeting 2009 3

For each particle, its best fitness in the search process is stored, and this value is named pbest. The
overall pbest value, obtained evaluating all the particles in the population, is the best solution of the
search, which is called gbest. The values of pbest and gbest are used for the updating of velocities of
the particles in the search space. The particles that are far from the promising regions of the search
space will have their velocity increased, while the other particles will have their velocity decreased.

PSO has a search strategy extremely efficient [5], [6]: it has an easy computational implementation,
requiring few lines of code; it uses little memory and requires few processing speed; and the search
process is enhanced by the continuous learnship of the particles. After the promising results achieved
by PSO in non-linear programming problems, its application to combinatorial optimization problems
showed also to be very promising.

Kennedy and Ebehart [7] developed a binary version for PSO and concluded that the meta-heuristic
is also flexible and robust for this class of problems. Tasgetiren and Liang [8] applied a binary PSO for
the Lot Sizing Problem, obtaining results of better quality than a Genetic Algorithm.

3 Proposed heuristic

For the resolution of the MCP with PSO, the following coding was used: each particle consists of
a binary vector of m elements, representing the values of the xj . Therefore, the solution space is
x = {x1, x2, . . . , xm}, xj ∈ {0, 1}. It should be noted that many solutions may be unfeasible for the
original problem, due the constraints (4) and (5). The neighborhoods are the solutions obtained from
x by a moving. A movement is a flip in a bit of the binary vector. Therefore, the total number of
solutions is 2m.

Since it is an evolutionary algorithm, PSO operates on a population of solutions (particles), with
size maxpop. The search is performed in maxgen iterations (generations). The initial population is
generated in a random way. The values P [xj = 1] = 0.05 and P [xj = 0] = 0.95 were adopted, because
the vector of decision variables is very sparse. Therefore, it is likely that constraint (2) is satisfied.

This policy for the generation of the initial population does not prevent the generation of unfeasible
solutions. However, it hopefully guarantees a good diversification of the search. An infeasible solution
can be a neighbor of a high quality solution.

The evaluation function (fitness of a solution) is the number of rows of matrix A uncovered in a
certain solution, to be minimized. In order not to violate constraint (2), a penalty factor equal to 20
was adopted, per extra column, to penalize particles that use more than d columns in a solution. This
penalty factor was adjusted empirically, after some initial computational experiments.

The velocities are stored in a matrix of maxpop ×m order. The values are generated through the
following expression: velocity[i, j] = vmin+ (vmax− vmin) ∗ random[0, 1]. The parameters vmax and
vmin are the maximum and minimum values allowed for the velocity of each particle (the following
values have been adopted: vmax = ln(m) and vmin = −ln(m)).

Be pbest and gbest the best solutions obtained, respectively, by the ith particle and by the swarm. Be
xpbest and xgbest the positions of such solutions, the velocity variation is given through the expression:

∆v[i, j] = c1 ∗ random[0, 1] ∗ (xpbest − x) + c2 ∗ random[0, 1] ∗ (xgbest − x)

c1 is the cognitive constant and c2 is the social constant. The first is related to the learnship of the
particle, based on its own move in the search space, while the social constant is related to the learnship
of the particle concerning the behavior of the swarm as a whole. A position of a particle is a binary
vector in the solution space is x.

As in a binary optimization problem the decision variables only take the values 0 and 1, a function

Porto, Portugal, April 29-30, 2009



EUMEeting 2009 4

that transforms a real velocity, defined in the interval [vmin, vmax], into the interval [0, 1] is required.
The sigmoid function is usually used for this purpose [7], [8]:

sigmoid(v[i, j]) =
1

1 + e−v[i,j]

Thus, the value of the sigmoid for the velocity of the ith particle in the jth dimension (bit) is
calculated. If this value is smaller than a random number uniformly distributed, the jth bit takes the
value 1; otherwise, it takes the value 0. Algorithm 1 presents the pseudo code for updating the position
of the particles.

for i = 1 to maxpop do
for j = 0 to m do

r ← [0, 1];
if r < sigmoid(v[i, j]) then

x[i, j]← 1;
else

x[i, j]← 0;
end

end
end

Algorithm 1: Movement of particles

After the accomplished moves, the fitness of each particle is calculated and the unfeasible solutions
are penalized. If the value of gbest does not improve during k iterations of the algorithm, a restart of
the velocity of the particles, except from xgbest. After that, at Algorithm 2, the pseudo code of the
heuristic proposed is presented.

According to [1], both constructive algorithms and local search can play an important role in the per-
formance of algorithms for the MCP. However, the authors employed a PSO without the hybridization
of such techniques aiming to demonstrate that the mechanisms of social learnship of PSO, by them-
selves, can incur in the obtaining of good solutions in combinatorial binary optimization problems, as
it is the case of MCP.

Generate initial population ;
Generate initial velocities ;
Generate initial values for pbest and gbest;
while gen ≤ maxgen do

Find pbest and gbest ;
Calculate velocity of the ith particle in the jth dimension;
Update velocity of the ith particle in the jth dimension;
Update each bit in string using a sigmoid function (update position) ;
Evaluate fitness of each particle ;
Assign penalization to unfeasible solutions ;
Restart velocities for each k iterations without improvement of gbest;
gen← gen+ 1 ;

end
Algorithm 2: Pseudo code of proposed PSO heuristic

Porto, Portugal, April 29-30, 2009



EUMEeting 2009 5

Instance n m d ρ Global
Optimum

t(s)

MCP01 200 200 16 4.02 48 5434
MCP02 200 200 10 3.82 91 48
MCP03 200 200 18 3.94 37 5906
MCP04 200 200 18 3.83 40 2896
MCP05 200 200 16 3, 93 44 232
MCP06 200 200 6 9.22 65 396
MCP07 200 200 17 3.96 41 443
MCP08 200 200 32 3.83 0 1621
MCP09 200 200 16 3.95 52 2148
MCP10 200 200 23 4.12 15 19193

Table 1: Test instances

4 Computational Results

For the computational experiments, 10 instances of medium size were generated randomly. These
instances were solved in an exact way with LINGO 8.0. The values n=m=200 have been adopted to
allow the resolution of the instances to optimality. These instances are presented in Table 1 as follows:
number of rows of matrix A (n), number of columns of matrix A (m), maximum number of columns
to be taken into the solution (d) and density of the matrix A (ρ), i.e. number of ”1”s divided by the
total number of elements, and t(s) is the time needed to solve the problem.

The algorithm was implemented in Pascal. The experiments were made in an AMD Semprom
2400 + 1.67 GHz, 504MB RAM. The following parameters were utilized: maxpop = 15, maxgen = 2500
and c1 = c2 = 1. For the restart routine of the velocities, k = 500 generations was adopted. It should
be emphasized that the performance of PSO is not so much dependent on parameters.

For each instance, 20 runs of the algorithm were made. The results are presented in Table 2. The
first column of the table identifies the instance. The second and third columns present, respectively,
the best and the worst results obtained by the heuristic. The fourth and the fifth column present the
mean and the standard deviation of the results obtained by the algorithm, for the 20 runs. In the sixth
column, we have the number of times that the algorithm found the optimal solution of the instance.
Finally, in the seventh column, the average computational times are presented.

Based on these results, we can say that, although the initial solutions generated are of low quality
and there is no repair heuristics, PSO could obtain good solutions in acceptable computational times.
For 5 out of the 10 instances considered, the optimal solutions were achieved. Such fact confirms the
potential of PSO in solving this type of Combinatorial Optimization problems.

The strategy of generating initial solutions in a random way, without taking into consideration the
specific characteristics of the problem, turned out to be very inefficient. i.e., the quality of the initial
solutions has a considerable impact on the quality of the final solutions.

Constraint (2) leads to feasible vectors x with a few number of ”1”s. The several local optima are
therefore quite ”different”, being separated by a large Hamming distance. Thus, migration to global
optima becomes, in general, quite difficult.

The quality of a solution for the MCP can be assessed through the calculation of the covering
percentage p, determined by the following expression, in which n is the number of rows of matrix A
and z is the value of the objective function obtained, which represents the number of uncovered rows:

Porto, Portugal, April 29-30, 2009



EUMEeting 2009 6

Instance Global
Optimum

Best solu-
tion

Worst
solution

Mean Std
dev.

n.opt. sol.
in 20 runs

tm(s)

MCP01 48 48 55 50.10 1.76 4 23.71
MCP02 91 92 96 93.90 1.22 0 23.78
MCP03 37 37 44 40.35 1.77 2 23.74
MCP04 40 42 46 44.10 1.70 0 23.77
MCP05 44 44 50 46.45 1.60 4 23.94
MCP06 65 65 74 70.15 3.35 5 23.85
MCP07 41 41 48 43.70 2.85 9 23.86
MCP08 0 4 8 5.85 1.39 0 23.79
MCP09 52 54 58 55.65 1.62 0 23.60
MCP10 15 19 24 21.20 1.03 0 23.82

Table 2: Computational Results

Instance Global
Optimum

poptimum pbest pmean pworst gapbest gapmean gapworst

MCP01 48 76.00 76.00 74.95 72.50 0.00 1.05 3.50
MCP02 91 54.50 54.00 53.05 52.00 0.50 1.45 2.50
MCP03 37 81.50 81.50 79.83 78.00 0.00 1.67 3.50
MCP04 40 80.00 79.00 77.95 77.00 1.00 2.05 3.00
MCP05 44 78.00 78.00 76.78 75.00 0.00 1.23 3.00
MCP06 65 67.50 67.50 64.93 75.00 0.00 2.58 4.50
MCP07 41 79.50 79.50 78.15 63.00 0.00 1.35 3.50
MCP08 0 100.00 98.00 97.08 76.00 2.00 2.93 4.00
MCP09 52 74.00 73.00 72.18 71.00 1.00 1.83 3.00
MCP10 15 92.50 90.50 89.40 88.00 2.00 3.10 4.50

Table 3: Comparison between heuristic results and optimal solutions.

p =
(n− z)
n

Based on the mean of the values of the solutions obtained by the heuristic, it was possible to
calculate the deviation (gap) between the covering percentage p obtained by PSO and by the exact
method, for the instances analyzed. For this class of instances the results seem to be very promising
(Table 3).

5 Conclusions

The main goal of this work was to demonstrate the potential of PSO in solving the Maximum Covering
Problem. This new way to handle the MCP is interesting because the MCP can be quite useful
in modeling important practical problems such as those occurring in simultaneous vehicle and crew
scheduling.

The heuristic proposed was tested in a set of 10 randomly generated instances of medium size that
were solved to optimality with LINGO 8.0.

The accomplished computational experience showed that the algorithm could produce solutions of
good quality with a low computational cost. The process of collective learnship of the particles seems

Porto, Portugal, April 29-30, 2009



EUMEeting 2009 7

to be a good way to guarantee a comprehensive search of the solution space.

Unfortunately, there are not available instances for the variant of Maximum Covering Problem
studied in the paper. Therefore, the comparison to other meta-heuristic is difficult. This comparison
is a topic for future studies.

Future research should also cover the design of heuristics for repairing unfeasible solutions, the gen-
eration of an initial population, and the hybridization of the PSO heuristic with local search procedures.

Comprehensive tests with larger and heterogeneous instances are required, in order to fully validate
and tune the proposed general approach. In line with this research area, the authors are developing
an application of PSO for the Vehicle and Crew Scheduling Problem (VCSP). The MCP model for the
VCSP is likely to have a good performance, when compared with the more traditional Set Covering/Set
Partitioning approaches.

References

[1] Mauricio G. C. Resende. Computing approximate solutions of the maximum covering problem with
GRASP. Journal of Heuristics, 4: 161-177, 1998.

[2] T. A. Feo and Mauricio G. C. Resende. A probabilistic heuristic for a computationally difficult set
covering problem. Journal of Operations Research Letter , 8: 67-71, 1989.

[3] R. G. I. Arakaki and L. A. N. Lorena. A constructive Genetic Algorithm for the Maximal Covering
Location Problem. In Proceedings of 4th Metaheuristics International Conference, 13-17, Porto,
2001.

[4] T. Park and K. R. Ryu Crew pairing optimization by a genetic algorithm with unexpressed genes.
Journal of Intelligent Manufacturing, 17: 375-383, 2006.

[5] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proceedings of the IEEE Inter-
national Conference on Neural Networks, Piscataway, 1995.

[6] J. Kennedy and R. C. Eberhart. A new optimizer using particle swarm theory. In Proceedings of
the 6th International Symposium on Micromachine and Human Science, Nagoya, 1995.

[7] J. Kennedy and R. C. Eberhart. A discrete binary version of the particle swarm algorithm. In
Conference on Systems, Man and Cybernetics, Hyatt, 1997.

[8] M. F. Tasgetiren and Y. C. Liang. A binary Particle Swarm Optimization Algorithm for the lot
sizing problem. Journal of Economic and Social Research, 5: 1-20, 2003.

[9] J. Dréo, A. Pétrowksi, P. Siarry and E. Taillard. Metaheuristics for hard optimization. Springler,
Heidelberg, 2006.

[10] N. Nedjah and L. M. Mourelle (Eds.). Swarm Intelligent Systems. Springler, Heidelberg, 2006.

Porto, Portugal, April 29-30, 2009


