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Resumo

À medida que o limite de miniaturização da eletrônica baseada no silício aproxima-se do
seu limite, alternativas em estado sólido devem ser investigadas na busca da diminuição da
escala de tamanho de dispositivos operacionais, ao mesmo tempo em que se deve considerar
problemas de crescente interessse como dissipação de calor e ruído associado com a baixa di-
mensionalidade. Nesta busca, já está claro que nanosistemas semicondutores de carbono são
candidatos de primeiro pelotão para comporem os blocos básicos para dispositivos em escala
atômica e molecular. Grafeno e nanotubos de carbono são os sistemas mais estudados desta
classe de estruturas que se estende por uma vasta coleção de sistemas. Estas nanoestruturas de
carbono apresentam uma riqueza de propriedades físicas e químicas que se reflete no enorme
número de artigos científicos tendo esses sistemas como foco [1]. Apesar de a ciência das na-
noestruturas de carbono ainda ter um longo caminho pela frente antes de alcançar as prateleiras
das lojas depois de ter sido transformada em tecnologia, a comunidade científica tem caminhado
rapidamente no sentido de entender e controlar tais sistemas de modo a diminuir esta distância.

Nesta tese nós realizamos um estudo teórico das propriedades eletrônicas e de transporte de
um número de nanoestruturas de carbono, tais como nanosistemas toroidais e nanofitas de car-
bono de arranjo complexo. Nossos cálculos de estrutura eletrônica são baseados em um modelo
tight-binding que inclui um Hamiltoniano de Hubbard para descrever a influência do spin sobre
os estados eletrônicos. As propriedades de transporte eletrônico foram calculadas utilizando
o formalismo de Landauer e o método de funções de Green para determinar a transmitância
quântica em sistemas em nanoescala. Parte destes cálculos foram realizados com pacotes com-
putacionais desenvolvidos especialmente para esta tese. Em particular, nós desenvolvemos uma
extensão de um algorítmo eficiente para o cálculo de função de Green em uma infraestrutura
computacional em paralelo.

Nanotoroides de carbono apresentam estrutura eletrônica específica se comparados aos nan-
otubos de carbono, já que sua geometria impõe um grau suplementar de confinamento espacial.
Como consequência, condições adicionais devem ser impostas à sua geometria para que a estru-
tura seja metálica. Aqui nos analizamos nanotoroides de carbono a partir de duas perspectivas
diferentes: sistemas de dois terminais com um ângulo variável entre os eletrodos e estruturas de
múltiplos terminais. Esses sistemas possuem potencial para serem aplicados em nanoeletrônica
graças à sua geometria particular que permite que a corrente flua através do sistema por difer-
entes caminhos eletrônicos. Isso resulta em propriedades de transporte interessantes, as quais
são ditadas por efeitos de interferência eletrônica que variam com o ângulo entre os eletro-
dos e com os detalhes da estrutura atômica da junção nanotoroide-terminal. Nós mostramos
que a presença de múltiplos terminais acrescenta novos aspectos ao transporte eletrônico destes
toroides já que o número de possibilidades para o fluxo eletrônico cresce rapidamente com o
número de eletrodos. Observa-se que a condutância é caracterizada por um conjunto de picos
resonantes que são relacionados com caminhos eletrônicos específicos. Estes resultados são
racionalizados em termos de uma série de regras para se determinar o caminho para a corrente
elétrica como uma função da energia do elétron incidente.



Na segunda parte da tese, nós estudamos as propriedades físicas de uma classe de fitas de
carbono as quais nós chamamos de fitas sinuosas (ou simplesmente wiggles, em inglês). A es-
trutura atômica destas wiggles pode ser descrita por um conjunto reduzido de fatores já que elas
podem ser construídas utilizando-se fitas de carbono de borda reta como blocos básicos. Nós
mostramos que essas wiggles de carbono apresentam um conjunto de propriedades eletrônicas
e magnéticas ainda mais amplo quando comparadas com os seus constituintes básicos (fitas de
carbono de borda reta). Isso é especialmente devido à formação de domínios nas bordas, resul-
tantes da sucessiva repetição de setores de fitas retas paralelas e obliquas ao longo da direção
periódica da wiggle. Nós demonstramos que as wiggles de carbono apresentam múltiplos es-
tados magnéticos que podem ser explorados para se manipular as propriedades físicas desses
sistemas. Estes diferentes estados magnéticos resultam em propriedades eletrônicas e de trans-
porte distintas, de modo que a corrente eletrônica pode ser controlada pela escolha de valores
específicos da energia do elétron incidente no sistema, assim do spin eletrônico e do estado
magnético da wiggle. Essas propriedades tornam as nanowiggles potenciais candidatas para
novas aplicações em nanodispositivos.

Finalmente, nos esperamos que o trabalho apresentado nesta tese constitua uma impor-
tante contribuição para a investigação das propriedades físicas de nanoestruturas de carbono.
Nós mostramos que nanotoroides e nanowiggles de carbono apresentam uma série de novas
propriedades que podem tornar possível o seu uso em nanoeletrônica. À medida que estudos
experimentais em nanomateriais de carbono têm sido desenvolvidos a passos largos, nós pro-
jetamos que os resultados apresentados nesta tese se tornarão uma ótima oportunidade para
se confrontar teoria e experimento na proposta de novos dispositivos em nanoescala com pro-
priedades eletrônicas e de transporte específicas.



Abstract

As the miniaturization limit of the physical size of Si-based electronics is projected to be
reached in a near future, solid-state alternatives must be investigated in the pursuit of further
scaling down the effective operational device structures, while considering growingly important
problems such as heat dissipation and noise associated with reduced dimensionality. In this
quest, it is clear that semiconducting carbon nanosystems are solid front-runner candidates to
compose the building blocks for devices at molecular and atomic scales. Graphene and carbon
nanotubes are the most studied members of this class of structures which extends over a broad
collection of systems. These carbon nanostructures present a wealth of promising physical and
chemical properties which is reflected in the number of scientific works having these systems
as focus [1]. Even though the science of carbon nanostructures has a long path ahead before
reaching the shelves of stores after being transformed into technology, the scientific community
has been walking fast towards the understanding and the control of such systems in order to
shorten this gap.

In this thesis we theoretically studied the electronic structure and transport properties of a
number of carbon nanostructures, such as toroidal carbon nanosystems and complex assembled
graphitic nanoribbons. Our electronic structure calculations are based on a tight-binding model
including a Hubbard Hamiltonian to describe the influence of spin on the electronic states. The
electronic transport properties were computed using the Landauer formalism and a Green’s
function approach to determine the quantum transmission in nanoscaled systems. Part of these
calculations were performed with computational packages developed specifically for this the-
sis. In particular, we developed an extension of an efficient algorithm to calculate the Green’s
function on a parallel computational infrastructure.

Carbon nanotori display specific electronic structure compared to carbon nanotubes, since
this geometry imposes a supplemental degree of spatial confinement. As a consequence, addi-
tional conditions on the structure geometry have to be obeyed for a given torus to be metallic.
Here we analyzed carbon nanotori from two different perspectives: two-terminal systems with
a variable angle between the terminals and multi-terminal structures. These rings are potential
systems for nanoelectronic application as their particular geometry allows the current to flow
through the system along different electronic paths. This results in interesting transport proper-
ties dictated by electron interference effects which vary with the angle between the electrodes
and the atomic details of the nanotorus-electrode junction. We showed that the presence of
multi-terminals adds new features to the electronic transport on these tori as the number of pos-
sibilities for the electronic flow increases quickly with the number of electrodes. It turns out
that the conductance is characterized by a set of resonant peaks which are related to specific
electronic paths. These results are rationalized into a set of rules to determine the path for the
electrical current as a function of the impinging electron energy.

In the second part of the thesis we studied the physical properties of a class of complex
graphitic nanoribbons that we called wiggles. The atomic structure of these wiggles can be



described by a reduced set of factors since they can be built using straight carbon nanoribons
as basic building blocks. We show that carbon nanowiggles present a broader set of electronic
and magnetic properties in comparison to those of their constituents (graphene nanoribbons).
This is mainly due to the formation of edge domains resulting from the successive repetition
of parallel and oblique graphene nanoribbon sectors along the wiggle’s periodic direction. We
demonstrate that carbon wiggles present multiple magnetic states which can be exploited to
tune the physical properties of these systems. These different magnetic states lead to dissimilar
electronic structure and transport properties for the wiggles so that the electronic current on
these systems can be tuned by selecting specific values for the impinging electron energy as
well as its spin and the wiggle’s magnetic state. These properties make carbon nanowiggles
potential candidates as new nanodevices.

Finally, we expect that the work reported in this thesis will constitute an important contri-
bution to the investigation of the physical properties of carbon nanostructures. We show that
carbon nanotori and nanowiggles present a series of new properties that can enable their use
in nanoelectronics. As experimental studies on carbon nanomaterials have been developed at a
fast pace, we project the findings presented in this thesis to be a great opportunity to confront
theory and experiment in the proposal of new nanoscaled devices with specific electronic and
transport properties.
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Prologue

Two Nobel prizes (1996 and 2010); the topic of about 13000 papers and 2500 patent appli-

cations only in the last year (2010) [1]; a front runner candidate to conduct the next generation

of nanotechnology [1]; a growing media interest in such a way that it starts to be known by all

the sectors of society. Any of these statements would suffice to make us ask: “Who or what is

this phenomenon?”. What a surprise it would be if all these affirmations referred to the same

answer? Yes, it is true and the answer is nano carbon.

Carbon has been known for a long time. It is not only the spinal cord of organic chemistry,

but it also is capable to form interesting inorganic structures. Graphite and diamond are “old

forms” of carbon which contrast in their properties and abundance. Carbon fibers led to a

revolution in resistant materials research, going from the laboratory test-beds, in the 50’s, to

the industry, in the 70’s and 80’s. Today they are present in our daily routine as building parts

in planes, cars, helmets and most anything which needs to be mechanically resistant. In 1985,

the scientific interest in carbon underwent an important turning point with the discovery of the

fullerenes [10]. Even though, to date, fullerenes have not spurred a corresponding turning point

in consumer technology, they have paved the way to the rising of a new research field and

confirmed past predictions.

In 1959 Richard P. Feynmam pointed out the possibility of manipulating matter with atomic

precision [11]. Even though it was impossible with the technology of his time, he envisioned

that in some decades we would be able to explore the matter characteristics in their most in-

trinsic properties. This is why Feynmam is commonly called the “father” of nanoscience (the

science of systems with nanometer sizes: 1 nm= 10−9 m). In this context, fullerenes repre-

sent the real starting point of this research field as they attracted special attention due to their

nanoscopic size and highly self-organized structure. New properties, such as their high surface

curvature, led to a set of new phenomena exploited in chemistry, physics and other fields. It is

not surprising that its discovery gave to Kroto, Curl and Smalley the Nobel Prize in Chemistry

in 1996.

Following the discovery of fullerenes, researchers have speculated about the possibility of

carbon forming tubular structures [12]. It did not take long for this new form of carbon to
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be discovered, placing carbon in the spotlight of nanoscience. In 1991, Iijima reported the

observation of multiple concentric one-atom-thick tubes made of carbon [13]. Two years later,

Iijima and Bethune simultaneously reported the synthesis of single-wall carbon nanotubes [14,

15]. Compared to C60, carbon nanotubes brought an even larger net of possible applications

due to their extreme mechanical resistance, high aspect ratio and unusual relation between their

atomic structure and their physical and chemical properties. Even though they still have not

met all the projected expectations, they remain potential candidates for a series of technological

breakthrough applications and their production reaches the amount of 100 tons per year.

However, history does not end with the hollow carbon structure. Even though graphite (the

stacking of inumerous carbon honeycomb sheets) is a common and well known material, the

isolation of single sheets (graphene) was not accomplished until 2004 when Novoselov and

Geim isolated a graphene sheet using a scotch tape [16]. Due to graphene’s simplicity, its

properties were already the subject of previous theoretical studies (Wallace’s paper in 1947 is

the pioneer [17]), but the experimental isolation of single sheets produced a strong transition

in the attention dispensed to graphene and graphene related structures. Advantages such as

an easier experimental control make them even more promising for applications than carbon

nanotubes. As a sign of this, it took only six years for Novoselov and Geim to be awarded with

the Physics Nobel Prize in 2010.

The family of carbon nanostructures is not limited to fullerenes (0D), nanotubes (1D) and

graphene (2D), but also extends to a huge set of related structures having those three “stars”

as building blocks. While experimentalists accelerate the pace to develop control on synthe-

sizing, modifying and manipulating carbon nanostructures, theoretical studies are essential to

understand the underlying physics and chemistry in these systems, as well as to provide the

indispensable tools to help guide and interpret experiments.

In this thesis we employ theoretical calculations to study the electronic structure and trans-

port of two classes of nanostructures: toroidal systems and complex assembled graphene nanorib-

bons. The thesis is divided in three parts. In Part I we present a general introduction and the

methods employed in the computational calculations. The results on toroidal nanostructures are

discussed in Part II and Part III is dedicated to graphene nanowiggles. We finish the thesis with

the conclusions.
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Part I

Generalities
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1 Introduction to nano carbon

This chapter is dedicated to explain why carbon is so scientifically and technologically rich

as well as to give a small overview on the carbon science. After discussing basic properties

of carbon as a chemical element, we describe the main components of the huge family of car-

bon nanomaterials and some of their striking properties. As we present the different carbon

nanostructures, we highlight the particular systems we studied in this thesis, namely carbon

nanowiggles and toroidal structures. As our studies are based on computational calculations,

we describe the corresponding methods in the subsequent 3 chapters.

1.1 Atomic electronic structure

We will now present the general framework to classify the electronic states in single atoms.

Let us first consider the problem of an hydrogen-like atom. This is an atom with only one

electron orbiting its nucleus. If we consider that the atomic nucleus is static and positioned at the

origin of the coordinate system, the potential energy can be written as a spherically symmetric

function of the electron coordinate:

V (r) =V (r) =−cZ
r

(1.1)

where r is the distance to the origin and c a constant depending on the system of units. Un-

der this condition, one expects that the angular momentum L̂ will present stationary values.

Equivalently, the commutation relation

[Ĥ, L̂2] = 0 (1.2)

must be obeyed between the Hamiltonian operator (Ĥ) and the square of the angular momentum

operator (L̂). This allows us to write eigenstates that are simultaneously eigenfunctions of both

Ĥ and L̂2. The eigenvalues of L̂2 are given by:

L2 = l(l +1)h̄2 (1.3)
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where l is a natural number. Furthermore, we can also write the following expressions for one

of the components of the L̂ operator (z for example):

[Ĥ, L̂z] = 0 [L̂2, L̂z] = 0. (1.4)

As a consequence, the (E,L2) eigenstates can also have a well defined value for Lz, given by:

Lz = mh̄; m = 0,±1,±2, ...,±l. (1.5)

It follows that for each energy eigenvalue, we have 2l+1 degenerate eigenstates corresponding

to the pairs (l,−l), (l,−l + 1), ..., (l, l− 1), (l, l), where the first and second numbers in each

pair refer to the eigenvalues for L̂2 and L̂z, respectively. We observe that the energy levels in

the hydrogen atom do not depend on either l or m. This is in fact expected since the problem

is spherically symmetric so that the energy does not depend on the orientation of the angular

momentum. However, for a specific (l,m) pair, we have a number of different eigenstates.

Those are labeled by a third number n (called principal quantum number) in such a way that

n can assume integer values greater than l. It can be shown that the energy eigenvalues for

hydrogen-like atoms are given by:

En =−
Z2

n2 13.6 eV (1.6)

where Z is the atomic number. The eigenfunction for a (n, l,m) state in the position represen-

tation (or any electron wavefunction in an atom or molecule or representing a bond) will be

hereafter called an orbital (in analogy with the fixed energy and angular momentum classical

orbit for the electron). It is common to use the following terminology for the orbitals with small

angular momentum:

• l = 0→ s state;

• l = 1→ p state;

• l = 2→ d state;

• l = 3→ f state.

Each atomic orbital can be written as a product between a radial function (depending on n and

l) and a spherical harmonic:

ψn,l,m = Rnl(r)Ylm(θ ,φ) (1.7)
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where the radial part is written as:

Rnl =

[(
α

n

)3
(n− l−1)!
2n(n+ l)!

]1/2

e−αr/2n(αr/n)lL2l+1
n−l−1(αr/n); α =

2Z
a0

(1.8)

where a0 = 0.53 Å is the Bohr radius and Li
j are the associated Laguerre polynomials. In

Fig 1.1 we plot the radial functions for the first 3 states for the s and p angular momenta.

Figure 1.1: Radial functions for the first three s (a) and p (b) orbitals.

Different representations can be used to illustrate the Yl,m dependence with both θ and

φ . Here we will represent those spherical harmonics as surfaces where the distance from the

surface to the origin represents the modulus of Yl,m for the corresponding (θ ,φ) coordinate pair.

Regarding the sign of Yl,m, positive values will be represented by blue, while red will refer to

negative values of Yl,m. The s states have spherical symmetry and are represented by a sphere.

The three p orbitals have real and imaginary parts forming two spheres tangent to each other

and oriented along the coordinate axis. A unitary transformation can be applied in such a way

to construct real orbitals along x, y and z. These four orbitals are represented in Fig. 1.2.

The last quantity describing the electronic levels is the electron’s intrinsic angular momen-

tum (spin). For an electron, the eigenvalue for the square of the intrinsic angular momentum

operator Ŝ2 is s(s+1)h̄2 with s = 1/2 and the corresponding eigenvalue sz for the z component

Ŝz can assume either +1/2 or −1/2 values. In analogy to electric dipoles, these spin values are

usually labeled by “up” or “down”. Pauli’s exclusion principle and Hund’s rule are two funda-

mental concepts regarding spin and the filling of the electronic states in multi-electron systems.

Pauli’s principle states that any single orbital can be filled by no more than two electrons and

these particles must have opposite spins. So, in order to obtain the ground state for the elec-
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Figure 1.2: Spherical harmonics for the s (a) and p (b) orbitals.

tronic configuration, one starts filling the levels from the lowest ones in such a way that we only

fill a given energy level when all the states below are occupied by two electrons with opposite

spins. However, the rules state that when filling a degenerate set of states, one has to fill them

so as to maximize the total spin. In other words, one only adds the second electron for a given

state when all the degenerate levels contain at least one electron. This is known as Hund’s rule

and its origin lies in the electron-electron interaction. If we have a double degenerate level and

two electrons, for example, it is preferable to fill each state with one electron since filling one

level with two electrons would increase the electronic repulsion as they would occupy the same

region in space. These two rules are intrinsically related to the exchange energy which will be

discussed in more details in Section 2.2.2.

While the potential form V (r) = V (r) holds only for mono-electronic atoms, the (n, l,m)

nomenclature is still very useful for multi-electron atoms, even though the eigenvalues will no

longer depend only on n. One way to understand how the orbital energies vary for a varying

atomic number is presented in [2]. As one raises Z starting from hydrogen, an additional elec-

tron has to be included every time the nuclear charge increases by an |e| unit. When adding each

extra electron, all the levels get lower in energy. For the multi-electronic case we observe that,

in general, s states are always lower in energy than p states due to symmetry. As the previously

filled states (inner or core electrons) get lower and lower, they are less influenced by different

chemical environments where the atoms are placed. So, the changes in the electronic structure

of the atom due to external atoms usually affect mostly the highest energy (valence) electrons.
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1.2 Hybridization

When orbitals corresponding to different angular momenta have a small energy difference

(compared to the binding energies with other atoms), they can be combined so that the electrons

will be described by hybrid orbitals obtained by linear combinations of the original orbital

wavefunctions. This phenomenon is called hybridization. When such hybridization involves

only s and p orbitals, we have three main hybridization schemes which involve one 2s orbital

and one (sp), two (sp2) or three (sp3) 2p orbitals.

1.2.1 sp hybridization

First, we can have a mixing between the s and one of the p orbitals (px, for example).

This hybridization occurs when the atoms form linear chains, like in poliines chains. The sp

combination reads:

|spa〉= as|s〉+ap|px〉 (1.9)

|spb〉= bs|s〉+bp|px〉 (1.10)

and the hybrid orbitals have to obey the orthonormality conditions:

〈spa|spb〉= 〈spb|spa〉= 0 (1.11)

〈spa|spa〉= 〈spb|spb〉= 1 (1.12)

which results in:

|spa〉 =
1√
2
|s〉+ 1√

2
|px〉 (1.13)

|spb〉 =
1√
2
|s〉− 1√

2
|px〉. (1.14)

Schematic representations of these hybrid orbitals are shown in Fig. 1.3a. In this case, strong

chemical bonds (σ bonds) are formed involving the spa (spb) state from on atom and the spb

(spa) state of its right (left) neighbor. The other two p orbitals (perpendicular to the chain) form

weaker bonds with the corresponding orbitals from the neighbor atoms (π bonds).

1.2.2 sp2 hybridization

In the sp2 hybridization, one s-orbital mixes with two p orbitals (px and py, for example).

The mixing is defined so as to create three hybrid orbitals directed along three in-plane axis
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Figure 1.3: (a) sp,(b) sp2 and (c) sp3 hybridization schemes and corresponding examples.

making a 120◦ angle with each other. By using this symmetry argument together with the

orthonormality conditions (analogously to the sp case) we can show that the three mixed orbitals

will be written as:

|sp2
a〉 =

1√
3
|s〉+

√
2√
3
|px〉 (1.15)

|sp2
b〉 =

1√
3
|s〉+

√
2√
3

(
− 1

2
|px〉+

√
3

2
|py〉

)
(1.16)

|sp2
c〉 =

1√
3
|s〉+

√
2√
3

(
− 1

2
|px〉−

√
3

2
|py〉

)
. (1.17)

A suggestive example is the graphene sheet, where the hybrid orbitals from neighbor carbon

atoms form σ bonds and the remaining out-of-plane p orbital forms a weaker itinerant π

bond with the corresponding orbitals from its neighbors. The hybrid sp2 orbitals are shown

in Fig. 1.3b.

1.2.3 sp3 hybridization

The last highly symmetric hybridization scheme for only s and p orbitals is the one in-

volving the s orbital and all three p orbitals. In this sp3 mixing, the hybrid wavefunctions are

positioned along four different directions making a 109◦28′ angle between each pair. If we want
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to construct orbitals along the (1,1,1), (1,−1,−1), (−1,1,−1) and (−1,−1,1) directions we

will have the following hybrid orbitals:

|sp3
a〉 =

1
2

(
|s〉+ |px〉+ |py〉+ |pz〉

)
(1.18)

|sp3
b〉 =

1
2

(
|s〉+ |px〉− |py〉− |pz〉

)
(1.19)

|sp3
c〉 =

1
2

(
|s〉− |px〉+ |py〉− |pz〉

)
(1.20)

|sp3
d〉 =

1
2

(
|s〉− |px〉− |py〉+ |pz〉

)
. (1.21)

This hybridization occurs in methane (CH4, see Fig. 1.3c) and in diamond, for instance. This

particular sp3 hybridization tends to form longer bonds in comparison with the previous sp and

sp2 cases. The length of a carbon-carbon bond, for instance, is 1.20 Å, 1.42 Åand 1.54 Åfor sp,

sp2 and sp3, respectively [18, 19].

1.2.4 spδ hybridization

It is important to note that the atoms do not always form perfectly symmetric structures

with bonds making angles of 180◦, 120◦ or 109◦29′. As discussed above, out of these particular

cases, we still have the formation of hybrid orbitals, but the details of the linear combinations

will be determined by the geometry of the specific system so as to form a special spδ hybridiza-

tion (with δ 6= 1,2,3). However, it is customary, for simplicity, to associate a spδ mixing with

the closest of the spn (n = 1,2,3) schemes. In this context we simply say, for example, that the

hybridization of carbon in a nanotube is sp2 (even though rigorously it is spδ with δ close to 2),

noticing that it gets further from sp2 as the nanotube radius gets smaller and smaller. For illus-

tration purposes, let us consider the case of a (n,0) nanotube (to be discussed in Section 1.3).

We chose a coordinate system having one carbon as origin, the x axis parallel to the nanotube

axis and the z axis orthogonal to the tube surface, as shown in Fig. 1.4. The unit vectors along

the bonds between this atom and its first neighbors can be written as:

u1 = i (1.22)

u2 = −sinθ cosφ i+ sinθ sinφ j+ cosθk (1.23)

u3 = −sinθ cosφ i− sinθ sinφ j+ cosθk (1.24)

where i, j and k are the canonical unit vectors along the x, y and z axis, respectively.
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Figure 1.4: Bonds for a carbon atom in a (12,0) nanotube and the corresponding spδ hybrid orbitals.

The hybrid orbitals are written as:

|spδ
a 〉 = C1|s〉+C2|px〉+C3|pz〉 (1.25)

|spδ
b 〉 = C4|s〉+

√
1−C2

4 |px〉 (1.26)

|spδ
c 〉 = C5|s〉+

√
1−C2

5

(
− sinθ cosφ |px〉+ sinθ sinφ |py〉+ cosθ |pz〉

)
(1.27)

|spδ
d 〉 = C5|s〉+

√
1−C2

5

(
− sinθ cosφ |px〉− sinθ sinφ |py〉+ cosθ |pz〉

)
, (1.28)

with

C2
1 =

cos2 θ

2sin2
θ sin2

φ
(1.29)

C2
2 =

cos2 θ

2sin2
θ sin2

φ
(1.30)

C2
3 = 1− cos2 θ

sin2
θ sin2

φ
(1.31)

C2
4 =

cos2 φ

sin2
φ

(1.32)

C2
5 =

2sin2
θ sin2

φ −1
2sin2

θ sin2
φ

. (1.33)

We plot these orbitals for the (12,0) nanotube in Fig. 1.4 (corresponding to θ ≈ 96.486◦ and

φ ≈ 59.715◦). Here we have C1 =C2 ≈ 0.093, C3 ≈ 0.991, C4 ≈ 0.584, C5 ≈ 0.566. Note that

the spδ
a orbital has a strong p character.

While there is no simple way to plot δ as a function of the bonds geometry (and conse-
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quently as a function of the nanotube radius R), we can have an idea of how δ varies with R by

plotting the coefficient of |s〉 in the spδ orbitals. In Fig. 1.5a we plot C1, C4 and C5 for a (n,0)

nanotube as a function of n.

Figure 1.5: Coefficients for the s orbital in the sp2 and sp3 hybridization schemes and for the spδ case
for a (n,0) nanotube (a) as a function of n and for a CHCl3 like molecule (b) as a function of θ .

Note that as n increases, C1 tends to zero, while both C4 and C5 go to 1/
√

3, which is the

value corresponding to sp2 hybridization. On the other hand, for small n, the hybridization

clearly goes far away from sp2, but the result also does not resemble a sp3 scheme (with s

coefficient 1/4) since the bond angles do not go to 109◦29′.

A similar picture occurs in fullerenes (Fig. 1.6a). While carbon makes three bonds (a sp2

Figure 1.6: Bonds for a carbon atom in a C60 fullerene (a) and the spδ hybridization for a CHCl3-like
molecule (b).

characteristic), they are not contained in a single plane (sp3 characteristic). If we choose the

coordinates system such that the origin is centered on one carbon atom so that the z-axis is

orthogonal to the spherical surface, we can write the unit vectors along the bonds between this
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atom and its first neighbors as:

u1 = sinθ1i+ cosθ1k θ1 ≈ 101.4◦ (1.34)

u2 = sinθ2 cosφ2i+ sinθ2 sinφ2j+ cosθ2k θ2 ≈ 101.8◦;φ2 ≈ 124.3◦ (1.35)

u3 = sinθ3 cosφ3i+ sinθ3 sinφ3j+ cosθ3k θ3 ≈ 101.8◦;φ3 ≈ 235.7◦. (1.36)

If we make the simplification θ1 = θ2 = θ3 = θ and φ3 = 2φ2 = 240◦ (suitable for certain

molecules such as CHCl3), we can use symmetry arguments to mix the orbitals by means of:

|spδ
a 〉 = C1|s〉+

√
1−C2

1 |pz〉 (1.37)

|spδ
b 〉 = C2|s〉+

√
1−C2

2

(
sinθ |px〉+ cosθ |pz〉

)
(1.38)

|spδ
c 〉 = C2|s〉+

√
1−C2

2

(
− 1

2
sinθ |px〉+

√
3

2
sinθ |py〉+ cosθ |pz〉 (1.39)

|spδ
d 〉 = C2|s〉+

√
1−C2

2

(
− 1

2
sinθ |px〉+

√
3

2
sinθ |py〉+ cosθ |pz〉 (1.40)

with

C1 =

√
2

tanθ
C2 =

√
1−3cos2 θ

3sin2
θ

. (1.41)

Note that as θ approaches π/2 or 109◦29′ we recover the sp2 or sp3 hybridization, respectively

(Fig. 1.5b). For illustrative purposes, if we make θ = 102◦ we have C1 = 0.301 (
√

1−C2
1 =

0.954) and C2 = 0.551 (
√

1−C2
2 = 0.835), so that the |spδ

a 〉 orbital has a stronger |p〉 character

than the other |spδ
i 〉, i = b,c,d (Fig. 1.6b).

1.2.5 What is so special about carbon?

What makes carbon so chemically versatile and able to form a large variety of different

structures is a convenient combination of different factors in its electronic structure. Carbon has

6 electrons in its neutral condition. Its electronic distribution is given by 1s22s22p2, where the

1s2 electrons are strongly bonded to the nucleus, leaving the interaction with the external world

to the four 2s22p2 valence electrons. This allows carbon (in principle) to present any of the spn

(n = 1,2,3) hybridization schemes.

In Fig. 1.7 we show how the 2s and 2p orbital energies vary as a function of the atomic

number Z for the atoms in the second row of the periodic table. We observe that the s− p

energy splitting increases with increasing Z. Therefore we expect that, for atoms with smaller

Z, the 2s and 2p can be easily combined to form hybrid orbitals suitable to induce covalent
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bonds, while such hybridization states becomes less favored as Z increases due to the larger

s− p energy difference. As the number of different hybridization states an element can form

depends on this s− p splitting, it is directly related to how chemically rich the element is.

Figure 1.7: Energies for the 2s and 2p orbitals as a function of the atomic number for the atoms in the
second row of the periodic table [2].

Turning to the case of boron, for example, we have a small s− p splitting (lower than in

carbon), which favors boron to present hybrid orbitals. However, boron’s electronic distribution

is given by 1s22s22p1, so that we have only three electrons eligible to form bonds and the only

available hybridization states are sp and sp2.

Now moving to nitrogen, we can see that it has 5 valence electrons (1s22s22p3). Even

though it can present sp, sp2 or sp3 hybridizations, it has an excessive number of valence

electrons that usually end up occupying one of the hybrid orbitals, lowering the number of

possible bonds to other atoms. An additional issue with nitrogen is that it has a higher s− p

splitting compared to boron and carbon.

While boron (nitrogen) has low (high) s− p splitting and few (many) valence electrons,

nature shows that carbon is intermediate between these two properties, and in the right point so

as to make carbon’s chemistry so rich. In other words, while carbon has 2s and 2p orbitals close

in energy (allowing for multiple hybridization schemes), it has the right number of electrons so

as to take advantage of it. These are some of the reasons that make carbon so special.

Another important point in the electronic structure of carbon is the absence of p electrons

in the core, rendering carbon a small atomic radius. This is another important factor that allows

carbon atoms to pack together in order to form linear (sp) and planar (sp2) structures as carbon

pi-bonds are stronger than those in elements with larger radius. Following this discussion, it is

suggestive to move vertically along the periodic table in order to compare carbon with silicon

(whose electronic distribution is 1s22s22p63s23p2) as this element has the same number of

valence electrons as carbon. We observe that silicon has a larger atomic radius in comparison
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with carbon and eventual pi-bonds are not strong enough to produce stable linear and planar

geometries in silicon based structures. In other words, silicon preferably forms longer bonds,

favoring sp3 hybridization. A good illustration of this aspect is the silicon doping in carbon

nanotubes, where the silicon doping produces an outward local structural distortion along the

radial direction [20].

In the following sections we discuss the most important carbon nanostructures and some of

their related structures.

1.3 Carbon nanotubes

The post 80’s discovery of carbon nanotubes was a natural consequence of both intense

research on developing highly crystaline carbon fibers [18] and the discovery of fullerenes [10].

Even though discussions over possible carbon tubular forms took place in the early 90’s [12], the

true starting point of carbon nanotubes’ science is usually considered to be the work of Iijima in

1991 where the observation and resolved structure of multi-wall carbon nanotubes (MWNTs)

was reported [13]. It did not take long for Iijima and Bethune to observe simultaneously (the

two papers are printed back–to–back in the same issue of Nature) the existence of single-walled

carbon nanotubes (SWNTs) [14, 15]. Nanotubes excited the scientific community due to a series

of new interesting properties like their singular geometry–electronic structure–optical spectra

relation, high mechanical resistance, chemical selectivity to chemical and physical adsorption

of molecules on its surface, among others. This section is dedicated to describe some basic

properties of this interesting structure.

1.3.1 Nanotube’s structure

Even though graphene is the subject of another section, we dedicate a few words to it before

talking about carbon nanotubes because they are closely related to each other. Graphene is a 2D

system composed by carbon atoms organized in hexagons, as a honeycomb, where the atoms

present a perfect sp2 hybridization, leaving a pz (or π) orbital free to form itinerant π bonds

(see Section 2.7). Its structure is a hexagonal 2D Bravais lattice (primitive vectors a1 and a2)

with a 2 atom basis whose structure is depicted in Fig. 1.8a.

The nanotube structure can be viewed as a graphene sheet rolled up into a tube as depicted

in Fig. 1.8b. There are several different ways to roll the sheet to form the tube. This is uniquely

determined by the chiral vector Ch which is a linear combination of graphene’s lattice vectors.
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Figure 1.8: (a) Graphene honeycomb lattice and the vectors defining a nanotube unit cell; (b) A graphene
sheet piece being rolled up to form a nanotube.

The smallest vector which is orthogonal to Ch and that joins two carbon atoms is called the

translational vector T. These vectors are given by:

Ch = na1 +ma2 ≡ (n,m) (1.42)

T = t1a1 + t2a2 =
n+2m

dr
a1−

2n+m
dr

a2 (1.43)

where n and m are integers and dr is the greatest common divisor (gcd) of 2n+m and n+2m.

In Fig. 1.8a we show these vectors for the case of a (4,1) nanotube. If we extract the rectangle

defined by Ch and T and roll it up (by joining O to A and B to B′) we will have the nanotube’s

unit cell.

Not only the translational vector, but the whole nanotube’s geometry is determined by the

(n,m) pair. In fact, the nanotube radius R is simply determined by:

R = |Ch|/2π = a
√

n2 +nm+m2 (1.44)

where a = |a1| = |a2| = aCC
√

3 and aCC is the carbon-carbon distance. The number N of
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hexagons within a nanotube unit cell (and consequently, half the number of atoms) is obtained

by dividing the area of the rectangle defined by Ch and T by the area of an hexagon (a1 ·a2) [18]:

N =
Ch ·T
a1 ·a2

=
2(n2 +nm+m2)

dr
. (1.45)

Finally, the chirality θ (defined as the angle between a1 and Ch) is given by:

θ = arccos

(
Ch ·a1

|Ch||a1|

)
= arccos

(
2n+m

2
√

n2 +nm+m2

)
. (1.46)

Due to the C6 symmetry of the graphene sheet, we should restrict θ to the [0,π/6] range, or

equivalently m to [0,n].

Two types of nanotubes are special due to their particular symmetry. Nanotubes (n,0)

and (n,n) are usually called zigzag and armchair nanotubes, respectively, due to the particular

arrangement of their atoms along a section perpendicular to their axis (as shown for the (n,0)

and (n,n) in Fig. 1.9a-b). All the other nanotubes are collectively called chiral nanotubes (as

the (8,2) case in Fig. 1.9c).

Figure 1.9: Examples of zigzag, armchair and chiral nanotubes.

1.3.2 Electronic structure

When rolling up the graphene sheet to form the nanotube, carbon’s orbitals undergo a re-

hybridization so as to form spδ states. As discussed earlier, this mixing scheme is very close to

sp2 for nanotubes with a large radius. For this reason, when the nanotube’s radius is large, its

electronic structure can be understood by means of a simple model based on graphene’s elec-

tronic structure. We will show (see Section 2.7) that, within a tight-biding model, the graphene
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energy levels for π electrons are given by

E(k) =
ε± γ| f (k)|
1± s| f (k)|

(1.47)

with

f (k) = 1+ e−ik·a1 + e−ik·a2 , ε = 〈ψ i
A|Ĥ|ψ i

A〉, γ = 〈ψ i
A|Ĥ|ψ

j
B〉, s = 〈ψ i

A|ψ
j

B〉
(1.48)

where k is a vector in the graphene’s first Brillouin zone (BZ), ψ i
A is the basis function cor-

responding to the A-atom labeled by i, ψ
j

B is the basis function corresponding to the B-atom

labeled by j which is a neighbor of i, ε is the on site energy, γ is the first-neighbor hopping

integral (between i and any of its neighbors j) and s the first-neighbor overlap integral. For an

infinite sheet, the 2D-k vector varies continuously along the reciprocal space (whose primitive

vectors are b1 and b2 so that bi ·a j = 2πδi j). We can write the reciprocal lattice vectors K1 and

K2 along the chiral and translational vectors, respectively, as:

K1 =
1
N
(−t2b1 + t1b2) (1.49)

K2 =
1
N
(mb1−nb2) (1.50)

and the vector k is written as:

k = kc
K1

|K1|
+ ka

K2

|K2|
, (1.51)

where kc and ka are the vector components along the circumferential and axial directions of the

BZ, respectively. As the electronic density is confined along the nanotube circumference, the

electron’s wavelength λq is restricted to:

λq = |Ch|/q, q = 0,1,2,3, ...,N−1, (1.52)

so that the vector k is quantized along the nanotube’s circumference according to:

kc = 2π/λ = 2πq/|Ch| (1.53)

resulting in

k = qK1 + ka
K2

|K2|
(1.54)

with ka varying continuously along ]− π/|T|,π/|T|] for an infinite tube. In summary, the

boundary conditions imposed by the electronic confinement along the nanotube’s circumferen-

tial direction determine lines of allowed k vectors, given by Eq. 1.54, over graphene’s BZ (as

illustrated in Fig. 1.10).
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Figure 1.10: Illustration of the quantum confinement along the circumferential direction in a carbon
nanotube and the corresponding cutting lines over graphene’s Brillouin zone.

Since the Ch–T unit cell is larger than the a1–a2 cell, the K1–K2 cell is smaller than the

b1–b2 cell. In fact, the present approach is equivalent to taking graphene’s electronic structure

over its BZ and fold it into the smaller nanotube BZ, obtaining the nanotube’s electronic band

structure by the cutting lines where the zone is folded. For this reason, this model is usually

referred to as zone-folding. The quantization of the reciprocal vector along the circumferential

direction determines the cutting lines over graphene’s BZ so that a nanotube is metallic when a

cutting line crosses a K point (reciprocal space point where the graphene’s valence and conduc-

tion bands touch each other). One can show that this condition is satisfied when we have:

n−m = 3i, where i is an integer. (1.55)

Furthermore we can differentiate two kinds of metallic nanotubes. If d = gcd(n,m), then:

• Metal 1 (M1): when n−m is a multiple of 3, but not of 3d;

• Metal 2 (M2): when n−m is a multiple of 3d.

These cutting lines are shown in Fig. 1.11 for the nanotubes (12,0), (6,6), (8,2) and (10,0).

Note that a K point is cut for the first three, while no vertice is cut in the semiconducting (10,0)

case.

For the first group, the bands cross the Fermi energy at the Γ point (ka = 0) as in the case

of the nanotube (12,0) (Fig. 1.12a). On the other hand, the second group has such crossing at
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Figure 1.11: Cutting lines over graphene’s Brillouin zone for the nanotubes (12,0), (6,6), (8,2) and
(10,0).

ka = 2π/3T , like in the (6,6) and (8,2) nanotubes (Fig. 1.12b-c). In Fig. 1.12d we show the

electronic bands for the nanotube (10,0) as an example of a semiconducting tube.

Figure 1.12: Electronic band structure for the (12,0) (a), (6,6) (b), (8,2) (c) and (10,0) (d) nanotubes
obtained with the zone-folding-tight-binding method. Here we used ε = s = 0. The Fermi level is at 0
eV.

It should be noticed, however, that for nanotubes with a large curvature (small radii), their

hybridization deviates significantly from sp2 (as explained in Section 1.2.4) and this simple

model does not give good results. As an example the (5,0) nanotube (which should be semi-

conducting within the zone-folding picture) is metallic according to first-principles calcula-

tions [21].
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1.4 Graphene and graphitic ribbons

Even though graphite is an abundant and well-known material, the isolation and measure-

ments of individual graphene sheets was only accomplished in 2004 [16]. This result marked

the starting point of a boom in the scientific publications based on both experimental and the-

oretical investigation of this structure, making graphene a pop star in materials science. As

stated in the last section, graphene’s structure is composed of a bidimensional arrangement of

hexagons formed by the carbon atoms.

Graphene’s electronic structure can be satisfactorily described within the tight-binding model

(see Section 2.7). If we set EF = s = 0 we can write:

E(k) =±γ
√

3+2cosk ·a1 +2cosk ·a2 +2cosk · (a1−a2). (1.56)

In Fig. 1.13 we plot this relation over the graphene’s hexagonal BZ by different methods.

Figure 1.13: Electronic band structure for the graphene over the Brillouin zone in a 3D (a) and 2D (b)
representations and along the high symmetry lines (c). The Fermi level is at E = 0.

A special characteristic of the E − k relation is its conic form near the K and K′ points

(vertices of the BZ where the valence and conduction bands meet). Due to this local linear

relation for low-energy levels, the electrons behave as massless Dirac fermions and we have the

onset of Klein tunneling (where an electron can enter a potential barrier with unity transmission

probability) [22]. This effect was predicted by theory for a graphene p− n junction [23] and

further confirmed by experiments [24].

1.4.1 Graphene nanoribbons

Graphene is regarded as a potential candidate to replace silicon technology as silicon ap-

proaches its miniaturization limit [25]. Among the reasons for such prediction is graphene’s

high electronic mobility and low contact resistance [26, 27]. Even though graphene itself has a
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rich physics, it can be further modified both chemically or physically in order to tune its prop-

erties further [28]. While ideal infinite graphene is not a semiconducting system, the presence

of an energy gap is fundamental for some applications in nanoelectronics. To this end, it is pos-

sible to modify graphene’s structure in order to create an opening of the energy bands around

the Fermi energy. One widely studied approach is to induce quantum confinement along one in-

plane direction, thus creating structures called graphene nanoribbons (GNRs). It is known that

these ribbons present electronic properties strongly dependent on their width and edge struc-

ture. For the most symmetric cases of armchair (n-A-GNR, Fig. 1.14a) and zigzag (n-Z-GNR,

Fig. 1.14b) edged ribbons, their width is trivially obtained from the number n of C−C dimer

lines or zigzag strips, respectively.

Figure 1.14: Basic structures for A-GNRs (a) and Z-GNRs (b). The red boxes indicate the GNRs unit
cells.

A-GNRs present a semiconductor character with band gap ∆n strongly dependent on the

number n of C−C lines along its width. While the gap of an n-A-GNR with n→ ∞ tends to

zero (so as to recover the graphene result), the ∆n versus n curve has three different branches

so that ∆3i+1 ≥ ∆3i ≥ ∆3i+2 [29]. In Fig. 1.15 we show the calculated band gaps for varying

A-GNR width as a function of n using the method described in Chapter 2.

The other Z-GNRs present a richer set of properties. While spin polarization is absent

in A-GNRs, Z-GNRs possess ferromagnetically polarized edges with two possibilities for the

edge-to-edge polarization. These two possibilities correspond to parallel (FM) and anti-parallel

(AFM) alignments, where the latter one is the ground state. The spin polarization for these two

states together with the non-polarized paramagnetic (PM) case are illustrated in Fig. 1.16 with

their corresponding band structures calculated using the TBU method described in Chapter 2.
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Figure 1.15: Electronic band gap ∆ for an A-GNR as a function of the number n of C−C lines. The
three families correspond to n = 3i+ j with j = 0,1,2.

One observes that the PM state has two 2-fold degenerated bands around the Fermi energy

which meet and become a flat 4-fold degenerated band which extends along one third of the BZ

and whose energy value approaches EF = 0 as the ribbon width increases [30]. These states

are strongly localized along the edges (therefore the 4-fold degeneracy: 2 due to the spin and

2 due to the two symmetric edges), producing a high concentration of low energy electrons

as a consequence [31]. Such edge states are predicted to be responsible for a paramagnetic

behavior of Z-GNRs at low temperatures [32] (while a diamagnetic behavior is expected for

high-temperature regimes). This high density indeed produces a instability (paramagnetic in-

stability) which gives rise to the two lower energy magnetic states. One observes that the spin up

and down polarizations along the opposite edges are located on different graphene-sub-lattices

for the AFM case which turns to be the ground state [31]. In the FM case, edge atoms belonging

to both sub-lattices present the same spin orientation and this ends up raising slightly the FM

energy in comparison with the previous case. While AFM is lower in energy, a remarkably

interesting fact about these AFM and FM states is the small energy difference between them. In

the upper panel of Fig. 1.17 we show the band-energy difference (calculated with the method

described in Chapter 2) between the AFM and FM states for one Z-GNR cell as a function of

n. We can see that this difference tends to zero as the ribbon’s width increases, reflecting a

lowering in the edge-to-edge interaction as they are farther away from each other. A possible

switching property due to this low energy difference is an interesting aspect that motivates the

proposal of a Z-GNR based magnetic sensor [33]. These states are considerably more stable

than the PM states [31]. As shown in the lower panel Fig. 1.17, this paramagnetic instability
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Figure 1.16: Paramagnetic (PM), anti-ferromagnetic (AFM) and ferromagnetic (FM) states in a Z-GNR
and their corresponding band structures (green line is the Fermi energy, and black and red lines stand for
spin up and down levels).

approach its upper limit as we increase the ribbon’s width.

These magnetic properties open up a series of possibilities for the use of finite pieces of

graphene in nanoelectronics and spintronics. In fact, it has been shown that Z-GNRs present

a half-metallicity behavior (where the electronic structure has a metallic character for spin up

levels and is semiconducting for spin down levels, or vice-versa) which can be tuned by means

of a gate voltage [34]. Other proposals exploit the interplay between armchair and zigzag edges
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Figure 1.17: Energy difference between any pair of different states in a Z-GNR with n = 3, ...,40.

in more complex ribbon geometries to show spin-filter devices and geometry-dependent con-

trolling approaches for the localization of magnetic edge-states [35, 36, 37, 38, 39]. Extended

lines of defects (ELDs - see Fig. 1.18) and grain boundaries (GBs) are natural extended defects

in some synthesized graphene samples that can assume a highly crystalline organization. These

structures do not necessarily represent a problem on the goal for producing high crystalline

structures, but instead open a set of new possibilities to modify and tune graphene’s properties

to suit new applications [3, 40, 41, 42, 43, 44].

Figure 1.18: Different proposed ELD geometries in graphene [3].

1.4.2 Graphene nanoribbons synthesis

While graphene’s isolation is a recent experimental achievement, the knowledge about

the synthesis of narrow nanoribbons has been significantly developed. Different approaches

have been proposed to obtain GNRs. Among them we can cite CVD [45], etching of 2D

graphene [46, 47, 48] and carbon nanotubes unzipping [49, 50]. It has been shown that the
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intriguing electronic and magnetic properties of GNRs are strongly related to clean edges, so

that from some points of view, edge defects can suppress some GNR-applications [51]. In some

synthesis approaches, the controlled formation of clean edges can be difficult and this issue is

among the central challenges on the experimental research on GNRs. In this quest for a high

quality synthesis approach, Cai and co-workers have recently proposed a truly bottom-up ap-

proach to obtain narrow and crystalline ribbons [4]. In this procedure they heated a gas of halo-

genated polyaromatic molecules over a metallic template. During this surface assisted process,

the molecules lose their halogens and start to create a polyaromatic polymer which goes further

through a de-hydrogenation process which results in perfect small-width ribbons (as illustrated

in Fig. 1.19a). An exciting point in this study is the control we can have over the final product

by using different polyaromatic precursors (Fig. 1.19b-c). In fact, other complex wiggle-like

(Fig. 1.19c) ribbons and symmetric junctions have been obtained with different initial aromatic

molecules [4]. This is a remarkable result which enables us to put theory and experiment side-

by-side so as to employ, develop, test and improve new theoretical methodologies. This is a

fundamental problem in science since calculations are a powerful and indispensable tool to pro-

duce knowledge on nanoscience and nanotechnology. They can act not only as a predicting tool,

but also as an auxiliary for interpreting experimental outcomes (and consequently consolidating

conclusions) and as a road map guide for the conduction of experiments.

Figure 1.19: (a) Illustration of the bottom-up approach developed by Cai et al. to obtain graphene
nanoribbons with clean armchair edges. (b-c) Different molecular precursors for the procedure illustrated
in (a) and their corresponding final products. Adapted from [4].

This experimental work of Cai et al. on the synthesis of perfect and complex graphitic

ribbons motivated us to study the electronic structure and transport properties of these wiggle-

like structures. In fact, this particular system constitutes one of the main focus of this thesis. In

Chapter 7 we present a detailed description of their geometry, while the results on the electronic
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structure and transport are presented and discussed in Chapters 8 [9] and 9, respectively.

1.5 Combining pieces

The rich family of carbon nanostructures in not limited to fullerenes, carbon nanotubes,

graphene and GNRs. These structures can be further combined and/or modified to give rise

to a huge set of systems. Carbon nanotubes are ideal candidates as basic building blocks for

a bottom-up design of a number of nanostructures and novel devices. For instance, complex

1D, 2D, and 3D networks based on carbon nanotubes have been proposed in recent years.

Properties such as their porosity renders them good candidates for potential applications as

catalysts, sensors, filters and molecular storage materials. These complex structures are also

prototype models for complex circuits in nanoscale. The study of their geometrical, mechani-

cal, chemical, and transport properties has been the topic of intense theoretical and numerical

researches [52, 53, 54, 55, 56]. Even though highly ordered covalent structures have not been

synthesized yet, current advances in materials synthesis and processing clearly point to the pos-

sibility of assembling individual nanotubes covalently into functional structures [54, 57, 58].

Graphene and GNRs have also been assembled in several new structures. Graphene antidot

lattices have been demonstrated to allow a controlled manipulation of graphene’s electronic

properties [59] and the experimentally obtained perfect lines of defects in graphene is predicted

theoretically to posses interesting electronic and transport properties [3]. Junctions composed

of A- and Z-GNRs [60] and 1D GNR-superlattices [38, 39] are also new structures suitable to

be embedded in new electronic nanodevices.

Defects play an important role in the science of sp2 carbon materials by offering an addi-

tional degree of freedom to tune their properties. Vacancies are a common defect that changes

locally the structure properties [61], enhancing the system’s reactivity and opening a set of

new possibilities for the physics and chemistry of these structures [62, 63, 64]. Other pentagon-

heptagon defects (produced by a 90◦ rotation of a C−C bond in the hexagonal lattice) bring a set

of interesting properties in carbon nanosystems. The strategic distribution of these Stone-Wales

defects on a supergraphene lattice, for example, allows for a controlled conduction path for the

electrons [55]. An even more radical example of the impact of defects in carbon nanostruc-

tures are the haeckelite lattices (Fig. 1.20). In these systems we have an extended distribution

of Stone-Wales defects over the graphene sheet so that the final result does not resemble at

all the perfect graphene honeycomb structure in both geometry and electronic properties [5].

Even with no experimental realization, these structures present a set of new properties that can
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be further expanded since those haeckelite planar structures may have counterpart versions for

nanotubes [5] and ribbons, what is a sufficient reason to motivate future experimental studies

aiming their synthesis.

Figure 1.20: R5,7, H5,6,7 and O5,6,7 planar haeckelites structures [5].

A number of other complex structures based on nanotubes as elementary building blocks

have already been observed. For example, carbon nanotubes can be seen as the basic compo-

nents of helically coiled and cage-like structures such as nanotoroids [65]. For small radii of

curvature, these structures require the presence of pentagons and heptagons in the otherwise

hexagonal lattice in order to accommodate sharp variations in surface curvature [66]. In con-

trast, smoothly curved tori can be obtained from the purely elastic bending of a long straight

nanotube into a ring [67]. These structures present a series of interesting electronic, magnetic

and mechanical properties and have been the subject of a number of theoretical and experimen-

tal studies in the literature [7, 8, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77]. Another focus of

this thesis is the study of the electronic and transport properties of these carbon nanotube rings

seamlessly attached to a number of terminals. In Chapter 5 we present the results published in

reference [7] where we study toroidal systems with two terminals. In Chapter 6 we extend the

study for a multi-terminal system as well as we consider a ring structure made of GNRs instead

of nanotubes (results published in reference [8]).

1.6 Engineering carbon nanostructures: experimental advances
and practical aspects

At the same time that theoretical studies provide deep understanding on the new science

of carbon nanostructures, the experimental realization of a number of devices at the nanoscale

brings the potential applications of these systems into the real world [78, 79]. However, these

accomplishments need to carry an additional characteristic to become technology: their repro-

duction needs to be practical. In order to be technologically applicable, one has to be able to

pack billions of such devices together into a centimeter wide chip wafer. This demands a high

level of control on the synthesis and manipulation of nanostructures and constitutes one of the
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main challenges on the science of carbon.

Let us take the example of graphene and related structures. Technological applications

demand graphene pieces with well defined size and edge structure [80]. In addition, one has

to have enough control over these structures to stitch them together in specific and highly or-

dered conformations. To this end, a series of top-down and bottom-up approaches have been

developed [26]. The former route is mainly concentrated on etching pre-synthesized graphene

and lithography methods. Different strategies on graphene cutting have demonstrated succes-

sive improvement on graphene patterning. Chemical etching using a gas mixture of ammonia

and oxygen has been shown a 1 nm per minute control in graphene cutting, resulting in 5 nm

wide nanoribbons [46]. On the other hand, H2 plasma-etching allows cutting the honeycomb

lattice in a atom-by-atom basis, resulting in a ≈ 2.7 Å per minute control and ≈ 8 nm wide

ribbons [47, 48]. However, randomnesses due to topological irregularities in graphene prevent

exact reproducibility in the crafting process [26, 47].

The other bottom-up approaches are based on assembling complex structures by fusing

small molecular building blocks. They have been successful as reported in the late literature.

The general strategy is to heat a gaseous solution of molecular precursors over a given surface.

These approaches take advantage of surface assisted reactions which reduce the degrees of free-

dom of the molecular building blocks and can result in narrow highly crystalline systems. Dur-

ing the conduction of this engineering process, a number of aspects have to be carefully taken

into account as they can prevent the success of the synthesis protocol or act as convenient tools

to obtain the desired product. The interplay between diffusion energies and surface coupling is

one of these aspects [26, 81]. As one intends to grow a large crystalline structure, high diffusion

barriers (related to a strong adsorption over the assistant surface) prevent the molecular building

blocks to group over a large extent, so that a weak precursors-substrate coupling is needed [82].

On the other hand, if the desired product is a small structure, a high adsorption to the surface is

necessary to avoid the formation of extended systems [83]. Another important ingredient in this

engineering process is the choice of the precursors used in the synthesis procedure. We have a

number of examples in the literature that make clear the importance of this choice. A non-planar

geometry for the precursors, for instance, can be used to reduce the molecule-surface coupling,

allowing the growth of extended structures [84]. On the other hand, the type of monomers ends

up being determinant in the final product geometry. In the experiment conducted by Cai and

co-workers [4], for instance, the simple choice of a 10,10’-dibromo-9,9’-bianthryl molecule as

the precursor leads to a straight crystalline carbon nanoribbon with an armchair edge geometry.

However, if a 6,11-dibromo-1,2,3,4-tetraphenyltriphenylene molecule is chosen, the final result

is a more complex chevron-like ribbon [4]. In summary, while conducting these bottom-up
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synthesis approaches, all the factors discussed above can be used as programming tools to tune

the experiment to give the desired product.

As can be seen, both top-down and bottom-up synthesis techniques on carbon nanostruc-

tures have been developed at a fast pace. In the latter case, an intense experimental and theo-

retical effort is needed to develop a wide and precise library for the synthesis and properties of

these nanosystems. Such library is fundamental to pave the way to the practical applications of

these new materials. Furthermore, additional challenges remain for turning knowledge in tech-

nology such as control on transferring and assembling of these structures into nanocircuits after

their synthesis. So, as the current scenario is better for synthesis, manipulating nanostructures

constitutes the main barrier to further developing of carbon-based technology.

1.7 Economic and societal considerations

An obvious question that comes from people outside the research field is:

“What is the impact of these things in the world outside the lab?”

Or in other words (more suitable in some cases):

“What about money?”

As discussed earlier in this chapter, fullerenes, nanotubes and graphene have induced a

lot of scientific excitement regarding their technological potentialities on the occasion of their

discoveries. However, fullerenes and nanotubes were discovered 26 and 20 years ago, respec-

tively. Even though their existence is becoming known by more and more layman people, their

direct impact on everyday life is still behind the possibilities pointed out early on. While car-

bon nanotubes fare better than fullerenes, their applications were most successful in their use

in composite materials for planes and cars. Other applications like nanotube-based conducting

films for energy storage and touch screens are closer to the market. Despite the remarkable

advances already shown at the experimental level for nanotubes (like the realization of a tran-

sistor made of a single nanotube [1]), their high cost and hard control are still obstacles to their

use at an industrial level. Graphene has some advantages in comparison to carbon nanotubes

regarding their control. While carbon nanotubes’ excessive variety is still a big problem in

their synthesis, graphene sheets variety is usually less uncontrollable and their sheets easier to

handle. On the other hand, nanotubes have advantages like the fact that they can form very

long structures (allowing applications as substitutes for copper wires, for example). It is clear

that graphene science tends to develop faster that nanotube’s science since graphene can take
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advantage of years in studies on carbon nanotubes due to a more mature scientific community.

In addition, there is a natural latency between the discovery of a new material and its indus-

trialization. Carbon fibers are a clear example of that since they started to be studied in the 50’s,

their first military applications occurred in the 60’s and their commercial advent happened on

the 70’s. It is therefore natural to see a new material to take 20 or more years to be turned into

technology. This is why a lot of respected scientists believe that carbon nanostructures will in

the future give many times back the money invested in their investigation [1]

1.8 This thesis

In this thesis we present theoretical investigations of the electronic structure and transport

properties of toroidal carbon nanostructures and complex assembled carbon nanoribbons.

In the next chapter we describe the tight-binding+Hubbard model we employed to calculate

the electronic structure. In Chapter 3 we present the Green’s function formalism used to calcu-

late the quantum conductance in our nanoscaled systems. Chapter 4 presents the algorithms we

used to compute the Green’s function.

Chapters 5 and 6 are dedicated to a discussion of the properties of toroidal structures. In the

first one we present the results for nanotube-based two-terminals systems with a variable angle

α between the leads [7]. In the second one we explore the physical properties of multi-terminal

toroidal systems composed by nanotubes or GNRs [8].

The properties of complex assembled carbon nanoribbons are presented in Chapters 7, 8

and 9. The first one explains the geometrical construction of the systems while the second

explores their electronic structure and multi magnetic states [9]. Finally, transport properties of

these ribbons are discussed in Chapter 9. The thesis is then concluded with a chapter where we

present the conclusions.
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2 Methods to calculate the electronic
band structure of solids

In this chapter we will discuss some methods employed to perform electronic structure

calculations. We start by presenting a general quantum mechanical framework to describe a

molecule or a solid. We then introduce the Born-Oppenheimer approximation (also called adia-

batic approximation) which allows us to reduce the problem to its corresponding electronic part.

In the following we introduce the independent-electrons approximation and the main methods

to solve the electronic problem. We then focus on the tight-binding method and finally describe

the TBFOR package we have developed to perform part of the calculations presented in this

thesis.

2.1 Hamiltonian

The starting point for calculating the electronic structure of molecules and solids is the

system Hamiltonian, written as:

Ĥ =− h̄2

2me
∑

i
∇

2
i −

1
4πε0

∑
i

∑
I

ZIe2

|ri−RI|
+

1
8πε0

∑
i

∑
j 6=i

e2

|ri− r j|

−∑
I

h̄2

2MI
∇

2
I +

1
8πε0

∑
I

∑
J 6=I

ZIZJe2

|RI−RJ|
(2.1)

where i, j label the electrons and I,J the atomic nuclei. The quantities MI , ZI and RI are,

respectively, the mass, the atomic number, and the position of nucleus I, while −e and me are

the electron charge and mass and ri is the position of electron i.

An interesting aspect of this problem is the fact that the nuclei are much more massive than

the electrons. This makes the kinetic energy of the nuclei to be small compared to the other

Hamiltonian contributions. In fact, a perturbation series with general validity can be written

in terms of 1/MI and its limit for MI → ∞ leads to static nuclei. This allows us to decou-
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ple the nuclear and electronic problems and to work on them separately. This constitutes a

practical and useful simplification which makes both the structural optimization and electronic

structure calculations easier to perform, but still with a good accuracy. This is the so-called

Born-Oppenheimer (BO) or adiabatic approximation [85, 86], which is a useful approximation

for many purposes such as the calculation of vibrational modes in solids. A widely used ap-

proach is to consider the energy from the remaining electronic problem as an extra term added

to the ion-ion interaction and perform a subsequent geometry optimization based on this effec-

tive interatomic potential. Therefore, within the BO approximation, our problem is reduced to

the electronic Hamiltonian given by:

Ĥe =−
h̄2

2me
∑

i
∇

2
i −

1
4πε0

∑
i

∑
I

ZIe2

|ri−RI|
+

1
8πε0

∑
i

∑
j 6=i

e2

|ri− r j|
(2.2)

where the atomic positions enter as parameters.

2.2 Electronic problem

Within the BO approximation, the electronic problem is reduced compared to the initial

problem. However, it is still very complicated and its solution is not easy to get. A set of widely

used strategies employs the independent-electron approximation. This mean-field approxima-

tion consists in defining one-electron wavefunctions that can be obtained from an one-electron

Schrödinger-like equation. This is a significant simplification but gives extremely satisfactory

results and is used in most theoretical calculations on the electronic structure of molecules and

solids.

2.2.1 Hartree method

The first quantitative calculations on multi-electronic systems were performed by Hartree [87].

In his approach, a one electron equation is defined as:

ĤHartreeψ
σ
i (r) =−

h̄2

2me
∇

2
ψ

σ
i (r)+VHartreeψ

σ
i (r) = ε

σ
i ψ

σ
i (r) (2.3)

where σ represents the spin and VHartree is an effective potential for each electron in the presence

of the others. In his original work, Hartree defined a different potential for each electron in order

to avoid self-interaction of the electron with itself. In order to obtain the system’s ground state,

one fills the states starting from the lowest levels to obey the Pauli’s exclusion principle.
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2.2.2 Hartree-Fock (HF) method

In 1930, Fock expanded Hartree’s approach by using an anti-symmetric wavefunction in

terms of a Slater determinant written from one-electron wavefunctions [88, 89]. The one-

electron equations are then obtained by finding the corresponding wavefunctions that minimize

the total energy obtained as the expected value for the full Hamiltonian. This process yields the

following equations:

ĤHFψ
σ
i (r) =

[
− h̄2

2me
∇

2 +Vext(r)+VHartree(r)+Vechange(r)
]
ψ

σ
i (r)

= ε
σ
i ψ

σ
i (r) (2.4)

with

VHartree(r) =
e2

4πε0
∑
j,σ j

∫
dr′

ψ
σ j∗
j (r′)ψσ j

j (r′)
|r− r′|

(2.5)

Vexchange(r) = − e2

4πε0
∑

j

∫
dr′

ψσ∗
j (r′)ψσ

i (r
′)

|r− r′|
ψσ

j (r)
ψσ

i (r)
. (2.6)

Note that, unlike the original Hartree’s approach, the mean Coulomb interaction includes a self-

interaction contribution. On the other hand, the additional exchange term (without a classical

analogous) has also such self-interaction energy, but with opposite sign so that the final result

is self-interaction free. The presence of this exchange potential is a clear difference of the HF

approach in comparison with Hartree’s early work.

As the exchange does not have a classical analogous (like the mean Coulomb potential

given by the Hartree potential), it is initially hard to understand its meaning. In order to under-

stand what physics it represents, one has to look at the foundations of the independent electron

approximation. Without considering any approximation, the solution for the electronic prob-

lem consists of a wavefunction Ψ which is a function of the coordinates of all the electrons

ri, i = 1,2,3, ...,N. As the electrons are fermions, they should obey Pauli’s exclusion principle

which is reflected by the fact that the electronic wavefunction has to be anti-symmetric with

respect to any permutation involving the positions of two electrons. In mathematical terms, we

have:

Ψ(r1,r2, ...,ri, ...,r j, ...,rN−1,rN) =−Ψ(r1,r2, ...,r j, ...,ri, ...,rN−1,rN). (2.7)

In addition, we expect the Ψ dependence on the different ri to be correlated in a more general

way, so that the behavior of Ψ relative to a given ri depends on the values of the r j with j 6= i.

However, when we use the independent electrons approximation, we are restricting Ψ to have



2.2 Electronic problem 62

the form given by a Slater determinant. By doing that, we are intrinsically loosing information

which can be directly associated with the electronic correlation. While the Hartree potential, in

both Hartree and HF approaches, represents the interaction of any electron with the system’s

electronic cloud, the correlation is related to the specific interaction of a given electron with

any single electron in the system. This is not a simple problem to solve and accounting for

this correlation is a central problem in the electronic structure research field. The HF method,

however, is a first step in this direction as the exchange potential represents two correlation

related aspects:

• It removes self-interaction contributions;

• It accounts for short range interactions related to the Pauli’s exclusion principle.

As can be seen from Equation 2.6, Vexchange lowers the energy and can be interpreted as the

interaction of the electron with an agent usually referred to as an “exchange hole”. According

to the expression for the exchange potential, this positive “exchange charge density” is deter-

mined by the electronic density (sum over the j states) surrounding the electron i and favors a

ferromagnetic ordering of the electronic spins as this interaction involves only electrons with

the same spin. This is a consequence of Hund’s rule: as a number of electrons start to fill a set

of degenerate states, they will fill evenly the available states so as to maximize the total spin as

much as possible, starting to occupy orbitals with opposite spin only when there is no empty

levels. Note also that there is no energy lowering associated with two electrons with the same

spin occupying the same orbital as the j = i contribution in the sum in Eq. 2.6 cancels with the

corresponding self-interacting term in the sum from Eq. 2.5, constituting a clear manifestation

of Pauli’s principle.

2.2.3 Density Functional Theory

Not all the correlation effects are accounted for by the exchange energy term. In that regard,

Density Functional Theory (DFT) [90, 91] is an important advance in the field. As we will see,

DFT allows to recast the many-electron problem into a set of one-electron Schrödinger-like

equations. However, in contrast to Hartree and HF, DFT is an exact theory (even though its

practical implementation demands other approximations) [86]. The central role within DFT is

played by the electronic density n(r). This is better understood with the two theorems which

constitute the basis of DFT [90]:

1st Theorem: If a system of interacting electrons is immersed in a external potential Vext ,
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this potential is uniquely determined (except by a constant) by the electronic density n0 of the

ground-state (GS).

2st Theorem: Let E[n] be the functional for the energy relative to the electronic density n

for a given Vext . Then this functional has its global minimum (GS energy) for the exact density

n0 corresponding to the ground-state.

Those theorems are commonly known as the Hohenberg-Kohn theorems. Note that, based

on the first theorem, we can affirm that all the system properties are determined by the elec-

tronic density for the GS since n0 determines Vext , which determines the Hamiltonian, which

in turn defines the GS and all the excited states. Also, we can use the energy functional E[n]

to determine the exact GS energy and density. It is important to note, however, that DFT is

not only a GS theory, but instead gives the system’s Hamiltonian which is, in principle, all we

need to obtain the ground state and all the excited states. However, the GS can be obtained in a

systematic way, while there is no clear strategy to obtain excited states. The energy functional

is written as:

EHK[n] = T [n]+Eelectronic[n]+
∫

drVext(r)n(r) (2.8)

where T is the kinetic energy functional, Vext is the external potential felt by the electrons (in-

cluding the nuclei contribution) and Eelectronic accounts for all the electron-electron interactions.

Despite having the correct tool to obtain the electronic GS (i. e. the minimization of E[n]

relative to n), it is still not clear how to proceed on using this tool. The necessary recipe is given

by the Kohn-Sham ansatz [91]. According to it, the GS density of our system can be written as

the GS of an auxiliary system of non-interacting electrons. The one-electron wavefunctions for

this auxiliary system are determined by Schrödinger-like equations in the form:

Ĥσ
auxψ

σ
i (r) =−

h̄2

2me
∇

2
ψ

σ
i (r)+V σ

ψ
σ
i (r) = ε

σ
i ψ

σ
i (r) (2.9)

where σ labels the electron spin. The electronic density is written as:

n(r) = ∑
σ

Nσ

∑
i=1
|ψσ

i (r)|2 (2.10)

and the corresponding kinetic energy is:

Taux =−
h̄2

2me
∑
σ

Nσ

∑
i=1
〈ψσ

i |∇2|ψσ
i 〉=

h̄2

2me
∑
σ

Nσ

∑
i=1

∫
dr|∇ψ

σ
i (r)|2. (2.11)
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The classical Coulomb interaction is:

EHartree[n] =
1

8πε0

∫ ∫
drdr′

n(r)n(r′)
|r− r′|

(2.12)

and the expression for the energy functional reads:

EKS[n] = Taux[n]+
∫

drVext(r)n(r)+EHartree[n]+Exc[n] (2.13)

where Vext is the external potential (including the contribution due to the nuclei) and Exc is

the functional which accounts for the exchange and all the correlation effects. If we consider

EHK = EKS we have:

Exc[n] = T [n]−Taux[n]+Eelectronic[n]−EHartree[n] (2.14)

which indicates that Exc contains the exchange contribution and all the other correlation effects

related to kinetic energy and electron-electron interactions. Here lies the main problem of DFT:

we do not know the exact form of Exc. Even though DFT yields the exact solution for the

electronic problem, its practical implementation requires an approximation as to the form of the

exchange and correlation energy term. The usual approach is to write this energy as:

Exc[n] =
∫

drn(r)εxc([n],r) (2.15)

where εxc([n],r) is the exchange-correlation energy per electron at position r for the given den-

sity n(r). One then proceeds with the minimization of the energy functional relative to the

density n. We end up with the following variational equations for EKS[n]:

δ

δψσ∗
i

(
EKS[n]−∑

σ

Nσ

∑
j=1

ε
σ
j (
∫

drψ
σ∗
j ψ

σ
j −1)

)
= 0 (2.16)

where we used the Lagrange multipliers εσ
i corresponding to the normalization constraint 〈ψσ

i |ψσ
i 〉=

1. As Eext [n], EHartree[n] and Exc[n] are functionals of the density, we use the chain rule for these

terms so that:

δTaux[n]
δψσ∗

i
+

δEext [n]
δψσ∗

i
+

δEHartree[n]
δψσ∗

i
+

δExc[n]
δψσ∗

i
− ε

σ
i ψ

σ
i

= − h̄2

2me
∇

2
ψ

σ
i (r)+

(
δEext [n]
δn(r)

+
δEHartree[n]

δn(r)
+

δExc[n]
δn(r)

)
δn(r)
δψσ∗

i
− ε

σ
i ψ

σ
i = 0

(2.17)
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resulting in:

− h̄2

2me
∇

2
ψ

σ
i (r)+

(
Vext(r)+VHartree(r)+ εxc(r)

)
ψ

σ
i = ε

σ
i ψ

σ
i . (2.18)

Here the Hartree potential (representing the interaction of any electron with the electronic cloud)

is given by:

VHartree[n] =
1

8πε0

∫
dr′

n(r)
|r− r′|

(2.19)

and Vext and εext are early defined. These are the well-known Kohn-Sham equations for the

auxiliary problem. They are the basis for a great amount of theoretical calculations on the

electronic structure of molecules and solids.

In this thesis we employed DFT to perform part of the electronic structure calculations in

Chapter 8. Such calculations allow us to asses the suitability of a simpler model (see the TBU

model in Section 2.8) to study the electronic structure of a broader set of carbon nanostructures.

2.3 Localized Basis

In order to solve Schrödinger equation for a molecule or a solid, one first has to choose a

basis-set to expand the electronic wavefunctions. The first property we expect from a basis set

in order to obtain precise results is completeness:

∑
i
|φi〉〈φi|= 1. (2.20)

It turns out that, in practice, it is never possible to use such a complete set. Plane waves, for

instance, constitute a basis set which is naturally complete, as long as an infinite number of them

are included. However, one always has to use a finite discretized version from the plane wave

set in a numerical implementation. In this case, the systematic way to improve the accuracy

of the calculation is to increase the number of functions in the basis set. Such improvement is

not boundless since computational resources have a finite processing capability [86]. A plane

waves basis approach is used in the DFT calculations [92, 93] we present in Chapter 8.

One alternative to plane waves is to use the Linear Combination of Atomic Orbitals (LCAO)

method [86]. Here, the basis consists of functions corresponding to the electronic states from

the isolated atoms. Despite its simplicity this method yields very accurate results and it consti-

tutes the foundation of several computational packages and studies in the literature. The main

advantages of this method are the reduced computational cost and the easy association of the
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molecular levels with the atomic orbitals. One major drawback is the difficulty in assessing

validity, given the impossibility to systematically improve the basis set. This approach is the

basis for all the electronic transport and most electronic structure calculations we present in this

thesis (see Parts II and III).

Let us examine the use of LCAO by expanding the electronic wavefunctions from a crystal

in terms of a local orbital basis. In such a basis, each orbital basis function is associated with

an atom in the structure. One appropriate choice for these orbitals are functions centered on the

atomic sites. These functions can be written as:

φ j(r−R) = φα(r− rP−R) = φ
R
n jl jm j

(~ρ) = φ
R
n jl j

(ρ)Yl jm j(ρ̂) (2.21)

~ρ = r− rP−R (2.22)

where rP is the position of the P-th atom in the crystal unit cell (relative to the cell origin), α

enumerates the atomic orbitals centered on P and R is a vector from the Bravais lattice (which

localizes the origin of its corresponding cell). In this terminology, we define j to represent the

(P,α) pair. The (l j,m j) pair represents the angular momentum and its projection on a given axis

and n j enumerates different functions with the same angular momentum. Also, Yl jm j(ρ̂) are the

ubiquitous spherical harmonics. We present the spherical harmonics for l j = 0,1,2 below:

Y0,0(θ ,φ) =
1
2

√
1
π

(2.23)

Y1,0(θ ,φ) =
1
2

√
3

2π
cosθ (2.24)

Y1,±1(θ ,φ) = ∓1
2

√
3

2π
e±iφ sinθ (2.25)

Y2,0(θ ,φ) =
1
4

√
5
π
(3cos2

θ −1) (2.26)

Y2,±1(θ ,φ) = ∓1
2

√
15
2π

e±iφ sinθ cosθ (2.27)

Y2,±2(θ ,φ) =
1
4

√
15
2π

e±2iφ sin2
θ . (2.28)

As discussed earlier, orbitals with m = 0 are real, while real orbitals can be obtained for the

m 6= 0 cases by the following transformation:

Y±l,|m| =
1
2
(Yl,m±Yl,−m). (2.29)

Plots for the individual Y±l,|m| are shown in Fig. 2.1 (considering the method described in Sec-
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tion 1.1).

Figure 2.1: Spherical harmonics in the Y±l,|m| form.

It is often more convenient to use the imaginary expressions in actual calculations since this

will allow us to simplify the calculation of two-center integrals contributions for the Hamilto-

nian elements.

2.4 Hamiltonian elements

The Hamiltonian elements written in terms of the localized basis presented in Section 2.3

are written as:

H j,l(R′,R′′) =
∫

dr3
φ
∗
j (r−R′)Ĥφl(r−R′′). (2.30)

In addition, the translational crystal symmetry allows us to write:

H j,l(R′−R′′′,R′′−R′′′) = H j,i(R′,R′′) (2.31)

so that the R′ and R′′ dependence of H j,l(R′,R′′) is determined exclusively by the difference

R = R′′−R′. Using this fact, we can write:

H j,l(R′,R′′) = H j,l(0,R′′−R′) = H j,l(R) =
∫

dr3
φ
∗
j (r)Ĥφl(r−R). (2.32)

Similarly, the overlap terms are given by:

S j,l(R) =
∫

dr3
φ
∗
j (r)φl(r−R). (2.33)



2.4 Hamiltonian elements 68

The one particle Hamiltonian operator has the form:

Ĥ = T̂ +∑
pR

V (|r− rp−R|) (2.34)

where T̂ is the one-electron kinetic energy operator and V (|r− rp−R|) is the potential energy

decomposed as a sum of spherically symmetric terms centered on the atoms located at positions

rp relative to the unit cell located at R. The kinetic energy contribution to the Hamiltonian

elements can be composed of one- or two-center integrals depending on whether the orbitals

i and j are centered on the same atom or not. As the potential can be viewed as a sum of

spherically symmetric terms, its contributions to the Hamiltonian elements can also have three-

center integrals as well as one- and two-center integrals. We can readily notice four different

types of potential energy contributions:

• One-center: when both orbitals and potential are centered on the same atom;

• Two-center 1: when the orbitals are centered on different atoms and the potential on one

of these atoms;

• Two-center 2: when both orbitals are centered on the same atom and the potential on

another one;

• Three-center: when both orbitals and potential are centered on different atoms.

Overlap terms are always composed of one- or two-center integrals.

Important aspects can be easily addressed for the two-center integrals. Let Mlm,l′m′ be a

two-center integral, between two orbitals from different atoms, corresponding to the kinetic or

potential energy contribution to a Hamiltonian element or an overlap element. For simplicity,

let us suppose the line joining the two centers corresponds to the z-axis. We can then write:

Mlm,l′m′ =
∫

f1(ρ1) f2(ρ2)Y ∗l,m(ρ̂1)Yl′,m′(ρ̂2)d3r (2.35)

with

ρ̂i =
r− ri

|r− ri|
i = 1,2. (2.36)

The φ dependence from this integral can be isolated so that:

Mlm,l′m′ =
Mll′m

2π

∫ 2π

0
e−imφ eim′φ dφ = Mll′mδmm′. (2.37)
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Equation 2.37 is a significant simplification for the calculation of these terms. The usual nomen-

clature for such quantities is to denote l = 0,1,2,3, ... by s, p,d, f , ... and m = 0,±1,±2, ... by

σ ,π,δ , .... Below we illustrate the different two-center integral schemes for l = 0,1,2.

Figure 2.2: Different two-center integrals schemes for the Hamiltonian elements on a localized basis.

2.5 Bloch functions

Even with the simplifications introduced in the last section, it is impractical to work with the

Hamiltonian in the simple atomic orbitals representation for a periodic solid. Even though we

have a band matrix (whose matrix elements Mi,i+ j are zero for j larger than a given value), it is

still infinite and there is no systematic way to solve it. On the other hand, Bloch’s theorem [94,

95] indicates that we can write the eigenfunctions in a single unit cell as:

φ jk(r) = N jk ∑
R

eik·R
φ j(r−R) (2.38)

where N jk is a normalization constant. In the case of an infinite crystal, k is a vector which

can assume any value within the first Brillouin Zone (BZ). Within this approach we redirect our

attention from a set of vectors R which extend along the infinite real space to a set of vectors k

which are contained within a finite portion (determined by the BZ) of the reciprocal space. In
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this new basis, the Hamiltonian elements can be written as:

H j,l(k,k′) =
∫

dr3
φ
∗
jk(r)Ĥφlk′(r)

=
∫

dr3
(

N∗jk ∑
R′

e−ik·R′
φ
∗
j (r−R′)

)
Ĥ
(

Nlk′∑
R′′

eik′·R′′
φl(r−R′′)

)
= N∗jkNlk′∑

R′
e−ik·R′

∑
R′′

eik′·R′′
∫

dr3
φ
∗
j (r−R′)Ĥφl(r−R′′)

= N∗jkNlk′∑
R′

e−ik·R′
∑
R′′

eik′·R′′H j,l(R′′−R′)

= N∗jkNlk′∑
R′

e−ik·R′eik′·R′
(

∑
R′′

eik′·(R′′−R′)H j,l(R′′−R′)

)

but the quantity between parenthesis corresponds to the H j,l(k′) = H j,l(k′,k′). So we can write:

H j,l(k,k′) = N∗jkNlk′∑
R′

e−ik·R′eik′·R′H j,l(k′)

= N∗jkNlk′H j,l(k′)∑
R′

e−ik·R′eik′·R′

= N∗jkNlk′H j,l(k′)δkk′

and finally

H j,l(k,k) = H j,l(k) = ∑
R

eik·RH j,l(R) . (2.39)

Analogously, for the overlap matrix elements, we have:

S j,l(k,k) = S j,l(k) = ∑
R

eik·RS j,l(R) . (2.40)

We can then expand the electronic eigenfunctions as:

Ψα(r) = ∑
j

c jαφ jk(r). (2.41)

Hence, the Schrödinger equation reads:

ĤΨα(r) = EαΨα(r) (2.42)

or, in the LCAO basis:

∑
j

c jαĤφ jk(r) = Eα ∑
j

c jαφ jk(r). (2.43)
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If we multiply on the left by φ∗lk(r) and integrate over the whole space we end up with:

∑
j

c jα

∫
φ
∗
lk(r)Ĥφ jk(r)d3r = Eα ∑

j
c jα

∫
φ
∗
lk(r)φ jk(r)d3r (2.44)

∑
j

c jαHl, j(k) = ∑
j

c jαEαSl, j(k) (2.45)

Hcα = EαScα , (2.46)

where H and S are square matrices with elements Hl, j(k) and Sl, j(k), respectively, and cα the

column vector with elements c jα . The eigenvalues are then obtained by the secular equation:

|H−EαS|= 0 (2.47)

where | | denotes the determinant.

Within a computational procedure to calculate the electronic structure, one has to use a

discrete set ki, i = 1,2,3, ...,N of k vectors to represent how the electronic states behave as

functions of k. Since the Hamiltonian elements from different k vectors are zero, we can write

the secular equation 2.47 as:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H(k1)−EαS(k1) 0 0 . . . 0

0 H(k2)−EαS(k2) 0 . . . 0

0 0 H(k3)−EαS(k3) . . . 0
...

...
... . . . ...

0 0 0 . . . H(kN)−EαS(kN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(2.48)

and such matrix diagonalization can be broken into smaller problems:

|H(ki)−EαS(ki)|= 0, i = 1,2,3, ...,N (2.49)

for each k-point ki.

2.6 The Slater-Koster approach

Bloch was the pioneer in the calculation of electronic levels in a crystal. He introduced the

concept of electronic bands and his famous “Bloch’s Theorem” [94]. Later on, Jones and co-

workers were the first to expand the original s-symmetry-only approach to take into account a
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basis of different orbitals [96]. However, the Tight-Binding (TB) model in the form it is widely

used today was presented by Slater and Koster [97]. This is the simplest model to solve the

electronic problem of periodic systems and despite its simplicity, it gives excellent results and

deep insight into solid state and surface problems. In this TB approach, one uses a basis of

highly localized atomic orbitals and consider the Hamiltonian elements of the studied system

as empirical parameters [2, 86].

The TB parameters are further simplified by discarding three-center-integral contributions

for the Hamiltonian elements [2, 86, 97]. We are then restricted to the one-center and two-

center contributions. The two-center integrals are then simplified using Eq. 2.37. However

when applying Equation 2.37 one can argue that the choice for the axis will in general not

coincide with the line joining the atoms. However it is always possible to write the spherical

harmonics relative to the bond line as linear combinations of the spherical harmonics relative

to the z-axis. Using these transformations we can write the two-center-integral contributions to

the Hamiltonian elements as linear combinations of the Mll′m terms from Equation 2.37. Slater

and Koster came up with expressions for the elements involving s, p and d orbitals [97]. Below

we reproduce these relations for the case of orbitals s and p.

Ms,s = Ms,s,σ (2.50)

Ms,pz = z2Ms,p,σ (2.51)

Mpx,px = x2Mp,p,σ +(1− x2)Mp,p,π (2.52)

Mpx,py = xy(Mp,p,σ −Mp,p,π). (2.53)

The TB parameters are fitted to reproduce crystal properties (such as electronic bands or lattice

parameters) of a given model system. In addition, one has also to define a cutoff radius for the

distance between the atoms so that Hamiltonian elements, for orbitals from atoms separated by

a distance larger than the cutoff, are zero.

In this process, we call the ability of a given parametrization to give accurate results (for

systems other than the one used to obtain the parametrization) as its transferability. This is an

important concept that has to be taken into account carefully by the computational physicist.

The inclusion of multiple-center-integrals effects is an example. Even though the influence of

these integrals can be included in the two-center terms to give an accurate description for the

electronic structure of some systems, such accuracy is usually not completely transferable to

other structures when using the same parameters [86].

In this thesis we used graphene and GNRs as model systems to determine the TB param-

eters used in our calculations. Since the series of sp2-like carbon nanostructures we studied
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in this thesis are very similar to the model systems (as they are constructed from the same ba-

sic structural units), we believe we are within an acceptable transferability margin. Note that

a number of TB calculations were compared to DFT with remarkable agreement (see, e. g.

Chapter 8).

In the next section we apply the TB approach to describe the electronic structure of graphene.

2.7 Graphene

The carbon atoms in the graphene sheet form hexagons which fill completely the plane.

The carbon positions by themselves do not form a Bravais lattice: they are organized in an

hexagonal 2D lattice with a two atoms basis as shown in Fig. 2.3.

Figure 2.3: Graphene and lattice vectors definition.

The lattice vectors can be written as:

a1 = a(

√
3

2
,
1
2
) a2 = a(

√
3

2
,−1

2
) a = aC−C

√
3. (2.54)

By definition, the lattice vectors have the same length and make a 60◦ angle between them. By

using an spx py pz basis and by considering only integrals between first neighbors atoms we can

write:

H =

[
H1 H12

H21 H2

]
(2.55)

where H1 and H2 represent the Hamiltonians for the atoms 1 and 2, respectively, and H12 and

H21 represent the interaction between them. If the sub-set of basis functions associated with a
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given atom are orthonormal, we do not expect cross terms among them. So it is natural to write:

H1 = H2 =


εs 0 0 0

0 εp 0 0

0 0 εp 0

0 0 0 εp

 . (2.56)

On the other hand, if we carefully take into account the interactions between first neighbors

atoms, we can show that:

H12 = H†
21 =


f γssσ qγspσ wγspσ 0

−qγspσ q(γppσ )+w(γppπ) g(γppσ − γppπ) 0

−wγspσ g(γppσ − γppπ) qγppπ +wγppσ 0

0 0 0 f γppπ

 (2.57)

where

f (k) = 1+ e−ik·a1 + e−ik·a2 (2.58)

g(k) =

√
3

4
(e−ik·a1− e−ik·a2) (2.59)

q(k) =
1
4
(1+3 f ) (2.60)

w(k) =
1
4
( f −1). (2.61)

Since the Hamiltonian is an Hermitian operator we have H12 = H†
21. On the other hand, using

symmetry arguments, we can write H1 = H2. When writing these matrices, we are considering

the order (s1, px1, py1, pz1,s2, px2, py2, pz2) for the basis set to write the Hamiltonian H. It is,

however, suggestive to reorder the orbitals to (pz1, pz2,s1, px1, py1,s2, px2, py2). Doing so, the

Hamiltonian is rewritten as 
Hz 0 0

0 H ′1 H ′12

0 H ′21 H ′2

 (2.62)

with

Hz =

[
εp f γppπ

f ∗γppπ εp

]
(2.63)

H ′1 = H ′2 =


εs 0 0

0 εp 0

0 0 εp

 (2.64)
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H ′12 = H ′†21 =


f γssσ qγspσ wγspσ

−qγspσ q(γppσ )+w(γppπ) g(γppσ − γppπ)

−wγspσ g(γppσ − γppπ) qγppπ +wγppσ

 (2.65)

with similar forms for the overlap matrix. This form is a direct consequence of symmetry

properties. Since the π orbitals are odd relative to the graphene plane (they change sign upon a

reflexion on the graphene plane), their cross-terms with the in-plane σ orbitals (which are even

relative to the plane) will be zero. This property allows us to treat the π orbitals part of the

problem separately from the remaining orbitals. Since the σ orbitals form strong bonds along

the plane, the electronic properties around the Fermi Level are determined by the π orbitals part

of the problem. We can then write the eigenvalue equation for the π bands as:∣∣∣∣∣ E− εp E f sppπ − f γppπ

E f ∗sppπ − f ∗γppπ E− εp

∣∣∣∣∣= 0 (2.66)

E =
εp± γppπ f
1± sppπ f

. (2.67)

As the carbon atoms have a quasi-sp2 hybridization in the nanostructures we studied, we

expect these systems’ electronic structure near the Fermi energy to be mostly determined by

the π electrons, so the reason for us to use such a single-atomic-orbital basis for the TB-based

calculation we present in this thesis.

2.8 The TBFOR project

In this section we present the TBFOR (Tight-Binding Fortran Operational Resource) project,

which is the program we developed to carry out many of the electronic structure calculations

presented in this thesis (as well as to obtain the inputs for the electronic transport calculations

from Chapter 9). In addition, we also present the Hubbard-model Hamiltonian that we em-

ployed to include spin interactions and their effect on the electronic energy levels.

2.8.1 Hamiltonian

In its current version (that was the one used to obtain the results shown in this thesis),

TBFOR treats only one orbital per atom, namely the π orbital for our sp2 like systems. Examples

of the input files needed by TBFOR are provided in Appendix A. Let us consider a Dirac

notation so that |R, i,σ〉 denotes the atomic orbital with spin σ centered on the atom i in the
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real space cell located by R. Our tight-binding Hamiltonian is then written as:

Ĥ0 = ∑
R

∑
i

∑
σ

|R, i,σ〉εi〈R, i,σ |+∑
R

∑
i

∑
R′

∑
j
∑
σ

|R, i,σ〉V(R,i),(R′, j)〈R′, j,σ | (2.68)

where V(R,i),(R′, j) are the hopping integrals representing the real-space Hamiltonian elements

between the orbitals |R, i,σ〉 and |R′, j,σ〉 (with V(R,i),(R,i) = 0) and εi is the on-site energy

representing the real-space Hamiltonian element between the orbital |R, i,σ〉 and itself. Here

we consider orthonormal orbitals:

〈R, i,σ |R′, j,σ ′〉= δ(R,i,σ),(R′, j,σ ′). (2.69)

In practical terms, we truncate the sums involving V(R,i),(R′, j) until nth-nearest-neighbors with a

given integer n. More specifically, we consider this term as non zero only when |R, i〉 and |R′, j〉
are no more than 3 neighbor away.

2.8.2 Eigenfunctions

The eigenfunctions in a periodic potential must obey Bloch’s theorem:

Ψ(r+R) = eik·R
Ψ(r). (2.70)

Let φ(R,i,σ)(r)= 〈r|R, i,σ〉 be the real space representation of the orbital |R, i,σ〉. If we consider

a lattice with a one-atom basis with no spin, we can show that the construction:

Ψ(r) = ∑
R

eik·R
φ(R,i)(r) → |Ψ〉= ∑

R
eik·R|R, i〉 (2.71)

is compatible with Bloch’s theorem. When we have more than one atom per cell and when we

consider spin, we can substitute |R, i〉 by a molecular orbital and write a |Ψ〉 for each of them.

Another option is to substitute the |R, i〉 by a linear combination of the atomic orbitals within

the corresponding R cell. Doing this we have:

|Ψ〉= ∑
R′′

eik·R′′|R′′,φ〉 (2.72)

with

|R′′,φ〉= ∑
l

∑
σ

cl,σ |R′′, l,σ〉 (2.73)

and finally

|Ψ〉= ∑
R′′

∑
l

∑
σ

eik·R′′cl,σ |R′′, l,σ〉 . (2.74)



2.8 The TBFOR project 77

2.8.3 Eigenvalues

Operating the Hamiltonian on the Bloch function results in:

Ĥ0|Ψ〉= E|Ψ〉 (2.75)

∑
R

∑
i

∑
σ

|R, i,σ〉εi〈R, i,σ |∑
R′′

∑
l

∑
σ ′

eik·R′′cl,σ ′|R′′, l,σ ′〉

+ ∑
R

∑
i

∑
R′

∑
j
∑
σ

|R, i,σ〉V(R,i),(R′, j)〈R′, j,σ |∑
R′′

∑
l

∑
σ ′

eik·R′′cl,σ ′|R′′, l,σ ′〉

= E ∑
R′′

∑
l

∑
σ ′

eik·R′′cl,σ ′|R′′, l,σ ′〉 (2.76)

∑
R

∑
i

∑
σ

εieik·Rci,σ |R, i,σ〉+∑
R

∑
i

∑
R′

∑
j
∑
σ

V(R,i),(R′, j)e
ik·R′c j,σ |R, i,σ〉

= E ∑
R′′

∑
l

∑
σ ′

eik·R′′cl,σ ′|R′′, l,σ ′〉. (2.77)

Projecting 〈0,m,σ ′′| on the left:

∑
R

∑
i

∑
σ

εieik·Rci,σ 〈0,m,σ ′′|R, i,σ〉

+ ∑
R

∑
i

∑
R′

∑
j
∑
σ

V(R,i),(R′, j)e
ik·R′c j,σ 〈0,m,σ ′′|R, i,σ〉

= E ∑
R′′

∑
l

∑
σ ′

eik·R′′cl,σ ′〈0,m,σ ′′|R′′, l,σ ′〉 (2.78)

∑
R

∑
i

∑
σ

εieik·Rci,σ δ(0,m,σ ′′),(R,i,σ)

+ ∑
R

∑
i

∑
R′

∑
j
∑
σ

V(R,i),(R′, j)e
ik·R′c j,σ δ(0,m,σ ′′),(R,i,σ)

= E ∑
R′′

∑
l

∑
σ ′

eik·R′′cl,σ ′δ(0,m,σ ′′),(R′′,l,σ ′) (2.79)

εmcm,σ ′′+∑
R′

∑
j

V(0,m),(R′, j)e
ik·R′c j,σ ′′ = Ecm,σ ′′ (2.80)

∑
j
∑
σ

E(m,σ ′′)( j,σ)c j,σ +∑
j
∑
σ

U(m,σ ′′)( j,σ)c j,σ = Ecm,σ ′′ (2.81)

where

U(m,σ ′′),( j,σ) = δσ ′′,σ ∑
R′

V(0,m),(R′, j)e
ik·R′ (2.82)
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E(m,σ ′′),( j,σ) = δ(m,σ ′′),( j,σ)εm. (2.83)

Writing in matrix form we have:

H C = EC (2.84)

(E +U )C = EI C . (2.85)

The matrix elements are

Ci,σ = ci,σ (2.86)

I(i,σ),( j,σ ′) = δ(i,σ),( j,σ ′) (2.87)

E(i,σ),( j,σ ′) = εiδ(i,σ),( j,σ ′) (2.88)

U(i,σ),( j,σ ′) = δσ ,σ ′∑
R

V(0,i),(R, j)e
ik·R (2.89)

and the eigenvalues are obtained from the equation:

|H −EI |= 0 . (2.90)

In one of the TBFOR inputs (see example in Appendix A), one has to provide the site energies

and hopping parameters for 1st , 2nd and 3rd neighbors. An internal subroutines then works the

structure data (coordinates and lattice parameters) to identify the different nth-nearest-neighbors

for each atom. These information is the used by another subroutine that builds the hamitonian

in Eq. 2.90 using Eqs. 2.82 and 2.83.

2.8.4 Hubbard model

So far we did not consider explicitly the interaction between two electrons with opposite

spins occupying the same state. This is an important aspect to be considered in a number

of systems as this interaction is responsible for non null balance between spin up and spin

down occupations. A simple and well known example is provided by zigzag edges in graphitic

materials. As discussed in Section 1.4.1, a ferromagnetic alignment is expected along these

boundaries. Therefore, accounting for this short range interactions is fundamental for a concise

and accurate description of such systems. The Hubbard model is a widely used method for

computing this type of spin-spin interactions in molecules and solids. Within the one-orbital

Hubbard model [30, 98], the Hamiltonian is written as a sum of two parts:

Ĥ = Ĥ0 + Ĥ ′ (2.91)
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where Ĥ0 is the usual tight-binding Hamiltonian and Ĥ ′ is the repulsive on-site Coulomb inter-

action given by:

Ĥ ′ =U ∑
i

n̂i↑n̂i↓ (2.92)

where n̂iσ = c†
iσ ciσ and c†

iσ and ciσ are respectively the creation and annihilation operators for

the orbital i with spin σ . The quantity U is a single parameter that measures the strength of the

electron-electron on-site repulsion and it is obtained from first principles calculations [30]. We

can write the densities in terms of the variations from the average value as:

n̂iσ = 〈n̂iσ 〉+δ n̂iσ . (2.93)

Doing so, we can write:

Ĥ ′ = U ∑
i

(
〈n̂i↑〉+δ n̂i↑

)(
〈n̂i↓〉+δ n̂i↓

)
= U ∑

i

(
〈n̂i↑〉〈n̂i↓〉+δ n̂i↑〈n̂i↓〉+ 〈n̂i↑〉δ n̂i↓+δ n̂i↑δ n̂i↓

)
. (2.94)

As far as we do not have sharp variations of the density from its corresponding mean value, we

expect δ n̂iσ to be small so that ∑i δ n̂i↑δ n̂i↓ is a minor contribution to Ĥ ′. If we ignore this last

term, we obtain the so-called mean-field approximation [30]:

Ĥ ′ =U ∑
i

(
〈n̂i↓〉n̂i↑+ 〈n̂i↑〉n̂i↓

)
−Uc1̂ c = ∑

i
〈n̂i↑〉〈n̂i↓〉. (2.95)

Writing it in a different notation we have:

Ĥ ′ = U ∑
R

∑
i

(
〈nR,i,↓〉|R, i,↑〉〈R, i,↑ |+ 〈nR,i,↑〉|R, i,↓〉〈R, i,↓ |

)
−Uc∑

R
∑

i

(
|R, i,↑〉〈R, i,↑ |+ |R, i,↓〉〈R, i,↓ |

)
(2.96)

Ĥ ′ =U ∑
R

∑
i

((
〈nR,i,↓〉− c

)
|R, i,↑〉〈R, i,↑ |+

(
〈nR,i,↑〉− c

)
|R, i,↓〉〈R, i,↓ |

)
. (2.97)

We can write

〈0,m,↑ |Ĥ ′|Ψ〉=U
(
〈n0,m,↓〉− c

)
〈0,m,↑ |∑

R′′
∑

l
∑
σ ′

eik·R′′cl,σ ′|R′′, l,σ ′〉 (2.98)

〈0,m,↑ |Ĥ ′|Ψ〉=U
(
〈n0,m,↓〉− c

)
cm,↑. (2.99)
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So, our eigenvalue equation is rewritten as

εmcm,σ ′′+∑
R′

∑
j

V(0,m),(R′, j)e
ik·R′c j,σ ′′+U

(
〈n0,m,σ ′′〉− c

)
cm,σ ′′ = Ecm,σ ′′

(2.100)

∑
j
∑
σ

E ′(m,σ ′′)( j,σ)c j,σ +∑
j
∑
σ

U(m,σ ′′)( j,σ)c j,σ = Ecm,σ ′′ (2.101)

where

U(m,σ ′′),( j,σ) = δσ ′′,σ ∑
R′

V(0,m),(R′, j)e
ik·R′ (2.102)

E ′(m,σ ′′),( j,σ) = δ(m,σ ′′),( j,σ)

(
εm +U〈n0,m,σ ′′〉−Uc

)
. (2.103)

In matrix form, Eq. 2.103 becomes:

H C = EC (2.104)

(E ′+U )C = EI C . (2.105)

The matrix elements are

Ci,σ = ci,σ (2.106)

I(i,σ),( j,σ ′) = δ(i,σ),( j,σ ′) (2.107)

E ′(i,σ),( j,σ ′) = δ(i,σ),( j,σ ′)

(
εi +U〈n0,i,σ ′′〉−Uc

)
(2.108)

U(i,σ),( j,σ ′) = δσ ,σ ′∑
R

V(0,i),(R, j)e
ik·R (2.109)

and the eigenvalues are obtained from the equation:

|H −EI |= 0 . (2.110)

Since the only effect of the Uc constant (added to every diagonal element) in E ′(i,σ),( j,σ ′) is to

shift the whole energy spectrum, we can ignore it.
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2.8.5 Self-consistency

Solving the TB problem including the Hubbard model is a very interesting numerical prob-

lem. This is because the Hamiltonian depends on the orbitals’ occupations:

〈n0,i,σ 〉=
1

∆k

∫ (
∑
α

f (Eα)|ci,σ (k,α)|2
)

dk (2.111)

(where α enumerates the Hamiltonian eigenstates). However, these quantities depend on the

solution so that there is no way to write the exact equation to be solved without knowing its so-

lution. The usual method to solve this is by using an iterative approach to reach self-consistency.

In this strategy, one starts with a initial guess for the occupation numbers 〈n0,i,σ 〉 and then write

the corresponding Hamiltonian. After calculating the corresponding solution, new occupations

are obtained and compared with those used to obtain the Hamiltonian. It is natural to expect,

in the early steps of this process, that the output will be considerably different from the corre-

sponding input. If this is the case, we mix the input and output densities and use the result as a

new input, starting a new iteration step. On the other hand, if they are equal (or within an ac-

ceptable small difference), then self-consistency is reached. We carry on this procedure until we

obtain a self-consistent solution. In this procedure, TBFOR uses a limited set of k points in the

integral from Eq. 2.111 for each iteration. Once we finish this cycle, we use the self-consistent

occupations to calculate the electronic structure over the Brillouin zone using a larger number

of points.

2.8.6 Mixing schemes

Regarding the mixing performed at each iteration step, the most simple and intuitive one

would be simply to substitute the input density by the corresponding output. However, this is

usually not the most efficient method. A slightly different possibility is to make a simple mixing

by:

nmix = βnnew +(1−β )nold (2.112)

where β is a chosen real number, and use it in a new self-consistency cycle. The optimum

value for β (which allows for the the fastest convergence) is system dependent and can only be

determined by testing. In principle the larger the β the faster is the convergence. However the

iterative procedure can become unstable, missing convergence, for excessively large β values.

A small β yields slower convergence but it is more likely to result in a stable iterative procedure.

For the systems we studied in this thesis, most cases converged with β = 1. In a minor part of
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the simulations, we needed to use a smaller value (β = 0.2 to obtain convergence). The main

difference from the first intuitive option is the consideration of a short-term memory, since we

consider the last and the penultimate densities. A systematic and more efficient mixing scheme

was proposed by Pulay [99]. In this method, we consider a linear combination of up to m

previous input densities to build the next new input density nmix:

nmix =
m

∑
i=1

αini. (2.113)

In order to obtain an optimal combination, we suppose the error Rmix associated with this op-

timal combination will be the corresponding linear combination of the errors Ri (difference

between output and input densities) for the m previous inputs:

Rmix =
m

∑
i=1

αiRi, Ri = n′i−ni, (2.114)

with n′i being the corresponding output density for ni. In the following, the αi coefficients are

determined by minimizing the quantity R:

R = RT
mix ·Rmix =

m

∑
i=1

m

∑
j=1

αiRT
i ·R jα j = [α]T · [R] · [α] (2.115)

where [α] is the m-dimensional column vector with components αi and [R] the m×m matrix

with components Ri j = RT
i · R j. The minimization is made by considering a [δα] variation

constrained by:

m

∑
i=1

αm = [α]T · [α] = 1. (2.116)

Using a Lagrange multiplier λ for this condition we write the corresponding variation for R as:

δ

(
R−λ ([α]T · [α]−1)

)
= [δα]T · [R] · [α]+ [α]T · [R] · [δα]

−λ ([δα]T · [α]+ [α]T · [δα]) = 0. (2.117)

But since we are working with real quantities we have [δα]T · [R] · [α] = [α]T · [R] · [δα] and

[δα]T · [α] = [α]T · [δα], so that:

2[δα]T · [R] · [α]−2λ [δα]T · [α] = 0 (2.118)

which results in m equations given by:

[R] · [α]−λ [α] = 0 (2.119)



2.9 Overview 83

which together with Eq. 2.116 allows us to solve the system of m + 1 variables λ , αi, i =

1,2, ...,m. An alternate version of this mixing procedure is to consider not only the input den-

sities in the construction of the new trial density, but also take into account variations on them

due to the iterative steps. In other words, we choose a new trial which also depend on the output

densities n′i corresponding to the ni, i = 1,2,3, ...,m [100]. This is done by writing the new trial

as:

nmix =
m

∑
i=1

αi(ni +βRi) (2.120)

with β being an extra parameter free to our choice. The best β values is system dependent and,

in principle, there is no simple rule to determine it, even though the chosen value is usually

0.8 [100].

2.9 Overview

In this Chapter we presented a general overview of some of the most used methodolo-

gies for the calculation of electronic properties in molecules and solids. Starting from the el-

ementary Hartree’s model, HF and DFT methods represented successive steps in constructing

a satisfactory framework to treat the multi-electron problem within the independent-electrons

approximation (which is actually treated exactly, in theory, within DFT). While highly accu-

rate calculations demand a high computational cost, which makes the calculations sometimes

prohibitive, simpler methods such as those based on the TB model can also be viewed as use-

ful tools to access the properties of some, especially large, systems. Carbon sp2 systems are

considerably well described by TB calculations. For these systems, edge effects are straight-

forwardly treated within a Hubbard model Hamiltonian added to the usual TB model. Finally,

our TBFOR package (which applies the TB+Hubbard model - TBU) was presented where we

discussed important and specific details of the TBU implementation. This package was used

to obtain most electronic structure results presented in Chapter 8 and the inputs needed for the

electronic transport calculations shown in Chapter 9.
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3 Electronic transport at the nanoscale

In this chapter we present the methods we applied to compute the electronic transport at the

nanoscale. We start describing the general system under consideration for transport calculations

and then introduce the Landauer approach. This formalism associates the quantum conductance

through a nanoscopic system with the transmission probability for an electron impinging onto

the system. In the following we introduce the Green’s function and its relation to the transmis-

sion. We conclude the chapter discussing practical aspects related to semi-infinite electrodes

and the use of non-orthogonal basis.

3.1 System description

The system under consideration in this chapter and that we worked out in the thesis is

composed by a central scattering region (CSR) in contact with a number N of semi-infinite

terminals as depicted in Fig. 3.1. Each terminal is composed by the repetition of a characteristic

unit along a specific (periodic) direction.

Figure 3.1: Basic system for electronic transport calculations. A central scattering region C coupled to
the semi-infinite terminals L1, L2, L3, L4, ..., LN .

Note that each terminal can, in principle, be different from each other. Here we assume
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that each of the terminal’s cells is indistinguishable from the cell in the corresponding infinite

system. This latter assumption will be referred to as lead-bulk similarity (LBS). In practice such

condition is not a drastic restriction (as in the case of a simple TB calculation with hopping and

overlap integrals given by constant parameters). However, additional care must be taken when

using more sophisticated methods like DFT or TBU calculations in which a self-consistent

procedure is carried out to obtain the electronic density. Nevertheless, the LBS can be achieved,

within a good approximation and with controlled accuracy, by including a sufficient number of

terminal unit cells within the CSR. A fundamental point to emphasize here is that we also apply

the concept of principal layer (PL) to the electrodes. In other words, the terminal’s unit cell is

chosen so that it interacts only with the first-neighbor cells. This set of considerations allows us

to write the problem in a convenient numerically solvable way.

3.2 Describing the terminals

The terminals Ln (where n = 1,2,3, ...,N) are composed by periodic semi-infinite systems

(as shown in Fig. 3.2) whose Hamiltonians are described by semi-infinite matrices. We label

the unit cells within each terminal by the integer i where i = 0 for the cell closest to the CSR,

i = 1 for the following cell and so on.

Figure 3.2: Semi-infinite terminal and the corresponding Hamiltonian sectors.

Under the conditions stated in the last section, we can write the Hamiltonian Hn correspond-

ing to the n-th terminal Ln as:

Hn =



Hn
0 Hn

01 0 0 . . .

Hn
10 Hn

1 Hn
12 0 . . .

0 Hn
21 Hn

2 Hn
23 . . .

0 0 Hn
32 Hn

3 . . .
...

...
...

... . . .


(3.1)
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where the matrix Hn
i describes the i-th terminal unit cell and Hn

i, j describes the interaction be-

tween cells i and j (see Fig. 3.2). Note that Hn
i, j = 0 if |i− j|> 1, according to the PL condition.

Both Hn
i and Hn

i, j are square matrices having the size of the localized basis describing a unit cell

of the terminal. Since the Hamiltonian is hermitian we have Hn
i,i+1 =(Hn

i+1,i)
†. The Hamiltonian

can be further simplified by using the LBS to write:

Hn
i = Hn

0 and Hn
i,i+1 = Hn

01 for i = 1,2,3, . . . (3.2)

The potential energy for the terminal presents two important characteristics, namely the

periodicity along a given direction, say xn, and the confinement in the orthogonal directions yn

and zn. According to Bloch’s theorem [95], we can write the energy eigenfunctions for the bulk

system counterpart as:

ψαk = eikxnuαk(r) with uαk(r) = uαk(r+ ja) (3.3)

where a is the lattice vector along xn. Here α is a quantum number relative to the confinement

along yn− zn and k is the wave vector corresponding to the periodic direction xn (which we

consider, by convention, positive as we move outwards the CSR). Turning the discussion to the

semi-infinite terminal, this Bloch functional form can still be assumed for the eigenstates deep

inside the lead. In the next section we use this result to describe electronic scattering when the

electrons cross the CSR and introduce the Landauer formula.

3.3 Transmission and reflection

Suppose an electron in the terminal Ln, having energy Ei and described by the Bloch state

ψn
αiki

(where ki =−ki), is traveling towards the CSR. Once this state reaches the central conduc-

tor, its wavefunction is scattered to all the terminals and there is no simple approach to describe

its behavior on the CSR and its vicinity. However, we know that the wavefunction deep into the

electrodes is a linear combination of the outgoing Bloch functions. If we consider only energy

conserving scattering events, the eigenfunction Ψ (corresponding to the electron with energy

Ei) deep into a terminal Lm (other than Ln) can be written as:

Ψ =

Nm
Ei

∑
l

Tilψ
m
αlkl

(3.4)

where Nm
Ei

is the number of Bloch states in Lm having energy Ei. In Ln the wavefunction

has two contributions, one corresponding to the ingoing Bloch function ψn
αiki

and the other
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corresponding to the linear combination of the outgoing reflected waves:

Ψ = ψ
n
αiki

+

Nn
Ei

∑
l

Rilψ
n
αlkl

. (3.5)

The corresponding current density flowing deep inside the Ln terminal is given by:

jn(r) = 〈Ψi| ĵ|Ψi〉=
h̄

2im

(
Ψ
∗
i

∂Ψi

∂xn
−Ψi

∂Ψ∗i
∂xn

)
în (3.6)

where în is the canonical unit vector along the xn direction. The current through a plane perpen-

dicular to the xn direction is given by:

In(E j) = e
∫ +∞

−∞

∫ +∞

−∞

dydz〈Ψi| ĵ|Ψi〉 · în. (3.7)

As this current should not depend on the position of the plane inside the electrode, we can

include integration over x within a terminal unit cell and divide it by the cell’s length Ln
x

In(Ei) =
e

Ln
x

∫
Ln

x

∫ +∞

−∞

∫ +∞

−∞

dxdydz〈Ψi| ĵ|Ψi〉. (3.8)

We observe that

Ψ
∗
i

∂Ψi

∂x
=

(
ψ

n∗
αiki

+

Nn
E j

∑
l

R∗ilψ
n∗
αlkl

)(
− ikiψ

n
αiki

+

Nn
E j

∑
l

iklRilψ
n
αlkl

)
(3.9)

= −ikiψ
n
αiki

ψ
n∗
αiki
− iki

Nn
E j

∑
l

ψ
n
αiki

R∗ilψ
n∗
αlkl

(3.10)

+ψ
n∗
αiki

Nn
E j

∑
l

iklRilψ
n
αlkl

+

Nn
E j

∑
l

R∗ilψ
n∗
αlkl

Nn
E j

∑
l′

ikl′Ril′ψ
n
αl′kl′

(3.11)

and using the orthonormality condition for ψn
αpkp

we end up with:

In(Ei) =
eh̄

mLn
x

(
− ki +

Nn
E j

∑
l

kl|Ril|2
)

=

(
− Ii(Ei)+

Nn
E j

∑
l

Il(Ei)|Ril|2
)

(3.12)

where

Ip(Ei) =
eh̄kp

mLn
x
=

evp

Ln
x
. (3.13)

The quantity:

Ril =
|Il(Ei)|
|Ii(Ei)|

|Ril|2 (3.14)
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is the reflection probability for an incident electron with momentum h̄ki through the terminal

Ln to be reflected elastically with momentum h̄kl in the same lead. If we do the same process

for any terminal Lm we end up with:

Im(Ei) =

Nm
E j

∑
l

Il(Ei)|Til|2 (3.15)

where

Til =
|Il(Ei)|
|Ii(Ei)|

|Til|2 (3.16)

is the transmission probability for an incident electron from Ln with momentum h̄ki to be

transmitted to Lm with momentum h̄kl in an energy conserving process. Finally, in a steady

state, the sum of all the terminal contributions has to result in zero (conservation of charge):

∑
q

Iq(Ei) = 0 →
Nn

E j

∑
l

Ril + ∑
m6=n

Nm
E j

∑
l′

Til′ = 1. (3.17)

If we are interested in the net current In→m flowing from terminal Ln to terminal Lm we

have to take the total charge flux from Ln to Lm and subtract the total charge flux from Lm to

Ln. For each of these currents we have to take a number of aspects into account:

1. Sum the contributions from all the states (or channels) with energy equal to E which

transmit from one terminal to the other;

2. Multiply each contribution by the density of states;

3. Multiply each contribution by the Fermi distribution for the corresponding source elec-

trode;

4. Integrate with respect to energy.

The final result reads

In→m = 2
∫

dE
Nn

E

∑
j

Nm
E

∑
l

fn(E)D j(E)I j(E)Tjl(E)−2
∫

dE
Nm

E

∑
l

Nn
E

∑
j

fm(E)Dl(E)Il(E)Tl j(E). (3.18)

The density of states in one dimension is given by:

D j(E)dE =
Lx

2π
dki → D j(E) =

Lx

2π
dki/dE =

Lx

2π h̄v j(k j)
(3.19)
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so that we have

In→m =
2e
h

∫
dE

Nn
E

∑
j

Nm
E

∑
l

fn(E)Tjl(E)−
2e
h

∫
dE

Nm
E

∑
l

Nn
E

∑
j

fm(E)Tl j(E) (3.20)

In→m =
2e
h

∫
dE
(

fn(E)Tnm(E)− fm(E)Tmn(E)
)

(3.21)

with:

Tnm(E) =
Nn

E

∑
j

Nm
E

∑
l

Tjl(E) Tmn(E) =
Nm

E

∑
l

Nn
E

∑
j

Tl j(E). (3.22)

If we consider an equilibrium situation where the levels filling is defined by a common Fermi

energy EF for the whole system we should have zero net current in every electrode. Under this

circumstances we write:

In→m = 0 → Tnm(E) = Tmn(E). (3.23)

Now, if we are interested in the non-eqilibrium situation at low bias case, we have µn−µm→ 0

(where µn and µm are the chemical potentials of the terminals n amd m, respectively) and we

can write, at first order:

∂ f (E)
∂ µ

≈ fn(E)− fm(E)
µn−µm

∣∣∣∣∣
µ0

→ fn(E)− fm(E)≈
∂ f (E)

∂ µ

∣∣∣∣∣
µ0

(µn−µm). (3.24)

Since the Fermi-Dirac distribution has the form:

f (E) =
1

e(E−µ)/kBT +1
(3.25)

we have:

∂ f (E)
∂ µ

=−∂ f (E)
∂E

. (3.26)

Furthermore, if we consider the zero temperature limit we end up with:

∂ f (E)
∂E

=−δ (E−µ0). (3.27)

If we consider µ0 = µn:

In→m =
2e
h
(µn−µm)Tnm(µn). (3.28)
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On the other hand if we choose µ0 = µm:

In→m =
2e
h
(µn−µm)Tnm(µm). (3.29)

As long as Tnm varies slowly, there is no significant difference in using Equation 3.28 or 3.29

or if we set µ0 = EF so that we do not need to worry in writing:

In→m =
2e
h
(µn−µm)Tnm(EF). (3.30)

Finally, the low bias conductance is defined as the ratio between I and the bias V = (µn−µm)/e:

Gn→m =
2e2

h
Tnm(EF). (3.31)

However, if the transmission presents sharp variations around EF we need to use Equa-

tion 3.21. In this case, it makes more sense to define the differential as:

Gn→m(E) =
2e
h

(
fn(E)− fm(E)

)
Tnm(E). (3.32)

These results express the essence of Landauer formalism, namely “conductance is trans-

mission”. This theory contains the nature of electronic transport at the nanoscale, being a clear

departure from the top-down descriptions of electronic transport. While Ohm’s law (success-

ful for macroscopic systems) does not take into account the atomistic character of matter, it

fails when predicting a vanishing resistance for a device with size going to zero. On the other

hand, Landauer’s formula is intrinsically based on the quantum mechanical description of mat-

ter within scattering theory and constitutes a truly bottom-up approach for the electronic current

in nanoscale systems. Landauer’s theory is today a widely used formalism for computing elec-

tronic transport properties of nanoscale systems with the aid of Green’s function theory.

3.4 Experimental evidences of conductance quantization

For macroscopic systems, electrons undergo a huge number of scattering events (where

energy is conserved or not) so that, as a final result, the electron can be assigned to a constant

drag velocity. In this classical picture, transport is described within Ohm’s law which states that

the conductance (defined as the inverse of the electrical resistance) of a macroscopic conductor

with length L and constant cross-sectional area A is given by:

GOhm = σ
A
L

(3.33)
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where σ is the material dependent conductivity. However, as we decrease L to lengths where the

atomic character of matter becomes prominent (or in other words, when the device is smaller

than the phase coherence length [101, 102]), quantum interference effects start to become im-

portant and Ohm’s description no longer holds. At the nanoscale, we are out of this diffusive

regime of transport and we have the onset of ballistic transport where electrons are likely to

follow their paths free from being scattered (that is, like a bullet). Eventual scattering events at

the nanoscale are described by the transmission within Landauer approach. In the special case

of perfect ballistic transport we have complete transmission (Tjl(E) = 1) and the conductance

at the zero temperature limit assumes quantized values that are multiple of the basic quantity

G0 =
2e2

h
(3.34)

which is called quantum of conductance. The first experimental verification of this result was

provided by van Wees [6] and Wharam [103] and their respective collaborators. They verified

that quantum point contacts in a GaAs/AlGaAs interface present quantized conductance steps

which are multiples of G0, as shown in Fig. 3.3.

Figure 3.3: Dependence of the quantum conductance on the gate voltage for a quantum point contact in
a GaAs/AlGaAs interface. Adapted from [6].

We observe that as the gate voltage varies, more channels are available inside the electro-

chemical potential window and we have a step-varying conductance. However, the apparatus

used in these experiments was not a simple two terminal system [6, 103]. In fact, it corresponds

to a four probe measurement where the current is measured between two probes and the volt-
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age between another pair of terminals, so that direct comparison of the results in Fig. 3.3 and

the Landauer formula is not appropriate [104, 105], even though it is sufficient to illustrate the

quantized character of conductance.

3.5 The Green’s function formalism

Scattering theory establishes a systematic approach to calculate the transmissions by means

of an entity called Green’s function (GF). Let Ĥ be a single particle Hamiltonian. Time-

dependent Schrödinger equation then reads:

Ĥ|ψ(t)〉= ih̄
d|ψ(t)〉

dt
(3.35)

which can be rewritten as (
ih̄

d
dt
− Ĥ

)
|ψ(t)〉= 0. (3.36)

The corresponding Green’s function for this problem is defined as the quantity obeying [104]:(
ih̄

d
dt
− Ĥ

)
Ĝ(t) = 1̂δ (t). (3.37)

For this equation we have two solutions Ĝ± corresponding to the following boundary condi-

tions:

1. Ĝ+(t) = 0 for t < 0 (retarded);

2. Ĝ−(t) = 0 for t > 0 (advanced).

These solutions can be written as:

Ĝ+ =− i
h̄

e−iĤt/h̄, t > 0; (3.38)

Ĝ− =
i
h̄

e−iĤt/h̄, t < 0. (3.39)

Note that if the Hamiltonian is time independent, Ĝ+ can be identified with the time evolution

operator (aside from a multiplicative constant), so that we can write [104]:

|ψ(t)〉= ih̄Ĝ+(t)|ψ(0)〉, (3.40)
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with t > 0. In other words, Ĝ+ propagates |ψ〉 from a past time t0 = 0 to a future time t > 0 (so

the name “retarded”). Analogously, we can write:

|ψ(t)〉=−ih̄Ĝ−(t)|ψ(0)〉, (3.41)

with t < 0, so that Ĝ− propagates |ψ〉 backwards from a time t0 = 0 to a past time t < 0 (so the

name “advanced”).

Time independent versions of the GF can be obtained by Fourier transform:

Ĝ+(E) =
∫

dteiEt/h̄Ĝ+(t) (3.42)

= − i
h̄

∫
dtei(E−Ĥ)t/h̄ (3.43)

= − i
h̄

h̄
i

1
E− Ĥ

ei(E−Ĥ)t/h̄

∣∣∣∣∣
+∞

0

. (3.44)

In order to avoid poles on the real axis for the energy E, we add a iη (η → 0+) term to the

energy so that:

Ĝ+(E) = − 1
E + iη− Ĥ

ei(E−Ĥ)t/h̄e−ηt/h̄

∣∣∣∣∣
+∞

0

=
1

E + iη− Ĥ
. (3.45)

Similarly for the advanced function:

Ĝ−(E) =
1

E− iη− Ĥ
. (3.46)

If we consider the multi-terminal basic system shown in Fig. 3.1, we can write its Hamilto-

nian in terms of a localized basis as:

H =



HC hC1 hC2 hC3 . . . hCN

h1C H1 0 0 . . . 0

h2C 0 H2 0 . . . 0

h3C 0 0 H3 . . . 0
...

...
...

... . . .
...

hNC 0 0 0 . . . HN


(3.47)

where HC describes the CSR and Hi (i = 1,2,3, ...,N) represents the semi-infinite lead Li (see

Eq. 3.1). Also, the Hamiltonian sectors representing the interaction between the CSR and the

terminal Li are hCi and hiC. We do not consider the terminals interact directly with each other,

so the corresponding zero elements in Eq. 3.47. If we define ε as E+ iη (E− iη) for the retarded
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(advanced) GF, we can re-write Equation 3.45 (3.46) in matrix form as:

(εI −H)G = I (3.48)



εIC−HC −hC1 −hC2 . . . −hCN

−h1C εI1−H1 0 . . . 0

−h2C 0 εI2−H2 . . . 0
...

...
... . . .

...

−hNC 0 0 . . . εIN−HN


·



GC GC1 GC2 . . . GCN

G1C G11 G12 . . . G1N

G2C G21 G22 . . . G2N
...

...
... . . .

...

GNC GN1 GN2 . . . GNN


= I

(3.49)

where I is the identity matrix. After performing the product we have

(εIC−HC)GC−∑i hCiGiC MC1 MC2 . . . MCN

−h1CGC +(εI1−H1)G1C M11 M12 . . . M1N

−h2CGC +(εI2−H2)G2C M21 M22 . . . M2N
...

...
... . . .

...

−hNCGC +(εIN−HN)GNC MN1 MN2 . . . MNN


=



IC 0 0 . . . 0

0 I1 0 . . . 0

0 0 I2 . . . 0
...

...
... . . .

...

0 0 0 . . . IN


. (3.50)

The upper left term gives us:

(εIC−HC)GC−∑
i

hCiGiC = IC (3.51)

while the other terms in the first column give us

−h jCGC +(εI j−H j)G jC = 0 (3.52)

G jC = (εI j−H j)
−1h jCGC = g jh jCGC g j = (εI j−H j)

−1. (3.53)

Then

(εIC−HC)GC−∑
i

hCigihiCGC = (εIC−HC)GC−
(
∑

i
hCigihiC

)
GC = IC. (3.54)

Using a simplified notation for the terms in the sum within the parenthesis we have:

(εIC−HC)GC−
(
∑

i
Σi

)
GC = IC Σi = hCigihiC (3.55)

and finally isolating the conductor Green’s function GC we have:

GC = (εIC−HC−Σ1−Σ2− ...−ΣN)
−1. (3.56)
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The matrix Σi is usually referred to as the self-energy of the lead Li. These terms can be in-

terpreted as effective potentials which describe the effects of the semi-infinite terminals on the

finite CSR. In other words, the sum of the CSR Hamiltonian with the self-energies represents a

finite central conductor satisfying the boundary conditions corresponding to the attached elec-

trodes Li, i = 1,2,3, ...,N [104, 106]. This is a remarkable result which allows us to reduce the

problem of an extended infinite system to that of a finite central conductor as if it were isolated

by using this modified Hamiltonian to describe it.

3.6 Green’s function and density of electronic states

An important result is that the GF has a direct relation to the density of electronic states

(DOS) of the system. If we consider a set of eigenstates with energy eigenvalues εα , the corre-

sponding DOS is written as [95]:

D(E) = 2∑
α

δ (E− εα) (3.57)

where the factor 2 refers to the spin. The local density of states (LDOS) is obtained by multi-

plying each term in the sum with the density |ψα(r)|2 from the corresponding state:

D(r,E) = 2∑
α

|ψα(r)|2δ (E− εα). (3.58)

This last quantity can be viewed as proportional to the diagonal element of the real space rep-

resentation of a more general entity called spectral function [106]:

A(r,r′,E) = 2π ∑
α

〈r|ψα〉δ (E− εα)〈ψα |r′〉. (3.59)

If we use the energy eigenstates representation, instead, we obtain:

A(E) = 2π


δ (E− ε1) 0 0 . . .

0 δ (E− ε2) 0 . . .

0 0 δ (E− ε2) . . .
...

...
... . . .

 . (3.60)

On the other hand, the Dirac delta function can be written as (with η → 0+):

δ (E− εα) =
1

2π

2η

(E− εα)2 +η2

=
i

2π

(
1

E− εα +η
− 1

E− εα −η

)
(3.61)
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so that the spectral function becomes:

A(E) = i


1

E−ε1+η
0 0 . . .

0 1
E−ε2+η

0 . . .

0 0 1
E−ε3+η

. . .
...

...
... . . .

− i


1

E−ε1−η
0 0 . . .

0 1
E−ε2−η

0 . . .

0 0 1
E−ε3−η

. . .
...

...
... . . .


= i

[
Gr(E)−Ga(E)

]
. (3.62)

From this last equation we obtain that the DOS is written in terms of the GF as:

D(E) =− 1
π

Tr
(
Gr(E)

)
(3.63)

and the LDOS is given by the individual diagonal elements in the trace of Gr(E).

3.7 Green’s function and Landauer formalism

The conductor Green’s function contains all the information about the electronic structure

of the central region attached to the electrodes. In fact, as we will show in this section, the GF

allows us to obtain not only the DOS, but also the quantum transmission needed to calculate the

conductance using Landauer’s formula.

Let us suppose an electron in the system depicted in Fig. 3.1 enters the CSR through ter-

minal Li and is described by an incoming wavefunction ϕi. Once it reaches the CSR, it is

scattered to all the terminals (including Li). The wavefunction describing an outgoing electron

in terminal L j is denoted by φ j and the wavefunction describing the electron in the CSR is ψ .

Let us write time-independent Schrödinger equation in matrix form as:



HC hC1 . . . hCi . . . hC j . . . hCN

h1C H1 . . . 0 . . . 0 . . . 0
...

... . . . 0 . . . 0 . . . 0

hiC 0 0 Hi . . . 0 . . . 0
...

...
...

... . . . ... . . .
...

h jC 0 0 0 . . . H j . . . 0
...

...
...

... . . .
... . . .

...

hNC 0 0 0 . . . 0 . . . HN





ψ

φ1
...

ϕi +φi
...

φ j
...

φN


= E



ψ

φ1
...

ϕi +φi
...

φ j
...

φN


. (3.64)
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From this equation we can write:

hiCψ +Hiφi +Hiϕi = Eφi +Eϕi → φi +ϕi = gihiCψ (3.65)

h jCψ +H jφ j = Eφ j → φ j = g jh jCψ. (3.66)

The time-dependent version of Schrödinger equation is:

HC hC1 . . . hCi . . . hC j . . . hCN

h1C H1 . . . 0 . . . 0 . . . 0
...

... . . . 0 . . . 0 . . . 0

hiC 0 0 Hi . . . 0 . . . 0
...

...
...

... . . . ... . . .
...

h jC 0 0 0 . . . H j . . . 0
...

...
...

... . . .
... . . .

...

hNC 0 0 0 . . . 0 . . . HN





ψ

φ1
...

ϕi +φi
...

φ j
...

φN


= ih̄



ψ̇

φ̇1
...

ϕ̇i + φ̇i
...

φ̇ j
...

φ̇N


(3.67)

where a dot represents the derivate with respect to the time variable (ψ̇ = dψ/dt). From this

equation we can extract:

HCψ +hC1φ1 + ...+hCiφi +hCiϕi + ...+hC jφ j + ...+hCNφN = ih̄ψ̇ (3.68)

which can be rewritten (after substituting Eqs. 3.65 and 3.66) as:

HCψ +∑
l

Σlψ = ih̄ψ̇ → ψ̇ =
1
ih̄

HCψ +
1
ih̄ ∑

l
Σlψ. (3.69)

The total charge flux ICSR through the CSR is obtained from:

ICSR = −e
d
dt

ψ
†
ψ =−eψ̇

†
ψ− eψ

†
ψ̇

= −e

(
− 1

ih̄
(HCψ)†− 1

ih̄ ∑
l
(Σlψ)†

)
ψ− eψ

†

(
1
ih̄

HCψ +
1
ih̄ ∑

l
Σlψ

)
= − e

ih̄ ∑
l

ψ
†(Σl−Σ

†
l )ψ =

e
h̄ ∑

l
ψ

†
Γlψ =

e
h̄ ∑

l
Tr(ψ†

Γlψ)

=
e
h̄ ∑

l
Tr(Γlψψ

†). (3.70)

However, this current corresponds to a single eigenstate. In order to have the complete current

we have to sum over all the eigenstates and at the same time multiply each eigenstate contribu-

tion by the Fermi distribution (written relative to the chemical potential µi from Li). If we label
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the different eigenstates by α we will have:

Ii =
e
h̄ ∑

α

f (εα −µi)Tr(Γiψαψ
†
α)

=
e
h̄

∫
dE ∑

α

f (E−µi)Tr
(

Γiψαδ (E− εα)ψ
†
α

)
=

e
h̄

∫
dE f (E−µi)Tr

(
Γi ∑

α

ψαδ (E− εα)ψ
†
α

)
. (3.71)

But we can identify the sum on α with the conductor’s spectral function:

AC = ∑
α

ψαδ (E− εα)ψ
†
α = i

[
Gr

C(E)−Ga
C(E)

]
. (3.72)

We can go further and work on this last expression to obtain:

AC = i
[
Gr

C(E)−Ga
C(E)

]
= iGr

C(E)
[(

Ga
C(E)

)−1−
(
Gr

C(E)
)−1
]
Ga

C(E)

= iGr
C(E)

[
∑

l
(Σr

l −Σ
a
l )
]
Ga

C(E)

= ∑
l

Gr
C(E)ΓlGa

C(E) (3.73)

where Γl = i(Σl−Σ
†
l ) represents the coupling between Ll and the conductor, while Gr

C (Ga
C) is

the conductor retarded (advanced) GF [104, 106]. Analogously, it is possible to show that:

AC = ∑
l

Ga
C(E)ΓlGr

C(E). (3.74)

Hence we can rewrite ICSR as:

ICSR = ∑
l

e
h̄

∫
dE f (E−µi)Tr

(
ΓiGr

CΓlGa
C

)
= ∑

l
Ii
l (3.75)

where

Ii
l =

e
h̄

∫
dE f (E−µi)Tr

(
ΓiGr

CΓlGa
C

)
(3.76)

represents the current flowing through Ll from Li for l 6= i. In the case of Ii
i , it represents the

balance between the incoming current (related to ϕi) and the outcoming current (related to φi).

The results above were obtained from the perspective of an impinging electron coming from

Li. If we make a similar calculation for an incoming electron from L j we obtain:

ICSR = ∑
l

e
h̄

∫
dE f (E−µ j)Tr

(
Γ jGr

CΓlGa
C

)
= ∑

l
I j
l (3.77)
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so that if we consider the superposition of both currents, the net current Ii j coming from Li to

L j is:

Ii j = Ii
j− I j

i =
e
h̄

∫
dE f (E−µi)Tr

(
ΓiGr

CΓ jGa
C

)
− e

h̄

∫
dE f (E−µ j)Tr

(
Γ jGr

CΓiGa
C

)
. (3.78)

But since we can also write AC = ∑l Ga
CΓlGr

C, we have:

Tr
(

Γ jGr
CΓiGa

C

)
= Tr

(
Γ jGa

CΓiGr
C

)
= Tr

(
ΓiGr

CΓ jGa
C

)
(3.79)

so that:

Ii j = Ii
j− I j

i =
e
h̄

∫
dE
(

f (E−µi)− f (E−µ j)
)

Tr
(

ΓiGr
CΓ jGa

C

)
(3.80)

so that the transmissions in Landauer formula can be obtained from:

Ti j = Tr(ΓiGr
CΓ jGa

C). (3.81)

The first issue we have to deal with before going ahead on this problem is the calculation

of the self-energies for the semi-infinite electrodes. Once we obtain such quantities, calculating

the conductor GF is straightforward since it involves only a simple matrix inversion. However,

depending on the size of the central region, we may have to deal with a second barrier. If the

conductor is too large, the computational cost of the matrix inversion can make the calculation

impractical. Additionally, one still has to take care with the memory handling in such case.

The self-energy calculation is treated in the next sections, while a powerful method to cal-

culate GC is presented in the next chapter.

3.8 Electrodes: infinite versus finite matrices

As shown in last section, the self-energy for a lead Li is obtained from:

Σi = hCigihiC. (3.82)

Writing down the matrices hCi and hiC we have:

hCi =
[

h0
Ci 0 0 . . .

]
hiC =


h0

iC

0

0
...
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where h0
iC and h0

Ci represent the interaction Hamiltonian between the CSR and the the first unit

cell (labeled by 0) from the terminal Li. Due to the PL condition, the cross terms between the

CSR and the further cells are null. On the other hand, following the form in Eq. 3.1, gi is written

as:

gi =


g00

i g01
i g02

i . . .

g10
i g11

i g12
i . . .

g20
i g21

i g12
i . . .

...
...

... . . .


where gnm

i is the Green’s function’s cross sector between the terminal cells n and m. Even

though these last three matrices are semi-infinite in at least one of their dimensions, we easily

see that such multiplication reduces to the following finite matrix multiplication:

Σi = h0
Cig

00
i h0

iC (3.83)

due to the zeros in hCi and hiC. Since the Hamiltonian matrix is usually known, the problem is

now limited to obtaining the electrode’s surface GF (g00
i ).

3.9 Electrode’s surface GF: iterative method

In this section we summarize a method, developed by Lopez Sancho in [107], to calculate

the surface GF for a semi-infinite system. In order to calculate g00
i we write the GF defining

equation for the semi-infinite lead:

(ε−h00
i ) −h01

i 0 0 . . .

−h10
i (ε−h11

i ) −h12
i 0 . . .

0 −h21
i (ε−h22

i ) −h23
i . . .

0 0 −h32
i (ε−h33

i ) . . .
...

...
...

... . . .





G00 G01 G02 G03 . . .

G10 G11 G12 G13 . . .

G20 G21 G22 G23 . . .

G30 G31 G32 G33 . . .
...

...
...

... . . .


=

=



I 0 0 0 . . .

0 I 0 0 . . .

0 0 I 0 . . .

0 0 0 I . . .
...

...
...

... . . .


(3.84)
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where, by symmetry, we can write h j j
i = h00

i , h j, j+1
i = h01

i and h j+1, j
i = h10

i . By using the upper

left term from this equation we have:

(ε−h00
i )G00−h01

i G10 = I

(ε−h00
i )G00 = I +h01

i G10 (3.85)

on the other hand, for the other terms from the first column, we have:

−h10
i GX−1,0 +(ε−h00

i )GX0−h01
i GX+1,0 = 0

(ε−h00
i )GX0 = h10

i GX−1,0 +h01
i GX+1,0. (3.86)

Setting X = 1 in Equation 3.86 and substituting G10 into the expression for G00 we have:

(ε−h00
i )G00 = I +h01

i (ε−h00
i )−1

(
h10

i G00 +h01
i G2,0

)
(3.87)

(ε−h00
i −h01

i (ε−h00
i )−1h10

i )G00 = I +h01
i (ε−h00

i )−1h01
i G2,0 (3.88)

(ε− ε
1s
i )G00 = I +α

1
i G2,0. (3.89)

If we make X → X±1 in Equation 3.86 we have:

GX+1,0 = (ε−h00
i )−1

(
h10

i GX ,0 +h01
i GX+2,0

)
(3.90)

GX−1,0 = (ε−h00
i )−1

(
h10

i GX−2,0 +h01
i GX ,0

)
. (3.91)

Substituting these in Eq. 3.86 we have:

(ε−h00
i )GX0 = h10

i (ε−h00
i )−1

(
h10

i GX−2,0 +h01
i GX ,0

)
+h01

i (ε−h00
i )−1

(
h10

i GX ,0 +h01
i GX+2,0

)
(3.92)

(ε−h00
i −h10

i (ε−h00
i )−1h01

i −h01
i (ε−h00

i )−1h10
i )GX0 =

h10
i (ε−h00

i )−1h10
i GX−2,0 +h01

i (ε−h00
i )−1h01

i GX+2,0 (3.93)

(ε− ε
1
i )GX0 = β

1
i GX−2,0 +α

1
i GX+2,0. (3.94)



3.9 Electrode’s surface GF: iterative method 102

Making X → 2X in the last two results we can identify the following analogy:

(ε−h00
i )G00 = I +h01

i G10 → (ε− ε
1s
i )G00 = I +α

1
i G2,0

(ε−h00
i )GX0 = h10

i GX−1,0 +h01
i GX+1,0 → (ε− ε

1
i )G2X ,0 = β

1
i G2(X−1),0 +α

1
i G2(X+1),0.

(3.95)

The new equations can be viewed as describing a new system with a unit cell equivalent to two

unit cells from the original semi-infinite system and having the new Hamiltonian:

ε1s
i α1

i 0 0 . . .

β 1
i ε1

i α1
i 0 . . .

0 β 1
i ε1

i α1
i . . .

0 0 β 1
i ε1

i . . .
...

...
...

... . . .


. (3.96)

If we keep repeating this process n− 1 more times, we will have a new system corresponding

to 2n unit cells. After doing that we will have the following set of equations:

(ε− ε
ns
i )G00 = I +α

n
i G2n,0 (3.97)

(ε− ε
n
i )G2nX ,0 = β

n
i G2n(X−1),0 +α

n
i G2n(X+1),0 (3.98)

ε
ns
i = ε

(n−1)s
i +α

(n−1)
i (ε− ε

n−1
i )−1

β
(n−1)
i (3.99)

ε
n
i = ε

(n−1)
i +β

(n−1)
i (ε− ε

n−1
i )−1

α
(n−1)
i +α

(n−1)
i (ε− ε

n−1
i )−1

β
(n−1)
i (3.100)

α
n
i = α

(n−1)
i (ε− ε

n−1
i )−1

α
(n−1)
i (3.101)

β
n
i = β

(n−1)
i (ε− ε

n−1
i )−1

β
(n−1)
i . (3.102)

Since the new unit cell corresponds now to 2n unit cells from the original system, one expect

that at some point the matrices αn
i get very small, in such a way that we can ignore them and

write (with the aid of Eq. 3.97):

(ε− ε
ns
i )G00 = I → G00 = (ε− ε

ns
i )−1 (3.103)

finally obtaining the surface GF for the terminal i.

This method is applied in the TRANSFOR package which will be described in the next

chapter and that was used to obtain part of the results presented in this thesis.
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3.10 Electrode’s surface GF: transfer matrices

In this section we present another method, developed earlier by Lopez Sancho and cowork-

ers [108], to determine the surface GF for the semi-infinite lead. If we take Eq. 3.86 we can

write:

GX0 = t0GX−1,0 + t̃0GX+1,0 (3.104)

with

t0 = (ε−h00
i )−1h10

i t̃0 = (ε−h00
i )−1h01

i . (3.105)

On the other hand, we can write:

GX−1,0 = t0GX−2,0 + t̃0GX ,0 (3.106)

GX+1,0 = t0GX ,0 + t̃0GX+2,0 (3.107)

and substitute in Eq. 3.104:

GX0 = t0
(
t0GX−2,0 + t̃0GX ,0

)
+ t̃0

(
t0GX ,0 + t̃0GX+2,0

)
(3.108)

GX0 = t1GX−2,0 + t̃1GX+2,0 (3.109)

t1 = (I− t0t̃0− t̃0t0)−1t2
0 t̃1 = (I− t0t̃0− t̃0t0)−1t̃2

0 . (3.110)

If we keep repeating this process we will end up with:

GX0 = tlGX−2l ,0 + t̃lGX+2l ,0 (3.111)

tl = (I− tl−1t̃l−1− t̃l−1tl−1)
−1t2

l−1 (3.112)

t̃l = (I− tl−1t̃l−1− t̃l−1tl−1)
−1t̃2

l−1. (3.113)
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If we make X = 2l + j and l = 0,1,2,3, ... we will have:

G j+1,0 = t0G j,0 + t̃0G j+2,0

G j+2,0 = t1G j,0 + t̃1G j+4,0

G j+4,0 = t2G j,0 + t̃2G j+8,0
...

G2l+ j,0 = tlG j,0 + t̃lG2l+1+ j,0. (3.114)

If we substitute the second, the third, the fourth and the other equations successively on the first

one we will obtain:

G j+1,0 = t0G j,0 + t̃0G j+2,0

= (t0 + t̃0t1)G j,0 + t̃0t̃1G j+4,0

= (t0 + t̃0t1 + t̃0t̃1t2)G j,0 + t̃0t̃1t̃2G j+8,0

= (t0 + t̃0t1 + t̃0t̃1t2 + t̃0t̃1t̃2t3)G j,0 + t̃0t̃1t̃2t̃3G j+16,0
...

= (t0 + t̃0t1 + t̃0t̃1t2 + t̃0t̃1t̃2t3 + · · ·+ t̃0t̃1t̃2t̃3 · · · t̃l−1tl)G j,0 + t̃0t̃1t̃2t̃3 · · · t̃lG j+2l+1,0.

(3.115)

At some point, we will reach a situation in which tl and t̃l are either zero or negligible. At this

point we can write:

G2l+ j,0 = tlG j,0 + t̃lG2l+1+ j,0 ≈ 0 (3.116)

and:

G j+1,0 = T G j,0 ≈ (t0 + t̃0t1 + t̃0t̃1t2 + t̃0t̃1t̃2t3 + · · ·+ t̃0t̃1t̃2t̃3 · · · t̃l−1tl)G j,0 (3.117)

where

T = t0 + t̃0t1 + t̃0t̃1t2 + t̃0t̃1t̃2t3 + · · · (3.118)

is the j→ j+1 matrix. An analogous procedure gives us the j→ j−1 matrix:

G j−1,0 = T G j,0 T = t̃0 + t0t̃1 + t0t1t̃2 + t0t1t2t̃3 + · · · (3.119)

If we set j = 0 we have G1,0 = T G0,0. Substituting in Eq. 3.85 we finally obtain the surface

GF for the terminal i:

G00 = (ε−h00
i −h01

i T )−1. (3.120)
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This method is applied in the TRANSPLAYER package [109] which was used to obtain

part of the transport results presented in this thesis.

3.11 Non-orthogonal basis

So far we considered an orthonormal basis. The corresponding extension for the non-

orthogonal case is straightforward. In this scenario we have to modify Equation 3.48 to [110]:

(εS−H)G = I (3.121)

which can be rewritten in a suggestive form:(
εI−

(
H− ε(S− I))

))
G = (εI−H ′)G = I (3.122)

and we can take advantage of the tools described above, but now applied to the modified Hamil-

tonian H ′ = H− ε(S− I).

3.12 The next step

In principle, we are now able to do transport calculations at the nanoscale (once we have

the system’s Hamiltonian). However, calculating the GF can be problematic as the system in

consideration gets larger. This is because the computational cost involved in the GF calculation

increases with N3, where N is the system’s size (since it involves a matrix inversion).

The next chapter is dedicated to this issue. There we present a powerful method to obtain

the GF from Equation 3.56. In addition, we will also present the adaptation we developed to

apply the method in a parallel scheme.
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4 Conductor Green’s function

4.1 Introduction

Calculating the Green’s function (GF) is, in principle, a simple task within the LCAO

method: once we have the Hamiltonian and self-energies, we only need to perform a matrix

inversion. However, even though there are well-known algorithms and numerical packages to

do such elementary algebra, this process can be computationally very expensive as inversion of

a N×N matrix is a process which scales with N3.

The knitting algorithm [111] (that will be presented in Section 4.4) is a powerful method

to obtain the GF needed to describe the electronic transport in nanoscopic systems. In this

procedure, the GF of a system composed of single orbital sites (or atoms) is obtained by a

process in which the system is constructed site by site. At each step, one atom is “added” and

a temporary GF corresponding to the incomplete system is computed. After the last step we

end up with the GF for the whole system. One of the most important characteristics of this

method is that no matrix inversion is performed. The GF at each step is obtained from the

previous step by simple recurrence relations. In principle, one can apply the knitting algorithm

to calculate the whole GF. However, the method can be restricted to the calculation of just a

GF’s subset. If one is interested only in transport properties like conductance, for instance, it is

only necessary to calculate the GF elements among the atoms connected to the electrodes. This

avoids a large amount of unnecessary work and makes the algorithm extremely fast. However,

it is still possible to recover local information by using the sewing algorithm [111] (that will be

presented in Section 4.5).

In this chapter, after presenting the original knitting and sewing algorithms in Sections 4.4

and 4.5, we develop an extension to a parallel approach in which the studied system is divided

into a number of domains. In this patchwork algorithm, the different domains are then built

simultaneously and independently by different processors in order to be joined up together later

on, resulting in the final GF. Finally, we end the chapter describing the TRANSFOR package

we developed to apply knitting and sewing algorithms in their patchwork extension. This pack-
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age is used to perform part of the electronic transport calculations in this thesis (namely those

presented in Chapter 9).

4.2 Dyson’s equation

In each step of knitting-sewing algorithm, the fundamental tool to be used is the Dyson’s

equation. It relates the GF for a system before and after turning on a given perturbation. Let us

consider a system with a Hamiltonian H0 expressed in a localized basis. Its corresponding GF

G0 is:

G0 = [εI−H0]
−1. (4.1)

Let us now consider a perturbation V so that the new Hamiltonian describing the system is

H = H0 +V . The new GF G is obtained by:

G = [εI−H0−V ]−1. (4.2)

In principle, this can only be done for energies that are not poles of the GF. This problem

is avoided by adding a small imaginary part to ε . If we multiply both side on the left by

[εI−H0−V ] we obtain:

[εI−H0−V ]G = I → [εI−H0]G−V G = I → G−1
0 G = I +V G (4.3)

and finally multiplying by G0 on the left:

G = G0 +G0V G (4.4)

which constitutes the Dyson’s equation suitable for our problem. If we repeat the same process

but going from the Hamiltonian H to H0 by subtracting −V (or by multiplying [εI−H0−V ] on

the right) we obtain:

G = G0 +GV G0 (4.5)

which is the Dyson’s equation for the reverse process. The equations 4.4 and 4.5 are the basis

of the methods described in this chapter and will be repeatedly used in the next sections.
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4.3 Setup

We will present the knitting algorithm description by considering a finite isolated system. A

way to understand the knitting algorithm is to consider that the system is already complete but

with no interaction between the sites. In other words, we have a system described by a diagonal

Hamiltonian having the site energies as diagonal elements. Since the inverse of a diagonal

Hamiltonian is also diagonal, the GF for this initial system is diagonal with elements:

G0
XY =

δXY

E− εX
. (4.6)

The act of “adding” an atom consists in turning on the interaction between it and all the atoms

which have already been added before, as depicted for the 9-atom system shown in Fig. 4.1.

Figure 4.1: Illustration of the knitting procedure for a 9-site system with first-neighbor interactions only.
We start with a set of non-interacting sites. By adding site number 2, we consider its interaction with the
previous site number 1. When adding 3, we should account for its interaction with previous sites 1 and
2 (interaction 2-3 is null in this case). As the process is conducted, we finish by adding site 9 accounting
for its interactions with all the previous atoms (non-null only for sites 6 and 8 in this case). After adding
all the sites we have the final GF.

Let GA−1 represent the GF just before the A step and GA represent the GF just after the

A step. Dyson’s equation gives us:

GA = GA−1 +GA−1V GA (4.7)

GA
XY = GA−1

XY +∑
ZW

GA−1
XZ VZW GA

WY (4.8)

where V represents the interaction between A and the already added atoms. It is also convenient

to write this equation in its reverse form:

GA−1 = GA −GA V GA−1 (4.9)
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GA−1
XY = GA

XY −∑
ZW

GA
XZVZW GA−1

WY . (4.10)

The values for all the elements involving atoms not added yet are still those from G0.

Let us focus on the step where we have constructed the system until the (A − 1) site and

we are about to add the A site. There are special designations for the atoms involved in this

knitting step:

• A site: the site which will be added in the current step;

• Connected Atoms (CA): those atoms (or sites) which have already been added in the

knitting and that interact with A by means of non-null Hamiltonian elements. These

atoms will be labeled by σ ;

• Surface Atoms (SA): those atoms which have already been added during the knitting, but

that have neighbors which have not been added yet. By neighbors we mean two atoms

interacting by means of non-null Hamiltonian elements. SAs will be labeled by Latin

letters. Note that the CAs are a special kind of SA;

• Greek Atoms (GA): those atoms belonging to the conductor, but which are connected to

the terminals through nonzero Hamiltonian elements. These atoms will be labeled by

Greek letters (except σ ).

When we refer to an atom and we do not know which kind of atom it is, we will represent it by

a capital Latin letter.

For our isolated system, the Hamiltonian has elements:

Hisolated = [hXY ] → hXX = εX (4.11)

→ hXY = tXY X , and Y neighbors (4.12)

→ hXY = 0 X , and Y not neighbors. (4.13)

With this terminology, we can write the VZW for the isolated system as:

VZW = ∑
σ

δZσ δWA tσA +∑
σ

δZA δWσ tA σ (4.14)

or in another way:

VσA = tσA

VA σ = tA σ

VZW = 0 otherwise. (4.15)
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In the case of a finite conductor attached to a number of semi-infinite electrodes, represented

by the self-energies Σn, we can map the conductor part of this system onto an isolated system

with a new Hamiltonian defined by:

Hisolated = Hconductor + ∑
terminals

Σ
n = [HXY ] (4.16)

HXY = hXY + ∑
terminals

Σ
n
XY (4.17)

and apply the knitting algorithm by using the CA, SA and GA concepts to this new Hamiltonian.

Now we will show how to apply Dyson’s equation to conduct the knitting and sewing steps.

4.4 Knitting Algorithm

Let GA denote the Green’s function for the A -th step. We can calculate the GA
A A element

by inverting a 1×1 Hamiltonian and describing the remaining system by a self energy ΣA−1

GA
A A =

1
E−HA A −ΣA−1 (4.18)

with

Σ
A−1 = ∑

σσ ′
HA σ GA−1

σσ ′ Hσ ′A . (4.19)

For X being a SA or a GA (X = i,α) we can write:

GA
XA = GA−1

XA +∑
ZW

GA−1
XZ VZW GA

WA (4.20)

GA
XA = ∑

σ

GA−1
Xσ

HσA GA
A A (4.21)

and (using the reverse form from Dyson equation - Eq. 4.5):

GA−1
A X = GA

A X −∑
ZW

GA
A ZVZW GA−1

WX (4.22)

GA
A X = ∑

σ

GA
A A HA σ GA−1

σX . (4.23)
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Also, for X ,Y = i,α we have:

GA
XY = GA−1

XY +∑
ZW

GA−1
XZ VZW GA

WY = GA−1
XY +∑

σ

GA−1
Xσ

HσA GA
A Y (4.24)

GA
XY = GA−1

XY +

(
∑
σ

GA−1
Xσ

HσA

)
GA

A Y (4.25)

but from Equation 4.21 for the GA
XA term we have:

GA
XA = ∑

σ

GA−1
Xσ

HσA GA
A A (4.26)

∑
σ

GA−1
Xσ

HσA = GA
XA

1
GA

A A

(4.27)

so that:

GA
XY = GA−1

XY +GA
XA

1
GA

A A

GA
A Y . (4.28)

In each knitting step, we use Equation 4.18 and Equations 4.21, 4.23 and 4.28 for X ,Y = i,α ,

that is, for the surface and Greek atoms. The reason to use this set of equations for the Greek

atoms is straightforward, since the elements involving these atoms will give us the conductance

between all the pairs of terminals. The reason for calculating the elements for all the SA (and

not only for the CAs from the next step) is that they will be CAs in the future and we must

update them in every step (before adding all their neighbors) in order to have them when they

are needed.

In the end of this process, we will have all the GF elements between the GAs and we will

be able to calculate the conductance between all the terminals. We will not have, however,

the diagonal elements (necessary to calculate the DOS) and other elements necessary to cal-

culate local properties. For these elements, we have to use another procedure called “sewing”

algorithm, which will be explained in the following section.

4.5 Sewing Algorithm

Let A be an arbitrary atom from the conductor. Consider the case in which we are interested

in three kinds of GF elements:

• GA α and GαA - elements between A and the GAs;
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• GA nA
and GnA A - elements between A and all its neighbors nA ;

• GA A - the diagonal element involving A .

These terms can be calculated by the so called sewing algorithm. The sewing procedure can

only be started once we finish the knitting. Then the sewing is conducted backwards by sewing

the sites on the reverse order (starting from the last atom to the first). In order to sew the site A

and obtain the desired terms, we consider the knitting step just after adding the site A . We then

consider two processes:

1. Adding the remaining system (after A ) at once, obtaining the final GF;

2. The inverse process in which we remove the remaining system (from A + 1 to the end)

from the complete system.

We will now consider separately the atoms from both sides of the interface corresponding to

these two processes. Namely, the left system (from the beginning to A ) and the right system

(from A +1 to the end). We then have to clarify a new terminology:

• Left Surface Atoms (LSA): already added atoms (that is, atoms to the “left” of A ) which

have not already added neighbors. They will be represented by Latin letters without a

prime;

• Right Surface Atoms (RSA): atoms still to be added (that is, atoms to the “right” of A )

which have neighbors who have already been added. They will be represented by Latin

letters with a prime;

• Undefined Surface Atoms (USA): the set of atoms encompassing both left and right sur-

faces. When we do not know from which surface the atoms is, we will refer to it as an

USA. They will be represented by double primed Latin letters;

• Left Greek Atoms (LGA): GAs which have already been added before A . They will be

represented by Greek letters without a prime;

• Right Greek Atoms (RGA): GAs which have not been added yet before A . They will be

represented by Greek letters with a prime.

When we refer to atoms which can be either a surface or a Greek atom, they will be identified

by a capital Latin letter without a prime when they are “left” atoms (that is, when they have

already been added before A ) and by a primed capital Latin letter when they are “right” atoms
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(that is, when they have not been added yet before A ). Capital double primed Latin letters can

represent either a right or a left atom. Dyson equation allows us to write the following equations

for the two processes:

1st → GXA = GA
XA + ∑

Y ′′Z′′
GA

XY ′′VY ′′Z′′GZ′′A (4.29)

1st → GA X = GA
A X + ∑

Y ′′Z′′
GA

A Y ′′VY ′′Z′′GZ′′X (4.30)

2nd → GA
XA = GXA − ∑

Y ′′Z′′
GXY ′′VY ′′Z′′G

A
Z′′A (4.31)

2nd → GA
A X = GA X − ∑

Y ′′Z′′
GA Y ′′VY ′′Z′′G

A
Z′′X (4.32)

but:

Vi j′ = Hi j′; Vi′ j = Hi′ j; VY ′′Z′′ = 0 (all other cases)

and

GA
i′A = GA

Xi′ = GA
j′X = GA

A i′ = 0

so that

1st → GXA = GA
XA +∑

i j′
GA

XiHi j′G j′A (4.33)

1st → GA X = GA
A X +∑

i j′
GA

A iHi j′G j′X (4.34)

2nd → GXA = GA
XA +∑

i′ j
GXi′Hi′ jG

A
jA (4.35)

2nd → GA X = GA
A X +∑

i′ j
GA i′Hi′ jG

A
jX . (4.36)

But the equations for the first process are also valid for the GXi′ and GA i′ terms (needed for the

equations for the second process). So, if we change A (only in the subscripts) to i′ in the first

equation and X to i′ in the second, we will have:

GXi′ = GA
Xi′+∑

i j′
GA

XiHi j′G j′i′ = ∑
i j′

GA
XiHi j′G j′i′ (4.37)

GA i′ = GA
A i′+∑

i j′
GA

A iHi j′G j′i′ = ∑
i j′

GA
A iHi j′G j′i′ (4.38)
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which, when substituted in the equations for the second process, give:

GXA = GA
XA +∑

i′ j
∑
i j′

GA
XiHi j′G j′i′Hi′ jG

A
jA = GA

XA +∑
i j

GA
Xi

(
∑
i′ j′

Hi j′G j′i′Hi′ j

)
GA

jA

(4.39)

GA X = GA
A X +∑

i′ j
∑
i j′

GA
A iHi j′G j′i′Hi′ jG

A
jX = GA

A X +∑
i j

GA
A i

(
∑
i′ j′

Hi j′G j′i′Hi′ j

)
GA

jX

(4.40)

GXA = GA
XA +∑

i j
GA

XiSi jGA
jA (4.41)

GA X = GA
A X +∑

i j
GA

A iSi jGA
jX (4.42)

with:

Si j = ∑
i′ j′

Hi j′G j′i′Hi′ j. (4.43)

Finally, if we use the first equation from the second process and the second equation from the

first process by changing X to X ′ we will have:

GX ′A = ∑
i′ j

GX ′i′Hi′ jG
A
jA (4.44)

GA X ′ = ∑
i j′

GA
A iHi j′G j′X ′. (4.45)

At each step, we also use equations 4.41, 4.42, 4.44 and 4.45 to compute the GA X ′′ and GX ′′A

terms, where X ′′ ranges among all the GAs and RSAs. By doing this, in the end of the algorithm

we will have the GF elements between every atom in the conductor and all the GAs. In addition,

we will have all the elements between any atom and its neighbors. This is because in the A step

we calculate all the elements between A and its neighbors on the right. If A has any neighbor

on its left it will be in the right surface for the future steps corresponding to its left neighbors

and the terms between A and their left neighbors will be calculated.

Finally, we can calculate the diagonal element involving A using either equation 4.41

or 4.42 by substituting X by A :

GA A = GA
A A +∑

i j
GA

A iSi jGA
jA . (4.46)
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4.6 Multiple Knitting and Domains Approach - Patchwork
Algorithm

Here we adapt the original knitting and sewing algorithms into a suitable parallel procedure

where our system is composed of parts called domains. Here we use one processor for each

domain. When the domains are done, they are merged two-by-two until we end up with the

complete system. These steps are described in this and in the next sections.

Let us start by breaking up our system into a number of domains. Inside each domain, we

can identify two different types of atoms:

1. Domain Surface Atoms (DSA): atoms which have atoms from other domains as neigh-

bors;

2. Domain Internal Atoms (DIA): atoms which do not have neighbors outside its domain.

The basic idea in the patchwork algorithm is to construct the system’s domains in parallel by

adding the DIAs (leaving the DSAs for the future) through the knitting algorithm. In this case,

the calculation for the GF elements inside a certain domain does not interfere, at all, with the

calculation of the elements from the other domains. After adding all the DIAs, we start a new

patchwork step by merging the domains, two by two for example, in order to obtain a new

collection of domains. Doing so, some of the DSAs from the old set of domains will become

DIAs. These new DIAs will be added via the knitting algorithm. We repeat this process until we

have just one domain and when we finally add all the remaining atoms, thereby completing the

system. This procedure is illustrated for the finite 2D lattice shown in Fig. 4.2 with four initial

domains (where we consider only first-neighbors interactions. In the first patchwork stage we

have four domains where the DSAs are colored in red and the DIAs which will be added are

colored in green. Once we add all the green atoms, we move to the second patchwork stage

where we merge the domains two-by-two. We then redefine the DIAs and DSAa (the already

added DIAs are painted in in blue). The process ends in the third stage where we have only one

domain and no DSAs. After completing this third step we have the final GF.

So, considering the knitting algorithm, instead of constructing the system atom-by-atom,

we perform the same operation by adding sets of up to d atoms each time (where d is the

number of domains in the patchwork step). Now we will label each set by A and each atom

in the set as Ai (i = 1,2,3, ..,d). Note that some of the Ai may be missing since the number

of DIAs is not necessarily the same for all the domains. Analogously to the original knitting
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Figure 4.2: Illustration of the patchwork algorithm for a finite 2D system with only first-neighbor inter-
actions and initially divided into four domains. The first patchwork step consists in adding all the DIAs
(green atoms) from each domain, while not considering the DSAs (red atoms). Once we add all the DIAs
we redefine the domains by merging them two-by-two. Some previously DSAs become DIAs which will
be added in this second patchwork step (DIAs added in a previous patchwork step are painted in blue).
We carry out this process until we have a single domain which, after having all its DIAs added, provides
the final GF.

scheme, the GA
AiA j

elements are obtained by:

GA
AiA j

= [GA ,m]i j GA ,m =
1

EIm−HA −ΣA−1 (4.47)

where Im is the m×m identity matrix and HA is the m×m (diagonal) Hamiltonian for the

isolated A set. The self energy ΣA−1 for the system composed by the previous A −1 steps is

given by

[ΣA−1]AiA j = ∑
σσ ′

HAiσ GA−1
σσ ′ Hσ ′A j . (4.48)

Since the GF elements between atoms in different domains in each patchwork step are zero, the

ΣA−1 matrix will also be diagonal.

For X being a GA or an atom in the p-th domain internal surface (not in the domain-domain

surface, X is a DIA, not a DSA) we have:

GA
XAp

= GA−1
XAp

+∑
ZW

GA−1
XZ VZW GA

WAp
= ∑

σ

∑
q

GA−1
Xσ

HσAqGA
AqAp

(4.49)

GA
XAp

= ∑
σ

GA−1
Xσ

HσApGA
ApAp

(4.50)

and (using the reverse form on Dyson equation):

GA−1
ApX = GA

ApX −∑
ZW

GA
ApZVZW GA−1

WX → GA
ApX = ∑

σ

∑
q

GA
ApAq

HAqσ GA−1
σX (4.51)
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GA
ApX = ∑

σ

GA
ApAp

HApσ GA−1
σX . (4.52)

In addition, for X from the p-th domain and for Y from the q-th domain we have:

GA
XY = GA−1

XY +∑
ZW

GA−1
XZ VZW GA

WY (4.53)

GA
XY = ∑

σ

∑
r

GA−1
Xσ

HσArG
A
ArY (4.54)

GA
XY = ∑

σ

GA−1
Xσ

HσAqGA
AqY . (4.55)

Note that HσAq will be non zero only for σ in the q-th domain. On the other hand, for those σ ,

we have GA−1
Xσ

= 0, and so will be for GA
XY . But if X and Y are in the p-th domain we have:

GA
XY = GA−1

XY +∑
ZW

GA−1
XZ VZW GA

WY (4.56)

GA
XY = GA−1

XY +∑
σ

∑
r

GA−1
Xσ

HσArG
A
ArY (4.57)

GA
XY = GA−1

XY +∑
σ

GA−1
Xσ

HσApGA
ApY . (4.58)

From the GA
XAp

equation we have:

GA
XAp

= ∑
σ

GA−1
Xσ

HσApGA
ApAp

(4.59)

∑
σ

GA−1
Xσ

HσAp =
GA

XAp

GA
ApAp

(4.60)

and

GA
XY = GA−1

XY +GA
XAp

1
GA

ApAp

GA
ApY . (4.61)

These results allow us to work on the knitting procedure for each domain as if the others did

not exist. At the end of each patchwork step, we merge the domains so as to form a reduced

set of domains in a process which results, at the end, in a single domain which finally will give

us the final GF. In the next section we explain how to adapt the sewing algorithm within this

patchwork approach.
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4.7 Sewing algorithm in the domain approach

The sewing algorithm can be readily applied into the domain approach. We obviously start

from the last patchwork step, in which we have only one domain. We sew all the DIAs which

were added in that last patchwork step. After doing that, we go to the previous patchwork

step (where we have two domains) and we apply the sewing algorithm (for all the DIA added

in the corresponding patchwork step) for each domain pretending the other one does not exist

since the sewing equations from one domain contain no terms from the other domains. We can

continue to do that until we have sewed all the sites.

4.8 The TRANSFOR project

Knitting and sewing algorithms in their patchwork parallel version are implemented within

our TRANSFOR code. The lead self-energies are calculated by the method described in Sec-

tion 3.9 and the Hamiltonian and overlap matrices are directly provided to the program by input

files. The program is able to work with multi-terminal structures and the number of domains is

provided by the user in the main input file.

In Fig. 4.3, we show the conductance (using knitting algorithm) and DOS (using sewing

algorithm) for the nanotubes (8,0), (7,7) and (12,0) within a first-neighbor TB model (with

γ = 3.0 eV and s = 0). As discussed in Section 1.3.2, the nanotube (8,0) is semiconducting,

while (7,7) and (12,0) are metallic.

In addition, we compared TRANSFOR and TRANSPLAYER in an extra test to assess

TRANSFOR’s accuracy. We ran three carbon nanotube based systems composed by a torus

seamlessly attached to two semi-infinite terminals making an angle of 180◦ (these systems are

studied in Chapters 5 and 6). We considered systems based on the (6,6), (12,0) and (10,0)

nanotubes. In Figure 4.4 we plot the conductance as a function of energy for these systems cal-

culated by both packages. A first-neighbor TB model with γ = 3.0 eV and s= 0 was used. From

the plots one observes that both TRANSPLAYER and TRANSFOR give the same answer.

An additional procedure applied in the code is to modify the conductor Hamiltonian so as to

minimize the matrix bandwidth1. The goal of such Hamiltonian reorganization is to minimize

the size of the knitting-sewing surfaces and save time. Here we perform the bandwidth reduction

using the GPSKCA subroutine [112] which is available in Ref. [113].

In order to illustrate the efficiency of the patchwork algorithm, let us consider the example
1If a matrix A is so that Ai j = 0 for both j < i−k1 and j > i+k2, so the matrix bandwidth is defined as k1 +k2.
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Figure 4.3: Quantum conductance (using knitting algorithm) and DOS (using sewing algorithm) for the
nanotubes (8,0), (7,7) and (12,0). We used a first-neighbor TB model with γ = 3.0 eV and s = 0. The
Fermi energy is set to 0.0.

of a (10,10) nanotube (whose unit cell’s length is about 2.5 nm) with 1250 cells (50000 atoms)

as CSR (in tbc mode with a first-neighbor TB Hamiltonian). In Fig. 4.5 we show the time

corresponding to 10 knitting steps as a function of the number np of initial domains (np =

1,2, ...,12) in a direct (red line in the upper panel) and logaritmic (red line in the lower panel)

scales. In order to minimize fluctuations due to processing loading on the machines, we repeated

each calculation 10 times and take the average of these data for each np.

One observes that one has a fast decrease in the execution time for increasing number of

processors. In fact, we can observe that the time saving is very close to that of perfect scaling

(black lines in Figure 4.5) where the calculation using np processors takes np less time. Addi-

tionally, TRANSFOR has a second level of parallelization, namely on the energy points. The

processors are then distributed in ne groups of processors so that one needs np×ne processors

to calculate ne energy points at the same time and using np domains for each energy point.

Memory allocation can be a problem, specially when treating systems with a huge number
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Figure 4.4: Quantum conductance as a function of energy for (6,6), (12,0) and (10,0) carbon nan-
otube based tori attached to two semi-infinite terminals making an angle of 180◦ calculated by the
TRANSPLAYER (black lines) and TRANSFOR (red lines) packages. We used a first-neighbor TB
model with γ = 3.0 eV and s = 0. The Fermi energy is set to 0.0.

of atoms. However, Hamiltonians written in terms of localized basis are usually very sparse (in

other words, containing a considerable number of zeros). For this reason, TRANSFOR uses

Yale form to store sparse matrices. In this representation we do not waste memory by storing

zeros and a n×m matrix A is represented by three vectors: AY , IA and JA. These vectors’

sizes are, respectively, nnz, n+ 1 and nnz (where nnz is the number of non zero elements in

A). The vector AY contains the non zero elements, while JA contains the column indexes for

the corresponding elements in AY . In AY and JA, we first list the non zero elements in the first

row by increasing column index, the the same for the second row, the third and successively.

The i-th element in IA contains the position in AY of the first non zero element in row i. The

(n+ 1)-th IA element is always equal to nnz. In this way, the number of non-zero elements

in row i is simply given by IA(i+ 1)− IA(i). This strategy allows for a great memory saving,

allowing the calculation of extremely big systems.
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Figure 4.5: Time for 10 knitting steps versus number of processors (red lines) for a (10,10) nanotube
with 1250 cells as CSR (average over 10 calculations) in direct (upper panel) and logaritmic (lower panel)
scales. Black lines represent the corresponding curves for perfect scaling.

Finally the sums in the knitting and sewing equations are performed by matrix multiplica-

tions using BLAS and LAPACK [114]. The use of such routines is extremely advantageous,

specially for systems with large knitting-sewing surfaces.

4.9 Overview

In this chapter we presented the original knitting and sewing algorithms [111] and devel-

oped the patchwork procedure which allows for parallelization over the knitting domains. In the

end of the chapter we presented our TRANSFOR package which apply these methods and the

methods described in Chapter 3. TRANSFOR was used to obtain part of the results on transport

calculations (namely, the transport calculations on the GNWs, presented in Chapter 9).
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Part II

Nanotori
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5 Toroidal carbon nanostructures - two
terminal systems

In this chapter we study toroidal carbon nanostructures attached to two nanotube terminals.

Here we describe the geometries and electronic structure of both the tori and the junctions.

Such discussion is crucial to understand the numerical results for the conductance as a function

of both energy and angle between terminals. Finally, we present a simple continuum model

which describes qualitatively well the conductance-energy-angle relation based on simple as-

sumptions.

5.1 Carbon nanorings

Carbon nanostructures composed of a single nanotube bended into a ring (and in principle

free of pentagonal and heptagonal defects) were first observed in carbon nanotube samples

synthesized by means of laser ablation and they were named crop circles [67]. Transmission

electron microscopy (TEM) analysis showed that 0.1− 1% of the nanotorus samples in that

early work were in fact circular formations of single-wall carbon nanotube ropes. The absence

of buckles in the structures supported the idea that these nanorings were free of pentagon and

heptagon defects and were likely made up of bent nanotubes whose ends are joined by covalent

bonds. Some controversy emerged in the following years about the actual existence of these

perfect tori since other experiments pointed out that similar structures were in reality coiled

nanotubes, given the large variation of wall thickness around the circumference [68, 69]. In

that case, the energy penalty associated with bending is balanced by the wall-to-wall van der

Waals adhesion. In spite of this, a large number of theoretical studies have focused on studying

mechanical stability to show that it is thermodynamically possible for these structures to be

formed [66, 70, 71, 72].

From simple energy balance considerations between elastic energy (bending) and chemical

energy (bonding of the two initially open ends), it is clear that the larger the diameter, the
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more energetically favorable defect-free carbon nanotori are. Furthermore, it was predicted by

means of elastic theory [73] that the critical diameter at which the stress due to bending is just

balanced by the covalently bonding energy is Dthreshold = 180 nm. An updated value for the

Young’s modulus of Y = 0.75T Pa [115] (in the case of a (10, 10) nanotube) in Equation (1)

from [73]:

Dthreshold =
πr2Y
2σ

(5.1)

(where r is the nanotube radius and σ is the surface tension of graphite perpendicular to the

basal planes) yields a smaller value Dthreshold = 130 nm for the critical diameter. Other atom-

istic simulations indicate that experimentally observed diameters are significantly larger than

those obtained theoretically [66, 70, 71, 72]. This discrepancy is likely related to the fact that

experiments are conducted at near equilibrium conditions under which the energy barrier needed

to create the small ring geometries cannot be overcome [66].

Theoretical investigations have indicated that metallic nanotube based carbon nanotoroids

possess giant paramagnetic moments [74]. Such a property is common to all tori made up of

metallic nanotubes whose bands cross at the Fermi level at the Γ point and for selected radii

for those metallic tubes where the band crossing happens at 2/3 of the Brillouin zone. This

behavior is due to the specific boundary conditions related to the circumferential confinement

of the nanotube axial wave vector.

Since the radius of curvature in a carbon nanotorus is uniquely defined for a given nanotube,

this structure can be used to understand the changes in the electronic properties of bent carbon

nanotubes [75]. By gradually decreasing the radius of a nanotorus made of a (5,5) nanotube,

Liu et al. observed that the toroidal structure evolves from a simple stretching/compression

of the outer/inner walls (for radii greater than 19.6 Å) to the collapse of these walls for radii

smaller than 13.3 Å in a finite number of positions along the torus circumference, where carbon

atoms undergo re-hybridization from sp2 to sp3. After adding two pristine terminals to a sec-

tor containing such collapsed structure, a 75% reduction of the conductance at the Fermi level

was predicted when compared to a pristine nanotube. Regarding the transport properties of

these rings, a recursive Green’s function approach was used to determine the density of states,

transmission and current of a (3,3) based carbon nanotorus attached to two metallic electrodes

as a function of the angle between the terminals and the magnetic flux [76]. A magnetic flux

was shown to enhance the transmission probability, notably close to van Hove singularities, for

specific angle values. In addition, investigations such as those of Herrera and Terrones have

demonstrated that sp2 junctions are experimentally feasible [54, 57], thereby confirming the

need for a deep understanding of the transport properties of carbon nanostructures covalently
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attached to carbon-based electrodes. Similarly, Chou et al. [77] computed conductance curves

for nanotori attached to nanotube electrodes in an sp3 free structure, showing that the conduc-

tance depends strongly on the local structure of the junction.

Carbon structures with sp2 nanotube junctions constitute interesting materials to study

transport in nanoscale. In particular, electronic interference phenomena are very likely in the

toroidal geometry where paths for the interfering electrons are closely related to the distance

between terminals. As the effects of the length variation have not been taken into account by

previous works, we carried out a study focusing on the electronic transport properties of carbon

sp2 systems in the toroidal geometry. To that end, we performed theoretical calculations to

study carbon nanorings covalently attached to two identical carbon nanotube terminals with a

varying angle between them [7]. A detailed understanding of the electronic transport in such

systems constitutes an important step to enable their future use in nanoelectronics.

5.2 Atomic configurations

The atomic coordinates for a defect-free carbon nanoring can be obtained in a very simple

way. First, one constructs a nanotube with a number M of unit cells having the axis x, for

example, as the nanotube’s axis (Fig. 5.1a). Second, we displace the nanotube by a distance

R = MT/2π (T is the lenght of the nanotube’s translational vector) along the y axis (Fig. 5.1b).

Third, we apply the following transformation to the nanotube coordinates:

x′ = ysin(x/y) (5.2)

y′ = ycos(x/y) (5.3)

z′ = z (5.4)

in order to obtain a ring having z as its axis perpendicular to the torus plane (Fig. 5.1c).

Figure 5.1: Systematic procedure to generate a torus from a nanotube.
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We also adopted a systematic procedure to calculate the atomic coordinates for the geometry

of carbon nanorings coupled to external leads. Firstly, we built up the structure of a simple

joint, made up of a small ring sector connected normally to a straight tube section (note that no

dangling bonds were present after this process). Secondly, we created the lowest α structure,

where α is the angle between terminals, by fusing a second junction structure to the first one.

More specifically, α is defined as the angle between the axes from the nanotubes composing the

two terminals as presented in Fig. 5.2. Finally, a large nanotorus sector was added to complete

the structure.

Figure 5.2: Schematic representation of the procedure adopted for the systematic structure construction.

The configurations are labeled (n,m)r − (l, p)t , where (n,m)r stands for the chirality of

the tube making up the ring and (l, p)t for that making up the terminals. The configurations

considered here are depicted in Fig. 5.3. The tori were assembled with 120 nanotube unit

cells along the circumference. This particular length was chosen for reasons that will become

clear below. It corresponds to torus radii R = 46.97 Å, 81.36 Å, 81.36 Å, and 124.28 Å for

the (6,6), (10,0), (12,0), and (8,2) nanotube based tori, respectively. This approach presents

the advantage that each configuration can be easily modified into a structure corresponding to

a different α . The transformation proceeds by transferring pristine nanotube unit cells from

the longer to the shorter arm. For each case studied here, we prepared two types of junctions

(shown in Fig. 5.3): one with the transversal part over the center of a nanotube unit cell from

the ring and another over the intersection between two cells. This enabled us to create series of

structures with a 180/120 = 1.5 step (which correspond to α = 1.5◦) since all the systems have

120 nanotube cells along the circumference and each nanotube unit cell correspond to an arc of

3◦.
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Figure 5.3: List of studied configurations.

5.3 Electronic structure

Since carbon nanorings and nanotube structures are formed from the same building blocks,

their electronic structures are closely related. Within the single-orbital tight-binding model,

the electronic structure for an infinite carbon nanotube can be obtained from graphene’s 2D

electronic dispersion relation (as we showed in Section 2.7):

E(k) = EF ± γ
√

3+2cosk ·a1 +2cosk ·a2 +2cosk · (a1−a2) (5.5)

where EF = 0 is the Fermi level of the system, a1,2 are the unit cell vectors of graphene and k

is a vector in the corresponding first Brillouin zone. Quantum confinement along the nanotube

circumference (2πr , where r is the tube radius) constrains the wavevector along this direction

to be quantized as follows:

kc =
2πq
|Ch|

=
q
r
→ q = 0,1,2, ...,N−1, (5.6)

where q is an integer, Ch = na1 +ma2 is the nanotube chiral vector (whose length is the tubule

circumference), and N is the number of hexagons in a unit cell of the nanotube (see Sec-

tion 1.3.2). The axial component of k is free to assume continuous values in the [−π/T,+π/T [

range where T is the length of the nanotube translational vector. In addition, carbon nanotori

present a confinement of the electron density along the translational vector direction. This ad-

ditional level of confinement forces the axial component of k to be restricted to the following
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discrete set of values:

ka =
2π p

L
=

p
R
→ p = 0,1,2, ...,M−1, (5.7)

where p is an integer and M is the number of nanotube unit cells along the torus circumference

of radius R (L = MT ). It follows that the electronic structure of carbon nanotori is determined

by a set of discrete k points positioned at the crossing of two families of mutually orthogonal

lines. Such a grid captures explicitly some effects of the curvature as the spacing between these

lines is determined by the curvatures of the nanotube (1/r) and the nanotorus (1/R). Note,

however, that curvature effects are not included in the hopping parameter description employed

here; in other words the electronic properties computed here depend only on the topology (i.e.

table of atomic neighbors) of the structure, but not on the details of the atomic positions. We

illustrate such a 2D mesh of lines mapped on the graphene Brillouin zone and their defining

boundary conditions in Fig. 5.4.

Figure 5.4: Illustration of the different levels of quantum confinement and the corresponding cutting
lines for a carbon nanoring mapped on the 2D graphene Brillouin Zone. The spacing for the two families
of lines are directly related to the curvatures of the nanotube (1/r) and the nanotorus (1/R).

It is well established that within a simple tight-binding approach such as the one used here,

carbon nanotubes can be metallic under two distinct conditions (see [116] and Section 1.3.2).

Denoting the greatest common denominator (gcd) of n and m as d , the two types of metallic

systems are:

• M1: (n−m) is a multiple of 3 but not of 3d; and

• M2: (n−m) is a multiple of 3d.

In the first group, the valence and conduction bands touch at the Fermi level at the Γ point

(ka = 0). This crossing occurs at ka = ±2π/3T in the second group. On the one hand, it is
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clear that all the tori made up from M1 nanotubes will be metallic (i.e. the HOMO-LUMO

gap is zero) since the Γ point along the axis will always be allowed by the band-folding picture

explained above. On the other hand, for tori made up of M2 nanotubes, the additional condition

that M has to be a multiple of three must be fulfilled to ensure a zero gap at the Fermi level. In

Fig. 5.5(a)-(c) we show the cutting lines near a graphene K point for the M2 (8,2) nanotorus

for M = 119,120 and 121, respectively. We can see that the cutting lines cross at K (highlighted

by a red circle) only for the M = 120 system. Fig. 5.5(d) shows the DOS for this type of torus

while Fig. 5.5(e) presents the DOS for the (6,6) based torus with M = 120.

Figure 5.5: (a)-(c): Cutting lines near a K point for (8,2) nanoring with 119 (a), 120 (b) and 121 (c)
nanotube units cells, respectively; (d)-(e): Electronic density of states for the (8,2) and (6,6) nanotori
made up of 120 nanotube cells [7].
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In addition, the levels near the Fermi level are nearly equally spaced. This last aspect turns

to be an important feature of the torus’ electronic structure and it is the result of the interplay

between the allowed wavevectors (allowed by confinement determined by the boundary condi-

tions along the circumferences of the nanotube and nanotorus) and the details of the electronic

structure around EF . Using the notation of Saito et al. [18] and the results previously discussed

in this section we write:

k =
2πq
|Ch|

K1

|K1|
+

2π p
MT

K2

|K2|
= qK1 +

p
M

K2 (5.8)

where:

K1 =
1
N
(
2n+m

dr
b1 +

n+2m
dr

b2) and K2 =
1
N
(mb1−nb2) (5.9)

are, respectively, the lattice vectors along the nanotube’s circumferential and axial directions

and dr is the gcd of 2n+m and n+2m. In addition, to get a metallic nanotorus, the K point of

the graphene Brillouin zone must be present among the allowed wavevectors. For instance, we

should have:

k = K =
2
3

b1 +
1
3

b2. (5.10)

A system of two equations involving q and p can be obtained from Equation 5.8 to 5.10 and the

corresponding solutions yield the following conditions on q and p:

q =
2n+m

3
and p = M

m
dr
. (5.11)

With q = (2n+m)/3 and p = i+Mm/dr (with i an small integer), we can write the allowed

wavevectors around the K point as:

k =
1
3
(2b1 +b2)+

i
MN

(mb1−nb2). (5.12)

Imposing EF = 0 in Equation 5.5 and using the results above we find:

[E(k)]2/γ
2 = 3−2cosδ

+ cosδ
−+2

√
3sinδ

+ cosδ
−− cos2δ

+−
√

3sin2δ
+ (5.13)

where:

δ
± =

i(m±n)π
NM

. (5.14)
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For a large nanotorus we can show1 that we end up with:

E(k) =± γπdr

M
√

n2 +m2 +nm
|i| (5.15)

and i is given by:

i = p−Mm/dr. (5.16)

For a M1 nanotube, dr = d, where d is the gcd of n and m. It follows that we have i = p− lM

(where l = m/d is an integer) which is equivalent to i = p after a translation into the first

Brillouin zone.

For a M2 nanotube, dr = 3d and i = p− lM/3. However, the integer l is not allowed to be

a multiple of 3 in this last case and therefore i will always be equivalent to i = p±M/3 (which

are also equivalent by reflections on a Bragg plane). The fact that l is not a multiple of 3 can be

proven by reductio ad absurdum2.

For M2 nanotubes, the levels described by Equation 5.15 present a twofold degeneracy.

Such degeneracy occurs in the torus consisting of M2 nanotubes because the linear relation has

the same slope for both bands and two ka symmetrically positioned relative to 2π/3T corre-

spond to the same energy value. However, as we move far away from ka = 2π/3T , the linear

relation no longer holds and the two branches have different slopes. It follows that the energies

corresponding to the two allowed ka symmetrically positioned around the crossing ka no longer

match. This is the reason why the levels start to split for the (8,2) and (6,6) nanorings as we

move away from the Fermi energy. Eventually, we recover the double degeneracy when the

splitting is large enough to promote a new match between levels coming from different pairs of

splitting levels. This effect is illustrated in Fig. 5.5(d) where the energy match is recovered near

1Note that for a large nanotorus we have δ± << 1, and we can therefore use the first terms of the Taylor
expansion for the trigonometric functions to find

[E(k)]2/γ
2 = 3(δ+)2 +(δ−)2− 1

2
(δ+)2(δ−)2−

√
3δ

+(δ−)2

which becomes (after considering only the leading terms):

[E(k)]2/γ
2 = 3(δ+)2 +(δ−)2.

Finally, after algebric manipulations, we obtain:

E(k) =± γπdr

M
√

n2 +m2 +nm
|i|.

2First, suppose l = 3l′ (l′ integer) and that d is the gcd of n and m, we can write m = 3l′d and n = n′d (n′

integer). We would then have 2n+m = d(2n′+3l′) and n+2m = d(n′+6l′). So, in order to have dr = 3d (for the
M2 case) we would have to have n′ as a multiple of 3 which is impossible since the gcd of n and m would then be
3d rather than d.
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E =±1.0 eV for the (8,2) based nanotorus.

Based on these results, we chose representative nanotubes from each of the two groups

((12,0) for M1; (6,6) and (8,2) for M2) as well as the semiconducting (10,0) nanotube to

form the set of systems studied in this work. The choice of M = 120 is made to ensure that all

tori made up of an M2 nanotube are metallic.

5.4 Numerical Results

We studied the transport properties of a number of tori while systematically changing the

angle α between the two identical electrodes. The quantum conductance was computed us-

ing a Green’s function and transfer-matrix-based approach for computing transport in extended

systems implemented in the TRANSPLAYER package [109]. Here we used a simple first-

neighbor tight-binding Hamiltonian with γ0 = 3.0 eV. While the method is applicable to any

general Hamiltonian that can be described within a localized-orbital basis, we are here restricted

to a simple nearest-neighbor description, given the size of the systems under investigation (the

largest system contained 7074 atoms). Nevertheless, this Hamiltonian model is known to repro-

duce well the electronic structure of carbon nanostructures [117, 118]. As already mentioned in

the previous section, our model does not explicitly consider curvature effects. It follows that the

physical description of our system does not depend on the details of the atomic positions, but

only on the table of neighbors of the structure. Consequently, it is not necessary to perform ge-

ometry optimization since it will not affect the transport results. In the figures reproduced here,

we plotted the conductance as a function of the impinging electron energy and angle α . Note

that a uniform pattern for the conductance is not expected for the α = 3 j and α = 3( j+ 1/2)

systems since they have been constructed from integer and half-integer multiples of nanotube

unit cells for the arms of the nanotori, as explained early in this chapter. For this reason we

label each family as α∆α
α◦m

where αm represents the greatest α in the series and ∆α is the an-

gle step. Here, all the systems have 120 nanotube unit cells along the ring in such a way that

each unit cell corresponds to a 3◦ arc. The terminals in the α3◦
180◦ series possess two symmetri-

cal joint geometries (with the transverse nanotube over the center of a nanotube cell from the

ring), unlike the α3◦
178.5◦ systems where the second terminal is placed between two cells. In the

(6,6)r−(6,6)t systems, for instance, each of the terminal geometries in the first family contains

N0
5 = 2 pentagons and N0

7 = 8 heptagons, while in the second set the second junction has N0
5 = 4

and N0
7 = 10 (see Table 5.1). Note that the relative numbers of five- and seven-membered rings
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obey3:

N5−N7 = 12× (1−g) (5.17)

for a surface of genus g = 2 (that is, a surface with two ‘holes’ or ‘handles’, considering that

the electrodes meet at infinity) and N5 = 2N0
5 and N7 = 2N0

7 for the α3◦
180◦ case (for the α3◦

178.5◦

series the N5/7 are obtained by summing the values of N0
5/7 from each junction).

It is established that pentagon and heptagon defects act as localized scatterers that modify

significantly the transport properties of carbon nanostructures [121]. It is therefore quite un-

surprising for the conductances of the two families of angles to behave differently as α varies.

Even for configurations presenting the same number of pentagons and heptagons (Table 5.1)

we expect to observe different behaviors for α3◦
180◦ and α3◦

178.5◦ since the spatial distributions of

defects are different for the two types of junction, leading for dissimilar transport properties.

Table 5.1: Number of pentagons and heptagons in the junction structures for the α = (3 j)◦ (both ter-
minals) and α = (3 j+ 1.5)◦ (second terminal) systems. The first terminal structure in α = (3 j+ 1.5)◦

family is identical to the α = (3 j)◦ terminals.

System N0
5/N0

7 for α = (3i)◦ N0
5/N0

7 for α = (3i+1.5)◦

(6,6)r− (6,6)t 2/8 4/10
(10,0)r− (10,0)t 2/8 2/8
(12,0)r− (12,0)t 6/12 4/10
(8,2)r− (8,2)t 3/9 0/6

Figures 5.6(a) and (b) represent the α and energy dependences for the conductance of the

(12,0)r− (12,0)t systems. Note that a linear interpolation was performed in order to facilitate

the visualization. As expected, the α3◦
180◦ and α3◦

178.5◦ series show characteristic trends. We

observe that the α3◦
180◦ family presents an almost symmetrical electron-hole behavior. However,

the occupied levels possess high conductance corresponding to red islands of conductance,

along with merged green islands, which are absent in the unoccupied states region. The situation

is reversed for the α3◦
178.5◦ series: the conductance for E < 0 decreases as we move away from

the Fermi energy. In other words the conduction shifts from p- to n-type as the relative geometry

of the two terminals changes.

We also observe that the conductance does not depend on α for E = 0. In fact, as the

nanotube composing the torus is a M1 nanotube, the levels at the the Fermi energy (E = 0)

correspond to a wave vector at the Γ point (ka = 0). Since this corresponds to an infinitely large

wavelength, we expect no dependence on α for this particular energy value.

The geometry of the second terminal also plays an important role in determining the trans-

3This equation is obtained using Euler’s rule togheter with other concepts like the Gauss-Bonnet theorem [119,
120].
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Figure 5.6: Conductance versus energy and α for the α3◦
180◦ and α3◦

178.5◦ series for the (12,0)r− (12,0)t

(a-b) and (10,0)r− (10,0)t systems (c-d), respectively [7].

port properties of the (10,0)r−(10,0)t structures. As can be seen in Fig. 5.6(c)-(d), the systems

are characterized by a large region of zero conductance around the Fermi level due to the semi-

conducting character of the (10, 0) nanotube. For energies far away from E = 0 we observe

that the conductance diminishes significantly for α3◦
178.5◦ compared to α3◦

180◦ . This lowering is

remarkably more intense for E > 0 in such a way that the conduction through the empty levels

almost completely vanishes. This effect is due to charge localization related to the junction

geometry. To confirm this, we show, in Fig. 5.7(a) and (b), the DOS and conductance for the

α = 180◦ and 178.5◦ systems along with the LDOS for the indicated energies. In the first case

while there is a clear accumulation of charge on two atoms shared by two heptagons, there is



5.4 Numerical Results 135

also a significant charge spread over the terminals. It follows that conduction is possible at

those energies. Conversely, there is no such spread in either of the terminals in the α = 178.5◦

configuration, thereby explaining the suppression of conductance.

Figure 5.7: DOS, conductance, and LDOS for the α = 180◦ (a) and 178.5◦ (b) in the (10,0)r− (10,0)t

systems [7].

Turning to the metallic (6,6) nanotube, the separated plots into the two α3◦
180◦ and α3◦

178.5◦

series are not sufficient to yield well defined patterns for the (6,6)r− (6,6)t system. However,

one can recover systematic patterns by splitting the two main series into three subgroups: α3◦
180◦

gives rise to the α9◦
180◦ , α9◦

177◦ and α9◦
174◦ subgroups (Figures 5.8(a)-(c)), while α3◦

178.5◦ can be

separated into α9◦
178.5◦ (Fig. 5.8(d)), α9◦

175.5◦ and α9◦
172.5◦ . In each subgroup, the α configurations

are separated by 9◦ steps, equivalent to three nanotube unit cells along the ring.

The existence of subgroups can be understood in terms of the torus electronic structure.

When we attach two electrodes to the ring, the torus is effectively divided into two arms with

lengths Li = MiT , i = 1,2 where i = 1 denotes the smaller section and L1 +L2 = L. The al-

lowed wavevectors along these two paths are given by ka = 2π pi/Li, assuming a node in the

wavefunction at the torus-terminal junction. Note that we again observe the mod(Mi,3) = 0

condition for metallic arms since (6,6) is an M2 nanotube. It follows that the transport proper-

ties for M2 based rings present a periodicity corresponding to arc lengths that are a multiple of
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Figure 5.8: Conductance versus energy and α for the α9◦
180◦ (a), α9◦

177◦ (b), α9◦
174◦ (c) and α9◦

178.5◦ (d)
series for the (6,6)r− (6,6)t system. The white lines are isocountour lines for the model described in
Section 5.5 [7].

3T since the states close to the Fermi level correspond to such an electron wavelength. In our

simulations, since M = 120, this step corresponds to a 9◦ periodicity. Arms that are not of the

α = (9 j)◦ type present two different phase differences that split them into the α = (9 j + 3)◦

and α = (9 j+ 6)◦ subgroups, each with a characteristic behavior. In addition, the second ter-

minal geometry reduces significantly the overall conductance for the α9◦
178.5◦ , α9◦

175.5◦ and α9◦
172.5◦

systems, so that the conductance is almost completely suppressed compared to the other series.

In Figures 5.9(a) and (b) we plotted the DOS, conductance, and LDOS around the Fermi energy

for α = 180◦ (a) and 178.5◦ (b). We can see, as for the (10,0)r−(10,0)t system, that the charge

in the α = 180◦ case is spread over the terminals in spite of a high charge density located on the

heptagons. Since the system is metallic, such charge delocalization is extended to both arms,

corresponding to a large conductance. The 3T wavelength character is easily observed along
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the ring in the LDOS plot since the anti-nodes (green LDOS portions) are spaced by 1.5T . In

the α = 178.5◦ case the charge distribution is limited to the smaller arm by the junctions and it

is not extended to the terminals, thereby explaining the reduced conductance.

Figure 5.9: DOS, conductance, and LDOS for the α = 180◦ (a) and 178.5◦ (b) in the (6,6)r− (6,6)t

system [7].

The same family grouping is needed to categorize the transport properties of the (8,2)r−
(8,2)t systems since (8,2) is an M2 nanotube. The conductance is slightly asymmetric with

higher conductance for the occupied states for the α9◦
180◦ , α9◦

177◦ and α9◦
174◦ sets (Figures 5.10(a)-

(c)). However, we do not observe conductance suppression for α9◦
178.5◦ (Fig. 5.10(d)), α9◦

175.5◦

and α9◦
172.5◦ .

One readily notices two differences between the (8,2)r− (8,2)t and (6,6)r− (6,6)t sys-

tems. First, the former system presents a greater number of large conductance islands com-

pared to the latter. Second, the conductance pattern in (6,6)r− (6,6)t approaches a vertical

line at the Fermi energy, while the corresponding pattern consists of two distinct vertical lines

near E = ±1.0 eV for the (8,2)r− (8,2)t case. The difference in the number of conductance

maxima can be understood in terms of chirality. Chirality indeed determines the relative incli-
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nation between the axial cutting lines and the hexagonal Wigner-Seitz cell over the graphene

Brillouin zone. As these lines cut differently the set of wrapped trigonal isoenergy surfaces

near the K points for the (8,2) and (6,6) cases, they produce distinct slopes for the frontier

energy bands. For energies close to the Fermi level, Equation 5.15 gives E = (π
√

3/M)|i| and

E = (3π
√

21/21M)|i| for the (6,6) and (8,2) nanotubes. Since the (8,2) tube presents a smaller

slope, a greater number of states are present in the energy range shown in the plots, leading to

a larger number of high-conductance spots. On the other hand, the characteristic behavior of

the (8,2)r− (8,2)t systems near E = ±1.0 eV is due to the increased DOS near these energy

values, because of the energy matching for these levels, as described in Section 5.3.

Figure 5.10: Conductance versus energy and α for the α9◦
180◦ (a), α9◦

177◦ (b), α9◦
174◦ (c) and α9◦

178.5◦ (d)
series for the (8,2)r− (8,2)t systems. The white lines are isocontour lines for the model described in
Section 5.5 [7].
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5.5 Quantum interference model

We now develop further the analysis made in Section 5.4 by exploiting the details of the

tori’s electronic structure. The analysis presented here enables the construction of a qualitative

and general model describing electronic transport in nanorings by considering electron wave-

functions traveling ballistically from the first to the second terminal through the two different

arms. We will describe the two electronic paths using eikaxi waves (where xi is the position along

arm i), as ilustrated in Fig. 5.11a.

Figure 5.11: (a) Concept of the wave interference model. (b) Scaterring processes undergoing in the
junctions.

Before entering the second terminal, these electrons can undergo scattering processes when

passing across the junctions. An electron coming to a junction can be reflected back to the arm

it comes from (with probability amplitude r), be transmitted to the other arm (with probability

amplitude t), or be transmitted to the lead (with probability amplitude t ′). After each passage,

the wave amplitude is therefore multiplied by r, t or t ′, depending on whether the electron is

reflected or transmitted to the other arm or to the second terminal, respectively (Fig. 5.11b).

Because of current conservation, these coefficients obey

|r|2 + |t|2 + |t ′|2 = 1. (5.18)

If the electron i undergoes θi arm-to-arm transmissions and φi reflexions before entering the

second terminal, it will have (after entering the electrode) an amplitude Ai and a path length Li

given by

Ai = t ′tθirφi (5.19)

Li = Li +uiL1 + viL2. (5.20)
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Here, ui and vi are integers which are functions of both θi and φi as well as of the time or-

der in which the scattering processes occur. Two electrons entering the terminal produce an

interference pattern with an amplitude A :

A =

√
A2

1 +A2
2 +2A1A2 cos

(
ka(L2−L1)

)
. (5.21)

In first approximation, we can associate the conductance to the sum of the squared amplitudes

from these interference waves after considering all the possible Feynman paths. Let us represent

any pair of possible paths for the two electrons (identified by θ1, θ2, φ1, φ2 and the order in

which the events occur) by Ω. Doing this we can write:

I = ∑
Ω

|AΩ|2. (5.22)

Since the interference pattern is determined by path difference and by the allowed ka vectors,

we can write the total intensity as a function of α (as the path difference depends on the number

of nanotube cells in the arms) and energy (as it depends on ka ). We can write:

L1 = Rα L2 = R(2π−α) (5.23)

so that:

L2−L1 = 2πR(1+ v2− v1)+(u2−u1− v2 + v1−2)Rα. (5.24)

For ka we need to invert the E(k) relation from each branch:

E(k) =±γ
√

3+2cosk ·a1 +2cosk ·a2 +2cosk · (a1−a2) (5.25)

with

k =
2πq
|Ch|

K1

|K1|
+ ka

K2

|K2|
= qK1 + ka

K2

|K2|
(5.26)

and

K1 =
1
N
(−t2b1 + t1b2) (5.27)

K2 =
1
N
(mb1−nb2) (5.28)

which results in:

[E(k)/γ]2 = 3+2cos(
−2πqt2

N
+

2πkam
K2N

)+2cos(
2πqt1

N
− 2πkan

K2N
)

+2cos(
−2πq(t1 + t2)

N
+

2πka(n+m)

K2N
). (5.29)
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Further analysis is easier conducted by selecting a specific tube of interest4.

By considering that interfering electrons undergo four processes before entering the sec-

ond terminal we find the pattern depicted in Fig. 5.12(a) in the (12,0)r− (12,0)t case and in

Fig. 5.12(b) for the (10,0)r− (10,0)t systems. Note that, for the energy range used in these

plots, it is sufficient to consider only the bands which touch the Fermi level (or those closest to

EF in the semiconducting case) to express ka as a function of energy. For illustrative purposes

we choose t = t ′ = 0.63 and r = 0.45 (note however that t, t ′, and r , in general can assume

complex values). These values seem reasonable from the transmission numbers presented in

Section 5.4.

This simple eikax model reproduces remarkably well the conductance behavior as a function

of electron energy and α for both metallic and semiconducting systems (Fig. 5.12). However,

it cannot account for the asymmetries around E = 0, since it does not describe explicitly the

details of the lattice (i.e. the presence of pentagons and heptagons, responsible for electron-hole

asymmetry). The intrinsic structure of Y junctions, for instance, is known to have significant

4If one is interested in the bands crossing at the Fermi level for a M1 nanotube, we make ka = 0 so that:

[E(k)/γ]2 = 3+2cos(
−2πqt2

N
)+2cos(

2πqt1
N

)+2cos(
−2πq(t1 + t2)

N
) (5.30)

which clearly will result in 0 for q obeying:

2πqt1
N

=
2π

3
+2iπ and

2πqt2
N

=
2π

3
+2 jπ. (5.31)

For a (n,0) M1 nanotube (mod(n,3) = 0) we can show that:

ka =
2
T

arccos
(

1− 1
2
[E(k)/γ]2

)
. (5.32)

If we turn our attention now for a M2 nanotube, we make ka = 2π/3T and the following equation

[E(k)/γ]2 = 3+2cos(
−2πqt2

N
+

2πm
3N

)+2cos(
2πqt1

N
− 2πn

3N
)

+2cos(
−2πq(t1 + t2)

N
+

2π(n+m)

3N
) (5.33)

will result in 0 for q such that:

−2πqt2
N

=−2πm
3N
± 2π

3
+2iπ and

2πqt1
N

=
2πn
3N
∓ 2π

3
+2 jπ (5.34)

one can show that the right signs to use are those obeying:

mod(−m±N,3) = 0 and mod(n∓N,3) = 0. (5.35)

For a (n,n) metallic nanotube we have N = 2n and we use the lower signs. Then we end up with:

ka =
2
T

arccos

(
1
2
± E(k)

2γ

)
(5.36)
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Figure 5.12: Conductance versus energy and α for the α3◦
180◦ in the (12,0)r− (12,0)t (a) and (10,0)r−

(10,0)t systems according to the model described in Section 5.5 [7].

influence on the transport properties of the junction [122] and it is likely that similar effects

related to the ring-terminal junctions are responsible for the asymmetries in the conductance

obtained numerically. Since our goal is to model interference effects for an idealized geometry,

the simple algebraic approach in this section does not include effects related to the atomistic

details of the junction. Nevertheless, the simple model succeeds in predicting the positions

and distribution of the maxima and minima of conductance on the E−α plane. We illustrate

this result for the (6,6)r− (6,6)t and (8,2)r− (8,2)t configurations as white isocontour lines

superimposed in Figures 5.8, 5.10. We can see that the model is not able to describe shifts in

the tori energy levels due to the contacts as shown in the small differences in the conductance

maxima in comparison to the numerical results.

5.6 Overview

In this chapter we discussed the electronic and transport properties of carbon nanotori at-

tached to two semi-infinite terminals within a first-neighbor tight-binding model. We observed

that three aspects which have a strong influence on the electronic transport in these rings, namely

the type of nanotube composing the torus, the joint geometry and the position of the terminals

along the torus. We were able to make a qualitative description of the influence of this last as-

pect (angle between terminals) by a simple continuum model. On the other hand, we stated that

other features like the asymmetric conductance curves around EF are the result of the scattering

due the the pentagonal and heptagonal defects. In the next chapter we extend the study for
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structures with many terminals, as well as to ring structures made up of graphene nanoribbons.
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6 Toroidal carbon nanostructures -
multi terminal systems

In this chapter, we significantly extend the previous study of the electronic transport/structure

relationship of tubular nanorings (TNs) attached to two nanotube terminals of variable posi-

tions [7] by considering the effect of up to twelve terminals on the transport properties of these

toroidal systems [8]. Additionally, we consider a “Flat Nanoring” (FN) structure made up of

an one-atom-thick wall. In other words, these FNs have a graphene nanoribbon as their basic

building block. This alternative approach to carbon nanotoroids is attractive given the properties

of nanoribbons. As shown in Chapter 5, these structures occupy a special position in the rich

family tree of carbon nanomaterials since they have an intermediate structure between carbon

nanotubes and graphene and they present remarkable physical properties depending on their

width and the geometry of edges [34, 123].

Even though we are a step behind in the experimental realization of such multi-terminal

structures, they constitute a good test bed to study transport and interference effects.

6.1 Tubular and flat nanorings

The presence of a large number of terminals offers significant freedom in assembling com-

plex nanocircuits using nanotori as elementary components. This makes it indispensable to

develop a rigorous understanding of the impact of multiterminal on the transport properties

of the systems. Since there is a characteristic relationship between electronic properties and

geometry for carbon nanotubes and nanoribbons, those structures present unusual properties,

especially when assembled into a toroidal geometry. One also expects enhanced mechanical

stability for FNs since bonds need to be compressed or stretched on only one direction.

Here, a given TN is built using the same nanotube for the ring and the terminals connected

to it. Similar to previous chapter, we choose a representative metallic tube from each family in

this work: (12,0) and (6,6) for M1 and M2, respectively. For the FNs we use the zigzag and
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armchair edged ribbons obtained after unrolling the (6,6) and (12,0) nanotubes. This procedure

results in a zigzag ribbon with 12 zigzag strips and an armchair ribbon with 24 C−C bonds

along the width, respectively. The terminals are made from the same nanotube from which

the ribbon is obtained. For both sets of TNs and FNs, rings with 120 unit cells were set up in

order to construct symmetric structures with 2, 3, 4, 5, 6, 8, 10, and 12 terminals. We label the

TN configurations as (n1,n2)n where n1 and n2 identify the nanotube composing the structure

and n is the number of terminals. For the FN systems, we use the [n1,n2]n notation, where n1

and n2 identify the nanotube corresponding to the ribbon. The geometric construction of such

systems is performed in a way similar to the approach described previously in Chapter 5 [7]: the

junction geometry is assembled using a number of nanotube or nanoribbon unit cells in order to

construct a sector with 120/n cells (where n is the number of terminals). This structure is then

repeated to form the multiterminal toroid (Fig. 6.1).

We will present our results from the perspective of an electron impinging from an arbitrary

terminal. Because of symmetry, all the other terminals are classified from their position rela-

tive to the symmetry mirror plane perpendicular to the torus and passing through the starting

terminal so that the number of nonequivalent paths is the largest integer smaller than n/2. Each

possible path is denoted as (n1,n2)
i→ j
n , where i ( j) labels the source (drain) terminal. The source

is numbered as 1 and the other terminals labeled counterclockwise as in Fig. 6.1.

Figure 6.1: Carbon nanotoroid structures studied in this chapter: (a) TNs and (b) FNs [8].
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6.2 Numerical results - TNs

The electronic properties of a given toroidal system are dictated by the corresponding ele-

mentary building block and by boundary conditions along its circumference [7]. It is important

to note than the properties of a given ring are expected to depend on the number and positions

of terminals since each geometry is characterized by a set of specific electronic paths, which

give rise to a set of different electronic interference patterns. These correspond to the onset of

resonances in the transmission spectra. Because of symmetry, some of these resonances will

take place at the same energy value for configurations with different number of terminals. In

addition, the atomistic details (such as the presence of pentagons and heptagons) of the con-

nections between the ring and the terminals constitute sources of electronic scattering [7, 122].

All-in-all, these effects are responsible for rich transmission spectra for various ring geometries

connected to a varying number of terminals, as we will now examine in details.

We start discussing the results for TNs. The conductance curves for the (12,0)n and (6,6)n

systems with n = 2,3,4,5,6 are represented on Fig. 6.2. An important result is that sets of

paths share the same conductance pattern with a pronounced dependence on the energy. For

instance, an electron with energy around −0.32 eV transmits with high probability through

(6,6)1→2
2 and (6,6)1→3

4 but not along (6,6)1→2
5 and (6,6)1→3

5 . Conversely, an electron with

energy 0.4 or −0.24 eV has a large probability to transmit along (6,6)1→2
5 but not (6,6)1→3

5 .

In addition, an electron with energy −0.2 eV travels more easily along (6,6)1→2
3 compared to

(6,6)1→2
4 and (6,6)1→3

4 . Note also that (12,0)1→2
3 is not an allowed path for electrons at energies

around −0.06 and 0.36 eV, while both paths in the (12,0)5 system are excluded for energies

close to −0.09 eV. These examples show that once integrated into a complex nanocircuit, these

structures have the potential to function as a path controlling tool since one can determine the

electronic path by tuning the energy of the impinging electron.

The strong energy-dependent selectivity of the conductance paths is also present inside the

same structure as observed in the (6,6)5 system. This is particularly verified when the number

of terminals is large. For instance, an electron has high probability to be transmitted along

the (6,6)1→2
6 and (6,6)1→4

6 paths while it will avoid the (6,6)1→3
6 paths for an energy around

either −0.04 or 0.34 eV. By switching the energy of the entering electron to any of the peaks

surrounding −0.04 or 0.34 eV the current will flow in all the three possible paths in the (6,6)6

structure. Therefore the six terminals behave as two separate groups of conducting paths which

can be accessed by the electronic energy. A similar feature is observed in the (12,0)6 case. For

energies around 0.33 eV the electron flow is driven along (12,0)1→2
6 , while it transmits through

all the paths for the conductance peaks surrounding this particular energy values.
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Figure 6.2: Conductance for the different paths on the (6,6)n and (12,0)n, n = 2,3,4,5,6 structures [8].
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In Figures 6.3 and 6.4 we show the results for the (6,6)n and (12,0)n with n = 8,10,12.

From these plots we can observe that as the number of terminals increases, the effects of tunnel-

ing become more pronounced (as the terminals get closer to their neighbors). This is explicited

by the fact that paths (n1,n2)
1→ j
n with smaller j have much higher conductance than paths with

j close to n/2..

Figure 6.3: Conductance for the different paths on the (6,6)n and (12,0)n, n = 8,10, structures [8].

6.3 Numerical results - FNs

Turning to the FN systems, we observe a number of similitudes and differences with the

tubular ring systems. For instance, in the zigzag edged FNs, electron conductance is significant
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Figure 6.4: Conductance for the different paths on the (6,6)12 and (12,0)12 structures [8].
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for [6,6]n, n = 2,3,4, and 5 systems for the following electronic energies: −0.15 eV, −0.125

eV, −0.105 eV, and −0.065 eV, respectively (Fig. 6.5).

Figure 6.5: Conductance for the different paths on the [6,6]n (n = 2,3,4,5,8) and [12,0]n (n =
2,3,4,5,6) [8].

Conversely, a 0.4 eV gap is noticeable in all [12,0]n, n = 2,3,4,5 systems. Focusing on
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negative energies, one observes three conductance peaks in the [12,0]2 system. Only the one

located around −0.33 eV is present in [12,0]3, two peaks (around −0.40 and −0.27 eV) appear

in [12,0]4, and none of them appears in the [12,0]5 system. The presence of this set of peaks

can be exploited to increase the current in a selective way by tuning the incoming electron

energy to the specific energy values. A similar behavior is also apparent in [6,6]8, as seen in

Fig. 6.5, between 0.16 and 0.28 eV. The opening of these conducting channels forces the current

to switch between two different patterns. In the first one, corresponding to electron energies

close to 0.18 or 0.26 eV, the current proceeds between any possible path, with the notable

exception of [6,6]1→3
8 . In the second one, corresponding to 0.21 eV, the [6,6]1→2

8 and [6,6]1→4
8

conducting paths are blocked while [6,6]1→5
8 remains conducting and [6,6]1→3

8 is turned on.

Since these peaks are much more pronounced for the zigzag edged ring than the previous peaks

in the armchair edged systems we have a robust on/off switch from peak to peak and not only a

raising/lowering regime, comparable to the armchair case. Finally, now looking at the [12,0]12

systems with a larger number of terminals, as the [12,0]6 case in Fig. 6.5, we observe that the

energy gap around the Fermi level becomes smaller as the terminals are closer to each other.

This is a direct manifestation of electron tunnelling when the path along the semiconductor ring

is shorter than the Debye length [124, 125].

Similar features are present in the other [6,6]n and [12,0]n as shown in Figures 6.6 and 6.7.

6.4 Overview

In this chapter we discussed the effect of multi-terminal structures on the transport prop-

erties of toroidal carbon nanostructures. The presence of multiple electrodes brings a series of

new interesting properties to these structures in comparison to the two-terminal case. Here we

demonstrated that the path for the electrical current can be controlled by the electronic energy

through a intricate set of rules. This result is an important step toward the development of new

nanodevices as this structures provides a systematic way to control the current in nanocircuits.
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Figure 6.6: Conductance for the different paths on the [6,6]n (n = 6,10) and [12,0]n, (n = 8,10), struc-
tures [8].
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Figure 6.7: Conductance for the different paths on the [6,6]12 and [12,0]12 structures [8].
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Part III

Nanowiggles
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7 Graphene carbon nanowiggles -
geometric considerations

In this chapter we will present a geometric description of the novel carbon nanostructures so

called graphitic nanowiggles (GNWs). The structural properties of GNWs are discussed having

carbon nanoribbons (GNRs) as basic building blocks. In the following two chapters we will

discuss the electronic structure and electronic transport properties of these structures which are

strongly dependent on GNW’s geometry.

7.1 Introduction

Theory predicts that the materials properties needed for technological applications of GNRs

demand narrow structures (width<10nm) with clean edges. To obtain such structures, a set of

synthesis techniques, including both top-down and bottom-up approaches, has been developed

to enable the precise and controlled fabrication of narrow and defect-free systems [51]. Most

notably in the block-to-block approach devised by Cai et al. [4], small aromatic molecules

are chemically assembled into highly crystalline narrow ribbons. In this method, a cyclo-

dehydrogenation reaction proceeds on a metallic substrate that facilitates both the coupling

and the thermally-activated fusion of individual aromatic molecules [4]. This method not only

leads to the synthesis of high-quality GNRs, but has also demonstrated the possibility of creat-

ing more complex structures, with a variety of shapes such as multi-terminal GNRs and other

wiggle-like one-dimensional systems. Those graphitic nanowiggles are characterized by a pe-

riodic repetition of graphene nanoribbon junctions (Fig. 7.1). Compared to other theoretically

proposed structures,[35, 36, 37, 38] GNWs are particular attractive, owing to the existence of

a practical synthesis technique. In addition, as we will demonstrate in the next chapter, GNW

nanostructures possess unique properties that are superior to the simple sum of those of their

GNR constituents: these atypical properties include electronic and magnetic behaviors which

emerge from the interaction between the GNRs building blocks. The study performed in this
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thesis does not only highlight the general principles guiding the properties of the major possible

subclasses of GNWs, it also establishes a road-map for the synthesis of GNWs with desired

optoelectronic and magnetic behaviors.

7.2 GNW’s structure

GNWs consist in successive repetitions of parallel and oblique (relative to the GNW’s pe-

riodic direction) GNR domains seamlessly stitched together without the need of structural de-

fects. Their general structure is illustrated in Fig. 7.1a. If we restrict the discussion to achi-

ral GNWs, we can denote the parallel and oblique sectors by Pα and Oβ , respectively, with

α,β = A,Z depending on the type of sector (armchair (A) or zigzag (Z)). This gives rise to

the armchair-armchair (AA-GNW - Fig. 7.1b), armchair-zigzag (AZ-GNW - Fig. 7.1c), zigzag-

armchair (ZA-GNW - Fig. 7.1d) and zigzag-zigzag (ZZ-GNW - Fig. 7.1e) geometries, named

after the parallel and oblique edges, respectively.

Figure 7.1: (a) Geometry and nomenclature of a GNW made up of successive oblique and parallel cuts
in armchair (A) or zigzag (Z) patches. (b-e) Examples of an AA (b), AZ (c), ZA (d) and ZZ (e) GNW.

GNWs can also be conceptually viewed as armchair or zigzag GNRs over which trapezoidal

wedges are carved away on alternating edges as depicted for the four achiral GNW types in
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Fig. 7.2. We observe that α = β if the non-parallel sides from the trapezoidal wedges make

an angle of 60◦ and α 6= β when this angle is 30◦. Here we are restricted to these two cases

(leaving the limiting case in which the trapezoid becomes a rectangle - 90◦ - for future studies).

Figure 7.2: Schematic construction of the four achiral GNWs: initial GNR and the trapezoidal wedges
needed to transform it into a GNW.

Each GNW is characterized by four parameters. The first two, Wp and Wo, represent the

number of C−C bonds or zigzag strips along the width of the parallel and oblique sectors

(depending on their armchair or zigzag symmetry), respectively. These two quantities are il-

lustrated for an AZ-GNW in Fig. 7.3. The other two numbers, Lp and Lo, are related to the

sectors’ lengths. While we identify Lo as the number of C−C lines or zigzag strips along the

width of the wedge healed GNW (similarly to the definition of Wp and Wo), the Lp length is

the number of aCC
1 lengths (α = A) or the number of zigzag tips (α = Z) along the smallest

basis of the trapezoid formed by the GNW’s edge atoms (as shown in Fig. 7.4). With the 4

parameters set (Pα ,Oβ )− (pα ,oβ ) the GNW structure is uniquely defined (where Pα , Oβ , pα

and oβ represent Wp, Wo, Lp and Lo, respectively). In the next two chapters, we will restrict the

values of Lp and Lo so that Lp is defined as the smallest possible and Lo such that at least one

C−C line or zigzag strip (along the GNW length) is not interrupted by the wedges. Under these

restrictions, we represent a general GNW by the reduced symbol (Pα ,Oβ ) since the other two

parameters are implicitly determined by Lp = 2 (for AA- and AZ-GNWs) or Lp = 1 (for ZZ-

and ZA-GNWs) and Lo = 2Wp−1.

7.3 Lattice parameter

7.3.1 General approach

An important GNW’s quantity is its unit cell length L . In order to determine this value as

function of Wp, Lp, Wo and Lo, we define the set (b,c,d,e,h, l,w,x,y) of characteristic lengths

1Where aCC is the carbon-carbon distance in graphene.
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Figure 7.3: Definition of the Wp and Wo parameters as the lines of C−C lines or zigzag strips along the
width of each sector. Here the example of an AZ-GNW with Wp = 7 (red lines) and Wo = 5 (green lines).

Figure 7.4: Definition of the Lp as the number of aCC lengths (AA- and AZ-GNWs) or zigzag tips (ZA-
and ZZ-GNWs) along the smallest basis of the trapezoid formed by the GNW’s edge atoms. Here the
example of an AZ-GNW with Lp = 5 (left) and a ZZ-GNW with Lp = 3 (right).

for a general GNW unit cell as in Fig. 7.5. The angle θ is either 60◦ (for AA- and ZZ-GNWs)

or 30◦ (for AZ- and ZA-GNWs). In this figure we define the limits of the blue area as being the

lines containing the frontier carbon atoms from the wiggle.

Figure 7.5: Auxiliary lengths to determine the lattice parameter of a general GNW unit cell.

From Fig. 7.5, we easily see that the lattice constant L for the GNW unit cell is given by:

L = x+ y. (7.1)
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We can also write:

x = l +2c and c = b/ tanθ (7.2)

and

y = 2d + x−2e; d = w/sinθ e = h/ tanθ (7.3)

so that:

L =
2w

sinθ
+2l +

4b
tanθ

− 2h
tanθ

. (7.4)

Depending on the values for w, l, b, h and θ , we have different equations for each type of GNW.

7.3.2 The l length

By definition, l is trivially determined for AA- and AZ-GNWs by:

l = LpaCC. (7.5)

A careful observation of the ZA-GNW structures (see example in Fig. 7.6a) allows us to write

l for the ZA case as the distance between the two extreme zigzag tips on the wedge’s parallel

edge:

l = (Lp−1)a (7.6)

while we have to add a length 2 f (defined in Fig. 7.6b) to this last result to obtain the corre-

sponding length for the ZZ case. The value of f is easily obtained with the help of Fig. 7.6b as

being:

f = a− aCC/2
cos30◦

=
2a
3

(7.7)

so that

l = (Lp +
1
3
)a. (7.8)
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Figure 7.6: Auxiliary length l for ZA-GNWs (a) and increment f for ZZ-GNWs (b).

7.3.3 The w, h and b lengths

As a set of n C−C parallel lines in graphene is (n− 1)a/2 wide (where a = aCC
√

3) and

the width for a set of n zigzag strips is (3n−2)aCC/2, w is easily obtained by:

w =
(Wo−1)a

2
for AA- and ZA-GNWs (7.9)

w =
(3Wo−2)aCC

2
for AZ- and ZZ-GNWs. (7.10)

For the same reason we can write h as:

h =
(Lo−1)a

2
for AA- and AZ-GNWs (7.11)

h =
(3Lo−2)aCC

2
for ZA- and ZZ-GNWs (7.12)

and finally b is obtained by:

b = h−
(Wp−1)a

2
=

(Lo−Wp)a
2

for AA- and AZ-GNWs (7.13)

b = h−
(3Wp−2)aCC

2
=

3(Lo−Wp)aCC

2
for ZA- and ZZ-GNWs. (7.14)
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7.3.4 Lattice parameter relations

With the previous results it is trivial to write:

LAA = (2Wo +Lo +2Lp−2Wp−1)aCC (7.15)

LAZ = (6Wo +3Lo +2Lp−6Wp−1)aCC (7.16)

LZA = (2Wo +3Lo +2Lp−6Wp−2)aCC
√

3 (7.17)

LZZ = (2Wo +Lo +2Lp−2Wp)aCC
√

3. (7.18)

7.4 Number of atoms

Another important number defining a given GNW is how many atoms N are contained

within a unit cell. In order to calculate N we first calculate the area corresponding to the

wedge-healed GNW. We then carve out the area from the trapezoidal wedges. Observe that

the non-parallel sides and the smallest basis from these trapezoids are midway between the

corresponding sides on the trapezoids composed by the GNW’s edge atoms and the edge atoms

from the removed graphene flakes (as depicted in Fig. 7.7). An analogous definition is made for

the lines determining the limits of the healed ribbon. The important quantities to determine are

shown in Fig. 7.7. With these definitions we can write:

Figure 7.7: Auxiliary lengths used to determine the number N of atoms in a GNW’s unit cell.

N =
(
LW − (B+B′)H

)
/(3aCCa/4) (7.19)

where L is the length of the GNW’s unit cell, W is the healed GNW’s width, H is the height

of the deleted trapezoids and B and B′ are, respectively the largest and smallest basis from the

trapezoids. Again, we have specific results for each GNW kind.
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7.4.1 Healed GNW’s width W and wedge’s height H

Based on the considerations from Section 7.3.3 we can write W as:

W = Loa/2 for AA- and AZ-GNWs (7.20)

W = 3LoaCC/2 for ZA- and ZZ-GNWs, (7.21)

where we had to add a/2 in the first case and aCC in the second since the lines defining the

limits of the healed GNW’s area are midway between the GNR frontier atoms and those from

the carved graphene structure. In a similar way, we can came up with expressions for H :

H = (Lo−Wp)a/2 for AA- and AZ-GNWs (7.22)

H = 3(Lo−Wp)aCC/2 for ZA- and ZZ-GNWs. (7.23)

7.4.2 Wedge’s basis B and B′

Consider the trapezoid formed by the lines passing through the frontier atoms from the

deleted flakes. Let l′ and l′′ be the smallest and largest basis from this trapezoid. For AA- and

AZ-GNWs this value is l′ = l−aCC. So B′ is given by:

B′ =
l + l′

2
= LpaCC−aCC/2. (7.24)

For the ZA-GNWs case we have l′ = l and:

B′ =
l + l′

2
= (Lp−1)a. (7.25)

In ZZ-GNWs we have l′ = l− f and:

B′ =
l + l′

2
= Lpa. (7.26)

In order to obtain B we also consider the trapezoid defined by the frontier atoms from 2D

graphene after carving out the trapezoidal flakes. Let l′′′ be the largest basis from this trapezoid.

For AA-GNWs we have l′′ = l +2c−2aCC and l′′′ = l +2c+aCC so that:

B =
l′′+ l′′′

2
= (Lp +Lo−Wp−

1
2
)aCC (7.27)

For AZ-GNWs we have l′′ = l +2c−4aCC and l′′′ = l +2c+3aCC so that:

B =
l′′+ l′′′

2
= (Lp +3Lo−3Wp−

1
2
)aCC (7.28)
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Moving to ZA-GNWs, we have l′′ = l +2c−2a and l′′′ = l +2c+2a and:

B =
l′′+ l′′′

2
= (Lp +3Lo−3Wp−1)a. (7.29)

Finally, ZZ-GNWs are such that l′′ = l +2c−2 f and l′′′ = l +2c+a, resulting in:

B =
l′′+ l′′′

2
= (Lp +Lo−Wp)a (7.30)

7.4.3 Formulas for N

The previous results allow us to write:

NZZ = 4WoLo +4LpWp−2W 2
p (7.31)

NZA = 4WoLo +4LpWp−6W 2
p −4Wp (7.32)

NAZ = (12WoLo +4LpWp−6W 2
p −2Wp)/3 (7.33)

NAA = (4WoLo +4LpWp−2W 2
p −2Wp)/3. (7.34)

7.4.4 Corrections on the AA-GNW case

Note that Eq. 7.34 does not give us the correct result in all the cases. The reason is that when

calculating the area from the two trapezoids, we are actually calculating the area of a parallel-

ogram composed by the two trapezoids in a construction similar to that shown in Fig. 7.8a,b.

However, the simple superposition of the two trapezoids may not be compatible with the bonds

made by the carbon atoms depending on the defining parameters of the GNW. By simple obser-

vation, the superposition of the two trapezoids is correct when:

• mod(Lp,3) = 2 and mod(Lo−Wp,3) = 0 (see example in Fig. 7.8a);

• mod(Lp,3) = 1 and mod(Lo−Wp,3) = 2 (see example in Fig. 7.8b).

The method has to be adapted for the other cases. Let us consider first the case mod(Lp,3)=

2. When Lo−Wp = 3i+ 2, we should shift each trapezoid in Fig. 7.8a by a/2 (perpendicular

to their basis, one up and the other down), in such a way that the smallest line of C−C bonds

get out of the parallelogram (see example in Fig. 7.8c). So, the deleted atoms are composed

by those inside the new parallelogram plus the atoms in the two C−C lines outside the the

parallelogram (2(Lp +1)/3 in each). The part of each trapezoid included in the parallelogram

has a smallest basis aCC bigger and a height a/2 shorter. So, the number of atoms will be given
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Figure 7.8: Auxiliary scheme to calculate the number of deleted atoms in a GNW’s wedge.

by:

NAA = (4WoLo +4LpWp−2W 2
p −2Wp−4)/3. (7.35)

When Lo−Wp = 3i+ 1, we should shift each trapezoid in Fig. 7.8a by a (perpendicular to

their basis, one up and the other down), in such a way that the two smallest lines of C−C

bonds get out of the parallelogram (see example in Fig. 7.8e). It follows that the deleted atoms

are composed by those inside the new parallelogram plus the atoms in the four C−C lines

outside the parallelogram (2(Lp + 1)/3 in each). The part of each trapezoid included in the

parallelogram has a smallest basis 2aCC bigger and a height a shorter. So, the number of atoms

will be given by:

NAA = (4WoLo +4LpWp−2W 2
p −2Wp−4)/3. (7.36)

Let us now consider the case mod(Lp,3) = 1. When Lo−Wp = 3i+ 1, we should shift each

trapezoid in Fig. 7.8b by a/2 (perpendicular to their basis, one up and the other down), in such a

way that the smallest line of C−C bonds get out of the parallelogram (see example in Fig. 7.8d).

So, the deleted atoms are composed by those inside the new parallelogram plus the atoms in

the two C−C lines outside the parallelogram (2(Lp−1)/3 in each). The part of each trapezoid

included in the parallelogram has a longer smallest basis (aCC longer) and a shorter height (a/2
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shorter). So, the number of atoms will be given by:

NAA = (4WoLo +4LpWp−2W 2
p −2Wp +4)/3. (7.37)

When Lo−Wp = 3i, we should shift each trapezoid in Fig. 7.8b by a (perpendicular to their

basis, one up and the other down), in such a way that the two smallest lines of C−C bonds get

out of the parallelogram (see example in Fig. 7.8f). So, the deleted atoms are defined by those

inside the new parallelogram plus the atoms in the four C−C lines outside the parallelogram

(2(Lp− 1)/3 in each of the smallest two and 2+ 2(Lp− 1)/3 in each of the others). The part

of each trapezoid included in the parallelogram has a smallest basis which is 2aCC larger and a

height being a shorter. Therefore, the number of atoms will be given by:

NAA = (4WoLo +4LpWp−2W 2
p −2Wp)/3 (7.38)

so that the downsizing on the trapezoids area and the addition of the two lines of atoms com-

pensate each other so that we end up with the same formula as for the cases exemplified in

Fig. 7.8a-b.

In addition, an examination on Fig. 7.8c,f reveals that we have to subtract 4 atoms from the

cases mod(Lp,3) = mod(Lo−Wp) = 2 and mod(Lp,3) = 1 mod(Lo−Wp) = 0 to eliminate four

single bonded atoms at the corners of the outer parallel edges.

As we will see in the next section, we do not need to worry about the mod(Lp,3) = 0 case

as this particular length is not allowed for AA-GNWs.

7.5 Geometric restrictions

Although any GNW is uniquely defined by the set of four parameters Wp, Wo, Lp and Lo,

it is not true that any set of four numbers will define a valid GNW. In this section we discuss

some of the restrictions that have to be applied to these parameters.

First, for all the four groups of achiral GNWs we have to have:

Wo,Wp ≥ 2; Lo ≥Wp and Lp ≥ Lmin
p (7.39)

with Lmin
p = 2 for AA- and AZ-GNWs and Lmin

p = 1 for ZZ- and ZA-GNWs. Additional specific

restrictions applies for each case.

For AA-GNWs, the Lp parameter has to obey 2≤ Lp 6= 3i in order to avoid rings with only

one missing atom, as shown in Fig. 7.9. On the other hand, we should be restricted to the case
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where Lp = 3i+2 for AZ-GNWs (values of Lp such that Lp = 3i will give the same structures

as Lp = 3i+2, while the 2 ≤ Lp = 3i+1 case will produce a lot of carbon atoms having only

one neighbor).

Figure 7.9: AA-GNW structure avoided by the Lp 6= 3i condition.

The specific structure of AA-GNWs imposes an additional condition on LAA which must

be a multiple of 3aCC. Using the lattice parameter relation from Eq. 7.15, this restriction takes

the form:

2Wo +Lo +2Lp−2Wp−1 = 3l (AA-GNWs) (7.40)

where l is an integer. A similar restriction should also be applied to AZ-GNWs, but the corre-

sponding equation is automatically satisfied since Lp = 3 j+2 in this case.

Finally, the length y corresponding to the outer edge of the parallel sector (Fig. 7.5) has

a specific lower bound value for each GNW type. For AA-GNWs, this value is ymin× aCC

with ymin = 3, ymin = 1 or ymin = 5 for mod(y/aCC,3) = 0,1,2, respectively, as illustrated in

Fig. 7.10a-c. For AZ-, ZA- and ZZ-GNWs, this treshold value is aCC, 0 and 2aCC
√

3/3, respec-

tively, as exemplified in Fig. 7.10d-f.

After using the expression for y in Appendix A for each GNW class we end up with:

AA → 2Wo +Lp−Wp−1≥ ymin; (7.41)

AZ → 6Wo +Lp−3Wp ≥ 2; (7.42)

ZA → 2Wo +Lp−3Wp ≥ 1; (7.43)

ZZ → 2Wo +Lp−Wp ≥ 1. (7.44)

7.6 Summary of results

In this chapter we presented a detailed description of the four classes of achiral GNW

structures: AA, AZ, ZA and ZZ. We demonstrated that the whole GNW structure can be defined
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Figure 7.10: Examples for the minimum value of the length y of the outer parallel edge (full green lines)
in AA- (a-c), AZ- (d), ZA- (e) and ZZ-GNWs (f).

by a set of four integer parameters:

(Wp,Lp,Wo,Lo) (7.45)

where Wp and Wo are related to the widths of the periodic and oblique sectors, respectively,

whose successive alternate repetition defines the periodic GNW structure. The Lp and Lo define

the lengths of these sectors. In fact, important quantities defining the GNW are uniquely deter-

mined by these four numbers. The GNW’s unit cell’s length is calculated by a specific formula

for each GNW type, as summarized in Table 7.1.

Table 7.1: GNW’s lattice parameter as a function of Wp, Wo, Lp and Lo for the four achiral GNW classes.

XX LXX
AA (2Wo +Lo +2Lp−2Wp−1)aCC
AZ (6Wo +3Lo +2Lp−6Wp−1)aCC

ZA (2Wo +3Lo +2Lp−6Wp−2)aCC
√

3
ZZ (2Lp−2Wp +2Wo +Lo)aCC

√
3

Similarly, the number of atoms within a unit cell is easily obtained by relations listed on

Table 7.2.

Table 7.2: Number of atoms within a GNW unit cell as a function of Wp, Wo, Lp and Lo for the four
achiral GNW classes. The value of i for AA-GNWs depends on the Wp, Lp and Lo values.

XX NXX
AA (4WoLo +4LpWp−2W 2

p −2Wp + i− j)/3
AZ (12WoLo +4LpWp−6W 2

p −2Wp)/3
ZA 4WoLo +4LpWp−6W 2

p −4Wp

ZZ 4WoLo +4LpWp−2W 2
p
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In Table 7.2, the i and j parameters for AA-GNWs depend on the Wp, Lp and Lo values by

specific rules2.

We finished the chapter by describing a set of restrictions one has to apply to the four

parameters in order to construct a valid GNW structure. In the following chapters we use a

shorter notation:

(Pα ,Oβ ) (7.46)

where Pα and Oβ represent Wp and Wo, respectively, and α and β identify if the corresponding

sector has an armchair or zigzag edge geometry. In this case, Lp and Lo are implicitly deter-

mined so that Lp assumes the smallest allowed value and Lo is such that at least one zigzag strip

or C−C line is not interrupted along the GNW’s periodic direction.

A simple tool to generate atomic coordinates of GNWs is provided in Appendix B.

2Here i = 0 for the cases [mod(Lp,3);mod(Lo−Wp,3)] = [1;0], [1;2], [2;0], i =−4 for [mod(Lp,3);mod(Lo−
Wp,3)] = [2;1], [2;2] and i = 4 for [mod(Lp,3);mod(Lo−Wp,3)] = [1;1]. The other cases are not valid. We also
have j = 4 for the cases [mod(Lp,3);mod(Lo−Wp,3)] = [1;0], [2;2] (and j = 0 otherwise) to eliminate four single
bonded atoms at the corners of the outer parallel edges for the corresponding structures.
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8 Graphene carbon nanowiggles -
Electronic properties

In this chapter we present the calculation of the electronic structure and spin ordering of the

four GNW types. By changing the structural parameters we have generated band gap maps for

different magnetic arrangements. Our calculations predict the emergence of physical phenom-

ena which are absent in their constituents graphene nanoribbons. These new properties result

from the interplay between the properties of the building blocks, the symmetry of the structure

and the bipartition of graphene lattice.

8.1 Introduction

After developing a general framework to classify nanowiggles according to their geom-

etry in Chapter 7, we now present a discussion of their electronic structure. The nanowig-

gles reported experimentally in Ref. [4] are AA-GNWs corresponding to (9A,6A), as shown on

Fig. 8.1b. Here, we will consider the extended set of systems in which the Pα and Oβ edges can

assume AA (e.g. (9A,6A), Fig. 8.1b), AZ (e.g. (6A,7Z), Fig. 8.1c), ZA (e.g. (4Z,9A), Fig. 8.1d)

or ZZ (e.g (7Z,7Z), Fig. 8.1e) geometries. In this extended set, the length of the O sector is cho-

sen such that at least one full zigzag or armchair strip along the GNW is not cut by the wedges,

while the P sector is defined to have the shortest allowed length (as explained in Section 7.2).

We carried out a systematic study, by varying the Pα and Oβ widths, using the TBU method

implemented in the TBFOR package as described in Chapter 2. Representative structures from

each GNW family are also studied within state-of-the-art DFT calculations to establish the TBU

suitability and accuracy for the study of these graphitic systems.
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Figure 8.1: (a) Geometry and nomenclature of a GNW made up of successive oblique and parallel cuts
in armchair (A) or zigzag (Z) patches. (b-e) Examples of an (9A,6A) AA (b), (6A,7Z) AZ (c), (4Z,9A)
ZA (d) and (7Z,7Z) ZZ (e) GNW. One (c), two (d,e) and three (b) unit cells of the periodic systems are
shown [9].

8.2 Theoretical Methods

The electronic properties of the systems depicted in Fig. 8.1 have been calculated within

a GGA-based density functional theory (DFT) approach implemented in VASP [92, 93]. We

computed the electronic properties after full atomic relaxation, using a fine k-point sampling and

PAW pseudo-potentials, with a cut-off energy of 400 eV for the plane-wave basis set. DFT is too

computationally demanding to perform a systematic study of the relationship between the de-

tails of the geometry and the electronic properties of GNWs of any size. Fortunately, compared

to DFT, the less expensive π-band tight-binding approach yields a good quantitative description

of the electronic properties of carbon nanostructures. The present self-consistent tight-binding

+ U (TBU) calculations were performed with the TBFOR package (see Section 2.8) and are

based on the model developed in Ref. [126] with first-, second-, and third- nearest neighbor

hopping integrals given by t1 = 3.2 eV, t2 = 0 eV and t3 = 0.3 eV, respectively. The different

chemical environment at the edges was accounted for by including a ∆t1 = 0.2 eV correction

to the t1 parameter for the frontier atoms [126]. Further, a precise description of the magnetic

interaction in GNRs has been shown to be tractable when the total Hamiltonian includes an ex-

plicit Hubbard-like term where spin-spin interactions are treated in a mean-field fashion. This

is accomplished by introducing a positive U parameter that quantifies the magnitude of the on-
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site electron-electron interaction. In practice, this TBU model has been shown to capture the

most relevant physical aspects of magnetic states in a number of graphitic systems, including

zigzag GNRs [30], as we showed in Chapter 1 using the TBFOR package. A precise value of

the U interaction strength is chosen to match the TBU and DFT band structures for the systems

depicted on Fig. 8.1 considering all their magnetic configurations. The one-parameter fit results

in U = 0.92t1. As we will show in the next section, the two methods agree remarkably well for

all the systems of Fig. 8.1.

8.3 Multiple magnetic states

In both DFT and TBU calculations, we observe that the final result from the self-consistent

procedure for the spin distribution depends on the initial guess for the spin-up and -down densi-

ties as shown in Fig. 8.2 for the systems depicted in Fig. 8.1. This is a signature of the presence

of multiple metastable magnetic states. While the AA geometry presents only a paramagnetic

distribution (with null spin-polarization for all the sites), all the other cases present a set of

different magnetic states (whose spin distribution nature is illustrated on the top of the band

structure plot for each state). This is remarkable for the AZ and ZZ structures as they present

up to four different magnetic states (as discussed in the next sections).

The TBU and DFT results for the band structure are shown in solid and dashed lines, re-

spectively, in Fig. 8.2. This figure indicates a relatively good agreement between the DFT and

TBU results which becomes remarkable for the bands close to the Fermi energy, and gives us

confidence in using the TBU model to study a broader set of GNWs. The DFT calculations were

performed with edge atoms properly saturated with hydrogen atoms, as implicitly included in

the TBU model. An additional point to be emphasized is that all the TBU results were obtained

with the same parameters, showing that the TBU approach constitutes an excellent tool for the

study of the different classes of GNWs. Convinced by this good DFT-TBU agreement for the

systems in Fig. 8.1, we used the model Hamiltonian to carry out a systematic study aimed at

understanding the influence of the GNW geometry on the electronic properties by simulating a

total of 393 AA, 153 AZ, 75 ZA and 171 ZZ structures corresponding to a wide range of P and

O sector widths. Other geometrical parameters, such as the length of each sector, could also be

varied but we found that the range of properties is well represented by the structures considered

here.

The existence of multiple magnetic states is a major signature of the rich properties of

GNWs (Fig. 8.2). This finding can be rationalized from the properties of individual zigzag
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Figure 8.2: DFT (dash lines) and TBU (solid lines) electronic band structures corresponding to the
different magnetic states for the representative AA, AZ, ZA and ZZ GNWs shown in Fig 8.1. The
schematic spin distributions (black: up, red: down, white: no polarization) are shown on top of each
panel [9].
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and armchair edged GNRs: while armchair systems are non-magnetic, the zigzag systems’

ground state is anti-ferromagnetic with possible metastable non-magnetic and ferromagnetic

spin configurations [31], as we discussed in Chapter 1.

In the next section we discuss the case of each achiral GNW geometry in details, as well as

the corresponding systematic TBU studies.

8.4 AA-GNWs

We observe that the AA systems only exist in a non-magnetic electronic configuration. The

large band-gap (1.5 eV) observed in the AA-GNW of Fig. 8.1b is compatible with the properties

of the individual armchair sectors (9A,6A) which present large band-gaps since PA and OA are

multiple of 3 [31].

As discussed in Section 8.3, the TBU model provides a good description of GNW’s elec-

tronic structure. This encourages us to conduct a systematic study in order to understand the

relation between electronic structure and geometry for these GNWs. In such study, we per-

formed TBU calculations for a variety of AA-GNWs so that OA and PA were varied from 4 to

25. The energy gaps around the Fermi energy (EF ) are plotted as a function of OA and PA in

Fig 8.3. The systems can be classified according the multiple-of-three rules, as evidenced by

grids evenly spaced in units of 3. The fact that the energy gap ∆N for armchair edged nanorib-

bons with a number N = (3i+ j) of C−C lines obey the relation ∆3i+1 > ∆3i > ∆3i+2 [31], also

explains why structures with PA and OA sectors that are multiple of 3 + 2 possess the smallest

gaps (shown in dark blue patterns in Fig. 8.3).

8.5 AZ-GNWs

In contrast to the AA-GNW case, AZ-GNW structures have possible paramagnetic or fer-

romagnetic spin alignments along the zigzag edges, giving rise to a number of dissimilar spin

configurations. The specific bands of the (6A,7Z) GNW in Fig 8.1c are shown in Fig. 8.2. The

paramagnetic (PM) state has four spin-degenerated bands characterized by a very small disper-

sion (< 0.1 eV) around EF . Those bands show a two-by-two folded structure relative to the X

point in the Brillouin Zone (also present in the AA-GNW structure). This degeneracy is due to

the presence of an improper translation symmetry (a/2 translation + C2 axis in the molecular

plane - Fig. 8.4) in the atomistic structure (i.e. the spin distribution displays the full symmetry

of the atomic structure, including the order 2 rotation). Deliberate choices of the initial guess for
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Figure 8.3: Energy band-gap as a function of P and O widths for the PM state in AA-GNWs. The
minimum and maximun are ∆AA

min = 1 meV and ∆AA
max = 1.7 eV. The points absent on the upper-left corner

of the graph correspond to geometries not allowed by the particular choice for the lengths of the P and O
sectors.

Figure 8.4: Improper rotation symmetry for the GNW’s unit cell.

the on-site occupations allow the self-consistent process to converge into four different magnetic

states. These states are schematically plotted on top of Fig. 8.2 and their presence can be un-

derstood from the properties of individual Z-GNRs. The plot highlights the origin of each spin

configurations compatible with periodic boundary conditions. They are labeled according to

the edge-to-edge spin orientations: ferromagnetic (FM), anti-ferromagnetic (AFM), trans-anti-

ferromagnetic (TAFM), and longitudinal-anti-ferromagnetic (LAFM). In each of those states,

the spin polarization is maximal on the zigzag edges, where it has a local ferromagnetic order-

ing. The polarization decreases quickly from the center of the edges to the corner where the

zigzag edge meets the armchair geometry. The FM state presents a splitting between spin up

and down bands, which opens a ∆T BU = 0.27 eV (∆DFT = 0.30 eV) energy gap. The spin po-

larized valence state corresponds to the polarization localized at the edges. This polarization is

favored while electron-electron interaction pushes the (minority spin) conduction band to higher

energy. The other three configurations have no net polarization and their electronic bands are

all spin-degenerated. The AFM state has a ∆T BU = 0.42 eV (∆DFT = 0.46 eV) band-gap, and
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the bands closest to EF present very little dispersion, because the spatial spin distribution is

restricted to the portion of the nanowiggle with a zigzag edge (e.g. the zigzag portion behaves

like a quantum dot, in a way similar to reported anti-dot graphene [59]). The TAFM and LAFM

states present features similar to those mentioned for the AFM configuration. However, the

symmetry of the spin distributions in these last two states is reduced since they break the helical

symmetry and the degeneracy is lifted at the X point.

DFT total energy calculations can be used to assess the relative stability of the various

phases. Note that in all the systems studied in this work, careful (DFT) geometry relaxation

does not yield appreciable differences between the various magnetic states of a given GNW,

thereby ruling out the possibility of spin-Peierls transition. The TBU band-structure energy

provides another operational way to compare structure stability. It is easily computed as:

ETBU =
∫ EF

−∞

En(E)dE (8.1)

where n(E) is the density of states. As shown below, this approximate expression turns out

to provide a good predictive framework, compared to the more accurate and computationally

expensive DFT approach. We found the AFM state to be the most stable: compared to the AFM,

DFT (TBU) relative energy is 0.29 eV (0.85 eV) for PM, 0.020 eV (0.027 eV) for TAFM, 0.025

eV (0.027 eV) for LAFM and 0.045eV (0.046 eV) for FM. These results give us confidence to

use the TBU band-structure energy as a tool to understand how the relative energy difference

among the multi magnetic states behaves as we change the AZ-GNWs geometry. We calculated

a series of AZ-GNWs which spans sector widths PA and OZ from 5 to 17. In Fig. 8.5 we show

the energy differences for any pair of magnetic states as a function of the sectors’ widths. The

|∆E|max value for each pair of states is listed in Table 8.1.

Table 8.1: |∆E|max values for the different pairs of magnetic states in AZ-GNWs.

|∆E|max (eV) AFM TAFM LAFM FM
PM 4.995 4.914 4.875 4.799
FM 0.830 0.504 0.478 –

LAFM 0.559 0.476 – –
TAFM 0.479 – – –

In the lower right plot of Fig. 8.5 we see that the PM state is in general higher than the

AFM case. This is remarkably for GNWs with larger parallel width, while narrower PA sectors

give a PM state closer in energy to AFM. This can be explained by the fact that for a given

oblique width, a wider parallel width produces longer OZ sectors and the energy necessary to

have a non-polarized zigzag edge increases as these edges get larger. Conversely, as PA gets

narrower, the oblique sector becomes shorter and the parallel sector longer, so that the GNW
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Figure 8.5: Band-Structure energy difference among the different magnetic states as a function of PA and
OZ . The points absent on the upper-left corner of each graph correspond to geometries not allowed by
the particular choice for the lengths of the P and O sectors. Systems that do not possess a stable AFM,
TAFM, LAFM or FM distribution of spins are marked by a cross. The |∆E|max values for the different
plots are shown in Table 8.1. Positive (negative) values for ∆E are represented by squares (triangles).
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edge structure is predominantly armchair, favoring a paramagnetic distribution for the spin.

The other plots involving the PM state (PM-FM, PM-LAFM and PM-TAFM) present the same

features as the PM-AFM plot.

All the other magnetic states are closer in energy to each other. As a general trend, we

observe that the states obey the following order for increasing energy: AFM < TAFM < LAFM

< FM < PM. We do observe some exceptions like the (9A,7Z) GNW for the LAFM-FM pair

and some set of horizontal lines (corresponding to mod(PA,3) = 1) in the LAFM-TAFM plot.

We do observe other set of points in discordance with the energy order above, but we also note

that the absolute value of the energy difference is very low (dark blue triangles) and is likely to

be within the method’s error.

In addition, we note that the energy differences between TAFM and AFM and between

FM and LAFM are notably higher for the mod(PA,3) = 1 family. We can understand this

behavior in terms of the spin distributions along the zigzag edges (from the oblique sector) and

the properties of the parallel sector. As the occupied (unoccupied) energy bands are pushed

down (up) for a semiconducting system, a larger gap is a factor which, in principle, lowers

the value of ETBU. Note that in the AFM state, the edges with similar majority spin (edges 1

and 4 or 2 and 3 in the left of Fig. 8.6) are likely to be farther away from each other than in

the TAFM distribution (edges 1 and 3 or 2 and 4 in the left of Fig. 8.6), as seen in the right

of Fig. 8.6. In the TAFM state, this contributes to form more extended states (favoring the

lowering of the gap). This effect is similar but opposite in the AFM case, thus contributing to

a bandgap increase, and in turn to a band-structure energy reduction. So, as A-GNRs with a

number N of C−C lines along its width will have the largest gaps for mod(N,3) = 1, parallel

sectors with mod(PA,3) = 1 are likely to correspond more stable structures. Our results show

that this trend is more pronounced for the AFM state than for the TAFM distribution, leading to

a larger TAFM-AFM energy difference. A similar argument can be applied for the FM-LAFM

difference.

Figure 8.6: Pair of magnetic states which give the largest energy separation for mod(PA,3) = 1.
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We observe a similar raising in the LAFM-AFM and FM-TAFM differences for systems

with mod(PA,3) = 2. Let us consider edge 1 in the left of Fig. 8.7, for instance. It is close

to the edges 2 and 3, so let us call 1 and 2 or 1 and 3 as “neighbors”. While a zigzag edge

with a given spin polarization has one “neighbor” zigzag edge with the same polarization in

LAFM, the corresponding edge on the AFM state has no “neighbors” with the same majority

spin. So LAFM has a more pronounced tendency to present a small gap than AFM. At the

same time, A-GNRs with a number N of C−C lines along its width will have the smallest gaps

for mod(N,3) = 2. So, parallel sectors with mod(PA,3) = 2 are likely to produce less stable

structures. Our results show that this last tendency is more pronounced for the LAFM state than

for the AFM case, rendering a larger LAFM-AFM energy difference. A similar discussion can

applied for the FM-TAFM difference in energy.

Figure 8.7: Pair of magnetic states which give the largest energy splitting for mod(PA,3) = 2.

Finally, we applied the systematic band-gap study for each of the five different spin distri-

butions. The electronic band-gap as a function of PA and OZ for each state is plotted in Fig. 8.8.

The minimum (∆AZ
min) and maximum (∆AZ

max) values for the gaps in each spin-configuration are

shown in Table 8.2.

Table 8.2: Minimum (∆AZ
min) and maximum (∆AZ

max) values for the gaps in each spin-configuration for
AZ-GNWs.

AFM TAFM LAFM FM PM
∆AZ

min (meV) 183 22 7 0 0
∆AZ

max (meV) 446 396 428 347 393

We observe that except for the systems with narrow parallel sectors, the PM state is always

metallic. As explained in the discussion on energetics, for a fixed OZ , the wider the PA is, the

longer our oblique sector becomes. So, for larger PA, the AZ-GNWs properties are dominated

by the OZ sector (which are metallic in their PM state), except by the 120◦ turn made by the Z-

GNR sector as it finds the short A-GNR sector. However, the plot tells us that the small parallel

sector influence is not sufficient to render the structure a semiconducting character in this PM

state.
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Figure 8.8: Energy band-gap as a function of P and O widths for the multi-magnetic states in AZ-GNWs.
The points absent on the upper-left corner of each graph correspond to geometries not allowed by the
particular choice for the lengths of the P and O sectors. Systems that do not possess a stable AFM,
TAFM, LAFM or FM distribution of spins are marked by a cross. The minimum and maximum values
for the gap in each plot are shown in Table 8.2.
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Moving to the other magnetic states, we observe three distinct behaviors corresponding

to sector widths PA with mod(PA,3) =0, 1, or 2. Scanning horizontally across the chart, the

electronic band-gap oscillates for small OZ values and gradually converges to a PA-dependent

constant that we associate with a pristine A-GNR corresponding to the wedge-healed GNW.

These characteristics related to the non-PM states show that the PA sector has a pronounced

influence on the AZ-GNWs’ electronic properties, even for short parallel pieces. If we look at

the specific case of the FM state we notice that the PA sector influences sufficiently the electronic

structure to open a gap even for longer oblique sectors (corresponding to wider parallel sectors),

which are composed by Z-GNRs in their FM metallic state (see the LAFM and FM AZ-GNW

states). For the LAFM state we have an additional factor to consider, namely that successive FM

OZ sectors have alternating spin orientations. This separates the atoms with identical majority

spin orientation to portions far from each other, contributing to form localized states (like the

example in Fig. 8.1c whose bands are shown in Fig. 8.2) that also affect the opening of a band

gap. These aspects show that the interplay between A- and Z-GNRs in GNWs is not only

restricted to the simple sum of their individual properties, but it is in fact extremely dependent

on the specific way how these pieces are assembled into the GNW.

8.6 ZA-GNWs

Similar to the AZ-GNW shown on Fig. 8.1c, the PM state of the (4Z,9A) ZA-GNW system

displayed on Fig. 8.1d presents four spin-degenerated bands around EF . As noted before, these

four states can be unfolded in pairs according to the structure’s improper translation symmetry.

The possible spin configurations include a series of magnetic states with local ferromagnetic

alignments along the zigzag edges similar to the AZ-GNWs. These configurations are either

ferromagnetic (FM) or anti-ferromagnetic (AFM) depending on the relative arrangement of the

spin on opposite edges.

The FM state has a total magnetic moment MT BU = 1.8µB (MDFT = 1.9µB) and is charac-

terized by electronic bands with opposite spins crossing at EF . In contrast to the PM and FM

configurations, the AFM spin distribution breaks the improper translational symmetry of the

lattice, and the corresponding bands do not simply fold at the X point. However, the symmetry

of the spin distribution guarantees a zero total magnetization and, in turn, a spin-degenerate

set of bands. The diffraction at the Bragg plane at X yields a fairly large ∆T BU = 0.23 eV

(∆DFT = 0.26 eV) band-gap. In each configuration, the bands around EF are significantly more

dispersed compared to the AZ-GNW systems, indicating a true 1D behavior and a significant

attenuation of the quantum-dot effect observed in the AZ-GNW considered above. Total energy
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calculations using DFT (TBU) show that the AFM state is more stable than both the PM and

FM configurations, by 0.13 eV (0.44 eV) and 0.057 eV (0.13 eV), respectively.

Next, we conducted a systematic study using the TBU method by varying the GNW sector

widths PZ and OA from 2 to 10 and 6 to 17, respectively. In general we observe the order

AFM<FM<PM regarding energy stability. The values for |∆E|max are listed in Table 8.3. The

PM state energy is remarkably higher than the other two states for a intermediate parallel width

between the minimum and maximum value of PZ , specially for wider oblique sectors. This

is the result of two different factors. First, for narrow parallel sectors, the zigzag edges at

opposite sides of the GNW are close to each other, which lowers the magnetic instability of the

paramagnetic state [31]. On the other hand, wide PZ sectors present shorter zigzag edges for a

given OA, lowering the instability associated with the PM state. These two opposite tendencies

balance for some value of PZ where the PM instability reaches its maximum value for a given

oblique width (with OA ≈ 3 or 4). When comparing FM and AFM, we see that narrower PZ

blocks produce a higher AFM-FM splitting similar to Z-GNRs [31] since the zigzag edges from

opposite GNW’s sides are close to each other.

Figure 8.9: Band-Structure energy difference among the different magnetic states as a function of PA and
OZ . The points absent on the upper-left corner of each graph correspond to geometries not allowed by
the particular choice for the lengths of the P and O sectors. The |∆E|max values for the different plots are
shown in Table 8.3. Positive (negative) values for ∆E are represented by squares (triangles).

Table 8.3: |∆E|max values for the different pairs of magnetic states in ZA-GNWs.

|∆E|max (eV) AFM FM
PM 3.357 2.860
FM 0.993 –
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When analyzing the systematic study results of the energy gap of the AFM and FM states,

we note that the general features of the 2D plot show a clear distinction between 3 families as we

move along the plot’s vertical direction (i.e. as PZ changes). These three families correspond to

different values of OA such that mod(OA,3) =0, 1, and 2, for reasons similar to those explained

for the AZ systems. Also we note that the AFM state is always a semiconductor, while the

FM state sometimes presents a metallic structure. While most ZA-GNWs are metallic in their

PM state, nanostructures with large PZ present a wide band-gap. This is due to the fact that the

zigzag sectors are short for wide parallel blocks so that the electronic properties are dominated

by the semiconducting (armchair oblique) sectors.

Figure 8.10: Energy band-gap as a function of P and O widths for the multi-magnetic states in ZA-
GNWs. The points absent on the upper-left corner of each graph correspond to geometries not allowed
by the particular choice for the lengths of the P and O sectors. Systems that do not possess a stable AFM
or FM distribution of spins are marked by a cross. The minimum and maximum values for the gap in
each plot are 107 meV and 477 meV for the AFM state, 0 and 360 meV for FM and 0 and 1527 for PM.

8.7 ZZ-GNWs

ZZ-GNWs constitute the fourth possibility of assembling achiral GNRs into GNWs (Fig.

8.1e). For the (7Z,7Z) system depicted in Fig. 8.1e, the PM state is a zero-gap system where the

frontier bands meet at the X-point of the Brillouin zone (Fig. 8.2). This behavior contrasts with

that of straight Z-GNRs where the frontier bands meet some distance before the X point [30, 31].

Interestingly, neither DFT nor TBU predict a stable FM state for this particular (7Z,7Z) system.

A detailed analysis of the A and B graphene sub-lattices explains the absence of a FM state.

The coexistence of spin up along the entire length of the ZZ-GNW edge would indeed require
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the local spin on sites belonging to both A and B sub-lattices on connected PZ and OZ sectors to

be aligned. This configuration is not stable for reasonable values of spin-spin interactions. We

verified that assumption by employing the self-consistent TBU model with an excessively large

value of U and found the FM state to be artificially stabilized. The A-B bipartitioning of the

lattice does not preclude the presence of other ferromagnetic-like spin configurations (see top of

Fig. 8.2) for this (7Z,7Z) structure. For example, in the AFM state, the edge atoms belonging to

a given graphene sub-lattice present the same type of majority spin. This spin distribution breaks

the helical symmetry of the atomic lattice and a ∆T BU = 0.26 eV (∆DFT = 0.25 eV) gap opens

at the X point. In addition to the AFM spin distribution, the ZZ-GNWs also allow for a more

intriguing longitudinal-ferrimagnetic (LFiM) state as shown on Fig. 8.2. Because of the quasi-

AFM spin distribution (due to the A-B bipartitioning of the lattice), the total magnetization of

LFiM is quite small (MT BU = 0.07µB, MDFT = 0.01µB). However, symmetry arguments do

not ensure the total polarization to completely vanish (hence the ferrimagnetic character of the

configuration). In addition, except for a small spin-up – spin-down splitting, the LFiM bands

are very similar to those of the PM configuration. DFT (TBU) predicts the AFM state to be

more stable than the PM or LFiM states, by 0.055 eV (0.446 eV) and 0.056 eV (0.397 eV),

respectively.

In the following we carried out the systematic study for PZ and OZ covering the range

of values from 4 to 17. While we were not able to find any other spin configuration for the

particular (7Z,7Z) system than PM, AFM and LFiM, a set of other magnetic states were also

adopted by other systems. We found that ZZ-GNWs can present the PM state and up to four

other spin configurations: AFM, LFiM, FM and TAFM. These distributions are illustrated in

Fig. 8.11.

Figure 8.11: Different spin distributions for ZZ-GNWs.

In Fig. 8.12 we plot the electronic band gap for all these magnetic states as a function of

PZ and OZ . Note that, as in the case of the (7Z,7Z) system, some structures do not present all

these states, specially the narrowest structures in the bottom-left part of each plot (where some

values are absent). Here we choose to not consider the magnetic states where the maximum

polarization of a orbital in the structure is less than 0.01µB. In these plots we used the same

values for the ∆ZZ
min and ∆ZZ

max pair for all the magnetic states, namely ∆ZZ
min = 0 and ∆ZZ

max = 0.45
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eV. In order to analyze the data, we found convenient to define four different regions on the

PZ–OZ–gap plot as shown in Fig. 8.12: (I) bottom-left, (II) upper-left, (III) bottom and (IV)

diagonal regions. The narrowest structures are in (I), where we have most of the structures with

missing magnetic states since narrow structures have a reduced paramagnetic instability [31].

Region (II) is characterized by structures whose outer parallel edge is short enough so that this

edge does not present significant spin polarization. In this case we observe that the AFM and

TAFM states look alike, while we note the same for the FM and LFiM states. A similar picture

occurs in region (III) as the structures over this region present short oblique edges where the

spin polarization does not assume significant values. One observes that the plots over regions

(II) and (III) are practically the same for the AFM-TAFM and FM-LFiM pairs. The main differ-

ences reside in region (IV) where the wide structures present a high value for the paramagnetic

instability, allowing spin polarization along all the edges on the ZZ-GNW.

For all magnetic states, we observe that the combined variations along the horizontal and

vertical directions explain why the gap tends to get smaller along the chart’s diagonal (to even-

tually vanish as the 2D graphene character is recovered).

In Fig. 8.13, we plot the TBU band energy difference for different pairs of states (the values

for |∆E|max in each case are shown in Table 8.4). The PM-AFM energy difference is plotted

in the lower right plot of Fig. 8.13. We observe that the energy separation for these two states

is always positive (in other words, AFM is always lower) and increases as we move away

from region (I) in the plot. This is a clear manifestation of the increasing (lowering) of the

paramagnetic instability as the system gets wider (narrower). We observe the same features for

the PM-X (X=AFM, FM, LFiM, TAFM) energy difference. Moving to the other cases, regions

(II) and (III) in the plots for the TAFM-AFM and FM-LFiM differences are predominantly dark

blue (corresponding to zero energy difference), as expected from the early discussion in the

section. Finally, if we focus on region (IV), we note an overall PM>FM>TAFM>LFiM>AFM

energetic order for the magnetic states (except for some points in the FM-TAFM plot).

Table 8.4: |∆E|max values for the different pairs of magnetic states in ZZ-GNWs.

|∆E|max (eV) AFM LFiM TAFM FM
PM 6.014 5.872 5.373 5.364
FM 0.851 0.658 0.623 –

TAFM 0.872 0.638 – –
LFiM 0.474 – – –
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Figure 8.12: Energy band-gap as a function of P and O widths for the multi-magnetic states in ZZ-
GNWs. The points absent on the upper-left corner of each graph correspond to geometries not allowed
by the particular choice for the lengths of the P and O sectors. Systems that do not possess a stable AFM,
LFiM, TAFM or FM distribution of spins are marked by a cross. The minimum and maximum gap values
are ∆ZZ

min = 0 and ∆ZZ
max = 0.45 eV, respectively.
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Figure 8.13: Band-Structure energy difference among the different magnetic states as a function of PZ

and OZ . The points absent on the upper-left corner of each graph correspond to geometries not allowed
by the particular choice for the lengths of the P and O sectors. Systems that do not possess a stable AFM,
LFiM, TAFM or FM distribution of spins are marked by a cross. The |∆E|max values for the different
plots are shown in Table 8.4. Positive (negative) values for ∆E are represented by squares (triangles).
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8.8 Overview

In this chapter we presented and discussed the rich set of electronic properties of GNWs.

These systems show a variety of magnetic states which is even richer than the properties of

their GNR building blocks (while A-GNRs have only a PM state and Z-GNRs have also other

2 - AFM and FM - magnetic states, GNWs can present up to four distinct spin distributions

different from the PM case on a single unit cell). In general, GNWs present an AFM ground

state (whose spin distribution obeys the bipartition of graphene’s lattice) which is always semi-

conducting. The dependence of the energy gap around EF is in general dictated by the armchair

or zigzag character of the sectors composing the GNW. However, we observe a non trivial inter-

play between the different wiggle sectors so that GNWs properties can not be viewed simply as

the superposition of the properties of their component GNR sectors. In addition, according to

the TBU results, the multiple magnetic states present a well defined order in energy. We Note

that the PM state is much higher in energy than the other states for wide systems. As we move

to narrow GNWs, the PM state gets closer in energy to the other states, while some states cease

to be stable. This results constitute a useful huide to the synthesis of graphitic nanostructures

with desired electronic properties.
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9 Graphene carbon nanowiggles -
electronic transport properties

In this chapter we examine the electronic transport properties of GNWs in two particular

configurations. In the first case we consider a periodic GNW structure (the GNW unit cell is

used as CSR and as terminals - see Chapter 3 for the concept of CSR). In the second case,

we calculate the transport through a single GNW cell attached to two GNR terminals. An

intermediate structure where we include a varying number of GNW unit cells between the GNR

electrodes is also considered. This enables us to study how the GNW-between-GNRs system

evolves to recover characteristics of the periodic system as we increase the number of unit cells

between the GNR terminals. In addition, we verify that the multiple magnetic states present

different conductance versus energy curves, opening a promising path for potential spintronics

applications of GNWs as nanodevices.

9.1 Methods

The results obtained in this chapter for the quantum conductance of GNWs were obtained

using the TRANSFOR package we developed during this thesis. The methods implemented in

TRANSFOR were presented in the Chapters 3 and 4. In order to obtain the Hamiltonian to be

read by TRANSFOR, a previous run is made on TBFOR. In the case of the GNW-between-

GNRs systems, we include a large number of electrode cells in the run so as to have a good

approximation for the BLS condition (see Chapter 3 for the concept of bulk-lead similarity -

BLS). Namely, we used either 20 A-GNR (AZ-GNW case) or 35 Z-GNR (ZA- or ZZ-GNWs)

unit cells for each terminal. The TBFOR output for the 〈n̂iσ 〉 densities is then used to construct

the Hamiltonian in the localized orbitals representation to be used by TRANSFOR.
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9.2 AZ-GNWs

We start by considering the AZ-GNW case, focusing on the (11A,6Z) GNW. First we con-

sider the periodic GNW case. As shown in the last chapter, AZ-GNWs present up to four

possible magnetic states (AFM, FM, LAFM and TAFM) which are different from the trivial

non-magnetic case (PM). We illustrate the five different spin distributions in Fig. 9.1. In Fig. 9.2

we plot the quantum conductance as a function of the energy around the Fermi energy (EF = 0).

Figure 9.1: Five possible spin distributions for the periodic (11A,6Z) AZ-GNW. In the plots, blue (red)
represents the maximum polarization for spin up (down), while white denotes no spin-polarization.

By observing the conductance curves for spin-up and -down states we note that, following

the electronic structure (as discussed in the last chapter), the FM state is the only one to present

different behaviors for the two spin orientations because it has a net magnetization. In all other

cases we have identical curves for both spins. In addition, the electronic transport is ballistic

through these GNWs (in fact, this is a trivial case where the step-like conductance curves could

be simply obtained by counting the bands for each energy value). We also have remarkable

differences for the conductance profile between different magnetic states. While FM is the only

state with non-zero conductance at the Fermi level, the LAFM case presents a tiny gap (≈ 20

meV) around E = 0 eV and PM has two peaks of conductance about ±20 meV close to EF .
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Figure 9.2: Quantum conductance as a function of energy for the five possible spin distributions for the
periodic (11A,6Z) AZ-GNW structure. Spin-up curves are in black (left) while spin-down curves are in
red (right). Here the Fermi energy is set to EF = 0.

The AFM state possess the widest conductance gap, followed by the TAFM case.

Selectivity rules in energy can be applied to control the electronic flux in a GNW-based nan-

odevice in a similar fashion as in multi-terminal tori (whose rules were discussed in Chapter 6).

If we look at energies around 0.4 eV, for example, the impinging electron is transmitted when

the GNW is in its AFM, FM (spin up channel) or PM state, while it is blocked for the LAFM

and TAFM states. A set of different rules can be obtained by tuning the energy of the incoming

electron. In the case of the FM state this selectivity can additionally involve the electronic spin.

This is an important result which makes GNWs eligible for prototype devices owing to these in-

teresting physical properties. With experimental control over their multi magnetic states, GNWs

could be embedded in nanocircuits, to act as nano-switch devices for instance, which operate in

different regimes depending on their magnetic state.

We can further exploit the AZ-GNWs properties by investigating their behavior when at-

tached to A-GNR electrodes. We start by using a single AZ-GNW unit cell as central scatterer.

This structure and its corresponding magnetic states are depicted in Fig. 9.3. In this case, the

GNW cell breaks the translational symmetry of the infinite 11-A-GNR corresponding to the
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terminals. This promotes significant scattering so that the conductance curves no longer have a

step-like profile, as shown in Fig. 9.4.

Figure 9.3: Five possible spin distributions for a single (11A,6Z) AZ-GNW cell attached to two semi-
infinite 11-A-GNR electrodes. In the plots, blue (red) represents the maximum polarization for spin up
(down), while white denotes no spin-polarization.

Figure 9.4: Quantum conductance as a function of energy for the five possible spin distributions for a
single (11A,6Z) AZ-GNW unit cell attached to two semi-infinite 11-A-GNR terminals. Spin-up curves
are in black (left) while spin-down curves are in red (right). Here the Fermi energy is set to EF = 0.

By symmetry, the structure has a zero total magnetization for the AFM, LAFM and PM

cases, while FM clearly has a non-zero value for the same quantity, as in the periodic case. This

produces spin degenerated conductance for AFM, LAFM and PM, while FM presents different
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curves for the two spin orientations. However, in contrast to the periodic system (which has

zero total magnetization), the one-cell system in the TAFM state does not have a symmetric

distribution for majority spin-up and -down spin. In fact, this structure has a non-zero total

magnetization as evidenced by the different spin-up and -down conductance curves. In addition

to the spin-dependent electronic transport for the FM and TAFM states, the conductance gap

can also be tuned by selecting the magnetic state, as observed in Fig. 9.4.

A clear distinction between the periodic and the one-cell systems is that in the second

case one has to switch the magnetic state only for a finite extend from the structure (since

the terminals are armchair and non-magnetic). This is different from the periodic case where

the state switching has to be conducted through the whole periodic structure or, in practical

terms, at least through a much broader spatial extension. This is an essential practical aspect

to be considered by experimentalists regarding the manipulation of these magnetic states at the

experimental level.

Note that, unlike the periodic case, the one cell always has a gap (greater than 0.2 eV). This

is compatible with the electrode properties since a perfect periodic 11-A-GNR has a conduc-

tance gap of ≈ 236 meV, as shown in Fig. 9.5. As this band gap is a natural characteristic from

A-GNRs, the conductance for the energies close to the Fermi level is always blocked in the

one-cell system composed of a AZ-GNW (unless the particular AZ-GNW has a wide parallel

sector so as to render a tiny gap for the terminals).

Figure 9.5: Quantum conductance as a function of energy for a periodic 11-A-GNR in its paramagnetic
state. Here the Fermi energy is set to EF = 0. The method used to construct this curve is the same used
in the calculation of GNWs transport properties.

9.3 ZA-GNWs

We follow a similar procedure to study the transport properties of ZA-GNWs. Here we

choose a (5Z,13A) ZA-GNW as a representative example from this group. This system in its

periodic configuration presents a reduced set of magnetic states in comparison to a AZ-GNW.
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The spin polarization for the PM, AFM and FM ZA-GNW states are depicted in Fig. 9.6.

Figure 9.6: Three possible spin distributions for the periodic (5Z,13A) ZA-GNW. In the plots, blue (red)
represents the maximum polarization for spin up (down), while white denotes no spin-polarization.

In Fig. 9.7 we plot the quantum conductance for the different spin channels in the AFM, FM

and PM states. As expected, AFM and PM have spin degenerated curves for the conductance

due to their symmetric spin distribution. The AFM state has a≈ 265 meV gap around the Fermi

energy. Moving to the PM case, we have a highly localized conductance peak at the zero energy

point which is surrounded by two conductance plateaus having a tiny gap (≈ 34 meV) between

them. Finally, the FM state presents a ≈ 30 meV gap. However, in contrast with the AFM and

PM cases, the gap in the FM case is between a pure spin-up and spin-down levels. It follows

that the spin character of the current can be controlled by setting the impinging electron energy

slightly above or below the Fermi energy.

Figure 9.7: Quantum conductance as a function of energy for the three possible spin distributions for the
periodic (5Z,13A) ZA-GNW structure. Spin-up curves are plotted in black (left) while spin-down curves
are in red (right). Here the Fermi energy is set to EF = 0.
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In the following, we consider one ZA-GNW cell sandwiched between two semi-infinite

5-Z-GNR terminals. Despite of having only two magnetic states (other than the PM case), we

have four possibilities for the spin distribution in this one-cell system. This is due to the two

possibilities for the spin distribution along the Z-GNR terminals for each state from the GNW

unit cell. We will label these distributions according to the GNW cell state plus an index which

can be either 1 (when the GNR terminals have the same distribution as the GNW) or 2 (when the

GNR terminals do not have the same distribution as the GNW). These are depicted in Fig. 9.8.

Figure 9.8: Five possible spin distributions for a single (5Z,13A) AZ-GNW cell attached to two semi-
infinite 5-Z-GNR electrodes. In the plots, blue (red) represents the maximum polarization for spin up
(down), while white denotes no spin-polarization.

The conductance curves for these one-cell states are ploted in Fig. 9.9. We observe that the

conductance is substantially suppressed for the [−0.5eV,+0.5eV ] interval for the AFM1 case.

After a gap of about 0.5 eV, the conductance starts to increase, but in a slow pace. The same

behavior is observed for FM2, except for conductance spikes located close to ±0.25 eV and

±0.35 eV. This is directly related to the terminals properties since these are in their AFM state

which presents a ≈ 0.5 eV conductance gap around the Fermi energy (see Fig. 9.10).

On the other hand, the AFM2 and FM1 states have Z-GNR terminals in their FM state

(which is metallic - see Fig. 9.10). In the FM1 case we note two broader conductance peaks

(centered close to -112 and -222 meV ) on the left of EF for electrons with spin up (majority

spin) and two symmetrically positioned peaks (112 and 222 meV) on the right of EF for spin-

down electrons. This is compatible with the properties of both 5-Z-GNR terminals and the

(5Z,13A) system. Since the periodic 5-Z-GNR system possess constant non zero conductance

along the extension over the energy axis corresponding to these peaks, the periodic ZA-GNW

system has 208 meV wide conductance plateaus in the same energy intervals. We observe that,

around the Fermi energy, the conductance relative to the occupied states (E < 0) corresponds

to the majority spin, while the electron-electron interaction pushes the opposite spin levels to
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Figure 9.9: Quantum conductance as a function of energy for the five possible spin distributions for a
single (5Z,13A) ZA-GNW unit cell attached to two semi-infinite 5-Z-GNR terminals. Spin-up curves are
in black (left) while spin-down curves are in red (right). Here the Fermi energy is set to EF = 0.

Figure 9.10: Quantum conductance as a function of energy for the three possible spin distributions for a
periodic 5-Z-GNR. Spin-up curves are plotted in black (left) while spin-down curves are in red (right).
Here the Fermi energy is shifted to EF = 0.

higher energies so that the conductance for the unoccupied levels (E > 0) is dominated by the

minority spin levels.



9.3 ZA-GNWs 196

Switching to the AFM2 state (which also has 5-Z-GNR terminals on their FM state), we

still have these two peaks for each spin channel, but their positions relative to the Fermi level

are inverted: the conductance close to the Fermi level for occupied states is now dominated by

the spin down electrons (minority spin on the Z-GNR terminals), while the conductance for the

unoccupied states is in turn dominated by spin up electrons (majority spin on the terminals).

This can be surprising, in principle, as we could expect the majority (minority) spin electrons to

be responsible for the conductance from the occupied (unoccupied) states. However, an analysis

on the DOS sheds light on the origins of the AFM2 state behavior. The sewing algorithm

implemented in the TRANSFOR package (see Chapters 3 and 4) allows us to access local

properties like the DOS as it provides a systematic way to obtain the GF’s diagonal elements.

Figure 9.11: DOS as a function of energy for the AFM2 and FM1 spin distributions for a single (5Z,13A)
ZA-GNW unit cell attached to two semi-infinite 5-Z-GNR terminals calculated using the sewing algo-
rithm implemented in the TRANSFOR package. Spin-up curves are in black (left) while spin-down
curves are in red (right). Here the Fermi energy is set to EF = 0.

As we can see from Fig. 9.11, most of the DOS below (above) EF corresponds to the

majority (minority) spin in both FM1 and AFM2. The states corresponding to the AFM2 and

FM1 conductance peaks close to EF (in Fig. 9.9) are those marked by green arrows in the DOS

plots from Fig. 9.11. As we can see, these particular states behave differently from most of

the states close to EF and change their position relative to the zero energy level as we go from

the FM1 to the AFM2 distribution. Therefore, the conductance for states below and above the

Fermi energy can be switched between spin-up and -down conduction by switching the spin
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polarization along the zigzag edge sector indicated by the green arrows in Fig. 9.12.

Figure 9.12: Switching mechanism for the spin-up and -down conductance involving the AFM2 and
FM1 states in a single (5Z,13A) ZA-GNW unit cell attached to two semi-infinite 5-Z-GNR terminals.
Spin up (down) is represented by black (red) circles and arrows.

Finally, the PM distribution presents two symmetric conductance peaks around the Fermi

level.

9.4 ZZ-GNWs

For this last case considered here, we choose a (5Z,8Z) ZZ-GNW. Since the oblique sectors

are too short in this system, no significant spin polarization is developed along its oblique edges

so that the AFM and TAFM distributions are (in practice) indistinguishable, similarly to FM and

LFiM. Although this particular system does not present 5 different spin distributions within a

single unit cell as most ZZ-GNWs, it is a good example to be compared with the ZA-GNW case

presented in the last section. This is because in their one-cell system the semi-infinite GNRs

composing the terminals will be the same, namely 5-Z-GNR ribbons. In addition the lengths of

the outer parallel edges on their unit cell (which is where spin polarization assumes significant

values for this (5Z,8Z) system) will also be the same. So the geometrical differences between

(5Z,13A) and (5Z,8Z) in the one-cell system will be restricted to the oblique sectors which will

lead to dissimilar transport properties for one case to the other. In fact, the one-cell system
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has five possibilities for the spin distribution which are analogous the the five corresponding

distributions on the ZA-GNW one-cell system (Fig 9.8).

In Fig. 9.13 we plot the conductance versus energy curves for the periodic (5Z,8Z) systems

in the AFM FM and PM states. The AFM state presents a 338 meV conductance gap around the

Fermi energy surrounded by three short conductance plateaus from each side. In the PM case,

we have a metallic system (nonzero conductance at EF ) and, in addition, two more conductance

plateaus symmetrically arranged around the Fermi level. Both AFM and PM states have degen-

erated spin-up and -down conductance curves due to the symmetry of their spin distributions.

Figure 9.13: Quantum conductance as a function of energy for the three possible spin distributions for
the periodic (5Z,8Z) ZZ-GNW structure. Spin-up curves are in black (left) while spin-down curves are
in red (right). Here the Fermi energy is set to EF = 0.

Finally, the FM state presents two conductance windows around the Fermi energy, one for

the (majority) spin-up (E > 0) and other for the (minority) spin-down (E < 0) states. This

is similar to what happens to the periodic (5Z,13A) structure in its FM state, but with one

noteworthy difference: the conducting levels below (above) the Fermi energy corresponds to the

minority (majority) spin. This behavior is opposite to the (5Z,13A) case where the conductance

plateau just below EF for the FM state corresponds to the majority spin. These aspects related

to the conductance of frontier levels in (5Z,8Z) also differ from the (6A,7Z) AZ-GNW system

whose electronic structure was described in last chapter. As we discussed before, the (6A,7Z)

structure in its FM state presents valence bands populated by majority spin, pushing the minority

spin levels to higher energies in the conduction band.

When analyzing the one-cell system data, we observe that both AFM1 and FM2 states

have a ≈ 555 meV conductance gap around EF . In the AFM1 case we note two asymmetric

conductance peaks from which the sharpest is suppressed in the FM1 state. So, switching
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between AFM1 and FM2 can be used to turn the conductance on and off for these particular

values of energy.

Figure 9.14: Quantum conductance as a function of energy for the five possible spin distributions for a
single (5Z,8Z) ZZ-GNW unit cell attached to two semi-infinite 5-Z-GNR terminals. Spin-up curves are
in black (left) while spin-down curves are in red (right). Here the Fermi energy is set to EF = 0.

The FM1 state possesses a broad conductance peak over the Fermi level which is slightly

asymmetric for spin-up and -down states. In addition, we have some peaks of conductance

on the left (right) of the broad peak for spin-up (-down) in this same state. When flipping the

spin polarization on the zigzag edge highlighted in Fig. 9.12 we obtain the AFM2 state and the

central broad peak is turned off while we preserve peaks of conductance on the left (right) of

EF for spin-up (-down) electrons. Another change is the appearance of two peaks on the right

(left) of EF for spin-up (-down). We see that all the changes are conducted by a local change on

the orientation for the spin along the finite parallel edge from the central GNW cell. The PM

states behaves similarly to the ZA-GNW case, except for the presence of broader peaks and a

sharp peak on the Fermi level.
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9.5 From the one cell system to the periodic system

In the last three sections we studied the transport properties of GNWs from two comple-

mentary points of view. Namely, we considered two different cases: a periodic system and a one

cell structure attached to two semi-infinite GNR electrodes. In this section we aim at describing

how the transport properties behave as we gradually go from one system to the other. In order

to do this, we consider a series of intermediate systems were we have n = 1,2,3,4,5,6,7 GNW

unit cells between two semi-infinite GNR leads as depicted in Fig. 9.15.

Figure 9.15: Systems of n = 1,2,3,4,5,6,7 (11A,6Z) unit cells attached to two semi infinite 11-A-GNR
electrodes.

Here we focus on the (11A,6Z) structure. In Fig. 9.16 we show the conductance curves for

the five different spin distributions in this AZ-GNW.

We observe a common behavior for all the possible AZ-GNW states: as we add more and

more GNW cells between the two semi-infinite A-GNR terminals, an increasing number of

conductance peaks appear within the plotted energy window. In addition, these peaks start to

concentrate in groups which look closer and closer to the conductance plateaus from the periodic

system as the number of sandwiched GNW cells gets large. This is expected since as we have an

increasing number of cells, the GNW’s electronic states gradually cease to behave like localized

scatterers to start forming bands of energy, allowing the ballistic conduction through them as the

number of cells tends to be infinite. Nevertheless, we can already have a good approximation

to the periodic system behavior only with a limited number of GNW cells, as can be seen in

special for the 7-cell systems.
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Figure 9.16: Quantum conductance as a function of energy for the five possible spin distributions in a
periodic (11A,6Z) AZ-GNW and in systems composed by n = 1,2,3,4,5,6,7 (11A,6Z) AZ-GNW unit
cells attached to two semi-infinite 11-A-GNR terminals. Spin-up curves are in black while spin-down
curves are in red. For the AFM, LAFM and PM cases, we present only the spin-up results (the spin-down
curves are identical). Here the Fermi energy is set to EF = 0.

However, the resemblance between the multi-cell systems and their periodic counterpart

does not hold true for the conductance plateaus around the Fermi energy. This is clearly imposed

by the leads properties as the 11-A-GNR system is semiconductor (see Fig.9.5). One observes

that in all the states for all systems, the conductance is null on the energy interval corresponding
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to the A-GNR gap. In the periodic-LAFM case, for example, the two step-like conductance

portions close to EF have part within the A-GNR gap window and part outside it. If one observes

the corresponding 7-cells system, for instance, it is noticed that the GNW conductance levels

condensate only within the region associated with the outside part of the periodic system’s

plateau. A similar situation occurs in the PM state. All the other conductance plateaus (from

the periodic systems) which are inside the A-GNR gap are suppressed in the multi-cell systems.

9.6 Summary

In this chapter we concluded the GNWs study by computing the electronic transport of

these structures in two different configurations: a periodic GNW system and a one-cell system

where a single GNW unit cell is placed between two semi-infinite GNR electrodes. While the

first case is characterized by conductance plateaus (onset of ballistic transport), the GNW in

the one-cell systems presents a source of electronic scattering resulting in sets of conductance

peaks which can be tuned by switching the GNW’s magnetic state. In addition, we were able to

see that a larger number of GNW unit cells sandwiched between semi-infinite GNR electrodes

gradually recovers the conductance aspects of the periodic systems as the number of GNW

cells increases (unless for energies close to EF whose conductance is blocked when we have

semiconducting electrodes).
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Conclusions

We conclude this document by presenting a summary of the findings made during the course

of this thesis. After a general introduction and a detailed discussion of the methods employed

for our research, we started presenting our findings. These results can be separated into two

main parts: toroidal systems and graphene nanowiggles.

Before discussing the results, we developed (in Chapter 4) the patchwork algorithm we

implemented in the TRANSFOR software. This method is based on the knitting and sewing

algorithms proposed recently. The patchwork algorithm adapts knitting and sewing to work in

parallel by dividing the system into smaller parts, or domains. In this way we can use multiple

processors so that each one takes care of one domain. This tool can be very useful for future

studies, especially if we intend to simulate much larger systems. While the time saving can

be only modest for small systems, the use of multiple processors can lower significantly the

execution time in the calculation of huge systems (as we pointed out in Chapter 4).

In Chapter 5 we presented a theoretical study of the electronic transport properties of car-

bon nanorings (made from the bending of a carbon nanotube) attached to two identical nanotube

electrodes. Our findings indicate that the transmission amplitude depends strongly on the dis-

tance between terminals (since this distance determines the electronic paths) and on the place on

the torus where the terminals are anchored (since different joint geometries produce dissimilar

conductance dependence on the energy and angle between terminals owing to different scatter-

ing at the junctions). They confirm that a highly controlled approach needs to be adopted in the

design of such nanoscale devices, especially in terms of how the electrodes are positioned rela-

tive to the nanoring. In addition, the choice of the nanotube composing the torus has an explicit

influence on the torus transport properties. Namely, the nanotube type determines characteristic

families of behaviors for the conductance dependence with the angle between the terminals.

This is in fact expected since each tube has a specific energy-momentum relation (electronic

structure) which results in different dependence of the interfering patterns as a function of en-

ergy. Part of these conclusions were rationalized using a continuum model for the interference

of reflected and transmitted waves along the different arms forming the torus. This model is

shown to explain well the observed numerical results. However, this simple model is not able

to reproduce energy asymmetries around the Fermi energy since it does not include specific de-
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tails of the atomic arrangements on the junctions (presence of pentagons and heptagons which

produce electronic scattering).

Moving to Chapter 6, our work demonstrated that nanotube- and nanoribbon-based nanor-

ings attached to multiple electrodes represent opportunities for designing devices at the nanoscale

with complex properties. These properties include energy-specific transmission selectivity re-

lated to nontrivial resonance patterns and the presence of specific quantum states allowed by

cyclic boundary conditions. This is an interesting result that opens up the possibility of using

multi-terminal carbon nanorings as path controlling devices in complex nanocircuits using the

impinging electron energy as path-tuning parameter.

After presenting our work on toroidal structures, we started the discussion on new complex

ribbon structures, called graphene nanowiggles (GNWs). In Chapter 7 we defined these struc-

tures, showing a systematic way to describe and construct GNWs. We showed that the specific

geometry we worked on can be completely determined by four parameters that determine the

widths and the lengths of the parallel and oblique GNR sectors whose successive periodic rep-

etition defines the GNW’s lattice. Other structural quantities like the lattice parameter and the

number of atoms are easily obtained from that four defining parameters.

Chapter 8 is dedicated to describing GNW’s electronic structure. Our calculations predict

the emergence of physical phenomena in GNWs that are absent in their constitutive GNRs.

The emergence of these properties is the result of the interplay between the properties of the

GNR constituents, the symmetry of the atomic structure, and the bipartition of the graphene

lattice. The relationship between the gap and the geometry is dictated by the armchair or zigzag

character of the corresponding parallel and oblique sectors, enabling GNWs to offer a broad set

of geometrical parameters to tune the electronic structure compared to GNRs. Spin ordering is

found to be restricted to zigzag edges, while armchair sectors dictate the formation of magnetic

nanodomains whose size can be fine tuned depending on how GNW sectors are assembled. All

GNWs with at least one zigzag sector have an antiferromagnetic ground state, in large part due

to the bipartition of the graphene lattice. Our calculations also suggest the existence of a number

of possible metastable spin distributions, thereby elevating GNWs as potential components of

spintronic devices. We plotted the gap versus atomic structure relation for all these magnetic

states, showing that each achiral GNW type has a specific map for the gap as a function of the

widths of both parallel and oblique sectors.

Transport properties of GNWs containing at least one zigzag edge are discussed in Chap-

ter 9. The transport in these GNWs is controlled by the structure’s magnetic state. As a result,

we can have completely different conductance patterns for the same atomic arrangement by
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selecting the nature of the spin distribution. This behavior is present in both atomic configu-

rations we studied: periodic GNW and one GNW cell sandwiched between two semi-infinite

GNR electrodes. Such transport tuning also involves switching between spin-up and -down

currents by selecting the magnetic state and/or impinging electron energy. This feature is no-

tably observed in the one-cell case. This is because symmetric up-down spin distributions in

the periodic ribbon become asymmetric in the non-periodic system, rendering different spin-up

and -down conductance curves. Electronic scattering is significant to the one-cell system, as

evidenced by peaks in the conductance versus energy plot. Finally, the properties of periodic

systems are gradually recovered by including more GNW cells in the on-cell system. The non-

periodic system gradually presents the features of a periodic system even for a small number of

sandwiched GNW cells (≈ 7) as sets of peaks steadily concentrate along energy ranges defined

by the periodic system’s plateaus. However, the formation of such sets is avoided for energies

close to the Fermi energy when we have semiconducting leads. We anticipate the present study

to provide an ideal bridge between the recently synthesized GNWs and their future develop-

ments into nanodevices.

Perspectives

While we believe that we have a good collection of promising results in this thesis, we see

a lot of interesting problems to be considered in the future.

As we showed in Chapters 5 and 6, the presence of multiple possible paths for the electronic

flow in toroidal structures allows to tune the electrical current by choosing the impinging elec-

tron energy and by selecting specific geometries. In the systems we studied, we restricted the

presence of defects to the joints. However, defects can play a broader influence on the transport

properties of carbon nanorings (specially when in an extended distribution), since they can act

as an additional tuning factor to obtain structures with desired physical properties. As stated in

Chapter 1, the production of structures with specific arrangement of defects is a developing area

at the experimental level and considering extended arrangements of defects in toroidal systems

is an interesting problem to be considered by us in the following of this thesis.

While the transport formalism used in this thesis is based on coherent (energy conserving)

scattering. The inclusion of decoherence effects is a problem of great importance as we start to

look at increasingly larger systems. Such effects have already been considered in nanostructured

systems [127] and definitely constitute a pertinent problem to be considered for both toroidal

structures and GNWs.
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We believe that our results on GNWs can be the nucleation point for a series of investi-

gations on both GNWs and GNW-based materials. Cai et al. demonstrated (in the paper that

motivated our study on nanowiggles) the viability of synthesizing not only GNWs, but also

multi-terminal GNW-junctions [4]. At the same time this is an important result by itself, it also

points a possible path to be followed in the investigation of GNW-based nanostructures. This

is because a multi-terminal joint is a natural system to be considered if one proposes to embed

such GNW systems into more complex systems. So, studying GNWs in more complex struc-

tures like multi-terminal junctions is among the problems we intend to give attention in future

studies.
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APPENDIX A -- Input examples for TBFOR

TBfor works with two input files. The First one contains the structure to be simulated and
other parameters needed for the calculation. Below we show an example:

system_label

1 1 10 0.2D0 3.84D0

2

1 12 1.1 3.0

2 12 1.1 3.0

100.000 0.000 0.000

0.000 100.000 0.000

0.000 0.000 12.780

2

0.000 0.000 0.000

0.000 0.000 0.500

20

1 0.000000000 2.459512147 -5.680000000

2 0.000000000 1.229756073 -4.970000000

2 0.000000000 3.689268220 -4.970000000

1 0.000000000 1.229756073 -3.550000000

2 0.000000000 3.689268220 -3.550000000

2 0.000000000 0.000000000 -2.840000000

1 0.000000000 2.459512147 -2.840000000

2 0.000000000 0.000000000 -1.420000000

2 0.000000000 2.459512147 -1.420000000

1 0.000000000 1.229756073 -0.710000000

1 0.000000000 2.459512147 5.680000000

2 0.000000000 1.229756073 4.970000000

2 0.000000000 3.689268220 4.970000000

1 0.000000000 1.229756073 3.550000000

2 0.000000000 3.689268220 3.550000000

2 0.000000000 0.000000000 2.840000000

1 0.000000000 2.459512147 2.840000000

2 0.000000000 0.000000000 1.420000000

2 0.000000000 2.459512147 1.420000000

1 0.000000000 1.229756073 0.710000000

The first line contains the label for structure. All the input files will be named with this

label followed by an extension.

The second line contains the number of k points along the directions of the reciprocal
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lattice vectors K1, K2 and K3, respectively. They are followed by the mixing parameter β (see

Chapter 2) and the value of the on-site repulsion from the Hubbard model (see Chapter 2).

Third line contains the number ns of species. The next ns lines contains the species iden-

tification (integers in increasing order), the number of neighbors to be counted for atoms from

this species, the minimum and the maximum distances, respectively, to the neighbors of this

species.

The following three lines contains the lattice vectors.

The next line determines the number nk of special points determining the path on the recip-

rocal space to plot the bands. The electronic bands will be interpolated along the lines defined

by these points. The next nk lines determine these special points, namely, the coordinates for

each point written in the basis K1, K2 and K3.

The following line contains the number na of atoms and the following na lines have the

species identification and the coordinates (x, y and z) for each atom.

The second input file has the TB parameters. If the species are numbered by 1, 2, 3, ..., we

insert the information for each species in that order. For species i we insert (in this order):

• Its site energy;

• Hopping for first neighbors for the interaction of species i with species i;

• Hopping for second neighbors for the interaction of species i with species i;

• Hopping for third neighbors for the interaction of species i with species i;

• Hopping for first neighbors for the interaction of species i with species i+1;

• Hopping for second neighbors for the interaction of species i with species i+1;

• Hopping for third neighbors for the interaction of species i with species i+1;

• ...

• Hopping for first neighbors for the interaction of species i with species ns;

• Hopping for second neighbors for the interaction of species i with species ns;

• Hopping for third neighbors for the interaction of species i with species ns;

Below is an example with 2 species:
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0.00D0 # Site energy for species 1

-3.20D0 # Hopping - 1st neighbors - species 1 and species 1

0.00D0 # Hopping - 2nd neighbors - species 1 and species 1

-0.30D0 # Hopping - 3rd neighbors - species 1 and species 1

-3.20D0 # Hopping - 1st neighbors - species 1 and species 2

0.00D0 # Hopping - 2nd neighbors - species 1 and species 2

-0.30D0 # Hopping - 3rd neighbors - species 1 and species 2

0.00D0 # Site energy for species 2

-3.40D0 # Hopping - 1st neighbors - species 2 and species 2

0.00D0 # Hopping - 2nd neighbors - species 2 and species 2

-0.30D0 # Hopping - 3rd neighbors - species 2 and species 2
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APPENDIX B -- Generating GNWs coordinates:
utility program

In this appendix we present a simple tool to generate atomic coordinates for the four achiral
GNW types. The main program unit is below:

PROGRAM wiggle

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Program to generate atomic coordinates for GNWs

! Written by Eduardo Costa Girao

! in September 7, 2011.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

USE wiggle_var

USE wiggle_tasks

IMPLICIT none

! Input data

CALL ask_gnw_type

CALL ask_wp

CALL ask_lp

CALL ask_wo

CALL ask_lo

! Determining parameters

CALL initial_parameters

CALL parallel_parameters

CALL oblique_parameters

CALL mixed_parameters

! creating the parallel part

CALL create_parallel

! creating the oblique part

CALL create_oblique

!making final

CALL assembling

!Writing output

CALL writting

!Number of atoms

CALL number_of_atoms

END PROGRAM wiggle

The variables are declared within the following module:

MODULE wiggle_var

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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! Module declaring the variables for wiggle.90

! Written by Eduardo Costa Girao

! in September 7, 2011.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

IMPLICIT none

SAVE

DOUBLE PRECISION:: yp1(100000),zp1(100000),yp2(100000),zp2(100000)

DOUBLE PRECISION:: yo1(100000),zo1(100000),yo2(100000),zo2(100000)

DOUBLE PRECISION:: yf(100000),zf(100000),yf2(100000),zf2(100000)

DOUBLE PRECISION:: pi,acc,a,theta,lattice,dr

DOUBLE PRECISION:: atmp0,btmp0,atmp1,btmp1,atmp2,btmp2

DOUBLE PRECISION:: basis1,basis2,basis3,basis4

DOUBLE PRECISION:: basis5,basis6,basis7,basis8

DOUBLE PRECISION:: base1,base2,base4,base5

DOUBLE PRECISION:: base6,base7,base8,param1

INTEGER:: Lp,Wp,Lo,Wo,i,j,par,obl,nat,unit,nattmp,ncells,tmp,tmp2

LOGICAL:: add

END MODULE wiggle_var

And the subroutines with the specific tasks called in the main program are contained in the
following module:

MODULE wiggle_tasks

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Module containing the subroutines for wiggle.90

! Written by Eduardo Costa Girao

! in September 7, 2011.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

USE wiggle_var

IMPLICIT none

SAVE

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

CONTAINS

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

SUBROUTINE ask_gnw_type

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Subroutine to determine the GNW type

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

USE wiggle_var

IMPLICIT none

PRINT*,'**************************************************'

PRINT*,'****************** WIGGLE PROGRAM ****************'

PRINT*,'**************************************************'

PRINT*,'Parallel Sector:' ; PRINT*,'A->1' ; PRINT*,'Z->2'

READ*,par

PRINT*,'Oblique Sector:' ; PRINT*,'A->1' ; PRINT*,'Z->2'

READ*,obl

PRINT*,'Number of cells'

READ*,ncells

END SUBROUTINE ask_gnw_type
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

SUBROUTINE ask_wp

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Subroutine to determine Wp

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

USE wiggle_var

IMPLICIT none

PRINT*,'Parallel Width:'

READ*,Wp

END SUBROUTINE ask_wp

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

SUBROUTINE ask_lp

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Subroutine to determine Lp

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

USE wiggle_var

IMPLICIT none

PRINT*,'Parallel Length:'

IF((par.eq.1).AND.(obl.eq.1).AND.(MOD(Lp,3).eq.0))THEN

PRINT*,'Lp has to be >1 and can not be a multiple of 3 for AA-GNWs'

ELSE IF((par.eq.1).AND.(obl.eq.2).AND.(MOD(Lp,3).ne.2))THEN

PRINT*,'Lp has to be 2 plus a multiple of 3 for AZ-GNWs'

ELSE

PRINT*,'Lp has to be >0 for ZA- and ZZ-GNWs'

END IF

READ*,Lp

IF((par.eq.1).AND.(obl.eq.1).AND.(MOD(Lp,3).eq.0))THEN

STOP 'Lp can not be a multiple of 3 for AA-GNWs'

END IF

IF((par.eq.1).AND.(obl.eq.2).AND.(MOD(Lp,3).ne.2))THEN

STOP 'Lp has to be 2 plus a multiple of 3 for AZ-GNWs'

END IF

END SUBROUTINE ask_lp

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

SUBROUTINE ask_wo

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Subroutine to determine Wo

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

USE wiggle_var

IMPLICIT none

PRINT*,'Oblique Width:'

IF((par.eq.1).AND.(obl.eq.1))THEN

PRINT*,'Wo has to be greater or equal to ',0.5*DFLOAT(1+Wp-Lp),'+Ymin'

READ*,Wo

tmp=MOD(2*Wo+Lp-Wp-1,3)

IF(tmp.eq.1) tmp2=1

IF(tmp.eq.2) tmp2=5

IF(tmp.eq.0) tmp2=3

IF((2*Wo+Lp-Wp-1).lt.tmp2)THEN
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PRINT*,'Wo has to be greater or equal to ',0.5*DFLOAT(1+Wp-Lp),'+Ymin'

STOP

END IF

ELSE IF((par.eq.1).AND.(obl.eq.2))THEN

PRINT*,'Wo has to be greater or equal to ',DFLOAT(2+3*Wp-Lp)/6.0

READ*,Wo

IF(Wo.lt.(DFLOAT(2+3*Wp-Lp)/6.0))THEN

PRINT*,'Wo has to be greater or equal to ',DFLOAT(2+3*Wp-Lp)/6.0

STOP

END IF

ELSE IF((par.eq.2).AND.(obl.eq.2))THEN

PRINT*,'Wo has to be greater or equal to ',DFLOAT(7+3*Wp-3*Lp)/6.0

READ*,Wo

IF(Wo.lt.(DFLOAT(7+3*Wp-3*Lp)/6.0))THEN

PRINT*,'Wo has to be greater or equal to ',DFLOAT(7+3*Wp-3*Lp)/6.0

STOP

END IF

ELSE IF((par.eq.2).AND.(obl.eq.1))THEN

PRINT*,'Wo has to be greater or equal to ',DFLOAT(1+3*Wp-Lp)/2.0

READ*,Wo

IF(Wo.lt.(DFLOAT(1+3*Wp-Lp)/2.0))THEN

PRINT*,'Wo has to be greater or equal to ',DFLOAT(1+3*Wp-Lp)/2.0

STOP

END IF

END IF

END SUBROUTINE ask_wo

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

SUBROUTINE ask_lo

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Subroutine to determine Lo

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

USE wiggle_var

IMPLICIT none

PRINT*,'Oblique Length:'

IF((par.eq.1).AND.(obl.eq.1))THEN

PRINT*,'Lo has to be 3i+',3-MOD(2*Wo+2*Lp-2*Wp-1,3)

READ*,Lo

IF(MOD(2*Wo+Lo+2*Lp-2*Wp-1,3).ne.0)THEN

PRINT*,'Lo has to be 3i+',3-MOD(2*Wo+2*Lp-2*Wp-1,3)

STOP

END IF

ELSE

READ*,Lo

END IF

IF(Lo.lt.Wp)THEN

STOP 'Lo can not be less than Wp'

END IF

END SUBROUTINE ask_lo

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

SUBROUTINE initial_parameters
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Subroutine to determine some initial

! parameters

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

USE wiggle_var

IMPLICIT none

pi=DACOS(-1.0D0)

acc=1.42

a=acc*DSQRT(3.0D0)

unit=100

nat=0

END SUBROUTINE initial_parameters

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

SUBROUTINE parallel_parameters

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Subroutine to determine some parallel

! sector parameters

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

USE wiggle_var

IMPLICIT none

IF(par.eq.1)THEN

base1=-acc ; base2=acc*3.0 ; base4=0.0D0 ; base5=acc*1.5D0

base6=a*0.5D0 ; base7=-acc ; base8=acc*0.5D0 ; param1=0.0D0

basis7=-acc*DFLOAT(Lp)*0.5D0 ; basis8=0.0D0

ELSE IF(par.eq.2)THEN

base1=-a*0.5D0 ; base2=a ; base4=acc/2.0 ; base5=a*0.5D0

base6=acc*1.5D0 ; base7=a*0.5D0 ; base8=0.0D0 ; param1=a*0.5D0

basis7=-a*DFLOAT(Lp+1)*0.5D0 ; basis8=-acc

END IF

END SUBROUTINE parallel_parameters

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

SUBROUTINE oblique_parameters

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Subroutine to determine some oblique

! sector parameters

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

USE wiggle_var

IMPLICIT none

IF(obl.eq.1)THEN

basis1=-acc ; basis2=acc*3.0 ; basis3=0.0D0

basis4=acc*1.5D0 ; basis5=a*0.5D0 ; basis6=0.0D0

ELSE IF(obl.eq.2)THEN

basis1=-a*0.5D0 ; basis2=a ; basis3=acc*0.5D0

basis4=a*0.5D0 ; basis5=acc*1.5D0 ; basis6=0.0D0

END IF

END SUBROUTINE oblique_parameters

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

SUBROUTINE mixed_parameters

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Subroutine to determine some mixed

! parameters
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

USE wiggle_var

IMPLICIT none

IF(par.eq.obl)THEN

theta=pi/3.0

atmp1=DSQRT(3.0D0)

atmp2=DSQRT(3.0D0)

ELSE

theta=pi/6.0

atmp1=DSQRT(3.0D0)/3.0D0

atmp2=DSQRT(3.0D0)/3.0D0

END IF

IF((par.eq.1).AND.(obl.eq.1))THEN

lattice=DFLOAT(2*Wo+Lo+2*Lp-2*Wp-1)*acc

IF(MOD(Lp,3).eq.2) basis6=acc

btmp1=-DFLOAT(2*Wo+Lp-2)*a*0.5D0-0.1D0

btmp2=-DFLOAT(Lp)*a*0.5D0+0.1D0

ELSE IF((par.eq.1).AND.(obl.eq.2))THEN

lattice=DFLOAT(6*Wo+3*Lo+2*Lp-6*Wp-1)*acc

btmp1=-DFLOAT(6*Wo+Lp-4)*a/6.0D0-0.1D0

btmp2=-DFLOAT(Lp)*a/6.0D0+0.1D0

ELSE IF((par.eq.2).AND.(obl.eq.2))THEN

lattice=DFLOAT(2*Wo+Lo+2*Lp-2*Wp)*a

btmp1=-DFLOAT(6*Wo+3*Lp-3)*acc/2.0D0-0.1D0

btmp2=-DFLOAT(3*Lp+1)*acc/2.0D0+0.1D0

ELSE IF((par.eq.2).AND.(obl.eq.1))THEN

lattice=DFLOAT(2*Wo+3*Lo+2*Lp-6*Wp-2)*a

btmp1=-DFLOAT(2*Wo+Lp-3)*acc*0.5D0-0.1D0

btmp2=-DFLOAT(Lp-1)*acc*0.5D0+0.1D0

END IF

END SUBROUTINE mixed_parameters

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

SUBROUTINE create_parallel

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Subroutine to create the parallel part

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

USE wiggle_var

IMPLICIT none

DO i=1,unit

zp1(2*i-1)=base1+DFLOAT(i-unit/2)*base2

zp1(2*i)=DFLOAT(i-unit/2)*base2

yp1(2*i-1)=base4

yp1(2*i)=0.0D0

END DO

DO i=2,Wp

zp1((i-1)*2*unit+1:2*unit*i)=zp1(1:2*unit)+DFLOAT(MOD(i+1,2))*base5

yp1((i-1)*2*unit+1:2*unit*i)=yp1(1:2*unit)+DFLOAT(i-1)*base6

END DO

IF(MOD(Lp,2).eq.0) zp1(1:2*unit*Wp)=zp1(1:2*unit*Wp)+base7

IF(MOD(Lp,2).eq.1) zp1(1:2*unit*Wp)=zp1(1:2*unit*Wp)+base8

zp2=zp1+DFLOAT(MOD(Lo-Wp,2))*base5

yp2=yp1-DFLOAT(Lo-Wp)*base6
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END SUBROUTINE create_parallel

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

SUBROUTINE create_oblique

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Subroutine to create the oblique part

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

USE wiggle_var

IMPLICIT none

DO i=1,unit

zo1(2*i-1)=basis1+DFLOAT(i-unit/2)*basis2

zo1(2*i)=DFLOAT(i-unit/2)*basis2

yo1(2*i-1)=basis3

yo1(2*i)=0.0D0

END DO

DO i=2,Wo

zo1((i-1)*2*unit+1:2*unit*i)=zo1(1:2*unit)+DFLOAT(MOD(i+1,2))*basis4

yo1((i-1)*2*unit+1:2*unit*i)=yo1(1:2*unit)+DFLOAT(i-1)*basis5

END DO

zo1(1:2*unit*Wo)=zo1(1:2*unit*Wo)+basis6

DO i=1,2*unit*Wo

atmp0=zo1(i) ; btmp0=yo1(i)

zo1(i)=atmp0*COS(theta)-btmp0*SIN(theta)

yo1(i)=atmp0*SIN(theta)+btmp0*COS(theta)

END DO

zo1(1:2*unit*Wo)=zo1(1:2*unit*Wo)+basis7

yo1(1:2*unit*Wo)=yo1(1:2*unit*Wo)+basis8

zo2(1:2*unit*Wo)=-zo1(1:2*unit*Wo)

yo2(1:2*unit*Wo)=yo1(1:2*unit*Wo)

END SUBROUTINE create_oblique

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

SUBROUTINE assembling

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Subroutine to assemble the GNW

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

USE wiggle_var

IMPLICIT none

DO i=1,2*unit*Wp

IF(((yp1(i)-atmp1*zp1(i)+btmp1).le.0).AND. &

((yp1(i)+atmp1*zp1(i)+btmp1).le.0).AND. &

(zp1(i).le.lattice*0.5D0+0.1).AND. &

(zp1(i).ge.-lattice*0.5D0+param1-0.1))THEN

nat=nat+1

yf(nat)=yp1(i) ; zf(nat)=zp1(i)

END IF

END DO

DO i=1,2*unit*Wp

IF((((yp2(i)-atmp2*zp2(i)+btmp2).ge.0).OR. &

((yp2(i)+atmp2*zp2(i)+btmp2).ge.0)).AND. &

(zp2(i).le.lattice*0.5D0+0.1).AND. &

(zp2(i).ge.-lattice*0.5D0+param1-0.1))THEN
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nat=nat+1

yf(nat)=yp2(i) ; zf(nat)=zp2(i)

END IF

END DO

DO i=1,2*unit*Wo

IF((yo1(i).lt.-0.1).AND.(yo1(i).gt.MAXVAL(0.1+yp2(1:2*unit*Wp))).AND. &

(zo1(i).le.lattice*0.5D0+0.1).AND. &

(zo1(i).ge.-lattice*0.5D0+param1-0.1))THEN

nat=nat+1

yf(nat)=yo1(i) ; zf(nat)=zo1(i)

END IF

END DO

DO i=1,2*unit*Wo

IF((yo2(i).lt.-0.1).AND.(yo2(i).gt.MAXVAL(0.1+yp2(1:2*unit*Wp))).AND. &

(zo2(i).le.lattice*0.5D0+0.1).AND. &

(zo2(i).ge.-lattice*0.5D0+param1-0.1))THEN

nat=nat+1

yf(nat)=yo2(i) ; zf(nat)=zo2(i)

END IF

END DO

nattmp=0

DO i=1,nat

add=.true.

DO j=1,i-1

dr=DSQRT((yf(i)-yf(j))**2+(zf(i)-zf(j))**2)

IF(dr.lt.0.1) add=.false.

IF(dr.lt.0.1) EXIT

END DO

IF(add)THEN

nattmp=nattmp+1

yf2(nattmp)=yf(i) ; zf2(nattmp)=zf(i)

END IF

END DO

nat=nattmp

yf(1:nat)=yf2(1:nat) ; zf(1:nat)=zf2(1:nat)

END SUBROUTINE assembling

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

SUBROUTINE writting

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Subroutine to write the xyz data

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

USE wiggle_var

IMPLICIT none

open(unit=1,file='wiggle.xyz')

write(1,*) nat*ncells

write(1,*)

DO j=1,ncells

DO i=1,nat

write(1,*) 'C', 0.0,yf(i),zf(i)+DFLOAT(j-1)*lattice

END DO

END DO

write(1,*)
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END SUBROUTINE writting

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

SUBROUTINE number_of_atoms

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Subroutine to calculate the number

! of atoms in the GNW

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

USE wiggle_var

IMPLICIT none

print*,nat

IF((par.eq.1).AND.(obl.eq.1))THEN

IF(((MOD(Lp,3).eq.2).AND.(MOD(Lo-Wp,3).eq.0)).OR.((MOD(Lp,3).eq.1).AND.(MOD(Lo-Wp,3).eq.2)))THEN

nat=2*(2*Wo+Lo+2*Lp-2*Wp-1)*Lo/3-2*(2*Lp+Lo-Wp-1)*(Lo-Wp)/3

ELSE IF((MOD(Lp,3).eq.2).AND.(MOD(Lo-Wp,3).eq.2))THEN

nat=2*(2*Wo+Lo+2*Lp-2*Wp-1)*Lo/3-2*(2*Lp+Lo-Wp)*(Lo-Wp-1)/3-4*(Lp+1)/3

ELSE IF((MOD(Lp,3).eq.2).AND.(MOD(Lo-Wp,3).eq.1))THEN

nat=2*(2*Wo+Lo+2*Lp-2*Wp-1)*Lo/3-2*(2*Lp+Lo-Wp+1)*(Lo-Wp-2)/3-8*(Lp+1)/3

ELSE IF((MOD(Lp,3).eq.1).AND.(MOD(Lo-Wp,3).eq.1))THEN

nat=2*(2*Wo+Lo+2*Lp-2*Wp-1)*Lo/3-2*(2*Lp+Lo-Wp)*(Lo-Wp-1)/3-4*(Lp-1)/3

ELSE IF((MOD(Lp,3).eq.1).AND.(MOD(Lo-Wp,3).eq.0))THEN

nat=2*(2*Wo+Lo+2*Lp-2*Wp-1)*Lo/3-2*(2*Lp+Lo-Wp+1)*(Lo-Wp-2)/3-2*(2+4*(Lp-1)/3)

END IF

ELSE IF((par.eq.1).AND.(obl.eq.2))THEN

nat=2*(6*Wo+3*Lo+2*Lp-6*Wp-1)*Lo/3-2*(2*Lp+3*Lo-3*Wp-1)*(Lo-Wp)/3

ELSE IF((par.eq.2).AND.(obl.eq.2))THEN

nat=2*(2*Wo+Lo+2*Lp-2*Wp)*Lo-2*(2*Lp+Lo-Wp)*(Lo-Wp)

ELSE IF((par.eq.2).AND.(obl.eq.1))THEN

nat=2*(2*Wo+3*Lo+2*Lp-6*Wp-2)*Lo-2*(2*Lp+3*Lo-3*Wp-2)*(Lo-Wp)

END IF

print*,nat

END SUBROUTINE number_of_atoms

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

END MODULE wiggle_tasks



219

APPENDIX C -- Publications
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• E. C. Girão, A. G. Souza Filho, V. Meunier. “Electronic transport properties of carbon

nanotoroids”. Nanotechnology 22(7), 075701 (2011).

• E. C. Girão, A. G. Souza Filho, V. Meunier. “Electronic transmission selectivity in mul-

titerminal graphitic nanorings”. Applied Physics Letters 98(11), 112111 (2011).

• E. C. Girão, L. Liang, E. Cruz-Silva, A. G. Souza Filho, V. Meunier. “Emergence of

atypical properties in assembled graphene nanoribbons”. Physical Review Letters 107,

135501 (2011).
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