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“The first principle is that you must not fool yourself.

And you are the easiest person to fool.”

– Richard P. Feynman





Abstract

In this thesis we study the influence of external confinement potentials on the dynamical prop-

erties of soft condensed matter systems. We analyze the diffusive properties of two specific

systems by means of Langevin and Brownian Dynamics simulations. In Chapter1, we intro-

duce the subject of soft condensed matter. We show several theoretical and experimental aspects

of these type of systems. We make a brief introduction to the topic of diffusion (Sec.1.5), where

we discuss main aspects of Brownian motion. We introduce thesingle-file diffusion (SFD) prob-

lem (Sec.1.5.3) and discuss it in the context of soft condensed matter systems, both theoretically

and experimentally. In Chapter2, we introduce the computational method used in this thesis.

We discuss Molecular Dynamics (MD) and its variants, Langevin and Brownian Dynamics sim-

ulations. We also introduce numerical algorithms used in the following chapters. In Chapters

3, 4 and5, we analyze two different systems, namely (i) a system of interacting Yukawa parti-

cles confined in a parabolicquasi-one-dimensional (q1D) channel and (ii) a system of magnetic

colloidal particles under the influence of both a parabolic confinement potential and a periodic

external modulation along the unconfined direction. In the former, we study the transition from

the single-file diffusion (SFD) regime to the two-dimensional (2D) diffusion regime. In the lat-

ter, we study the influence of several parameters that characterizes the system,e.g., the strength

of an external magnetic field and the periodic modulation along the unconfined direction, on its

dynamical properties. Finally, we present the summary of the main findings reported in this the-

sis and we show some open questions as perspectives for future research in the field of diffusion

in soft condensed matter systems.

Key-words: soft condensed matter. colloids. computer simulation.





Resumo

Nesta tese estudamos a influência de potenciais de confinamento externos nas propriedades

dinâmicas de sistemas de matéria condensada mole. Analisamos as propriedades difusivas

de dois sistemas específicos utilizando simulações computacionais (Dinâmica Molecular de

Langevin e Dinâmica Browniana). No Capítulo1, introduzimos o tópico sobre matéria conden-

sada mole. Mostramos vários aspectos teóricos e experimentais neste tipo de sistema. Fazemos

uma breve introdução ao tópico de difusão (Sec.1.5), onde discutimos os principais aspectos do

movimento Browniano. Introduzimos o problema de difusão emlinha (SFD, do inglêssingle-

file diffusion) (Sec.1.5.3) e o discutimos, teorica e experimentalmente, no contexto de sistemas

de matéria condensada mole. No Capítulo2, introduzimos os métodos computacionais utiliza-

dos nesta tese. Discutimos os métodos de Dinâmica Moleculare suas variantes, o método de

Dinâmica de Langevin e Dinâmica Browniana. Também introduzimos algoritmos de integração

utilizados nos capítulos posteriores. Nos Caps.3, 4 e 5, analisamos dois sistemas distintos, (i)

um sistema de partículas de Yukawa confinadas em um canal parabólico quasi-unidimensional

(q1D) e (ii) um sistema de colóides magnéticos sob a influência de um potencial parabólico

e uma modulação periódica externa ao longo da direção não confinada. No primeiro sistema,

estudamos a transição do regime de difusão em linha (SFD) para o regime de difusão normal

(2D). No segundo sistema, estudamos os efeitos de vários parâmetros que caracterizam o sis-

tema (e.g., a magnitude do campo magnético externo e a presença da modulação periódica

externa) em suas propriedades dinâmicas. Finalmente, apresentamos um sumário dos princi-

pais resultados obtidos nesta tese e mostramos algumas questões em aberto como perspectivas

para pesquisas futuras na área de difusão em sistemas de matéria condensada mole.

Palavras-chave: matéria condensada mole. colóides. simulação computacional.





Samenvatting

In deze thesis werd de invloed van uitwendig aangelegde inperkingspotentialen onderzocht op

de dynamische eigenschappen van zacht gecondenseerde materie systemen. De diffusie ei-

genschappen van twee specifieke systemen werden onderzochtdoormiddel van Langevin en

Brownse dynamische simulaties. In Hfst.1 wordt het onderwerp van zacht gecondenseerde

materie geintroduceerd. Verschillende theoretische en experimentele aspecten van dit type van

systemen worden vermeld. Ook wordt er een korte inleiding gegeven van het onderwerp diffu-

sie (Sec.1.5), waar de verschillende hoofd aspecten van Brownse beweging worden vermeld.

Het probleem van ‘single file’ diffusie (SFD) (Sec.1.5.3) wordt geintroduceerd en besproken in

de context van zacht gecondenseerde materie systemen, zowel theoretisch als experimenteel. In

Hfst. 2, wordt de computationele methode besproken die in deze thesis werd aangewend. We

bespreken de Moleculaire Dynamica (DM) simulatie methode en de varianten zoals Langevin

and Brownse dynamische simulaties. De numerieke algoritmen die in de volgende hoofstukken

worden aangewend worden geintroduceerd. In de Hfst.3, 4 en5 analyzeren we twee verschil-

lende systemen, namelijk: (i) een systeem van interagerende Yukawa deeltjes die opgesloten

zijn in een parabolische kwasi-één-dimensionaal (q1D) kanaal, en (ii) een systeem van mag-

netisch colloidale deeltjes onder de invloed van een parabolische inperkingspotentiaal en een

periodisch externe modulatie langs de vrije richting. In het eerste systeem bestuderen we de

overgang van het ‘single-file’ diffusie regime naar het twee-dimensionaal diffusie regime. We

bestuderen de invloed van de verschillende parameters die het systeem karakteriseren, bijv. de

sterkte van het uitwendig magneetveld en de aanwezigheid van een periodische modulatie langs

de vrije richting op de dynamische eigenschappen. Eindelijk, presenteren we de overzicht van

de thesis en we vermelden een aantal open vragen die interessant zijn voor toekomst onderzoek

in het gebied van diffusie van zacht gecondenseerde materiesystemen.

Sleutelwoorden: zachte gecondenseerde materie. colloïden. computersimulatie.
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1 Soft condensed matter

In this chapter we introduce the topic of Soft Condensed Matter. We define colloidal disper-

sions and we give motivation for using these particles as model systems for testing theoretical

predictions of statistical physics. Many of the ideas presented here can be found in the follow-

ing much more specialized textbooks: “Soft condensed matter” by R. A. L. Jones and “Soft

matter physics” by Masao Doi.

1.1 General considerations

Condensed matter physics is a discipline in the field of Physical Sciences which studies the

physical properties of condensed phases of matter (1). It is mainly concerned in addressing

problems related to liquid and solid systems, but it also deals with different condensed phases

as, for instance, the Bose-Einstein condensate (BEC) in cold atomic systems (2) and the super-

conducting phase (3) found in low temperature materials.

However, there is a variety of materials found in nature which do not fall into the cat-

egory of either simple liquids or crystalline solids. For instance, glues, paints, soaps, and col-

loidal gels (Fig.1) are examples of these type of materials. They are usually referred to assoft

condensed mattersystems (4) or soft matter, for short. These systems are formed of colloidal

particles (solute) which are dispersed in another liquid (solvent). For example, fat and proteins

in milk are types of colloidal dispersions (∼ 0.1 µm of diameter) embedded in water.

All of these soft matter systems share some common characteristics. For example, the

characteristic length scale of colloidal dispersions is inan intermediate regime between the

atomic scale and the macroscopic scale. It is therefore usual to refer to colloidal dispersions

as a class ofmesoscopicsystems. The diameter of the colloidal particles ranges between 10

nm and 10µm. Another feature is that the common physical properties ofthese materials (e.g.,

self-assembly and non-linear response to external perturbations) are related to the fact that the

energy scales involved are of the order of the thermal energy, kBT. This means that quantum

effects do not play an important role in the properties of soft matter systems, which make them

strong candidates for testing theoretical models in statistical physics using relatively simple

experimental setups.



30 Chapter 1. Soft condensed matter

Figure 1 – Examples of soft condensed matter systems. Top panel: (left) Paints, and (right)
powder soap. Bottom panel: (left) A colloidal gel dispersion, and (right) glue.

1.2 Colloidal dispersions

A colloidal particle of diameter∼ 1 µm at room temperatureT = 300 K in water has a charac-

teristic relaxation time1 τs ∼ 1 s. Therefore, the dynamics of this particle can be time resolved

using an experimental technique calledvideo microscopy, which consists in recording the parti-

cle’s trajectory to extract useful information not only about the dynamics of the particle itself,

but also about the fluid properties in which it is embedded in.

On the other hand, in atomic systems, where particles have a diameter of a few angstroms,

the characteristic relaxation time is of the order ofτs ∼ 10−9 s, which is too short for time-

resolved experiments with atomic resolution. In principleit is also possible to study atomic

systems by means of atomic force microscopy (AFM), but colloidal dispersions are usually

more simple and flexible. The main experimental tools to study the static and dynamical proper-

ties of colloidal suspensions are static and dynamic light scattering (SLS and DLS, respectively)

(5, 6).

Furthermore, mesoscopic systems can be much more easily tuned in experiments. The

interaction of colloids with external fields and the inter-particle interaction potential between

1 This is called the structural relaxation time, which is the time needed for a particle to diffuse a distance
comparable with its diameter.
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pairs of colloids are customizable in order to allow the study of different basic physical problems

in statistical physics. For instance, colloidal crystals show similar diffraction patterns (7) as X-

ray diffraction in atomic systems. One could also, for example, use colloidal crystals as model

systems to study kinetics of crystallization (8, 9), a much more difficult task to achieve using

atomic systems.

Figure 2 – Schematic representation of polystyrene colloidal particles of radiusR= 1.4 µm
dispersed in heavy water (D2O) and confined by external laser beams. Taken from
Ref. (10).

As stated above, one major advantage of using colloidal particles as model systems

to study theoretical predictions of statistical physics isthe possibility to tune inter-particle in-

teraction potentials. For instance, colloids can interactthrough a screened Coulomb potential

(commonly known as the Yukawa potential) or through a dipole-dipole potential, just to cite a

few. In the first case, the strength of interaction between colloids can be tuned by changing the

salt concentration of the solution in which the particles are moving in. In the second case, the

magnetic interaction (dipole-dipole) can be adjusted by introducing an external magnetic field

which induces a magnetic dipole moment inside the colloidalparticles. The strength of this

interaction is then proportional to the magnitude of the external magnetic field. The Yukawa po-

tential has an exponential decay form,V(r) ∝ exp(−r/λD)/r and the dipole-dipole interaction

has a 1/r3 dependence, wherer is the center-to-center distance between a pair of colloidsand

λD is the so-called Debye screening length (11).

Besides the tuning of the inter-particle interaction potential by adjusting external param-

eters, it is also possible to experimentally control the interaction of colloidal particles with exter-

nal fields (cf. Fig.2). For instance, colloidal dispersions can be placed on the top of modulated

(either periodic or random) substrates which are created byusing,e.g., light fields (10, 12, 13).

Furthermore, several types of external potential shapes can be also realized experimentally by

using topographic patterns (14, 15).

One of the devices used to experimentally trap colloidal charged particles is called a

Penning trap, where both an electric and a magnetic field are used to confined the particles.

This device usually has a cylindrical symmetry (Fig.3) and batteries are placed on the tips of

the cylinder to produce the external fields (16). An additional laser beam is used to decrease the
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temperature of the system to very low values, where liquid and crystal phases are found.

Figure 3 – (a) Schematic representation of a Penning trap, where charged particles are confined
by using electric and magnetic fields. (b) Sketch of the experiment used to confine
the particles and (c) image of the actual device used in the experiments of Ref. (16).

1.3 Pair interaction between colloidal particles

1.3.1 van der Waals forces

In general, colloidal particles interact with each other through van der Waals forces. In the

case of the spherical particles, the van der Waals potentialis given by the analytical expression

(17, 18)

V(r i j ) =−C

[
2R2

r2
i j −4R2

+
2R2

r2
i j

+ ln

(
1+

4R2

r2
i j

)]
, (1.1)

wherer i j is the center-to-center distance between a pair of particles i and j, R= σ/2 is the

radius of each particle, andC is a constant that depends on the type of colloidal particle and

the medium where it is embedded2. Note that the negative sign in Eq. (1.1) indicates that this

interaction is strongly attractive and therefore colloidal particles tend to stick together, which

is known as the coagulation effect. In order to study different kind of effects other than the

coagulation, it is of course desirable to have stabilized colloidal suspensions. This is mainly

achieved by introducing repulsive interaction between theparticles, which can be done,e.g., by

electrostatic stabilization techniques (19).
2 For instance, for polystyrene particles dispersed in water, C≈ 0.23×10−20 J.
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1.3.2 Debye-Hückel inter-particle interaction potential

The surface of a colloidal particle is covered by molecules which are electrically neutral. How-

ever, when a colloidal particle is dispersed in water (for instance) the positive charged counter

ions of the molecules are dissolved due to water molecule polarization (20). Therefore, the

surface of the particle is negatively charged and the entropy tends to spread the ions over the

whole volume. When equilibrium is reached, the balance between energy and entropy creates

an electric double layer (21). This layer consists of the positively charged cloud of counter

ions around the colloidal particle and the negatively charged surface of the colloidal particle

itself. Therefore, the cloud of counter ions around the particle is responsible for screening the

interaction between colloidal particles.

Figure 4 – (a) Schematic representation of the electric double layer, which consists of the posi-
tively charged cloud of counter ions around the colloidal particle and the negatively
charged surface (total chargeZ) of the colloidal particle. (b) Two colloidal particles
interact with each other through a repulsive inter-particle interaction potential which
is screened by the cloud of counter ions. Taken from Ref. (20).

In order to calculate the inter-particle interaction potential for this case, the Poisson-

Boltzmann (PB) equation

ε0εW∇2φ(r) ∝ exp

(
−zieφ(r)

kBT

)
, (1.2)

can be solved analytically (11) in the first-order approximation case (i.e., by linearization of the

PB equation). By doing so, one gets the potentialφ(r) created by a colloidal particle at a point

r in space as

φ(r) =
Ze

4πε0εW

exp(σ/2λD)

(1+σ/2λD)

exp(−r/λD)

r
, (1.3)

whereZ is the total charge (in units of the elementary chargee) on the surface of the colloidal

particle,ε0 andεW are the permittivity of vacuum and water, respectively. TheDebye screening

length is given byλ−1
D =

√
ε0εWkBT/s with s= ∑i(ez2i )ci (zi andci are the valence and the

bulk concentration of the counter ions of typei, respectively). Linear superposition of Eq. (1.3)

leads to the well-known Debye-Hückel (22) inter-particle interaction potential

V(r i j ) =
(Ze)2

4πε0εW

(
exp(σ/2λD)

(1+σ/2λD)

)2 exp(−r i j/λD)

r i j
, (1.4)
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for a pair of colloidal particlesi and j separated by a distancer i j . Note that the screening effect

is directly related to the concentration of ions present in the sample,i.e., λ−1
D ∝ 1/

√
s. Therefore,

it is possible to experimentally tune the inter-particle interaction potential by adjusting the salt

(ions) concentration of the sample, as previously stated.

Note that, as opposed to the potential of Eq. (1.1), the Debye-Hückel potential is pos-

itive, which means the interaction between particles is repulsive. Consequently, experimental

techniques such as the electrostatic stabilization are mainly based on the adjustment of the salt

concentration of the samples. These adjustments prevent particles agglomeration and allows the

creation of well-defined 2D and 3D lattices of colloidal suspensions,e.g., nanocrystals (23, 24).

1.4 Structural and dynamical properties of colloidal dispersions

1.4.1 Wigner crystals

In 1934, physicist Eugene Wigner predicted that a gas of electrons could present a phase transi-

tion from a liquid phase to a solid (crystalline) structure (25). This solid phase is now usually

called aWigner crystal. The main physical mechanism behind this effect is that for acertain

value below a critical density (n< nc), the potential energy of the electrons dominates over the

kinetic energy. Therefore, the spatial arrangement of the electrons becomes very important. In

3D, the electrons form a body-centered cubic (bcc) structure. In 2D, they form a triangular

lattice (Fig.5) and in 1D, the electrons become evenly spaced.

The first experimental observation of the Wigner crystallization of electrons was re-

ported by Grimes and Adams (27) in 1979. They found that, under certain circumstances,

electrons deposited on a 2D substrate of liquid helium wouldarrange themselves in a triangular

lattice, just like predicted by Wigner.

More recently, in 2009, an experimental and numerical study(28) also reported the

formation of Wigner crystal structures using trapped electrons on the surface of liquid helium.

Even more, by experimentally manipulating electrons one byone, the authors were able to

calculate the energy spectrum to add (or to extract) one electron from the trap with occupation

numberN. Depending onN, the system of electrons would arrange itself into ring structures.

Previously, in 1994, Bedanov and Peeters (26) showed a theoretical prediction of the formation

of these ring structures (Fig.6) by means of numerical and analytical calculations.

Nowadays, Wigner crystals are also referred to as crystal phases found in non-electronic

systems (e.g., soft condensed matter systems) at low density regimes. Forinstance, these phases

have been observed experimentally in dusty plasmas (31). In this experiment, dust particles

dispersed in a weakly ionized argon plasma acquire a negative charge (due to the ions present

in the plasma) on their surfaces (Fig.7) and become strongly repulsive. Similar to the colloidal
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Figure 5 – A 2D system ofN = 230 electrons confined by a parabolic trap and interacting
through a repulsive potential tend to form a Wigner crystal in the center. However,
some defects can appear due to the competition between the confinement potential
(trap) and the repulsion between the particles. Also, particles in the borders tend to
be accommodated in a distorted triangular lattice. Taken from Ref. (26).

particles in water (Sec.1.3.2), the interaction between dust particles is also screened by a double

electric layer. Since the inter-particle interaction potential between these particles is similar to

the one presented in Eq. (1.4), there has been a large number of theoretical and experimental

investigations about the Wigner crystallization phenomenon using soft condensed matter as

model systems.

1.5 Diffusion and Brownian motion

1.5.1 Diffusion equation

Diffusive processes occur frequently in nature and they aredirectly related to the transport of

any given physical quantity in space and time. For instance,the transport of molecules in a fluid

(molecular diffusion), the heat conduction in a metal bar (heat diffusion) and the movement of a

suspended particle in a viscous fluid (Brownian motion) are afew examples of known diffusive

processes.

One of the first mathematical description of a diffusion phenomenon was due to the

French mathematician Joseph Fourier, in hisThéorie analytique de la chaleur(The Analytic

Theory of Heat) published in 1822. He studied the heat conduction through a metal bar and

showed (32) that the temperature profileu(x, t) of a 1D homogeneous metal bar obeys a heat
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Figure 6 – A series of Wigner crystal structures showing the arrangement of electrons in a cir-
cular island from an occupation number ofN = 3 to N = 100. The electrons form
ring structures as more electrons are added. For largeN, a triangular Wigner lattice
forms in the center, while the outer electrons remain in rings. Taken from Ref. (29),
illustration by Alan Stonebraker.

equation of the form

∂
∂ t

u(x, t) = DT
∂ 2

∂x2u(x, t), (1.5)

whereDT is known is as the thermal diffusion coefficient and it is a material-specific quantity.

In 1855, German physician Adolf Fick published his work on particle diffusion and

established what is known today as the Fick’s laws of diffusion. The first Fick’s law states that

the flux of molecules always goes from regions in space of highconcentration of particles to

regions of lower concentration, across a gradient of concentration. In mathematical terms, this

law is written as

jjj =−D(c)∇∇∇c(rrr , t), (1.6)

where jjj is flux (amount of matter per unit area per unit time),D(c) is the diffusion coefficient

which may depend on the concentration profilec(rrr , t). Note that the negative sign in Eq. (1.6)

comes from the postulate that the flux of molecules goes from the regions of higher to lower con-

centrations, as stated above. Considering the simplest situation where the continuity equation
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Figure 7 – Representation of a dusty plasma. The free positive ions in the plasma adhere to
the surface of the dust particles creating a strong electrostatic repulsive interaction
between these particles. Taken and adapted from Ref. (30).

∂
∂ t

c(rrr , t)+∇∇∇ · jjj = 0, (1.7)

is valid (there are no sinks or sources,i.e., there is no effective creation or destruction of matter),

the combination of Eqs. (1.6) and (1.7) leads to a similar diffusion equation as obtained by

Fourier
∂
∂ t

c(rrr, t) = ∇∇∇ · (D(c)∇∇∇c(rrr , t)). (1.8)

Note that if the diffusion constant is independent of the concentration profilec(rrr, t), Eq. (1.8)

reduces to
∂
∂ t

c(rrr, t) = D∇2c(rrr, t), (1.9)

which is similar to the heat diffusion equation and also usually called the second Fick’s law.

A solution to Eq. (1.9), considering an initial conditionc(rrr,0) = δ (rrr − rrr0) (whererrr0 is the

initial position of the concentration of particles) and assuming isotropy of space, is given by a

Gaussian propagator (33)

c(rrr, t) =
1

h(t)
exp

(
−|rrr − rrr0|2

m(t)

)
, (1.10)

where3 h(t) ∝
√

t andm(t) ∝ t.

From the distributionc(rrr, t) it is possible to calculate its moments. The first two mo-

ments are the commonly studied ones, i.e., the average displacement

〈r〉=
∫ ∞

−∞
r c(rrr, t)dV, (1.11)

3 For instance, in the 1D case,h(t) =
√

4πDt andm(t) = 4Dt.
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and the mean square displacement (MSD)

〈r2〉=
∫ ∞

−∞
r2c(rrr, t)dV. (1.12)

These quantities are important because they can be obtainedthrough experiments. Furthermore,

they are directly related to macroscopic quantities, such as temperature and viscosity, as we will

show in the following.

1.5.2 Brownian motion

The random movement of suspended particles on a fluid was firstobserved by Scottish botanist

Robert Brown in his workA Brief Account of Microscopical Observations(34) published in

1828, where he reported the irregular motion of pollen grains in water. Brown was intrigued by

the phenomenon but could not explain it in terms of any previously known theory at the time.

Much longer after Brown’s reports, in 1888, the French physicist Louis-Georges Gouy

made some important remarks about these random movements. Among these remarks, we cite a

few: (i) The motion is extremely irregular (Fig.8), the trajectory seems to be not differentiable,

and the motion never ceases; (ii) the motion is most active4 in less viscous liquids; (iii) the

motion is most active at higher temperatures.

Figure 8 – Trajectory of a particle executing a Brownian movement. Note that the movement is
very irregular and experiments by Robert Brown showed that the movement is most
active in less viscous liquids and less active for lower temperatures.

These observations were important for the later development of a Brownian motion

theory by Albert Einstein (35) published in 1905 and subsequent independent works by Paul

Langevin (36) in 1908, Marian Smoluchowski (37) in 1915, and others.

4 In this context, “active” means that the particle experiences larger displacements from a given origin in the
same time interval.
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The Einstein theory of Brownian motion is based on the arguments presented now. Con-

sider a set ofN independent (non-interacting) particles performing successive random displace-

ments. In the time intervalτ, the coordinates of each particle are changed by∆x = ε. The

fraction of particles which changes their positions between x andx+ε in the time intervalτ can

be expressed by
dN
N

= p(ε)dε, (1.13)

wherep(ε) is a distribution of displacements. It is evident that this distribution must obey the

normalization condition ∫ ∞

−∞
p(ε)dε = 1. (1.14)

The concentration of particles (number of particles per unit length) isc(x, t). Let us now

calculate the distribution of particles at a timet + τ from their previous distribution at instantt.

By the definition ofp(ε), the number of particles in the intervalx andx+ ε at the instantt + τ
is

c(x, t + τ)dx= dx
∫ ∞

−∞
c(x+ ε, t)p(ε)dε. (1.15)

If we consider that the time intervalτ is sufficiently small and that the displacementε is also

small, we can expandc(x, t) in powers ofτ andε up to second order. By doing so and replacing

the results into Eq. (1.15), we get

c(x, t)+
∂c(x, t)

∂ t
τ +

∂ 2c(x, t)
∂ t2

τ2

2
= c(x, t)

∫ ∞

−∞
p(ε)dε+

+
∂c(x, t)

∂x

∫ ∞

−∞
ε p(ε)dε +

∂ 2c(x, t)
∂x2

∫ ∞

−∞

ε2

2
p(ε)dε.

(1.16)

From the normalization condition [Eq. (1.14)] and from the fact that the second term on

the r.h.s. of Eq. (1.16) vanishes5, we obtain the following differential equation for the concen-

trationc(x, t)
τ
2

∂ 2c(x, t)
∂ t2 +

∂c(x, t)
∂ t

= D
∂ 2c(x, t)

∂x2 , (1.17)

whereD is defined by the expression

D ≡ 1
τ

∫ ∞

−∞

ε2

2
p(ε)dε. (1.18)

In the limit where the concentration of particles varies very slowly in time (∂
∂ t c(x, t)≫ τ ∂ 2

∂ t2c(x, t)),

we can drop the first term on the l.h.s. of Eq. (1.17) and find

∂
∂ t

c(x, t) = D
∂ 2

∂x2c(x, t), (1.19)

5 From the construction of the functionp(ε), it is clear that it must be an even function (otherwise the nor-
malization condition would not be satisfied),i.e., p(ε) = p(−ε). Therefore, sinceε p(ε) is an odd function,∫ ∞
−∞ ε p(ε)dε = 0.
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which is the same as the second Fick’s law [Eq. (1.9)]. Therefore, by this analysis, Einstein

showed that the movement of the now called Brownian particles in a viscous fluid is governed

by a diffusion equation. The solution of this equation is given by Eq. (1.10) and in a 1D system

of non-interacting particles, the propagatorc(x, t) has the exact form (33)

c(x, t) =
1√

4πDt
exp

(
−|x−x0|2

4Dt

)
, (1.20)

which is a Gaussian aroundx0 and has a width proportional to the diffusion coefficientD. Plug-

ging Eq. (1.20) into Eq. (1.12) one obtains the well-known result (38)

〈x2(t)〉 ≡W(t) = 2Dt, (1.21)

which shows that the mean square displacement of a Brownian particle in a fluid grows linearly

in time6. This is usually called the normal diffusion regime sometimes also known as Einstein

(or Fickian) diffusion.

1.5.3 Single-file diffusion (SFD)

In 1955, physiologists Hodgkin and Keynes (39) were studying the passage (dynamics) of

molecules through narrow pores. These channels were so narrow that molecules could only

enter one by one, and therefore they would conserve the original sequence of molecules in a file.

This 1D process is now referred to as the single-file diffusion (SFD) problem.

As opposed to 2D and 3D diffusion, where normal diffusion (Einstein or Fickian dif-

fusion) is expected, i.e., the mean square displacement of atagged particle in the long-time

limit grows linearly in time (W(t) ∝ t), the dynamics of a tagged particle in a file of interacting

particles exhibits anomalous diffusion, i.e.,

W(t) = 2F
√

t, (1.22)

whereF is the so-called single file diffusion mobility.

The first mathematical description of the SFD problem was introduced in the seminal

paper of Harris (40), in 1965, where he obtained the result of Eq. (1.22). The model of Harris

consisted in the following. ConsiderN point-like particles diffusing in a 1D infinite straight line

with the fixed conditionx1(t)< x2(t)< ... < xN−1(t)< xN(t) for all timest ≥ 0. This condition

implies that the particles are not allowed to pass each other7. Harris showed that the probability

distribution of a tagged particle is given by a Gaussian propagator, similar to the one described

in Eq. (1.20) but where the width of the distribution is proportional to the square root of time,

6 This result holds at long-times,i.e., t → ∞.
7 The model of Harris also assumed periodic boundary conditions and that particles interact through a hard-core

potential.
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i.e.,

PT(xT, t)∼
1√

2π〈x2
T(t)〉

exp

(
− x2

T

2〈x2
T(t)〉

)
, (1.23)

with

〈x2
T(t)〉= (2/ρ)

√
Dt/π as t → ∞, (1.24)

whereρ is the average density of particles (in an uniform system, 1/ρ is the average distance be-

tween neighboring particles) andD is the diffusion coefficient. Note that comparing Eqs. (1.22)

and (1.24), one arrives at

F =
1
ρ

√
D
π
, (1.25)

which relates the single-file diffusion mobility with the diffusion coefficient.

Figure 9 – (a) Circular narrow channels created by photolithography. (b) Image of the channels
with the particles (black dots) inside. Taken from Ref. (41).

Eq. (1.24) is the main result of the theory of SFD and it has been obtained analytically

(42, 43, 44, 45, 46, 47, 48, 49, 50) by several different approaches. Furthermore, it has also

been observed experimentally in different contexts, including in soft matter systems (colloidal

dispersions) (41, 51, 52) and in NMR (nuclear magnetic resonance) studies of diffusion in

zeolites (53, 54). The heuristic argument to justify the anomalous diffusive behavior reported

by Harris is that the dynamics of a tagged particle in a file arecorrelated with its neighboring

particles due to the special geometric constraint (i.e., the single-file condition). This means that

for a given particle to diffuse a certain distance its neighbors also needed to have diffused the

same amount.

For instance, one of the first experimental evidences of the anomalous diffusion behavior

[Eq. (1.22)] was reported by Weiet al. (41) in 2000. In this experiment, the authors constructed

1D circular narrow channels by a photolithography process (Fig. 9) where super-paramagnetic

colloidal particles where dispersed to diffuse. The 3.6 µm diameter particles were subjected to

Brownian motion (thermal bath) and the narrow channel was constructed so that the single-file
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condition was fulfilled, i.e., particles could not pass eachother. Besides, the interaction between

particles was controlled by an external magnetic field, which induced a magnetic moment to

each particle. By following the trajectories of the particles over long periods of time with a

video microscopy technique, the authors showed that the mean square displacement of a tagged

particle followed Eq. (1.22) and its probability distribution was given by Eq. (1.23).

The single-file diffusion mobility factor,F, has also been extensively investigated, both

theoretically and experimentally. In the seminal work of Kollmann (46), the author showed

analytically that, regardless of the inter-particle interaction potential, the SFD law is always

obtained. Kollmann imposed some restrictions in his model:the inter-particle potential has to

be of finite range and the system must be homogeneous and in theliquid state. Another result

of Kollman’s work was relation betweenF and the structure factorS(q), given by

F =
1
ρ

√
DS(q)|q→0

π
, (1.26)

whereS(0)=S(q)|q→0 is the structure factor calculated in the limit of long wavelengths (q→ 0).

The transition from a liquid to a solid-like state in a 1D colloidal system has been recently

analyzed by Herrera-Velardeet al. (55). For finite-size particles (with diameterσ ) interacting

through a hard-core potential, Lizana and Ambjörnsson showed (56) that F = 1−ρσ
ρ
√

D/π ,

which reduces to the point-like particle (σ = 0) case [Eq. (1.25)]. Last but not least, Leibovich

and Barkai recently showed (57) thatF depends on the initial conditions of the system.
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2 Computer simulation

In this chapter we will discuss briefly some aspects about computer simulation. We will present

methods commonly used in simulations, for instance, the Molecular Dynamics (MD) method,

as well as variations of this method, specifically Langevin Dynamics (LD) and Brownian Dy-

namics (BD). Although we try to cover a fair amount of information on the subject, the reader

is referred to much more specialized and complete texts,e.g., “Molecular Dynamics Simula-

tions”, by J. M. Haile, “The Art of Molecular Simulations” byD. C. Rapaport, and “Computer

Simulation of Liquids” by M. P. Allen.

2.1 Introduction

Computer simulation techniques were initially developed during the World War II, mainly

through the Manhattan Project1 in order to model nuclear detonation processes. However, due

to the fast development of the electronic industry and the facilitation of access to personal

computers (PCs), computer simulations started to be used inseveral other areas of scientific

research, specially in the mathematical modeling of physical, chemical and biological systems,

market analysis in economic sciences, social sciences (vote models, disease spreading, etc), and

engineering processes of new technologies.

Computational physics, a discipline which uses numerical algorithms to simulate phys-

ical systems, is considered an intermediate field between theoretical and experimental physics.

Nowadays, the majority areas of Physical Sciences (e.g. astrophysics, statistical physics, fluid

dynamics, and solid state physics) uses numerical techniques for the solution and analysis of

problems which can not be directly solved by analytical methods. The role of computers in

scientific research has been very relevant both in the theoretical and in the experimental realms.

From a theoretical point of view, computers allowed a new paradigm for scientists: in-

stead of using some analytical approximations to a specific physical problem, it is now possible

to use a computer experiment (computer simulation) to go beyond that approximation and to

examine directly the original system. It is clear, however,that computer simulations also use a

model system which includes certain approximations. Nevertheless, it is still a very powerful

tool to analyze complicated systems,e.g., many-body problems.

1 The Manhattan Project (MP) was a research project, from 1942to 1946, led by the United States of America
(with the help of Canada and United Kingdom) during the WorldWar II. The main objective was to create the
atomic bomb. Among others, the researchers in the MP included American physicists J. R. Oppenheimer (at
the time, he was the scientific director of the Los Alamos National Laboratory, where the atomic bombs were
designed) and R. P. Feynmann (one of the recipients of the Nobel prize in Physics in 1965).



46 Chapter 2. Computer simulation

From an experimental point of view, computers have become a virtual laboratory, where

numerical experiments are carried out. The results from a computer simulation can be com-

pletely unexpected,i.e., they were not completely evident from the mathematical formulation

of the model used to describe the real physical system. A widevariety of computational model-

ing techniques have been developed over the years.

2.2 Molecular Dynamics (MD)

Molecular Dynamics (MD) simulations refers to a computational set of methods (numerical

algorithms) widely used in scientific research,e.g., Physical Sciences, Chemistry, Biophysics,

and many others. This method allows one to calculate a set of macroscopic properties of a

given physical system (e.g., temperature, pressure, kinetic energy, etc). Furthermore, it allows

the calculation of both static and dynamical properties. The starting point of the method is

based on a well-defined microscopic description of the physical system under consideration

(58). This description can be made through the Hamiltonian or the Lagrangian formalisms, or

even directly by using Newton’s equations of motion.

In its most simple form, the MD method consists of choosing a set of initial conditions

(position and velocity of each particle), an inter-particle interaction potential, an appropriate

statistical ensemble, a numerical technique in order to integrate the equations of motion and

the implementation of the periodic boundary conditions. The objective of the MD method is

then to calculate the trajectories, in phase space, of a collection of particles which individually

obey classical coupled equations of motion (58). Therefore, it is necessary to solve numerically

(using appropriate algorithms2) these coupled equations of motion.

The first MD simulations described in the literature (59, 60, 61) are:

• Simulation of a system of hard spheres, by Alder and Wainwright (1957);

• Simulation of radiation damage events in a model of crystalline cooper, by Vineyard

(1960);

• First simulation of a liquid system (liquid Argon), using a Lennard-Jones inter-particle

interaction potential, by Rahman (1964).

An important observation should be made: the MD method can beapplied, in princi-

ple, for both equilibrium systems (where there is conservation of total energy and number of

particles, for instance) and for systems out of equilibrium. The reader is refereed to the fol-

lowing literature (62, 63, 64, 65) for a deep reading regarding MD methods for systems out of

equilibrium. In this thesis, however, we shall restrict ourselves to equilibrium systems.
2 As examples, there is the Verlet algorithm, the leapfrog (a variation of the original Verlet algorithm), and the

Runge-Kutta-Gill.
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2.2.1 Description of the MD method

The starting point of the MD method is to define a set of initialpositions and velocities to all

the particles in the system. The most common used geometriesin 3D are FCC (face-centered

cubic) and cubic. In 2D, the preferred initial geometry are square or triangular (hexagonal)

lattices. It is also possible to distribute the particles inthe simulation box assigning random

initial coordinates. However, care should be taken in orderto avoid particle overlap3. The

crystalline arrangements (e.g.square or triangular lattices) are most used, in general, due to its

simplicity.

In general, the initial velocities for the particles are drawn from either an uniform dis-

tribution or a Maxwell–Boltzmann (66) distribution. For instance, if one desires to simulate a

system on the micro-canonical ensembleNVE(where the total energyE of the system, the total

number of particlesN, and the volumeV of the simulation box are conserved), the distribution

of velocities can be drawn following the equipartition theorem4:

K =
1
2

N

∑
i=1

miv
2
i =

3
2

NkBT, (2.1)

whereK is the total kinetic energy,N is the total number of particles in the system,kB is the

Boltzmann constant,T is the absolute temperature of the system, andmi andvi are the mass

and velocity of theith particle, respectively. The total linear momentum of thesystem should

be zero,i.e., there should not be external forces acting on the center of mass of the system.

Therefore, the initial velocities should be re-scaled in order for the center of mass of the system

to remain at rest (67).

Given that all the particles’ positions and velocities are known, the following step in the

MD method is to obtain the subsequent positions and velocities of all particles. This is done by

integrating the coupled equations of motion for each particle, under conditions established by

the inter-particle interaction potential defined in the model system.

The choice of the inter-particle interaction potential between particles is a very impor-

tant step in order to correctly describe the physical systemunder consideration. In general, an

effective pairwise potential5 is chosen, which considers only interactions between pairsof par-

ticles i and j separated by a distancer i j = |r i − r j |, at each simulation step. Some very known

inter-particle interaction potential are, for instance, the hard-sphere potential, the soft Lennard–

Jones potential and others much more complex potentials,e.g., the ones used to model interac-

tions between ions and molecules (longitudinal and angularbending, and torsion potentials).
3 If two particles overlap and the distance between them is very small compared to the length scale of the

problem, this could generate an infinite force between a pairof particles, leading to numerical instabilities in
the integration algorithm.

4 See, for instance, F. Bloch, “Fundamentals of Statistical Mechanics” ICP (1989).
5 The term effective means that this potential incorporates,on average, the interaction of all other particles

of the system. Generally speaking, the total potential energy of a set ofN particles is of the formU(r) =
∑N

i< j V(rrr i j )+∑N
i< j<kV(rrr i jk)+∑N

i< j<k<l V(rrr i jkl )+ ...
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The resulting forceFFF i acting on theith particle, due to all the other particles in the

system, is then obtained by taking the gradient of the inter-particle interaction potentialVi j

FFF i =−∑
j 6=i

∇∇∇iVi j . (2.2)

If we apply Newton’s second law for theith particle, we obtain

mi
d2rrr i

dt2
= FFF i +FFFext

i , (2.3)

whereFFFext
i represents any external forces acting on particlei due to, for instance, a confinement

potential, an external electric or magnetic field, etc. Therefore, the main objective of the MD

method is to numerically solve theN−1 coupled equations of the form (2.3), in order to obtain

the new positionsrrr i(t) of each particle, for any instantt. For this purpose, we can use some

computer algorithms for the numerical integration of theseequations. We will show a few of

these algorithms in the next section.

2.2.2 Numerical integration algorithms

The numerical integration algorithms used to obtain the solutions of the equations of move-

ment are based on the finite-difference method (FDM)6. This method consists in expanding

the particles’ coordinates in a Taylor series around a givenpoint. In these methods, there are

two different types of errors introduced by the discretization of the equations of motion: (i)

truncation errors and (ii) round-off errors. The first one isrelated to the precision at which

the method of finite differences approaches the real solution for the differential equation to be

solved numerically. The round-off errors encompasses all the other errors which comes from

the implementation of the method. For instance, the calculation of exponential functions and

square roots can introduce this type of error. Another example is the storage of real numbers

(floating point numbers) in the computer memory.

In the following, we present two integration methods commonly used in MD simula-

tions: the Verlet algorithm and one of its variation, calledthe leapfrogmethod. We emphasize,

however, that there is a plethora of other much more sophisticated integration methods,e.g., the

predictor-corrector and the fourth-order Runge-Kutta algorithm7.

2.2.2.1 The Verlet algorithm

One of the most common numerical integration schemes for solving differential equations (e.g.,

Newton’s equation of motion) was first introduced in computer simulations by the French physi-
6 One of the most common method is the Euler’s method, which is afirst-order method where the expansion

is such that, given a functionf (x), then we should be able to expand it around the point∆x: f (x+∆x) =
f (x)+ f ′(x)∆x, wheref ′(x) corresponds to the first derivative of the functionf (x) in respect tox.

7 See, for instance, J. M. Haile, “Molecular Dynamics Simulation – Elementary Methods”, Wiley-Interscience
(1997).
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cist Loup Verlet, in 1967 (68). This method consists in expanding the particle coordinate, during

a finite time step∆t, in a Taylor series such as

rrr(t +∆t) = rrr(t)+ ṙrr(t)∆t+
1
2

r̈rr(t)∆t2+O(∆t3) (2.4)

rrr(t −∆t) = rrr(t)− ṙrr(t)∆t+
1
2

r̈rr(t)∆t2−O(∆t3). (2.5)

By summing Eqs. (2.4) and (2.5), we obtain one estimate for the position of the particle at time

t +∆t

rrr(t+∆t) = 2rrr(t)− rrr(t−∆t)+ ṙrr(t)∆t2+O(∆t4). (2.6)

The local truncation error in the position is of the orderO(∆t4). Note that the velocity of the

particle is not needed in order to obtain the estimate for theposition (i.e, to obtain the trajectory

of the particle). However, the velocity can be obtained (in order to calculate, for instance, the

kinetic energy of the system) by subtracting Eqs. (2.4) and (2.5), which gives

ṙrr(t)≈ rrr(t +∆t)− rrr(t −∆t)
2∆t

. (2.7)

An important consideration is in order. According to Eqs. (2.4) and (2.5), one can see

that the Verlet algorithm is appropriately centralized,i.e., rrr(t+∆t) andrrr(t−∆t) are symmetric

in time, which makes the algorithm time reversible. Finally, the algorithm is a two-step method,

since it estimate the future positionrrr(t +∆t) from the actual positionrrr(t) and the previous

positionrrr(t −∆t). The main characteristics of the method are (i) simplicity of computational

implementation and (ii) numerical stability for relatively large time steps. The latter property

leads to good conservation of total energy in dynamical systems (67).

2.2.2.2 Theleapfrogalgorithm

The main idea behind theleapfrogmethod is that it is possible to write Eq. (2.4) as

rrr(t+∆t)≈ rrr(t)+∆t

[
ṙrr(t)+

1
2

∆t r̈rr(t)

]
. (2.8)

Further inspection of Eq. (2.8) leads to the following formulȧrrr(t+ 1
2∆t)≈ ṙrr(t)+ 1

2∆t r̈rr(t).

Similarly, we can also writėrrr(t − 1
2∆t) ≈ ṙrr(t)− 1

2∆t r̈rr(t). By replacing the first formula into

Eq. (2.4) and by subtracting both these previous expressions, we obtain the formulas to update

the position and the velocity, respectively

rrr(t +∆t) ≈ rrr(t)+ ṙrr

(
t +

1
2

∆t

)
∆t (2.9)

ṙrr

(
t +

1
2

∆t

)
≈ ṙrr

(
t − 1

2
∆t

)
+ r̈rr(t)∆t, (2.10)

which form theleapfrogalgorithm.
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2.2.3 Periodic boundary conditions (PBC)

Usually the MD method is applied to physical systems where the size of the computational unit

cell is of the order of hundreds up to thousands particles. Although recently there has been

a huge increase in computational power, specially with the use of GPU (Graphical processing

units) (69), the MD simulations of many-body systems (e.g., liquids, atomic systems, proteins,

etc) are still quite computationally expensive. Systems where the numberN of particles ranges

from N = 101 to N = 105 are dominated by the so-called surface effects (or border effects) (66).

In MD simulations where there is no interest in these kind of effects, they can be minimized by

using periodic boundary conditions (PBC) (70). The use of PBC is then equivalent to consider-

ing a infinite set of identical copies of the main computational unit cell. Fig.10 shows clearly

the concept of PBC. For instance, if a particle in the computational unit cell leaves this region,

it re-appears on the opposite side of the simulation box, with the same velocity.

Figure 10 – Pictorial representation of periodic boundary conditions (PBC) for a 2D system. In
the center, there is the main computational unit cell, and the identical copies around
it. From Ref. (71)

Consider a computational unit cell (simulation box) of sizeL, where the center of

the coordinate axis is situated in the center of the box, and identical copies (images) dis-

tributed periodically around the simulation region. Giventhat rrr i is the position of theith

particle, there will be a set of image particles, whose positions are given byrrr i + nLLL, where

n = ...,−3,−2,−1,0,1,2,3, ... andnLLL is a vector which connects theith particle with itsnth

image particle. The potential energy of the system (taking into account all the image particles)

is given by

U(rrr i , ..., rrrN) = ∑
i< j

V(rrr i j )+∑
n

∑
i< j

V(|rrr i − rrr j +nLLL|). (2.11)

In order to avoid the numerical calculation of the infinite summation in Eq. (2.11), one should

use the concept of the minimal image convention, which states that a particle is not allowed to

interact simultaneously with another particle and its image particle. By using this convention,
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a particle is able to interact only with particles which are separated by a distance smaller than

or equal toL/2. However, the use of the minimal image convention is only valid if the inter-

particle interaction potential is short-ranged8. Therefore, the value ofL should be chosen in

such a way that the interaction forces between particles arenegligible at distances larger than

L/2. This eliminates finite size effects (67). In the case where the inter-particle interaction

potential is long-ranged, there will be a considerable increase in the total potential energy of the

system, due to the interaction between particles in the computational unit cell and their image

particles. In order to deal with these undesired non-physical effects, there is a common method

known as the Ewald summation technique (72). In this thesis, however, we only deal with

short-range potentials.

2.2.4 Calculation of physical properties

A typical MD simulation run consists of the following basic steps:

• Initialization of the system,i.e., assign initial coordinates and initial velocities for allthe

particles in the system);

• Calculation of the interaction force between pairs of particles. This is the most time-

consuming part of any MD simulation, since the computational cost to calculate the dis-

tancesr i j = |rrr i − rrr j | is of orderO(N2);

• Use the numerical integration scheme chosen previously, for instance, either the Verlet or

the leapfrogalgorithm;

• Apply the periodic boundary conditions, if necessary.

These are all done in one single time-step. Ifm is the total number of time-steps in the simula-

tion, thenTtot = m∆t is the total time of the simulation run, and∆t is the discrete time interval

between time-steps. After a given number of simulation steps, the system should, in principle,

attain an equilibrium state. In order to check that the system has indeed reached an equilibrium

situation, one could, for instance, calculate the total energy of the system (total potential energy

per particle plus the total kinetic energy per particle) over time and check if it has reached a

stationary value,i.e., constant over time. The number of time-steps in order for the system to

reach this equilibrium situation depends on each problem specifically, therefore a careful anal-

ysis should be done for each particular case. The time interval between the beginning of the

simulation and the equilibrium state is usually called the thermalization procedure. Only after

8 An inter-particle interaction potential is considered short-ranged if the interaction between particles decays
faster thanr−d, wherer is the center-to-center distance between a pair of particles andd is the dimension of
the system (66).
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the thermalization procedure one should calculate physical properties of interest, either struc-

tural properties (e.g., radial distribution function (RDF)) or dynamical properties (e.g., mean

square displacement (MSD) and velocity autocorrelation function (VACF)).

2.2.4.1 Radial distribution function (RDF)

The radial distribution functiong(r) (RDF), sometimes also referred as the pair distribution

function, is a measure of how the particles organizes themselves around other particles (73).

Specifically, the functiong(r) is proportional to the ratio of the probability of finding twopar-

ticles separated by a distancer ±∆r and the probability for a completely random distribution

of particles at the same density (66). From the point of view of statistical mechanics, where

usually the number of degrees of freedom is large, the function represents an important physi-

cal measure to characterize structural properties of molecular systems,e.g., liquids, glasses and

super-cooled liquids, etc. The MD method, as seen previously, calculates individual particles’

positions. This allows the functiong(r) to be calculated as9

ρg(r) =
1
N

〈
N

∑
i

N

∑
j 6=i

δ (r − r i j )

〉
, (2.12)

whereN is the total number of particles,ρ = N/V is the density of particles,r i j is the distance

between a pair of particlesi and j, and〈...〉 represents an average over several realizations. It

is important to note that the distancer i j is invariant under a change of index,i.e., r i j = r ji . This

property reduces the number of terms in the previous equation to 1
2N(N−1) and we can write

Eq. (2.12) as

ρg(r) =
2
N

〈
N

∑
i

N

∑
j<i

δ (r − r i j )

〉
. (2.13)

By integrating both members of Eq. (2.13) over all the possible range of separation between

particles and considering that the densityρ is constant, we get

ρ
∫

g(r)drrr =
2
N

〈
N

∑
i

N

∑
j<i

∫
δ (r − r i j )drrr

〉
, (2.14)

and by the fundamental property of the delta function,
∫

δ (r − r i j )drrr = 1,

ρ
∫

g(r)drrr = N−1. (2.15)

This was an expected result and can interpreted as follows. Suppose that we choose a given

particle of the system as the origin and by counting the number of remaining particles, the

result isN−1 particles.

9 For uniform systems, the arrangement of particles depends only on the distancer between particles’ centers,
i.e., it is independent of the orientation of the vectorrrr.
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Computationally, one can calculateg(r) from Eq. (2.13) by making a histogram to count

the number of particles, in a given shell of radius∆r, which are at a distancer from the origin

(reference) particle. For a 3D system, considerhn the number of pairs of atoms (i, j) with the

condition(n−1)∆r ≤ r i j < n∆r. By counting the pair of atoms in the shell∆r, one would get

(67)

g(rn) =
hn

2πNρr2
n∆r

, (2.16)

wherern =
(
n− 1

2

)
∆r andn is the index of the each bin of the histogram. If the total extent of

the calculation forg(r) is rmax, then the total number of bins should be chosen asNb = rmax/∆r.

(a) (b)

Figure 11 – (a) In the center there is the reference particle (dark circle). The circles around
it represents other particles in the system. A centered ringis drawn as reference
and it has radiusr and widthdr. (b) As an example, we show the typical radial
distribution function for a Lennard–Jones system in the liquid phase. Taken from
Ref. (74).

Furthermore, Eq. (2.12) is useful in the probabilistic interpretation of the radial distri-

bution function. The probabilityP(r,dr) that a particle is in the region of a spherical shell of

radiusr and widthdr while the spherical shell is centered in the reference particle (cf. Fig.11)

is given by

P(r,dr)≡
(

ρ
N−1

)
g(r)dr. (2.17)

As a final and brief comment, the functiong(r) is also commonly used as an auxiliary function

to calculate thermodynamic macroscopic properties. For instance, pressure (p), energy (E) and

isothermal compressibility (κT = (∂ρ/∂ p)T ) are related tog(r) by (73)

p = ρkBT − 2π
3

ρ2
∫

V
r3u′(r)g(r,ρ ,T)d3r, (2.18)

E =
3
2

NkBT +
ρN
2

∫

V
(4πr2)u(r)g(r,ρ ,T)d3r, (2.19)

kBT

(
∂ρ
∂ p

)

T
= 1+ρ

∫

V
[g(r)−1]d3r, (2.20)
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whereu(r) is the inter-particle interaction potential,kB is the Boltzmann constant andT is the

absolute temperature.

2.2.5 Relation between MD and statistical mechanics

One of the reasons why the method of MD is justified is due to theergodic principle of statistical

mechanics (75), which states that an ensemble average of a given physical quantity is equivalent

to a temporal average of the same quantity on the long-time limit (i.e., the limit wheret → ∞).

In statistical mechanics, one is mainly interested in systems where the number of degrees of

freedom is large. For instance, in the canonical ensemble (NVT), where there is conservation

of the number of particles, volume and temperature, the ensemble average (in equilibrium) of a

physical quantityA can be expressed in terms of phase space integrals taking into account the

total potential energy of the system,U =U(rrrN), as

〈A〉=
∫

A(rrrN)e−βU(rrrN)drrrN

∫
e−βU(rrrN)drrrN

, (2.21)

where{rrrN} is the set of coordinates,Z =
∫

e−βU(rrrN)drrrN is the configurational partition func-

tion, β = 1/kBT andkB is the Boltzmann constant. This average corresponds to a series of

measurements over an ensemble of independent systems. Therefore, the MD method is based

on the assumption that the ergodic principle holds, and thenthe time that a particle spends in a

given region of the phase space is proportional to the volumeof this region. In other words, the

ergodic principle states that all the accessible microstates are equally likely for the limitt → ∞
(76). Consequently, the temporal averageAm obtained in a MD run should be, in principle, the

same as the ensemble average,i.e.,

Am =
1
M

M

∑
i=1

Ai(rrr
N) = 〈A〉, (2.22)

whereM is the total number of measurements (independent runs). Theusual statistical ensemble

used in MD simulations is the microcanonical (NVE), where the number of particles, volume

and total energy are the conserved quantities. The system visits the whole phase space in a

trajectory where the total energy is constant (i.e. there is no heat exchange between the system

and its surroundings). However, it is possible to adapt the MD method for different ensembles.

For instance, for MD simulations in the canonical ensemble (NVT), one could use the Nosé-

Hoover thermostat (77, 78), the Berendsen thermostat (79) or the Langevin Dynamics (LD)

simulations, which will be described in details in the next section.

2.3 Langevin Dynamics (LD)

In the previous section we briefly described the MD method, which consists in finding the

trajectory of individual particles of a system ofN particles by numerical integration of Newton’s
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equations of motion [cf. Eq. (2.3)]. The usual choice for the MD method is the microcanonical

ensemble, where the system is not allowed to exchange heat with its surroundings. One way

of introducing thermal fluctuations is to use the method called Langevin Dynamics simulations.

In this case, Eq. (2.3) is replaced by the Langevin equation (Sec.1.5.2), given by

m
dvvvi

dt
=−mηvvvi +FFF i +FFFext

i +FFFT
i (t), (2.23)

wherevvvi is the velocity of theith particle,η is the damping constant (related to the dissipation

of energy in the system),FFF i is the interaction force between particles [cf. Eq. (2.2)], FFFext
i is any

external forces acting on the system (e.g. confinement forces, electric and/or magnetic fields,

etc) andFFFT
i (t) is a stochastic force which depends on the absolute temperatureT and represents

the coupling of the system with a heat bath.

The Langevin equation is a stochastic differential equation where the term proportional

to the velocity (−mηvvvi) removes energy from the system while the stochastic force (FFFT
i (t))

introduces energy into the system in the form of thermal fluctuations. Since the whole system

(i.e. system of particles + heat bath) should also conserve the total energy, there must be a

relation between the dissipation (η) and the coupling with the heat bath (T). This relation is

known as the Fluctuation–Dissipation theorem (FDT). The stochastic termFFFT
i (t) is called a

Wiener process if it obeys the following conditions

〈FT
i (t)〉 = 0, (2.24)

〈FT
ia (t)F

T
jb(t

′)〉 = 2mηkBTδi j δabδ (t − t ′), (2.25)

where (a,b) represents spatial coordinates (e.g. x,y,z), δ is the Kronecker delta andδ (t − t ′) is

the Dirac delta function. Note that such a choice for the stochastic term is basically due to its

simplicity. Also, in many real systems (i.e. experiments with colloidal particles and soft matter

systems in general) it is reasonable to assume a Wiener process (also known as “white noise”)

to describe the dynamics of the particles embedded in a heat bath. The delta functionδ (t − t ′)

characterizes what is called a process without memory (Markovian process). Therefore, the

thermal fluctuations introduced by the stochastic term in the form of Eqs. (2.24)–(2.25) are

uncorrelated in time and space.

2.3.1 Brownian Dynamics (BD)

The Brownian Dynamics (BD) method consists in disregardingthe inertial term in the equation

of motion (2.23), i.e.,

m
dvvvi

dt
≈ 0. (2.26)

This limit is only valid when the particle (usually called the Brownian particle) is suspended in

a viscous fluid where the effects of the damping are more relevant than the inertial effects. For

instance, if the particle’s radius is sufficiently large compared to the size of the molecules of the
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fluid (whose effects are implicitly introduced through the stochastic force), then its superficial

area will be larger. As a consequence, the damping will have amore relevant effect on the

dynamics of the suspended particle. This effect makes the distribution of velocities of the

suspended particles reach an equilibrium situation much faster than the change in their positions.

Therefore, the velocities of the Brownian particles will have an approximately constant value

during this characteristic time interval, which allows oneto use the approximation (2.26). This

regime is also usually called the over-damped limit.

The BD method is then based on the large difference between the relaxation time scales

for the velocities (τv) and the relaxation time scales for the positions (τs). For instance, for a

colloidal particle of diameter 100 nm, one could estimate (80) that τv ≈ 2.2×10−9 s, while

τs ≈ 4.7×10−3 s. Clearly,τv ≪ τs, which indicates the large separation between time scales;

the velocities of the Brownian particles have relaxed much faster than any significant changes

in their positions.

Using the approximation (2.26), Eq. (2.23) can be written as

ζ
drrr i

dt
= FFF i +FFFext

i +FFFT
i (t), (2.27)

whereζ = mη and drrr i
dt = vvvi . Note that Eq. (2.27) is valid only for time scales much larger

thanτv. The BD approximation is valid in several real physical systems, specifically in meso-

scopic systems where the particles have a diameter of the order of 10 nm up to 10µm, i.e., the

particles are much larger than the particles of the fluid, whose diameters are of the order of a

few angstroms. Therefore, the BD method has been widely usedfor the study of mesoscopic

systems, such as suspensions of colloidal particles, proteins in biological systems, and vortex

matter in type-II superconductors, just to cite a few examples.

As in the case of the MD method, both the LD and BD methods consists of numerical

integration of the equations of motion (2.23) or (2.27). Generally, the algorithms for integration

are similar to the ones used in the MD method (i.e., the Verlet or the leapfrog algorithms showed

in previous sections) with some modifications in order to take into account the stochastic term.

In the following, we will show an Euler-type method based on Refs. (81, 82), and using the

Box-Müller (83) technique to generate the stochastic (thermal) forces.

2.3.2 Numerical integration of stochastic differential equations

There are several methods to numerically integrate stochastic differential equations, such as

Eqs. (2.23) or (2.27). Here we present one of the simplest algorithm, which is known as the

Ermak algorithm (84). It is a first-order method and is similar to the Euler method. We restrict

ourselves to the exposure of this method in particular sinceit is the one we used in the following

chapters (Results).
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We start by a direct integration of Eq. (2.27) during a finite time interval∆t. This leads

to

ζ
∫ ∆t

0

drrr i

dt
dt =

∫ ∆t

0
FFF idt+

∫ ∆t

0
FFFext

i dt+
∫ ∆t

0
FFFT

i (t)dt, (2.28)

ζ [rrr i(∆t)− rrr i(0)] ≈ ∆t[FFF i +FFFext
i ]+

∫ ∆t

0
FFFT

i (t)dt, (2.29)

rrr i(∆t) ≈ rrr i(0)+
∆t
ζ

[
FFF i +FFFext

i

]
+

1
ζ

∫ ∆t

0
FFFT

i (t)dt. (2.30)

Note that we assume that the forcesFFF i andFFFext
i are constant over the time interval∆t. This

is a reasonable consideration given that the time interval∆t is sufficiently small. Furthermore,

assuming that the stochastic forceFFFT
i (t) follows properties (2.24)–(2.25), the integral in the

r.h.s. of Eq. (2.30) can be replaced by the term
√

2ζkBT∆tRRR [for details, see Refs. (81, 82)],

whereRRR is a dimensionless stationary Gaussian process with zero mean and unit variance (80).

Therefore, Eq. (2.30) can be written as

rrr i(∆t)≈ rrr i(0)+
∆t
ζ

[
FFF i +FFFext

i

]
+

√
2kBT∆t

ζ
RRR, (2.31)

which is known as the Ermak formula to update the position of the particles.

For the Langevin equation (2.23), we may proceed in a similar fashion and obtain the

formula to update the position of the particles. The difference now is that the equation of motion

has to be integrated for the velocity and then the position ofthe particles are updated.

We integrate Eq. (2.23) directly during a finite time interval∆t, which gives

vvvi(∆t) = vvvi(0)−η
∫ ∆t

0
vvvi(t)dt+

1
m

∫ ∆t

0
(FFF i +FFFext

i )dt+
1
m

∫ ∆t

0
FFFT

i (t)dt, (2.32)

vvvi(∆t) ≈ vvvi(0)−ηvvvi(0)∆t+
∆t
m

[
FFF i +FFFext

i

]
+

√
2ηkBT∆t

m
RRR. (2.33)

Finally, the position of the particles are updated according to

rrr i(∆t) = rrr i(0)+vvvi(0)∆t. (2.34)





Part III

Results





61

3 Single-file to two-dimensional diffusion

Diffusive properties of a mono-disperse system of interacting particles confined to aquasi-one-

dimensional (q1D) channel are studied using Molecular Dynamics (MD) simulations. We calcu-

late numerically the mean square displacement (MSD) and investigate the influence of the width

of the channel (or the strength of the confinement potential)on diffusion in finite-size channels

of different shapes (i.e., straight and circular). The transition from single-file diffusion (SFD) to

the two dimensional diffusion regime is investigated. Thistransition (regarding the calculation

of the scaling exponent (α) of the MSD〈∆x2(t)〉 ∝ tα) as a function of the width of the channel,

is shown to change depending on the channel’s confinement profile. In particular the transition

can be either smooth (i.e., for a parabolic confinement potential) or rather sharp/stepwise (i.e.,

for a hard-wall potential), as distinct from infinite channels where this transition is abrupt. This

result can be explained by qualitatively different distributions of the particle density for the

different confinement potentials.

3.1 Introduction

There is a considerable theoretical and practical interestin the dynamics of systems of in-

teracting particles in confined geometries (85). Single-file diffusion (SFD) refers to a one-

dimensional (1D) process where the motion of particles in a narrow channel (e.g., quasi-1D

systems) is limited such that particles are not able to crosseach other. As a consequence,

the system exhibits spatial correlations which results in anomalous diffusion. The mecha-

nism of SFD was first proposed by Hodgkin and Keynes (39) in order to study the passage

of molecules through narrow pores. Since the order of the particles is conserved over time,

this results in unusual dynamics of the system (86, 87), different from what is predicted from

diffusion governed by Fick’s law. The main characteristic of the SFD phenomena is that,

in the long-time limit (t ≫ tc, where tc is a characteristic relaxation time scale which de-

pends on the specificities of the system), the MSD (mean square displacement, defined as

Wx(t)≡ 〈∆x2(t)〉= 〈∑N
i=1(1/N)[xi(t)−xi(0)]2〉) scales with time as

lim
t≫tc

Wx(t) ∝ t0.5. (3.1)

This relation was first obtained analytically in the pioneering work of Harris (40). Re-

cent advances in nanotechnology have stimulated a growing interest in SFD, in particular, in

the study of transport in nanopores (88, 89). Ion channels of biological membranes and carbon

nanotubes (90) are examples of such nanopores. The macroscopic flux of particles through

such nanopores is of great importance for many practical applications,e.g., particle transport
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across membranes is a crucial intermediate step in almost all biological and chemical engineer-

ing processes. SFD was observed in experiments on diffusionof molecules in zeolite molecular

sieves (91). Zeolites with unconnected parallel channels may serve asa good realization of the

theoretically investigated one-dimensional systems. SFDis also related to growth phenomena

(92).

The theoretical background of SFD was developed in early studies on transport phenom-

ena in 1D channels (42, 43, 44). It is also interesting to learn how the size of the system will

influence the diffusive properties of the system. SFD in finite size systems has been the focus

of increasing attention since there are few exact theoretical results to date (56, 93, 94), which

showed the existence of different regimes of diffusion.

Colloidal systems, complex plasmas and vortex matter in type-II superconductors are

examples of systems where SFD may occur. The use of colloidalparticles is technically inter-

esting since it allows real time and spatial direct observation of their position, which is a great

advantage as compared to atoms or molecules, as shown recently in, e.g., the experimental

study of defect induced melting (95). One typically uses micro-meter size colloidal particlesin

narrow channels, as shown in (41, 96). The paramagnetic colloidal spheres of 3.6µm were con-

fined in circular trenches fabricated by photolithography and their trajectories were followed

over long periods of time. Several other studies have focused on the diffusive properties of

complex plasmas. A complex plasma consists of micrometer-sized (“dust”) particles immersed

in a gaseous plasma background. Dust particles typically acquire a negative charge of several

thousand elementary charges, and thus they interact with each other through their strong elec-

trostatic repulsion (97).

Systems of particles moving in space of reduced dimensionality or submitted to an

external confinement potential exhibit different behaviorfrom their free-of-border counterparts

(98). The combined effect of interaction between the particlesand the confinement potential

plays a crucial role in their physical and chemical properties (99). In Ref. (100), it was found

that SFD depends on the inter-particle interaction and can even be suppressed if the interaction

is sufficiently strong, resulting in a slower sub-diffusivebehavior, where〈∆x2(t)〉 ∝ tα , with

α < 0.5.

In this chapter we will investigate the effects of confinement potential on the diffusive

properties of a Q1D system of interacting particles. In the limiting case of very narrow (wide)

channels, particle diffusion can be referred to SFD (2D regime) characterized by a sub-diffusive

(normal diffusive) long-time regime where the mean square displacement (MSD)〈∆x2(t)〉∝ t0.5

(∝ t1.0). Recall that the MSD of a tagged hard-sphere particle in a one dimensional infinite sys-

tem is characterized by two limiting diffusion behaviors: for time scales shorter than a certain

crossover timeτc = 1/Dρ2, whereD is the diffusion coefficient andρ is the particle concentra-

tion, 〈∆x2(t)〉 ∝ t1.0 which is referred to as the normal diffusion regime (101). For times larger

thanτc, the system exhibits a sub-diffusive behavior, with the MSD〈∆x2(t)〉 ∝ t0.5, which char-
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acterizes the single-file diffusion regime. Between these two regimes, there is a transient regime

exhibiting a non-trivial functional form.

However, in case of afinite system of diffusing particles (e.g., a circular chain or a

straight chain in the presence of periodic boundary conditions), the SFD regime (i.e., with

〈∆x2(t)〉 ∝ t0.5) does not hold fort → ∞, unlike in an infinite system. Instead, for sufficiently

long times, the SFD regime turns to the regime ofcollectivediffusion, i.e., when the whole sys-

tem diffuses as a single “particle” with a renormalized mass. This diffusive behavior has been

revealed in experiments (41, 102) and theoretical studies (103, 104, 45, 105). This collective

diffusion regime is similar to the initial short-time diffusion regime and it is characterized by

either〈∆x2(t)〉 ∝ t1.0, for over-damped particles [see,e.g., (41, 100, 103)] or by 〈∆x2(t)〉 ∝ t2.0

(followed by the MSD∝ t1.0), for under-damped systems (104, 105). Correspondingly, the time

interval where the SFD regime is observed becomesfinite in finite size systems. It depends on

the length of the chain of diffusing particles: the longer the chain the longer the SFD time inter-

val. Therefore, in order to observe a clear power-law behavior (i.e., 〈∆x2(t)〉 ∝ tα) one should

consider sufficiently large systems.

Here we focus on this intermediate diffusion regime and we show that it can be charac-

terized by〈∆x2(t)〉 ∝ tα , where 0.5< α < 1.0, depending on the width (or the strength of the

confinement potential) of the channel. We analyze the MSD fortwo different channel geome-

tries: (i) a linear channel, and (ii) a circular channel. These two systems correspond to different

experimental realizations of diffusion of charged particles in narrow channels (41, 106). The

latter one (i.e., a circular channel) has obvious advantages: (i) it allows along-time observa-

tion of diffusion using a relatively short circuit, and (ii)it provides constant average particle

density and absence of density gradients (which occur in,e.g., a linear channel due to the en-

try/exit of particles in/from the channel). Thus circular narrow channels were used in diffusion

experiments with colloids (41) and metallic charged particles (balls) (102). Furthermore, using

different systems allows us to demonstrate that the resultsobtained in our study are general and

do not depend on the specific experimental set-up.

3.2 Model system and numerical approach

Our model system consists ofN identical charged particles interacting through a repulsive pair

potentialVint(rrr i j ). In this study, we use a screened Coulomb potential (Yukawa potential),

Vint ∝ exp(−r/λD)/r. In the transverse direction, the motion of the particles isrestricted either

by a hard-wall or by a parabolic confinement potential. Thus the total potential energy of the

system can be written as

H =
N

∑
i=1

Vc(rrr i)+
N

∑
i> j=1

Vint(rrr i j ). (3.2)
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The first term in the right-hand side (r.h.s.) of Eq. (3.2) represents the confinement potential,

whereVc(rrr i) is given by

Vc(rrr i) =

{
0 for |yi| ≤ Rw/2

∞ for |yi|> Rw/2,
(3.3)

for the hard-wall confinement,

Vc(rrr i) =
1
2

mω2
0y2

i , (3.4)

for parabolic one-dimensional potential (in they-direction), and by

Vc(rrr i) = β (r0− r i)
2, (3.5)

for parabolic circular confinement.

HereRw is the width of the channel (for the hard-wall potential),m is the mass of the

particles,ω0 is the strength of the parabolic 1D confining potential,r0 is the coordinate of the

minimum of the potential energy andr i is the displacement of theith particle fromr0 (for the

parabolic circular potential). Note that in case of a circular channel,r0 = rch, whererch is the

radius of the channel.

The second term in the r.h.s. of Eq. (3.2) represents the interaction potential between

the particles. For the screened Coulomb potential,

Vint(rrr i j ) =
q2

ε
e−|rrr i−rrr j |/λD

|rrr i − rrr j |
, (3.6)

whereq is the charge of each particle,ε is the dielectric constant of the medium,r i j = |rrr i − rrr j |
is the distance betweenith and jth particles, andλD is the Debye screening length. Substituting

(3.6) into Eq. (3.2), we obtain the potential energy of the systemHY

HY =
N

∑
i=1

Vc(rrr i)+
q2

ε

N

∑
i> j=1

e−|rrr i−rrr j |/λD

|rrr i − rrr j |
. (3.7)

In order to reveal important parameters which characterizethe system, we rewrite the energy

HY in a dimensionless (H ′
Y) form by making use of the following variable transformations:

HY = (q2/εa0)H ′
Y, r = r ′a0, wherea0 is the mean inter-particle distance. The energy of the

system then becomes

H ′
Y =

N

∑
i=1

V ′
c(rrr

′′′
i)+

N

∑
i> j=1

e−κ|rrr ′′′i−rrr ′′′j |

|rrr ′′′i − rrr ′′′j |
, (3.8)

whereκ = a0/λD is the screening parameter of the interaction potential. Inour simulations in

Sec. III, we use a typical value ofκ = 1.0 for colloidal systems andλD = 10−5 m.

The hard-wall confinement potential is written as

V ′
c(rrr

′′′
i) =

{
0 for |y′i| ≤ R

′
w/2

∞ for |y′i|> R
′
w/2,

(3.9)



3.2. Model system and numerical approach 65

whereR
′
w is scaled by the inter-particle distancea0. We also introduce a dimensionless parame-

ter

χ =
m(ω0a0)

2

2kBT
, (3.10)

which is a measure of the strength of the parabolic 1D confinement potential.

For colloidal particles moving in a nonmagnetic liquid, their motion is over-damped and

thus the stochastic Langevin equations of motion can be reduced to those for Brownian particles

(84)

drrr i

dt
=

Di

kBT

[
−∑

j 6=i

∇∇∇iVint(rrr i j )−∇∇∇iVc(rrr i)+FFF i
T(t)

]
. (3.11)

Note, however, that in Sec.3.4 we will deal with massive metallic balls and therefore we will

keep the inertial term in the Langevin equations of motion.

In Eq. (3.11), rrr i , Di andmi are the position, the self-diffusion coefficient (measured

in m2/s) and the mass (in kg) of theith particle, respectively,t is the time (in seconds),kB is

the Boltzmann constant, andT is the absolute temperature of the system. Finally,FFF i
T is a ran-

domly fluctuating force, which obeys the following conditions: 〈FFFT〉 = 0 and〈F i
T(t)F

i′
T (t

′)〉 =
2ζkBTδii ′δ (t − t ′), whereζ is the viscosity of the medium. Eq. (3.11) can be written in dimen-

sionless form as follows

drrr ′′′i
dt′

= D′
iΓ
[
−∑

j 6=i

∇∇∇′′′
iV

′
int(rrr

′′′
i j )−∇∇∇′′′

iV
′
con f(rrr

′′′
i)+FFF ′′′i

T(t
′)
]
, (3.12)

where we use the following transformationVint = (q2/εa0)V
′
int, D′

i = Di/a2
0, and introduced

a coupling parameterΓ, which is the ratio of the average potential energy to the average ki-

netic energy,Γ = 〈V〉/〈K〉, such thatΓ = q2/kBTεa0. The timet ′ is expressed in seconds and

distances are expressed in units of the inter-particle distancea0.

In what follows, we will abandon the prime (′) notation. We have used a first order

finite difference method (Euler method) to integrate Eq. (3.12) numerically. In the case of a

straight channel, periodic boundary conditions (PBC) wereapplied in thex-direction while in

they-direction the system is confined either by a hard-wall or by aparabolic potential. Also, we

use a timestep∆t = 0.0001 and the coupling parameter is set toΓ = 10. For a circular channel,

we use polar coordinates(r,φ) and model a 2D narrow channel of radiusrch with parabolic

potential-energy profile across the channel,i.e., in ther-direction.
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3.3 1D versus 2D diffusion in a straight channel

3.3.1 Mean-square displacement (MSD) calculations

In order to characterize the diffusion of the system, we calculate the MSD as follows

〈∆x2(t)〉=
〈 1

N

N

∑
i=1

[xi(t +∆t)−xi(t)]
2
〉

∆t
, (3.13)

whereN is the total number of particles and〈...〉∆t represents a time average over the time

interval ∆t. Note that in the general case (e.g., for small circular channels with the number

of particlesN = 20 – see Sec.3.4) the calculated MSD was averaged over time and over the

number of ensembles (107, 108, 109, 110). However, we found that for largeN (i.e., several

hundred) the calculated MSD for various ensemble realizations coincide (with a maximum

deviation within the thickness of the line representing theMSD).

To keep the inter-particle distance approximately equal tounity, we defined the total

number of particlesN for a 1D and Q1D system as

N =
L√

1−R2
w

; Rw < 1, (3.14)

whereL is the size of the simulation box (in dimensionless units) inthe x-direction. In our

simulations for a straight channel geometry, we typically usedN = 400− 900 particles. We

study the system for two different types of confinement potential: (i) a parabolic 1D potential in

they-direction, which can be tuned by the confinement strengthχ and (ii) a hard-wall potential,

where particles are confined by two parallel walls separatedby a distanceRw.

The results of calculations of the MSD as a function of time for different values of the

confinement strengthχ [Eq. (3.10)] and the width of the channelRw are presented in Fig.12(a)-

(c) and Fig.13(a)-(c), respectively.

Initially, in both cases (i.e., a parabolic and a hard-wall confinement potential), the sys-

tem exhibits a short-time normal diffusion behavior, where〈∆x2(t)〉 ∝ t1.0. This is the typical

initial “free-particle” diffusion regime. After this initial regime, there is an intermediate sub-

diffusive regime (ITR). As discussed in Ref. (111), the ITR shows an apparent power-law behav-

ior (112), where 0.5< α < 1.0, and it was also found previously in different diffusion models

(113, 114). In the ITR, we found a SFD regime for either a channel with strong parabolic con-

finement [χ = 3.5 (Fig. 12(a))] or a narrow hard-wall channel [Rw = 0.20 (Fig.13(a))]. This

is due to the fact that for large (small) values ofχ (Rw), the confinement prevents particles

from passing each other. The results forα in the ITR are shown as a function ofχ andRw in

Fig. 12(d) and Fig.13(d), respectively. As can be seen in Fig.12(d) [Fig. 13(d)], α increases

with decreasingχ [with increasingRw] and thus the SFD condition does not hold any longer.

The values ofα presented in these figures correspond to the minimum of the effective time de-

pendent exponentα(t). Following Ref. (115), α(t) is calculated using the “double logarithmic
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Figure 12 – (a)-(c) Log-log plot of the mean square displacement (MSD)〈∆x2(t)〉 as a function
of time for different values ofχ . Different diffusion regimes can be distinguished:
normal diffusion regime (α = 1.0) and intermediate sub-diffusive regime (ITR,α <
1.0). Note that for the case ofχ = 1.5, there is a normal diffusion regime (i.e.
α = 1.0) after the ITR. The dashed and solid lines in (a)-(c) are a guide to the
eye. Panel (d) shows the dependence of the slope (α) of the MSD curves (in the
ITR, characterized by an apparent power-law;〈∆x2(t)〉 ∝ tα) on the confinement
strengthχ .
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Figure 13 – (a)-(c) Log-log plot of the mean square displacement (MSD)〈∆x2(t)〉 as a function
of time for different values ofRw. Different diffusion regimes can be distinguished:
normal diffusion regime (α = 1.0) and intermediate sub-diffusive regime (ITR,α <
1.0). Note that for the case ofRw = 0.60, there is a normal diffusion regime (i.e.
α = 1.0) after the ITR. The dashed and solid lines in (a)-(c) are a guide to the
eye. Panel (d) shows the dependence of the slope (α) of the MSD curves (in the
ITR, characterized by an apparent power-law;〈∆x2(t)〉 ∝ tα) on the confinement
parameterRw.
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Figure 14 – (a)-(b) Exponentα as a function of time, calculated from Eq. (3.15) for different
values of the confinement parametersχ andRw, respectively.

time derivative”

α(t) =
d log〈∆x2(t)〉

d log t
, (3.15)

and the results are shown in Fig.14.

The different diffusive regimes,i.e., normal diffusion regime (α = 1.0) and SFD (α =

0.5), were also found recently in finite-size systems (104, 45) although the transition from SFD

to normal diffusion was not analyzed. Theα-dependence on both the confinement parameters

(i.e., α(χ) and α(Rw)) presents a different qualitative behavior, namely, the SFD regime is

reached after a smoother crossover in the parabolic confinement case as compared to the hard-

wall case. A similar smoother crossover is also found in the case of a circular channel with

parabolic confinement in the radial direction. A more detailed discussion on these two different

types of the behavior ofα will be provided in Sec.3.4.
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3.3.2 “Long-time” behavior of the MSD curves and crossing eventsC(t)

For small values of the parabolic confinement (e.g., χ = 1.5), the MSD curves present three

different diffusive regimes: (i) a short-time normal diffusion regime, where MSD〈∆x2(t)〉 ∝
t1.0; (ii) a sub-diffusive regime with〈∆x2(t)〉 ∝ tα , where 0.5< α < 1.0 and (iii) a “long-time”

diffusion regime, which is characterized by〈∆x2(t)〉 ∝ t1.0. Note that the “long-time” term used

here is not to be confused with the long-time used forinfinitesystems, as discussed in Sec.3.1.

However, for large values of the parabolic confinement (e.g., χ = 3.5), we observe only two

distinct diffusive regimes, namely: (i) a short-time normal diffusion regime (〈∆x2(t)〉 ∝ t1.0)

and (ii) a SFD regime (i.e., 〈∆x2(t)〉 ∝ t0.5).

One question that arises naturally is whether this normal diffusion regime (i.e., 〈∆x2(t)〉
∝ t1.0 for “long-times”) is an effect of thecolletivemotion of the system (center-of-mass mo-

tion) or an effect of the single-particle jumping process, since the confinement potentialχ = 1.5

allows particles bypass. In order to answer this question, we calculate the number of crossing

eventsC(t) as a function of time and results are shown in Fig.15(a). We found that for small

values of the confinement potential (e.g., χ = 1.5) the number of crossing events grows linearly

in time, i.e., C(t)∝ ωct, whereωc is the rate of crossing events. On the other hand, a strong con-

finement potential (e.g., χ = 3.5) prevents particles from bypassing, and thusC(t) = 0 during

the whole simulation time.

Therefore, the “long-time” normal diffusive behavior (i.e., 〈∆x2(t)〉 ∝ t1.0 for “long-

times”) found in our simulations for the case where the SF (single-file) condition is broken

(e.g., χ = 1.5) is not due to a collective (center-of-mass) diffusion. Instead, this normal diffusive

behaviour is due to a single-particle jumping process, which happens with a constant rateωc> 0

for the case of small values of the confinement (χ = 1.5) andωc = 0 (for χ = 3.5). The same

analysis was done for the case of the hard-wall confinement potential, and the results are found

to be the same as for the parabolic confinement.

Nevertheless, we point out that the collective diffusion does indeed exist, but our results

from simulations do not allow us to observe this collective (center-of-mass) diffusion regime

because of the large size of our chain of particles (N = 400− 900). Simulations withN =

80−100, and excluding the possibility of mutual bypass (strongconfinement potential), allowed

us to observe that the〈∆x2(t)〉 ∝ t1.0 regime is recovered in the “long-time” limit. In Sec.3.5,

we will further discuss the long-time limit using a model of discrete sites.

As we demonstrated above, the transition from pure 1D diffusion (SFD) characterized

by α = 0.5 to a quasi-1D behavior (withα > 0.5) could be either more “smooth” (as in

Fig. 12(d), for a parabolic confinement) or more “abrupt” (as in Fig.13(d), for a hard-wall

confinement). One can intuitively expect that this difference in behavior can manifest itself also

in the crossing events rateωc, i.e., that ωc as a function ofχ (or Rw) should display a clear

signature of either “smooth” or “abrupt” behavior.
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However, the link between the two quantities,i.e., the exponent,α(χ/Rw), and the

crossing events rate,ωc(χ/Rw) is not that straightforward. To understand this, let us refer to

the long-time limit (which will be addressed in detail within the discrete-site model in Sec.3.5).

As we show, in the long-time limit the exponentα is defined by one of the two conditions:

ωc = 0 (thenα = 0.5) or ωc > 0 (thenα = 1) and it does not depend on the specific value of

ωc provided it is nonzero. Therefore, in the long-time limit the transition between 1D to 2D

behavior is not sensitive to the particular behavior of the functionωc(χ/Rw).

Although for “intermediate” times (considered in this section) the conditionωc = 0 or

ωc > 0 is not critical, nevertheless, very small change in the crossing events rateωc(χ/Rw)

strongly influences the behavior of the exponentα(χ/Rw). This is illustrated in Figs.15(b)-

(c). In Fig. 15(b), the functionωc(χ) gradually decreases from 1.45 to 0 forχ varying in a

broad interval from 1.5 to 3 (note that the segment ofωc(χ) for 2.5< χ < 3 is nonzero which

can be seen in the inset of Fig.15(b) showing the derivativedωc(χ)/dχ). Correspondingly,

the transition fromα = 0.5 to α ≈ 0.8 in that interval ofχ is “smooth” (see Fig.12(d)). On

the other hand, the functionωc(Rw) shown in Fig.15(c) mainly changes [note the change of

the slopedωc(Rw)/dRw shown in the inset of Fig.15(c)] in a narrow interval 0.5< Rw < 0.6.

Respectively, the transition for the functionα(Rw) occurs in the narrow interval 0.5< Rw < 0.6

and thus is (more) “abrupt”.

3.3.3 Distribution of particles along they-direction

For the ideal 1D case, particles are located on a straight line. Increasing the widthRw of the

confining channel will lead to a zig-zag transition (97, 116). This zig-zag configuration can be

seen as a distorted triangular configuration in this transition zone. Further increase ofRw brings

the system into the 2D regime, where the normal diffusion behavior is recovered (see Fig.16).

For the parabolic 1D confinement, we can see [Fig.17(a)] that the distribution of parti-

clesP(y) along the channel is symmetric along the axisy= 0. Also, for large values ofχ (e.g.,

χ = 3.5) particles are confined in they-direction and thus can move only in thex-direction,

forming a single-chain structure. As the confinement decreases (χ → 0), the distribution of par-

ticlesP(y) broadens resulting in the crossover from the SFD regime (χ = 3.5) to the 2D normal

diffusion regime (χ = 0.5). Note that for small values ofχ (e.g., χ = 0.5), the system forms

a two-chain structure [represented by two small peaks ofP(y) in Fig. 17(a)], thus allowing

particles to pass each other.
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Figure 15 – (a) Number of crossing eventsC(t) as a function of time forN = 400 particles,
for χ = 1.5 (black open circles) andχ = 3.5 (green open diamonds). The solid
red line is a linear fit toC(t). Panels (b) and (c) show the rate of the crossing
eventsωc as a function of the confinement potential parameters (χ andRw). The
insets in the panels (b) and (c) show the derivatives,dωc(χ)/dχ anddωc(Rw)/dRw,
correspondingly.
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Figure 16 – For the hard-wall confinement case, we show typical trajectories of particles (i.e.
106 MD simulation steps) confined by the channel of width (a)Rw = 0.20, (b)Rw =
0.60 and (c)Rw = 0.80.

3.4 Diffusion in a circular channel

In the previous section, we analyzed the transition (crossover) from the SFD regime to 2D

diffusion in narrow channels of increasing width. The analysis was performed for a straight

channel with either hard-wall or parabolic confinement potential. However, in terms of possible

experimental verification of the studied effect, one faces an obvious limitation of this model:

although easy in simulation, it is hard to experimentally fulfill the periodic boundary conditions

at the ends of an open channel. Therefore, in order to avoid this difficulty, in SFD experiments

(41, 102) circular channels were used.

In this section, we investigate the transition (crossover)from SFD to 2D-diffusion in a

system of interacting particles diffusing in a channel ofcircular shape. In particular, we will

study the influence of the strength of the confinement (i.e., the depth of the potential profile

across the channel) on the diffusive behavior. Without lossof generality, we will adhere to the

specific conditions and parameters of the experimental set-up used in Ref. (102). An additional

advantage of this model is that the motion of the system of charged metallic balls is not over-

damped, and we will solve the full Langevin equations of motion to study the diffusive behavior

of the system.

We considerN particles, interacting through a Yukawa potential [Eq. (3.6)], which are

embedded in a ring channel of radiusrch. We define a parabolic confinement potential across
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Figure 17 – Probability distribution of the particle density P(y) along they-direction are shown
for (a) different values ofχ (parabolic 1D confinement) and (b) four different values
of the widthRw of the channel (hard-wall confinement).
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the channel in the form of Eq. (3.5) where parameterβ is chosen as follows

β =
V0

γr2
0

, V0 =
q2

ε ∑
i 6= j

exp
[
−2κrchsin

(
φi−φ j

2

)]

2rchsin
(

φi−φ j
2

) , (3.16)

when all the particles are equidistantly distributed alongthe bottom of the circular channel. It

should be noted that in this case,V0 is approximately equal toVgs due to the weak Yukawa

interaction, which slightly shifts the particles away fromthe bottom of the channel. Such a

choice ofV0 is related to the fact that we study the influence of the confinement on the diffusion

and, therefore, the potential energy of the particles must be of the order of the inter-particle

interaction energy. Parameterr0 characterizes the distance where the external potential reaches

the valueV0/γ, andVgs is the energy of the ground state of the system ofN particles as defined

by Eq. (3.7).

Parameterγ plays the role of a control parameter. By changingγ we can manipulate the

strength of the confinement and, therefore, control the fulfillment of the single-file condition.

Increase inγ corresponds to a decrease in the depth of the confinement [Eq.(3.5)] which leads

to the expansion of the area of radial localization of particles. Therefore, an increase ofγ
results in a similar effect (i.e., spatial delocalization of particles) as an increase of temperature,

i.e., parameterγ can be considered as an “effective temperature”. Note that such a choice of

the parameter that controls the confinement strength is rather realistic. In the experiment of

Ref. (102) with metallic balls, the parabolic confinement was createdby an external electric

field, and the depth of the potential was controlled by tuningthe strength of the field.

To study diffusion of charged metallic balls, we solve the Langevin equation of motion

in the general form (i.e., with the inertial term∝ m),

m
d2rrr i

dt2
= −mη

drrr i

dt
− ∑

j ,i 6= j

∇∇∇Vint(rrr i j )−∇∇∇Vc(rrr i)+FFF i
T , (3.17)

wherem= 2.5×10−6 kg is the mass of a particle, andη is the damping constant. Here all the

parameters of the system were chosen following the experiment (102), andλD = 4.8×10−4 m,

Γ = 1 [which is a typical experimental value, see,e.g., also (41)]. Correspondingly, mass is

measured in kg, length in m, and time in seconds.

Also, we took a channel of radiusrch= 9 mm (in the experiment, the external radius of

the channel was 10 mm, and the channel width 2 mm; note that in our model we do not define

the channel width: the motion of a particle in the transversedirection is only restricted by the

parabolic confinement potential). We also took experimentally relevant number of diffusing

particles,N, varying fromN = 12 to N = 40 (in the experiment, the ring channel contained

N = 12 orN = 16 diffusing balls).

Fig. 18shows the results of calculations of the trajectories ofN = 20 particles diffusing

in a ring of radiusrch = 9 mm for the first 106 MD steps for various values of the parameter
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(a) (b) (c)

(d) (e) (f)

Figure 18 – Trajectories ofN = 20 particles diffusing in a ring of radiusrch = 9 mm for 106

consequent time steps for different values ofγ. γ=1 (a), 2 (b), 3 (c), 5 (d), 7 (e), 9
(f).

γ. As can be seen from the presented snapshots, the radial localization of particles weakens

with increasingγ. At a certain value ofγ this leads to the breakdown of the single-file behavior

[Figs.18(c)-(f)].

3.4.1 Breakdown of SFD

It is convenient to introduce the distribution of the probability density of particles in the channel

Prad along the radial directionr. In order to calculate the functionPrad(r) we divided the circular

channel in a number of coaxial thin rings. The ratio of the number of observations of particles

in a sector of radiusr i to the total number of observations during the simulation isdefined as the

probability densityPrad(r i). In Fig. 19, the probability densityPrad(r) is presented for different

values ofγ. With increasingγ, the distribution of the probability densityPrad(r) broaden and

the maximum of the functionPrad(r) shifts away from the center of the channel (see Fig.19).

The latter is explained by the softening of the localizationof particles with increasingγ, which

tend to occupy an area with a larger radius due to the repulsive inter-particle interaction. Si-

multaneously, the distribution of the probability densityPrad(r) acquires an additional bump

indicating the nucleation of a two-channel particle distribution (117). The observed broadening

and deformation of the functionPrad(r) is indicative of a gradual increase of the probability of

mutual bypass of particles [i.e., the violation of the SF (single-file) condition, also called the

“overtake probability” (118)] with increasingγ.

Let us now discuss a qualitative criterion for the breakdownof SFD, i.e., when the

majority of particles leave the SFD mode. For this purpose, let us consider a particle in the

potential created by its close neighbor (which is justified in case of short-range Yukawa inter-
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Figure 19 – The distribution of the probability density of particlesPrad(r) in a circular channel
of radiusrch = 9 mm along the radial directionr. The different curves correspond
to variousγ. Increasingγ the width of the distributionPrad(r) increases due to a
weakening of the confinement.

Figure 20 – Spatial distribution of the potentialVint(r,φ) created by a particle (red (grey) cir-
cle) and the qualitative distribution of the probability density of particles in circular
channelPrad(r) (green (light grey) line) along the radial directionr. The function
∆r determines an approximate radial distance between particles when the poten-
tial barrierUbar becomes “permeable” for given temperatureT. The function∆rsw

characterizes a width of the distributionPrad(r) at this temperatureT.
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particle interaction and low density of particles in a channel) shown in Fig.20. Different lines

show the inter-particle potentialVint as a function of angleφ for different radiir.

For small values ofγ, the center of the distributionPrad(r) (see Fig.19) almost coincides

with the center of the channel (i.e., with the minimum of the confinement potential profile) and

the distributionPrad(r) is narrow. Therefore, mutual passage of particles is impossible, i.e., the

SF condition is fulfilled. The asymmetric broadening of the functionPrad(r) with increasing

γ results in an increasing probability of mutual bypass of particles which have to overcome a

barrierUbar (see Fig.20). This becomes possible whenUbar. kBT. In other words, the thermal

energykBT determines some minimal width∆r between adjacent particles when the breakdown

of the SF condition becomes possible.

It is clear that “massive” violation of the SF condition (i.e., when the majority of par-

ticles bypass each other) occurs when the halfwidth∆rsw of the distribution of the probability

densityPrad(r) obeys the condition

∆rsw & ∆r. (3.18)

The function∆rsw is defined by the ratio of the thermal energykBT to the external potential

Uconf(r) and is of the same order as̃∆r

V0

γr2
0

· (∆̃r/2)2 ≈ kBT. (3.19)

Therefore the criterion (3.18) can be presented in the form

∆rsw ≈ ∆̃r & ∆r. (3.20)

This qualitative analysis of the breakdown of the SFD regimeclarifies the role of the

width and the shape of the distribution of the probability density influenced by the asymmetry

of the circular channel. Note that the shape of the distribution is a signature of the breakdown of

the SF condition. This breakdown is caused by the mechanism of minimization of the repulsive

inter-particle interaction energy.

3.4.2 Diffusion regimes

The MSD〈∆φ2(t)〉 is calculated as a function of timet as

〈
∆φ2(t)

〉
=

〈
1

NparNens
∑
i, j

[
∆φi j (τ + t)−∆φi j (t)

]2
〉

t

, (3.21)

whereNpar is the total number of particles of an ensemble andNens is the total number of en-

sembles. In our calculations, the number of ensembles was chosen 100 for a system consisting

of 20 particles.
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The time dependence of the MSD for different values ofγ is shown in Fig.21(a)–(c).

Initially the system exhibits normal diffusion, where〈∆φ2〉 ∝ t1.0. This regime is followed by an

intermediate sub-diffusive regime, where the〈∆φ2〉 ∝ tα (0.5< α < 1.0). For longer times, the

system recovers “long-time” normal diffusion (see discussions in Sec.3.3.2), with 〈∆φ2〉 ∝ t1.0.

As in the case of straight channel geometry, this second crossover (i.e., from intermediate sub-

diffusion to “long-time” normal diffusion) can also be due to two other reasons: (i) due to a

collective (center-of-mass) diffusion or (ii) due to a single-particle jumping process. However,

for the simulations in the case of a circular geometry, the number of particles is relatively small

(taking the fact that this is a finite-size system), and therefore, the crossover from sublinear to

linear regime is due to a collective (center-of-mass) diffusion. We further address this issue in

Sec.3.5, where we consider a discrete site model and we exclude the center-of-mass motion.

Fig. 21(d) showsα as a function ofγ. The functionα(γ) experiences a monotonic

gradual crossover from theα = 0.5 to aα . 1 regime. Note that the observed deviation from

the normal diffusion behavior for largeγ (Fig. 21) is related to the presence of, though weak

but nonzero, external confinement in the radial direction. This change of the diffusive behavior

is explained by a weakening of the average radial localization of particles with increase ofγ
(Fig. 19) and, as a consequence, by an increase of the probability of mutual bypass of particles.

The observed crossover between the 1D single-file and 2D diffusive regimes,i.e., α(γ)-
dependence, shows a significant different qualitative behavior as compared to the case of a hard-

wall confinement potential considered in Sec.3.3, where a rather sharp transition between the

two regimes was found [Fig.13(d)]. The different behavior is due to the different confinement

profiles and can be understood from the analysis of the distribution of the probability density

of particles for these two cases. In the case of a hard-wall channel, the uncompensated (i.e., by

the confinement) inter-particle repulsion leads to a higherparticle density near the boundaries

rather than near the center of the channel [see Fig.16 and Fig.17(b)]. As a consequence, the

breakdown of the SF condition – with increasing width of the channel – happens simultaneously

for many particles in the vicinity of the boundary resultingin a sharp transition (see Fig.13(d)).

On the contrary, in the case of parabolic confinement, the density distribution function has a

maximum — sharp or broad, depending on the confinement strength — near the center of the

channel [see Figs.17(a) and19]. With increasing the “width” of the channel (i.e., weakening its

strength), only a small fraction of particles undergoes thebreakdown of the SF condition. This

fraction gradually increases with decreasing strength of the confinement, therefore resulting in

a smooth crossover between the two diffusion regimes.

3.5 Discrete site model: The long-time limit

The calculated MSD for different geometries and confinementpotentials allowed us to explain

the evolution of the sub-diffusive regime with varying width of the channel (or potential strength
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Figure 21 – (a)–(c): Log-log plot of the mean square displacement (MSD)〈∆φ2〉 as a function
of time for different values of the “effective” temperatureγ = (a) 1, (b) 2, and (c)
3. Here(Nens= 100,Npar= 20). (d) The diffusion exponentα as a function ofγ.
Increase of the “effective” temperatureγ leads to the gradual transformation of the
single-file regime of diffusion into the diffusion regime offree particles.
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in case of a parabolic potential). However, the obtained results are only valid for the intermedi-

ate regime and therefore they only describe the “onset” of the long-time behavior. The problem

of accessing the long-time behavior in a finite chain is related to the fact that sooner or later (i.e.,

depending on the chain length) the interacting system will evolve into a collective, or “single-

particle”, diffusion mode which is characterized byα = 1.0. Thus the question is whether the

observed behavior holds for the long-time limit,i.e., is the transition fromt0.5 to t1.0 behavior

smooth?

To answer this question, we considered a simple model,i.e., a linear discrete chain of

fixed sites filled with either particles or “holes” (sites notoccupied by particles) [this model

was also recently used in Ref. (119)]. The particles can move along the chain only due to

the exchange with adjacent vacancies (with holes). Within this model, the long-time diffusion

behavior was described analytically for an infinite linear chain as well as for a finite cyclic

chain (113). In particular, this model predicts that: (i) If the chain is infinite then the long-time

power law of the diffusion curveα is 0.5 (MSD〈∆x2(t)〉 ∝ t0.5); (ii) If the chain is finite then the

sub-diffusive regime withα = 0.5 is followed by eitherα = 1.0 regime (if the cyclic boundary

condition is realized), or byα = 0 regime,i.e., the regime of saturation (if no cyclic boundary

condition is imposed (56)). The latter regime is reached for times longer than the “diffusion

time” of a “hole” along the whole chaintchain.

Let us now apply this model to a finite-size chain of particles. For this purpose, we

assume that adjacent particles are able to exchange their positions with some probabilityP at

every time step. For example, probabilityP= 0.1 means that a couple of any adjacent particles

certainly exchange their positions once for every 10 time steps. The results of our calculations

of the MSD performed using this model are presented in Fig.22(a). We used the following

parameters: the chain length isNs = 150 sites andNh = 1 hole. Averaging was done over

1000 ensembles. The calculation was performed for the following values of the probability:

P= 0,10−5,10−4,10−3,0.01,0.1, and 1.

We see in Fig.22(a) clearly the above-mentioned two diffusion regimes,i.e., with the

MSD 〈∆x2(t)〉 ∝ t0.5 and∝ t1.0. The characteristic timetchain shifts towards lower values with

increasingP. However this analysis (Fig.22(a)) does not allow to distinguish the contributions

to the long-time behavior (∝ t1.0) due to: (i) the breakdown of single-file condition (diffusion

due to particle exchanges), and (ii) the “collective” diffusion (chain “rotation”). To overcome

this difficulty, we exclude the “collective” diffusion of the system and introduce a modified

MSD 〈∆x2(t)〉corr (which is so-called “roughness” of the system of particles,as discussed in

Ref. (45)) as follows

〈∆x2〉corr = 〈(x− x̄)2〉, (3.22)

where〈...〉 is the average over time; ¯x is the average of an ensemble of particles at a given time,

or “collective” coordinate. It should be noted that〈x〉 6= x̄. If the system does not experience
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Figure 22 – Log-log plot of the MSD〈∆x2(t)〉 (a) and corrected MSD〈∆x2(t)〉 corr (b) as a
function of time for different values of the probabilityP of bypassing. Averaging
was done overNsim= 1000 ensembles.

“collective” diffusion then ¯x(t) = 0 and the modified MSD coincides with the conventional one

〈∆x2〉corr = 〈x2〉. (3.23)

The diffusion curves calculated by using the modified MSD arepresented in Fig.22(b).

For P = 0, the diffusion curve (shown by black open squares) after the sub-diffusive regime

reaches saturation (〈∆x2(t)〉corr = const). The observed behavior is similar to that of a finite

linear chain with fixed ends (see Ref. (56)). For P 6= 0, all the diffusion curves in the long-

time limit are characterized byα = 1.0, independentof the value of the probabilityP, as seen
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in Fig. 22(b). In other words, the long-time diffusion does not depends on the probability of

mutual exchanges of particles and has the same long-time behavior for any probabilityP 6= 0.

Here we would like to emphasize again that the long-time behavior of the diffusion curves is

free from the “collective” diffusion effect and is only determined by particle jump diffusion.

Increasing the number of sites in the model corresponds, in fact, to approaching the

model of infinite chain. We have found that the increasing number of sites leads to growth of

the〈∆x2(t)〉corr limit of saturation, on the one hand, and to a shift oftchainto largert, on the other

hand. Hence, extrapolating our results to the case of infinite chain, we can conclude that in this

case as well as in the case of finite-size chain, the breakdownof single-file condition leads to

an abrupt transition from sub-diffusive to the normal diffusion regime. The difference in the

diffusive curves is just the timeτtran from sub-diffusive regime to the normal regime: for lowP

it (τtran) is long enough while for highP it (τtran) is short. It is easy to see thatτtran∼ 1/P(%).

Thus, we can conclude that in the long-time limit the transition from t0.5 to t1.0 behavior is

abrupt. Note that our calculations performed using the modified MSD 〈∆x2(t)〉corr reproduce

the results of Ref. (56) for a closed “box”. This is explained by the fact that in the closed “box”

geometry the center of mass (or collective) diffusion is zero, and it is natural that the roughness

[see Ref. (45)] and the particles diffusion coincide.

3.6 Concluding remarks

We have studied a monodisperse system of interacting particles subject to three types of con-

finement potentials: (i) a 1D hardwall potential, (ii) a 1D parabolic confinement potential which

both characterize aquasi-1D system, and (iii) a circular confining potential, which models a fi-

nite size system. In order to study the diffusive propertiesof the system, we have calculated

the mean square displacement (MSD) numerically through molecular dynamics (MD) simula-

tions. For the case where particles diffuse in a straight line in a Q1D channel, different diffusion

regimes were found for different values of the parameters ofthe confining potential (χ or Rw).

We have found that the normal diffusion is suppressed if the channel widthRw is be-

tween 0.20 and 0.50 (or by 2.0< χ < 3.5, for the case of parabolic 1D confinement), leading

the system to a SFD regime for intermediate time scales. For values ofRw > 0.56, particles will

be able to cross each other and the SFD regime will be no longerpresent. The case of a circu-

lar channel corresponds to,e.g., the set-up used in experiments with sub-millimetric metallic

massive balls diffusing in a ring with a parabolic potentialprofile created by an external electric

field. The strength of the potential (which determines the effective “width” of the channel) can

be tuned by the field strength.

Contrary to the case of hard-wall confinement, where the transition (regarding the cal-

culation of the scaling exponent (α) of the MSD〈∆x2(t)〉 ∝ tα) is sharp, a smooth crossover
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between the 1D single-file and the 2D diffusive regimes was observed. This behavior is ex-

plained by different profiles for the distribution of the particle density for the hard-wall and

parabolic confinement profiles. In the former case, the particle density reaches its maximum

near the boundaries of the channel resulting in a massive breakdown of the SF condition and

thus in a sharp transition between the different diffusive regimes. In the latter case, on the

contrary, the density distribution function has a maximum near the center which broadens with

decreasing strength of the confinement. This results in a smooth crossover between the two

diffusion regimes,i.e., SFD and 2D regime.

The analysis of the crossing events,i.e., the rate of the crossing eventsωc as a function

of the confinement parameterχ or Rw, supports these results: the functionωc(χ/Rw) displays

a clear signature of either “smooth” or “abrupt” behavior. We also addressed the case of a finite

discrete chain of diffusing particles. It was shown that in this case the breakdown of the single-

file condition (when the probabilityP of particles bypassing each other is non-zero) leads to an

abrupt transition from a sub-diffusive regime to the normaldiffusion regime.

Related publications

• D. Lucena, D. Tkachenko, K. Nelissen, V. R. Misko, W. P. Ferreira, G. A.Farias, and F. M.

Peeters,Transition from single-file to two-dimensional diffusion of interacting particles in a

quasi-one-dimensional channel, Phys. Rev. E85, 031147 (2012).
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4 Tunable diffusion of magnetic particles

The diffusion of a system of ferromagnetic dipoles confined in aquasi-one-dimensional parabolic

trap is studied using Brownian dynamics simulations. We show that the dynamics of the system

is tunable by an in-plane external homogeneous magnetic field. For a strong applied magnetic

field, we find that the mobility of the system, the exponent of diffusion and the crossover time

among different diffusion regimes can be tuned by the orientation of the magnetic field. For

weak magnetic fields, the exponent of diffusion in the sub-diffusive regime is independent of

the orientation of the external field.

4.1 Introduction

The study of magnetic colloids is of great importance both from a theoretical and an experimen-

tal point of view. Recently there has been an increased interest in the study of the structural

and the dynamical properties of magnetic confined (in particular on the meso- and nano-scale)

systems due to the possibility of biomedical (120, 121, 122) and engineering applications (123).

Examples of these magnetic systems are ferrofluid nanofilms (124, 125, 126) and magnetorhe-

ological (MR) fluids (127, 128). For instance, the translational dynamics of a mesoscopic3D

system of permanent magnetic dipoles was studied in Ref. (129), and it was found that the sys-

tem displays signatures of sub-diffusive motion due to the strong suppression of orientational

fluctuations of the magnetic dipoles by the presence of an homogenous external magnetic field.

The formation of chains of magnetic dipoles [coagulation effect (130, 131, 132)] is also rele-

vant for the dynamical properties of these magnetic systemsand may lead to different regimes

of diffusion. Magnetic clusters of dipolar particles were recently investigated experimentally

(133, 134, 135) and they may serve,e.g., as drug delivery mechanisms in biological applica-

tions. The structural properties of magnetic colloids wererecently analyzed experimentally

(136) and by means of molecular dynamics simulations (137), where novel field-induced struc-

tural transitions were observed in confined ferrofluid nanofilms.

In comparison with infinite 3D or 2D systems, confined systemsexhibit a particular

behavior due to the competition between the confining potential and the inter-particle interaction

potential. For instance, for a 2D system of repulsive particles confined in a circular parabolic

potential, previous studies clearly identified the effect of the boundaries on the structural and

dynamical properties of the system, as well as on the melting(138, 139, 140, 141, 142, 143).

Another interesting possibility of confined systems is realised when the 2D system is subjected

to an external confining potential (e.g. parabolic) in one direction. The system is calledquasi-

one-dimensional (q1D). Such a q1D system of repulsive interacting particles self-organize in a
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chain-like structure that was recently studied experimentally (144, 145, 146, 147), and through

analytical and numerical calculations (148, 149, 150, 151, 152).

Diffusion is strongly modified in confined systems, and may lead to single-file diffu-

sion (SFD) (153, 154, 155, 156, 157), which is directly related to the geometrical constrains

imposed by an external confining potential. Furthermore, q1D systems can be used as mod-

els for the study of collective phenomena in low dimensionalsystems,e.g., vortex matter in

type-II superconductors (158), colloidal particles (159) and dusty plasmas. In addition, the

mechanisms of ion transport in narrow channels (160) and DNA manipulation using magnetic

particles (161, 162) can be studied by modelling q1D systems.

In this chapter we investigate numerically the properties of a system of ferromagnetic

dipolar particles confined in a one-dimensional parabolic trap (which models a q1D channel)

coupled to a thermal bath. The orientation and strength of anin-plane external magnetic fieldB

are now control parameters that are able to influence the dynamics of the particles. For diluted

systems, particles are arranged in a single chain structurein the center of the parabolic channel.

WhenB is perpendicular to the channel, the magnetic particles interact through a pure repulsive

potential. For any other orientation ofB, an extra attractive term is present in the particle-

particle interaction potential. The latter can be dominantly attractive or repulsive, depending on

the orientation of the external magnetic field. In our numerical analysis, we perform extensive

Brownian dynamics (BD) simulations and calculate the mean square displacement (MSD)W(t)

of the particles for different parameters which characterizes the system. For the case of normal

diffusion regime (Einstein or Fickian diffusion), one hasW(t) = D0tα , whereD0 is the “free

particle” diffusion coefficient,α is the so-called exponent of diffusion (in this case,α = 1.0)

andt is time. For values ofα 6= 1.0, diffusion is said to be anomalous. For instance, in the case

of SFD,W(t) = 2Ftα (with α = 0.5) whereF is the single-file diffusion mobility factor. We

show that the application of an in-plane homogeneous external magnetic field leads to different

regimes of diffusion depending on the orientation and strength of the field.

We emphasize here that our analysis of the exponent of diffusion (α) is restricted to the

intermediate regime (ITR), which is found before the onset of the true “long-time” limit (i.e.

t → ∞) (46). See also discussion in Ref. (157) and references therein. Note that in the limit

t → ∞, the MSDW(t) ∝ t0.5 for any pairwise interaction potential if the system fulfills the SF

(single-file) condition,i.e., no particle crossings are allowed. The reason is that the clustering of

particles, observed in our work due to the attractive interaction, can be considered as a system

of bigger particles with lower effective particle density and smaller diffusion constant. These

clusters should have the MSDW(t) ∝ t0.5 but now at a much larger time scale, which we do not

consider in this work.
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4.2 Model and Numerical Methods

4.2.1 Model System

Our system consists ofN interacting dipolar ferromagnetic particles confined in aquasi-one-

dimensional (q1D) channel and which is in contact with a thermal bath at absolute temperature

T. The pair interaction potentialVpair(r) is given by the sum of the dipole-dipole termVdip(r)

and the short-range repulsionVss(r), such as

Vpair(r i j ) =
µµµ i ·µµµ j

|r i j |3
−

3(µµµ i · r i j )(µµµ j · r i j )

|r i j |5
+4ε

(
σ
|r i j |

)12

, (4.1)

wherer i j is the inter-particle separation vector between a pair of particles i and j, µµµ i is the

permanent magnetic moment of particlei, σ is the diameter of each particle andε is an energy

parameter which characterizes the short-range repulsion between the particles and prevent them

from coalescing in a single point (163). We assume identical particles,i.e., |µµµ i | = |µµµ j | = µ.

The q1D channel is modeled by a parabolic confinement potential defined asVconf = mω2y2
i /2,

wherem, ω andyi are the mass of each particle, the confinement strength (frequency) and the

y coordinate of theith particle, respectively. We also apply an in-plane homogenous external

magnetic fieldB, which forms an angleφ with respect to thex-axis. The interaction torqueτττ i

between particles is given byτττ i = µµµ i ×∑ j>i B
int
i j (cf. A.1). The coupling between the magnetic

moment of each particle and the external field is given byτττB
i = µµµ i ×B. In Fig. 23, we show a

schematic representation of the system under study together with the relevant parameters.
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Figure 23 – Schematic representation of the system. The particles have diameterσ and dipole
momentµµµ i, which forms an angleθi with respect to thex-axis. An in-plane external
magnetic fieldB is applied with magnitudeB andφ is the angle betweenB and the
x-axis.

We assume that the motion of the particles is over-damped which is typical for colloids

moving in a liquid. The equations of motion for theith magnetic dipolar particle are

ζ ṙ i = −∑
j>i

[∇∇∇i(Vdip+Vss)]−∇∇∇iVconf+ξξξ i(t), (4.2)

ζ σ2θ̇i ẑ = τττ i + τττB
i +σξi(t)ẑ, (4.3)
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wherer i = xi x̂+yi ŷ is the position vector of particlei andθi is the angle between the vectorµµµ i

and thex-axis. Furthermore,ζ is the viscosity of the medium andξξξ i(t) is a stochastic white-

noise with the properties: (i)〈ξξξ i(t)〉= 0 and (ii)〈ξim(t)ξ jn(t ′)〉= 2ζkBTδi j δmnδ (t− t ′), where

m,n corresponds to the components(x,y,θ), kB is the Boltzmann constant andT is the absolute

temperature of the system.

Note that the first and the second term on the r.h.s. of Eq. (4.3) are related to the potential

energy of a dipole due to the magnetic field generated by all the other dipoles

U int =−µµµ i ·∑
j>i

Bint
i j , (4.4)

and the potential energy of a dipole in the presence of the external magnetic field

Uext =−µµµ i ·B, (4.5)

respectively. Therefore, for the case of a strong magnetic field (in the following we consider

B= 100 as an example), the effect of the interaction torqueτττ i can be neglected since the dipoles

will tend to align completely to the external field,i.e., U int +Uext ≈ Uext (see main panel of

Fig. 24). On the other hand, if the external magnetic field is weak (for example,B= 2.0), the

interaction torqueτττ i can not be neglected since, for this case, we haveU int ≈Uext (see inset of

Fig. 24). Nevertheless, in all our simulations we keep both terms,i.e., τττ i andτττB
i .

Finally, our model system does not take into account hydrodynamic interaction (HI) ef-

fects (particle-fluid and particle-wall interactions), which usually have only a small effect on

the qualitative behavior of the diffusion properties, as recently demonstrated by Euán-Díaz

et al. (164). A similar approach was adopted for a dilute dipolar colloidal suspension in

Refs. (165, 166), where, similar to our work, the interaction potential between particles had

both a repulsive and an attractive term. The HI effects can beneglected in our case because we

are in the dilute regime,i.e., the low density case. Note that the particles are almost completely

uniformly distributed along thex-direction,i.e., the system forms a single-chain configuration.

Furthermore, HI effects should play an important role in diffusion (and in general, in dynamical

properties) for the case of highly concentrated colloidal suspensions (80), a situation that is not

considered in our work.

4.2.2 Numerical Methods

Before we integrate numerically Eqs. (4.2) and (4.3), we introduce the unit of time ast0 =

ζ σ2/ε, whereε = kBT0 is the unit of energy (T0 is the unit of temperature) andσ is the unit

of length. Moreover,B0 =
√

ε/σ3 is the unit of magnetic field andµ0 =
√

εσ3 is the unit of

magnetic moment,ω0 = (t0)−1 and the dimensionless parameterω∗ = m(ωσ)2/2ε controls

the strength of the parabolic confinement potential in they-direction. These scaling turn all

quantities into dimensionless (asterisk) form.
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Figure 24 – Potential energy, as defined by Eqs. (4.4)-(4.5), per particle as a function of timet
for B= 100,µ = 2.0. In the inset we show the same, but forB= 2. In both cases,
the number of particles in the computational unit cell wasN = 300 and all the other
parameters are given in Sec.4.2.2.

Integrating the dimensionless over-damped equations of motion, we obtain the follow-

ing Ermak-type algorithm (84) for updating the position (r∗i ) and angle (θ∗
i ) of particlei during

the simulation time step∆t∗

r∗i (∆t∗) = r∗i (0)+∆t∗f∗i j +∆t∗(ω∗)2g∗i +
√

2T∗∆t∗ξξξ ∗
i ,

θ∗
i (∆t∗) = θ∗

i (0)+∆t∗τ∗i +∆t∗τ∗B
i +

√
2T∗∆t∗ξ ∗

i , (4.6)

wheref∗i j = −∑ j ∇∇∇∗
i [V

∗
dip+V∗

ss], g∗i = −∇∇∇∗
i [(y

∗
i )

2], τ∗i = |µµµ∗
i ×∑ j>i B

∗int
i j | (cf. A.1) andτ∗B

i =

|µµµ∗
i ×B∗|. Furthermore,V∗

dip andV∗
ss are given by

V∗
dip =

µµµ∗
i ·µµµ∗

j

|r∗i j |3
−

3(µµµ∗
i · r∗i j )(µµµ∗

j · r∗i j )
|r∗i j |5

, (4.7)

V∗
ss = 4/|r∗i j |12. (4.8)

From this point onward we will abandon the asterisk notationand all physical quantities

are dimensionless, unless stated otherwise. In our simulations, we use the following parameters:
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∆t = 1.0× 10−6, ω = 10.0, µ = 2.0 andT = 1.0. Note thatB andT can be related by the

dimensionless parameterc = |Ueff|/kBT, which is defined as the ratio between the coupling

energy of a dipole particle with the effective magnetic field(Ueff =U int+Uext) and the thermal

energy (kBT). We also use a simulation box of length (in thex direction)Lx = 375.0, and linear

densityρ = N/Lx = 0.8. We choose this value ofLx in order to cutoff the interaction potential

for distances larger thanr = rc = Lx/2 ≈ 187.0, at which the interaction energy between a

pair of particles is approximatelyVdip(r)|rc ≈ 1.0×10−6. In thex direction, we apply periodic

boundary conditions and in the transverse direction, the system is confined by the parabolic trap,

which is controlled by the parameterω. Note that in this work we set a value ofω which is

large enough to prevent particles from bypassing each other, as we demonstrated in a previous

study (157). This forces the system into a strict 1D chain of particles in thex direction. The

initial configuration of the particles is chosen randomly and the system is equilibrated during

(1.0− 5.0)×106 simulation time steps. Other parameters which characterize the system are

the magnitude of the external magnetic field (B) and the angleφ betweenB and thex-axis.

Furthermore, the stochastic white noiseξξξ i(t) is simulated using the Box-Müller transformation

technique (83) and in all the results presented in this work, the error barsin the plots are smaller

than the symbol size.

4.3 Interaction potential between two dipoles

Before we study the complete system (the model described in Sec.4.2), let us first analyze the

behavior of the dipole-dipole interaction potentialVdip(r) between two particles as a function of

φ (cf. Fig.23), assuming that both dipoles are perfectly oriented in the direction of the external

field. In this case, the interaction potential may be writtenas

Vdip(|r |) =
|µµµ |2
|r |3

[
1−3cos2(φ −θr)

]
+4|r |−12, (4.9)

whereθr (cf. Fig. 23) is the angle formed between the vectorr and thex-axis. We assume the

simplest case, whereθr = 0o, which means that particles are forming a perfect one-dimensional

chain along thex direction. The dependence ofVdip [Eq. (4.9)] on the distancer between two

particles is presented in Fig.25 for different values ofφ . We found that forφ ' 54o, the

interaction potential is dominantly repulsive. On the other hand, forφ / 54o, the interaction

potential has a Lennard-Jones form (e.g., φ = 0o in Fig. 25). For small values ofr, the repulsive

term 4|r |−12 is dominant. For intermediate values ofr (1.0 < r < 1.5), the particle can be

trapped in the potential well due to the presence of the attractive part in the interaction potential.

For larger distances (r → ∞), the interaction vanishes.
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Figure 25 – Dipole-dipole interaction potentialVdip(r) [Eq. (4.9)] as a function of the distance
r between two dipoles and for different values ofφ .

4.4 Influence of a strong external magnetic field on diffusion

The influence of a strong homogeneous external magnetic fieldon the diffusive properties of

the model system described in Sec.4.2.1will now be investigated. The external fieldB with

magnitudeB= 100 [which is a typical strong field value used in experiments, see (167)] forms

an angleφ with respect to thex-axis (cf. Fig.23). Note that since we setT = 1.0, the parameter

c≈ 200≫ 1, which means thermal fluctuations are weak. We now investigate how diffusion

depends onφ .

We will study the diffusive properties of the system throughthe analysis of the mean

square displacementW(t) along thex direction, defined as

W(t) =

〈
1
N

N

∑
i=1

[xi(τ +δ t)−xi(τ)]2
〉

τ

, (4.10)

whereN is the number of particles (we use a typical value ofN=300–900 particles),τ is an

arbitrary time origin (104), δ t is the time interval between measurements and〈·〉τ is an average

over different time origins during the simulation (168).
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4.4.1 Region (I): 55o . φ ≤ 90o

First, we consider the external magnetic field perpendicular to the parabolic confinement chan-

nel, i.e. φ = 90o. In this case, the interaction is purely repulsive [Vdip(r) ∝ (1/r)3] and the mean

square displacementW(t) [Fig. 26(a)] of the system exhibits a sub-diffusive regime [single-file

diffusion (SFD)], withW(t)= 2Fat0.5 for time scales larger than the short-time normal diffusion

regime (STND), which is characterized byW(t) = D0t (169). The crossover timetc between

these two distinct regimes of diffusion can be estimated (104) as the time where the curvesD0t

and 2Fat0.5 intersect

D0tc ≈ 2Fa(tc)
0.5 ⇒ tc ≈

(
2Fa

D0

)2

. (4.11)

The mean square displacement forφ = 90o andφ = 70o are presented in Figs.26(a)-(b),

respectively. We found that for 55o . φ ≤ 90o, i.e., when the dipole-dipole interaction is purely

repulsive (cf. Fig.25), W(t) has the following behavior

W(t) =

{
D0t for t < tc
2Fat0.5 for t > tc,

(4.12)

where a straightforward calculation using Eq. (4.11) givestc ≈ 7.58×10−3 (Fa ≈ 4.79×10−5

andD0 ≈ 0.110×10−5). In this region (I), the crossover timetc and the SFD mobilityFa are

independent of the value ofφ .

4.4.2 Region (II): 0o ≤ φ . 55o

For the case of 0o≤ φ . 55o, the attractive term present in the dipole-dipole interaction potential

becomes more relevant with decreasingφ . As a consequence, we expect that the diffusion of

the dipoles to be affected by the orientation ofB. We found that for this region (II), the system

exhibits the STND followed by a sub-diffusive regime, withW(t) = 2Fb(φ)t0.6, where nowtc
andFb depends on the angleφ and

W(t) =

{
D0t for t < tc(φ)
2Fb(φ)t0.6 for t > tc(φ),

(4.13)

with tc(φ) ≈ (2Fb(φ)/D0)
2.5. The mean square displacement forφ = 50o andφ = 0o is pre-

sented in Figs.26(c)-(d), respectively.

In Figs.27(a)-(b) we show the mobilityFb(φ) in region (II) and the crossover timetc as

a function ofφ , respectively. Note that bothFb andtc decreases with decreasingφ in region (II).

On the other hand, as stated above, the crossover timetc is constant in region (I).

The decrease oftc andFb, in region (II), with decreasingφ can be explained by the

decrease of the minimum inter-particle distance between neighbor particles [cf. Fig.28(a)].
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Figure 26 – Log-log plot of the mean square displacement (solid black curves)W(t) as a func-
tion of the timet for B = 100 and (a)φ = 90o, (b) φ = 70o, (c) φ = 50o and (d)
φ = 0o. The dashed orange lines are a guide to the eye and the crossover timetc for
each case is indicated by the vertical arrow.

When the interaction potential is dominated by the repulsive part of the potential [region (I)],

the particles are distributed homogeneously along the unconfined direction [Fig.29(a)], i.e., the

minimum inter-particle distance between neighbors is approximately constant. In region (II),

the attractive term in the interaction potential becomes more relevant, and the system starts to

form clusters of chains. Therefore, the particles are no longer homogenously distributed along

the channel. The minimum inter-particle distance decreases with decreasingφ and the crossover

time tc is smaller than in region (I) because particles “feel” the interaction with neighboring

particles much faster. Also, since the particles can be trapped inside the clusters of chains, the

mobility (Fb) is reduced with decreasingφ .

4.5 Exponent of diffusion (α) in the intermediate (ITR) sub-diffusive

regime

In the previous section we showed that the MSD [W(t)] exhibits two different regimes of sub-

diffusion depending on the region [(I) or (II)]: the exponent of diffusion (α) in the sub-diffusive
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regime changes fromα = 0.5 to α = 0.6 as the angleφ is decreased fromφ = 90o to φ = 0o.

The exponentα is calculated by fitting the MSD of our simulation data in the region of interest

(for instance, the ITR regime) according to the relationW(t)∝ tα . The increase in the diffusion

mechanism can be seen in Fig.28(b), whereα is presented as a function of the orientation

φ . Note thatα increases with decreasingφ , which can be understood in terms of the dipole-

dipole interaction dependence onφ . For φ & 55o, the interaction potential is mainly repulsive

and therefore it leads the system into a sub-diffusive behavior, whereα = 0.5. The scaling

W(t) ∝ t0.5 has been observed experimentally in repulsive interactingparticles (41), and was

also found from simulations (104, 105, 154) and through analytical (56, 45) calculations. In

this case, the minimum inter-particle distance is approximately equal tod ≈ (ρ)−1 ≈ 1.2. On

the other hand, forφ . 55o, the interaction potential exhibits a competition betweena repulsive

and an attractive term (cf. Fig.25). The attractive part of the potential forces the formation

of clusters of chains [Fig.29(b)], resulting in empty spaces along the unconfined direction.

This is illustrated in Fig.28(a), where the minimum distance between particlesd is shown as

a function ofφ . Note thatd decreases with decreasingφ . Since the system has a fixed density

ρ , the empty spaces between the clusters of chains results in an increase of diffusion, which

subsequently gives an exponent of diffusionα that is slightly larger than 0.5.

In order to better understand the increase of the exponent ofdiffusionα, we calculate the

mean square displacement of eachjth particle [Wj(t)] using an expression similar to Eq. (4.10)

Wj(t) = 〈[x j(τ +δ t)−x j(τ)]2〉τ , (4.14)

where j = 1, ...,N represents each individual particle and〈·〉τ is an average over different time
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Figure 28 – (a) Minimum inter-particle distanced between neighboring particles forB = 100
andT = 1.0 as a function of the orientationφ of the external field. (b) Exponent of
diffusion (α) as a function of the orientationφ of the external magnetic field. Note
thatd decreases with decreasingφ in the region 0o < φ . 55o, which is the same
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origins during the simulation. In Figs.30(a)-(b) we showW(t) (open black circles) andWj(t)

(gray triangles) forφ = 90o andφ = 0o. Note that for the caseφ = 90o, Wj(t) deviates very

little from the mean square displacement of the systemW(t). In this case the particles in the

system are distributed homogenously along the unconfined direction. Therefore, the diffusion

of a tagged particle should be the same as the diffusion of thewhole system. On the other

hand, for the case ofφ = 0o, Wj(t) deviates [much more] fromW(t) [than in the caseφ = 90o].

This is caused by the asymmetry along the unconfined direction. In this case, it is possible

that a tagged particle can diffuse differently than the whole system because of the formation of

clusters of chains [cf. Fig.29(b)]. For instance, particles which are located at the borders of the

cluster of chains diffuse faster than particles which are inside the cluster. This is the reason for

an exponentα that is slightly larger than 0.5 in the case where the interaction potential has both

repulsive and attractive terms [Region (II), see Sec.4.4.2].
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Figure 29 – Typical snapshots of the system after 106 simulation time steps for (a)φ = 90o and
(b) φ = 30o. Other parameters areB= 100 andT = 1.0.

4.6 Weak magnetic fields

In the previous section, we showed that the diffusion mechanism of the system is affected by

the orientation of the strong external magnetic field. Now, we turn to the question of how the

magnitude ofB influences the diffusive properties of the system. To this end, we perform similar

simulations using the same parameters of the previous section, but with a weaker magnetic field

B = 0.1. Note that since we setT = 1.0, the parameterc ≈ 0.2 ≪ 1, which means thermal

fluctuations are strong. The mean square displacement (in log-log scale) as a function of the

time is presented in Fig.31 for different values ofφ .

There are two important observations regarding the resultsfor B= 0.1: (i) note that the

ITR regime for this case is shifted to larger time intervals as compared to the previous case

(see Fig.26), which is a consequence of the weaker coupling of the dipoles with the external

magnetic field, leading the system to larger relaxation (crossover) times. Here, the ITR regime

can be identified in the time interval 101 . t < 102; (ii) since the external magnetic field is small

(compared to the case of the previous section,B = 100), the coupling between the magnetic

dipoles and the external field is weaker which results in an approximatelyφ -independent regime

of diffusion [cf. Fig.31]. This means that the exponent of diffusionα in the ITR regime is a

constant (α = 0.35) which is independent of the orientation of the external magnetic field. We

will further discuss this particular value ofα in the following section. Note that, as opposed to

the case of strong magnetic field, the clustering of particles in a chain-like configuration along

the unconfined direction is less pronounced, as illustratedin Fig. 32. Note that the orientation

of the dipoles of the ferromagnetic particles is almost random.
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Figure 30 – Mean-square displacement of the system [open black circles,W(t)] and mean
square displacement of individual particles [gray triangles,Wj(t)] as a function
of the timet for two different values ofφ = (a) 90o and (b) 0o. The dashed orange
lines are a guide to the eye. Other parameters areB= 100 andT = 1.0.

4.7 Influence of the strength of the magnetic field

In this section, we further investigate how the strengthBof the external magnetic field influences

the diffusion of the system. We analyze the case forφ = 90o, where the SFD is found in the

ITR regime forB= 100 [see Fig. 28(b)]. From the calculations of the MSD using Eq. (4.10)

for different values ofB, we found that forB & 10, the SFD regime is always present in the

ITR regime,i.e., W(t) ∝ t0.5. Therefore, we only investigate the region 0.1≤ B≤ 10.0, and the

results are plotted in Figs.33(a)-(d). ForB= 10 [Fig.33(a)], as stated above, the SFD regime

is present in the ITR regime, which meansα = 0.5.
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Figure 31 – Log-log plot of the mean square displacement (solid black curves)W(t) as a func-
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Figure 32 – Typical snapshots of the system after 106 simulation time steps for (a)φ = 90o and
(b) φ = 30o. Other parameters areB= 0.1 andT = 1.0.

We found that by decreasing the value ofB, the exponent of diffusion (α) decreases

from α = 0.5 to α = 0.35, as shown in Fig.34. The reason for this behavior is explained by

the following: as the magnetic field is decreased, its coupling with the dipoles also decreases,

leading to an increase in the rotational movement of the dipoles. Therefore, the energy of a
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dipole is more evenly distributed between translational and rotational motion. Recall that for

large values ofB (= 100), the dipoles were almost completely aligned with the field. The

increase in the rotation of the dipoles thus leads to a slowing down of the translational diffusion,

i.e., α decreases with decreasingB.
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Figure 33 – Log-log plot of the mean square displacement (solid black curves)W(t) as a func-
tion of the timet for φ = 90o and (a)B= 10, (b)B= 2, (c)B= 1 and (d)B= 0.1.
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Figure 34 – Exponent of diffusionα (in the ITR regime) as a function of the strengthB of the
external magnetic field forφ = 90o. The solid line is a guide to the eye.

In order to strengthen this conclusion, we calculate the mean square angular displace-
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Figure 35 – Log-log plot of the mean square angular displacementWrot(t) as a function of the
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ment (MSAD)Wrot(t), which is defined similary to Eq. (4.10)

Wrot(t) =

〈
1
N

N

∑
i=1

[θi(τ +δ t)−θi(τ)]2
〉

τ

, (4.15)

whereθi is the angular coordinate of theith particle (cf. Fig23). The results of calculations of

the MSAD are shown in Fig.35 for different values ofB. Note that for all values ofB, Wrot(t)

saturates after the initial motion. Furthermore, the MSAD curves increases with decreasingB,

which indicates that the rotational motion of the dipoles increases with decreasing strength of

the external magnetic field.

4.8 Concluding remarks

We studied a system of interacting ferromagnetic dipoles, confined in a q1D channel, that are

subjected to a homogeneous external magnetic field. The analysis of the mean square displace-

mentW(t) indicates that the diffusive properties of the system depends on the orientation and

on the strength of the external field. For the case of strong magnetic fields (we considered

B = 100 as an example), we found that the exponent of diffusionα increases with decreasing

orientationφ [cf. Fig. 28(b)] of the external field,i.e., directing the magnetic field towards the

direction parallel to the channel. This increase of diffusion was explained by the dependence

of the dipole-dipole interaction potential onφ . For φ & 55o, the interaction is dominantly re-

pulsive, leading the system into sub-diffusive motion in the ITR regime. On the other hand,

for φ . 55o, the interaction potential has a Lennard-Jones form, whichcreates a competition
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between the repulsive and the attractive term of the dipole-dipole potential. The attractive part

of the potential leads the system into clusters of chains [Fig. 29(b)]. The empty spaces in the

system allow for an increase in diffusion.

For small values of the magnetic field (e.g. B= 0.1), the coupling between the magnetic

dipoles andB is weak and the dynamic behavior of the system becomes almostindependent of

the orientation ofB. This results in an exponentα, in the sub-diffusive regime, that is a constant

(α = 0.35) for all values of the orientation of the external magnetic field. The fact that for weak

magnetic fields the exponent of diffusion is smaller than 0.5 (the slowing down of translational

diffusion) was explained by the weak coupling of the dipoleswith the external field, leading to

an increase in the rotational motion of the dipoles. Note that the value ofα = 0.35 only holds

for the ITR regime, as discussed in the Introduction. In bothcases (strong and weak external

magnetic fields), the system is still in the single-file, diluted regime.

Our results show that the diffusion mechanism in this systemcan be controlled by tun-

ing the orientation and the strength of the external magnetic field. This will allow one to control

the dynamics of magnetic particles in narrow channels by simply tuning the parameters which

regulate the external magnetic field.

Related publications

• D. Lucena, F. F. Munarin, W. P. Ferreira, G. A. Farias, and F. M. Peeters, Tunable diffusion

of magnetic particles in a quasi-one-dimensional channel, Phys. Rev. E87, 012307 (2013).
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5 Single-file and normal diffusion of mag-

netic colloids

Diffusive properties of interacting magnetic dipoles confined in a parabolic narrow channel and

in the presence of a periodic modulated (corrugated) potential along the unconfined direction

are studied using Brownian dynamics simulations. We compare our simulation results with the

analytical result for the effective diffusion coefficient of a single-particle by Festa and d’Agliano

(170) and show the importance of inter-particle interaction on the diffusion process. We present

results for the diffusion of magnetic dipoles as a function of linear density, strength of the

periodic modulation and commensurability factor.

5.1 Introduction

Manipulation and control of magnetic colloidal particles have greatly increased over the last

years. Recent advances include fabrication of anisotropicmagnetic particles (171) which can

have a wide range of applications, from drug deliver mechanisms (121, 172) to fabrication

of tunable self-assembly colloidal devices (173, 174). Further examples of applications of

anisotropic particles are the so-called colloidal molecules (175, 176), the patchy colloids (177,

178, 179) and the magnetic Janus colloids (180). The use of magnetic dipoles is particularly

interesting due to the fact that the inter-particle interaction potential introduces a natural source

of anisotropy. This is achieved by the application of a tunable external static homogeneous

(131, 181) or oscillating (182, 183) magnetic field (BBB). Diffusion and transport of colloidal

particles in periodic modulated (corrugated) channels (184) represent important phenomena

which allows the understanding of several mechanisms in soft condensed matter,e.g., molecu-

lar and cell crowding in biological systems (185, 186), pinning-depinning transition of vortices

in type-II superconductors (187, 188, 189), and elastic strings (190, 191). Theoretical models

which describe the trapping dynamics of modulated systems include, for instance, continuous

time random walk (CTRW) (192) and random walk with barriers (193). Experimentally, cor-

rugated periodic (12) or random (10) landscapes can be realised,e.g., by light fields allowing

the control of the colloidal particles. Furthermore, diffusion in modulated landscapes is often

anomalous,i.e., the mean square displacementW(t) (MSD) follows a power-law [W(t) ∝ tα ]

with an exponent 0< α < 1 (194).

Diffusion in very narrow channels is governed by single-filediffusion (SFD) (195). An

interesting quantity in this case is the single-file mobility factor,F . This factor has been pre-

viously analysed by Herrera-Velarde and Castañeda-Priego(169) for the case of a system of
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repulsive interacting superparamagnetic colloids. In ourcase, however, the attractive part of

the inter-particle interaction potential [Eq. (5.12)] introduces an anisotropy in the system. This

means that the external magnetic field, regulated by the magnitude ofBBB and its directionφ , now

plays an important role in tuning the diffusive properties of the system. The effects of these

two parameters in a system without external modulation has been recently investigated by us in

Ref. (196). Here we extend these results to the case where the narrow channel is periodically

modulated along the unconfined direction. We find that the commensurability between the inter-

particle distance and the period of the modulation is an essential factor that strongly influences

the diffusion.

5.2 Single-particle in an external periodic potential

First, we consider the simplest case of a single-particle diffusing in one dimension and subjected

both to Brownian motion and to an external periodic potential landscape. The equation of

motion for the particle is given by the over-damped Langevinequation (197)

ζ
dx
dt

=−∂V(x)
∂x

+ξ (t), (5.1)

whereζ is the viscosity of the medium,x is the position of the particle,t is time,V(x) is the

external one-dimensional periodic potential of the formV(x) = V0cos(2πx/L), whereV0 and

L are the magnitude and periodicity of the external potential, respectively. Essential here is

thatV(x) is periodic but it does not necessarily need to be of cosine form. The only condition

is that the external potential obeys the periodicity relation, V(x) = V(x+ L). Furthermore,

ξ (t) is a delta correlated noise which follows the well-known properties (i)〈ξ (t)〉= 0 and (ii)

〈ξ (t)ξ (t ′)〉 = 2ζkBTδ (t − t ′). kB is the Boltzmann constant andT is the absolute temperature

of the heat bath.

In the case where the particle is free,i.e., V0 = 0, it is straightforward to show (197)

that the self-diffusion coefficient of the particle is givenby the Einstein relationD0 = kBT/ζ .

In the presence of a periodic potentialV(x), previous studies (170, 198, 199) showed that the

self-diffusion coefficient of the particle is modified into

Deff

D0
=

L2

∫ L
0 dxexp{V(x)/kBT}

∫ L
0 dzexp{−V(z)/kBT}

. (5.2)

It is easy to see that whenV(x) = 0, Eq. (5.2) reduces toD0 as it should be. If we consider

the case ofL = 2πσ andx→ x′σ [V(x′) =V0cos(x′)], the solutions of the integrals in (5.2) are

known (200) and given by

σ
∫ 2π

0
dx′ exp{V(x′)/kBT} = 2πσ I0(V0/kBT), (5.3)

σ
∫ 2π

0
dx′exp{−V(x′)/kBT} = 2πσ I0(−V0/kBT), (5.4)
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whereI0(y) are the modified Bessel functions of the first kind andσ is a unit of distance. There-

fore, the self-diffusion coefficientDeff depends only on the ratioV0/kBT. A series representation

of I0(y) can be written as (201)

I0(y) = 1+
(y/2)2

(1!)2 +
(y/2)4

(2!)2 + . . . (5.5)

Taking the first order approximation in Eq. (5.5), we have thatDeff/D0 is given by

Deff

D0
≃ 1

[1+(y/2)2]2
. (5.6)

Note that fory=V0/kBT ≪ 1, Deff/D0 → 1, as expected. On the other hand, fory=V0/kBT ≫
1, the modified Bessel functionI0(y) can be written to a first order approximation as (202)

I0(y)≃ ey/
√

2πy. Therefore,Deff/D0 has the form

Deff

D0
≃ (2πy)e−2y. (5.7)

Fory=V0/kBT ≫ 1, Deff/D0 → 0. Both limiting cases (5.6) and (5.7) are shown in Fig.36.
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Figure 36 – Effective self-diffusion coefficientDeff/D0 of a single-particle in one dimension in
the presence of a thermal bath and a periodic potentialV(x′) =V0cos(x′).

5.3 Interacting magnetic dipoles

We now turn to the problem where instead of a single-particlewe haveN interacting magnetic

dipoles of diameterσ and magnetic momentµµµ diffusing in the plane(x,y). The geometry

of the plane is then modulated by two external potentials, namely (i) a parabolic transversal

confinement potential in they direction and (ii) a periodic potential in thex direction. We also
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apply an external homogeneous magnetic fieldBBB which can form an angle 0o ≤ φ ≤ 90o with

thex axis. In this more complex situation, the equations of motion which describe the dynamics

of particlei are given byN over-damped coupled Langevin equations

ζ ṙ i = −∑
j>i

∇∇∇V int
i j −∇∇∇[Vmod(xi)+Vconf(yi)]+ξξξ i(t), (5.8)

ζ σ2θ̇iẑ = τττ i + τττBBB
i +σξi(t)ẑ, (5.9)

wherer i = xi x̂+ yi ŷ is the position vector of particlei andθi is the angle between the vector

µµµ i and thex axis. τττ i andτττBBB
i are the torque due to the magnetic field created on particlei by all

other particles and the torque created by the external magnetic field BBB, respectively. A similar

set of equations (5.8)-(5.9) was recently used in Ref. (196), and therefore we report only on the

results related to the presence of the modulation in thex direction (203, 204)

Vmod(xi) =V0cos

(
2πxi

L

)
. (5.10)

The parabolic transversal confinement is given by

Vconf(yi) =
1
2

mω2y2
i , (5.11)

whereω is the strength of the confinement (frequency) andm is the mass of the identical parti-

cles. Furthermore, the pair interaction potentialV int
i j is given by

V int
i j =

µ0

4π

[µµµ i ·µµµ j

|r i j |3
−

3(µµµ i · r i j )(µµµ j · r i j )

|r i j |5
]
+4ε

(
σ
|r i j |

)12

, (5.12)

whereµ0 is the medium permeability,r i j is the inter-particle separation vector between a pair

of particlesi and j andε is an energy parameter in order to prevent particles from coalescing

into a single point.

Following previous works (196, 203, 204), we use an Ermak-type algorithm (84) to inte-

grate equations (5.8)-(5.9). The simulations were performed with fixed parameters:∆t = 1.0×
10−4(ζ σ2/kBT), µ = 1.0

√
4πkBTσ3/µ0 andB= 100

√
kBTµ0/4πσ3. We chooseε = kBT as

unit of energy,σ as unit of distance and time is measured in units oftB = ζ σ2/kBT. Finally, the

stochastic white noiseξξξ i(t) is simulated using the Box-Müller transformation technique (83)

and in all the results presented in this work, the error bars in the plots are smaller than the sym-

bol size. Similarly to our previous paper (196), hydrodynamic interactions (HI) are not taken

into account. Such interactions may have an impact on the diffusion properties [and in general

on the dynamical properties, see,e.g. Ref. (205)] for the case of highly concentrated colloidal

suspensions, which are not considered in the present work.

In order to study diffusion we calculate the mean square displacement (MSD)W(t),

defined as (104)

W(t) =

〈
N−1

N

∑
i=1

|r i(t)− r i(0)|2
〉
, (5.13)
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where we use a typical value ofN = 300−900 particles,t is the time and〈. . .〉 is an average

over different time origins during the simulation (168). This equation can be split in two terms,

namelyWx(t) andWy(t), where the first refers to the mean square displacement in thex direction

and the latter refers to the mean square displacement in they direction.

The system is tuned by three parameters, namely (i) the linear density,ρ = N/Lx where

Lx is the size of the computational unit cell in thex direction andN is the total number of

particles, (ii) the angleφ of the external magnetic field, and (iii) the strengthV0 of the external

modulation in thex direction. Note that since we are using periodic boundary conditions in the

x direction, we have to guarantee the continuity of the external modulation at the borders of the

computational unit cell. This is achieved by introducing the relation

Lx = nL, (5.14)

wheren∈ Z+ and it represents the number of minima (or maxima) of the external modulation

within the computational unit cell.

5.4 Normal and single-file diffusion for fixed linear density

5.4.1 Caseω = 1.0
√

2kBT/mσ2

In this section, we set the transversal confinement parameter ω = 1.0
√

2kBT/mσ2 andφ = 90o.

A snapshot of the configuration of the system together with the contour plot of the periodic

modulation and transversal confinement is shown in Fig37. The mean square displacement in

thex directionWx(t) [Eq. (5.13)] for different values ofV0/kBT is shown in Fig.38. Note that

for all the values ofV0/kBT, except for 4.0 and 5.0,Wx(t) exhibits a linear dependence on time

t for large time scales

lim
t≫tN

Wx(t) = 2Dst, (5.15)

whereDs is the self-diffusion coefficient andtN (indicated by gray open diamonds) is the time

scale at which this normal diffusion regime is recovered. Note that since the system is coupled

to a heat bath (kBT), the normal diffusion regime should be recovered for any value of the ratio

V0/kBT, with the condition thattN → ∞ for V0/kBT → ∞. In other words, this means that the

intermediate regime (whereW(t) exhibits a slower-than-linear dependence on time orW(t) =

const) extends over a larger time interval for larger valuesof V0/kBT. This intermediate regime

is generally associated with a “cage” effect, which in our case is represented by the localization

of particles in the potential minima. A similar effect was found previously in simulations on

mono-disperse glassy systems (206) and Lennard-Jones binary mixtures (207). However, in

these works, the caging effect was not induced by an externalmodulation but rather by many-

body effects related to the specificities of their system.
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Figure 37 – Snapshot of the configuration of the system forV0/kBT = 2.0. The particles are
represented by yellow circles where the black arrows indicate the direction of
the dipoles. The contour plot of the potentialVmod(x) +Vconf(y) is also shown.
The linear density isρ = 0.5σ−1 and the transversal confinement strength is
ω = 1.0

√
2kBT/mσ2.

From these results, we also note that, as expected from previous section, the self-

diffusion coefficient depends on the ratioV0/kBT. This dependence is shown in Fig.39, where

Ds decreases with increasingV0/kBT. Ds is obtained by fitting our data with Eq. (5.15). Note

that even though the behaviour ofDs as a function of the ratioV0/kBT is qualitatively similar

to Deff(V0/kBT) for a single-particle, it is clear thatDs < Deff. This difference betweenDs

andDeff is due to correlations between the particles, which now couples the movement of the

dipoles through the interaction potential. We estimate this difference by calculating the ratio

R= Ds/Deff which is shown in the inset of Fig.39. Note thatR drops to zero asV0/kBT in-

creases. This means that in both cases,i.e., for single-particle and for interacting particles, the

self-diffusion coefficient goes to a value very close to zero[but does not vanish completely, see

Sec. IIIB of Ref. (208)] asV0/kBT increases. Therefore, there is no diffusion until temperature

is sufficiently high to allow the escape of the particles fromthe potential wells (209). The effect

of the linear densityρ on the self-diffusion coefficient,Ds, will be discussed in Sec.5.5.

5.4.2 Caseω = 10.0
√

2kBT/mσ2

In the case where the transversal confinement potential is increased, the fluctuations of the

particles in they direction becomes smaller. This effect of confinement brings the system into

the single-file (SF) regime, which means that particles cannot bypass each other (157). This

special geometric constraint leads to a phenomenon called single-file diffusion (SFD), in which

one of the most striking feature is that the long-time mean square displacementWx(t) of a
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Figure 38 – Log-log plot of the mean square displacement in thex directionWx(t) as a function
of time t for different values of the ratioV0/kBT. The yellow dotted line is a guide
to the eye. The open diamonds indicate approximately the time scale (tN) where the
normal diffusive regime,i.e. Wx(t) ∝ t, is recovered. The transversal confinement
strength isω = 1.0

√
2kBT/mσ2 and the linear density isρ = 0.5σ−1.

tagged particle along the unconfined direction (in our case,the x direction) displays typical

sub-diffusive motion with

lim
t≫tc

Wx(t) = Ft0.5, (5.16)

whereF is the so-called single-file diffusion mobility andtc is a characteristic relaxation time

of the system. In particular,F andtc depend on the specifics of the system (210). Wei et al. (41)

showed experimentally that for a repulsive inter-particleinteraction potential,tc decreases with

increasing strength of the interaction potential. This canbe understood from the fact that an

increase in the interaction leads to an increase in the collision rate between the particles (113).

Nelissenet al. (100) recently showed that when the inter-particle interactionis comparable

to the viscosity (damping), an intermediate “under” single-file diffusion regime,i.e. Wx(t) ∝
tα (with α < 0.5), is also observed. Such a behaviour was also found in experiments with

millimetre metallic balls (102) and in numerical simulations (105) taking into account spatial

correlated noises.

In our specific case, the modulation in thex direction adds an additional restriction to

the movement of the particles. The effect ofV0/kBT on the mean square displacementWx(t) is

shown in Fig.40(a). Two effects are noticed here: First, the relaxation time tc increases with

increasing ratioV0/kBT, which means that for higher values of this ratio a longer time is needed

for a particle to feel the presence of its neighboring particles. Once this time scale is reached,

the sub-diffusive law [Eq. (5.16)] is recovered due to the interaction with its neighbors. Second,

the mobility factorF decreases with increasingV0/kBT [cf. inset of Fig.40(a)], which results

from the restriction of the motion in thex direction, as stated above. Note that forV0/kBT > 0.0,
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Figure 39 – Long-time self-diffusion coefficientDs/D0 as a function of the ratioV0/kBT, for dif-
ferent linear densitiesρ . The effective self-diffusion coefficientDeff/D0 [Eq. (5.2)]
as a function ofV0/kBT for a single particle is also shown (solid red curve) for
comparison. The inset shows the ratioR= Ds/Deff as a function ofV0/kBT for the
caseρ = 0.5σ−1.

the system exhibits an intermediate regime whereWx(t) ∝ tα , with α < 0.5 before it reaches

the SFD regime. This intermediate regime extends to larger times scales as the ratioV0/kBT

increases.

5.5 Effect of linear density on diffusion

In order to investigate the effect of the linear densityρ on the diffusion, we introduce a com-

mensurability factorp ≡ N/n, whereN is the total number of particles in the computational

unit cell andn is the total number of minima (or maxima) of the external periodic modulation

along thex direction. Using Eq. (5.14) and the definition for the linear density, we may write

the following condition

p≡ N
n
= ρL. (5.17)

We start by considering the simplest case (p = 1), i.e., where there is one particle per poten-

tial well. In this section we analyse the system for three different densities, namelyρσ =

0.25,0.50,0.75. Also, we fixω = 1.0
√

2kBT/mσ2 andφ = 90o. In Figs.41(a)-(b) we show

snapshots of the configuration of the system forρ = 0.25σ−1 andρ = 0.75σ−1, respectively.

The mean square displacementWx(t) for different values ofρ is shown in Figs.42(a)-(b).

The main effect of different densities onDs is shown in Fig.39. The solid curve is the

single-particle case discussed in Sec.5.2, which corresponds to the limiting case of very dilute

systems,i.e., very low densities. As the density increases (ρ = 0.25σ−1 and ρ = 0.5σ−1),
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Figure 40 – (a) Log-log plot of the mean square displacement in thex direction,Wx(t), as a
function of timet for different values of the ratioV0/kBT. The yellow dotted line is
a guide to the eye. The transversal confinement strength isω = 10.0

√
2kBT/mσ2

and the linear density isρ = 0.5σ−1. Vertical black arrows indicate the relaxation
time tc. Inset: Single-file diffusion mobilityF, obtained from the relation (5.16), as
a function ofV0/kBT. (b) Snapshot of the configuration of particles (black dots)for
V0/kBT = 1.0. The modulationVmod(x) is plotted as the solid red curve.

the self-diffusion coefficientDs decreases. This effect is related to the coupling between the

particles due to the inter-particle interaction potential. For the case of very high densities, the

interaction energy is stronger and diffusion should be partially suppressed,i.e., Ds ≈ 0 for all

values ofV0/kBT. Note that since the system is coupled to a heat bath, the diffusion coefficient

is not exactlyzero but goes to a very small value.

5.6 Effect of commensurability factor

We further investigate the effect of the commensurability factor p on the self-diffusion coeffi-

cient. In this section, we fix the linear density toρ = 0.5σ−1 and varyp, where we choose two
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(a) ρσ = 0.25
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(b) ρσ = 0.75

Figure 41 – The same as Fig.37 but now forV0/kBT = 4.0. Linear density is (a)ρ = 0.25σ−1,
and (b)ρ = 0.75σ−1. For both cases, the transversal confinement strength isω =
1.0
√

2kBT/mσ2 and the commensurability factor isp= 1.

half-integer values (p= 1/2 andp= 3/2) and compare these results with the case of previous

section (p= 1). The effect ofp on the mean square displacementWx(t) is shown in Figs.43(a)-

(c). Note that for all cases, the system exhibits an intermediate regime of diffusion whereWx(t)

shows a slower-than-linear dependence on time orWx(t) = const before the long-time normal

diffusion regime sets in [Eq. (5.15)]. The saturation regime of the MSD in thex direction (i.e.

Wx(t) = const) is similar to the one discussed previously in Sec.5.4.1.

An interesting effect of the commensurability factorp on diffusion can be observed in

Fig. 43(d). ForV0/kBT = 0.0, the self-diffusion coefficient,Ds, is the same for all the cases

(p = 1/2,1,3/2). This is due to the fact that in the absence of the external modulation, the

system is regulated only by the linear density (in this caseρ = 0.5σ−1). Therefore, the average

distance between neighbour particles is the same. On the other hand, for sufficiently large values
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Figure 42 – The same as Fig.38but now for density (a)ρ =0.25σ−1, and (b)ρ =0.75σ−1. The
transversal confinement strength isω = 1.0

√
2kBT/mσ2 and the commensurability

factor isp= 1.

of V0/kBT = 3.0, the trapping of particles in the wells suppresses the diffusion, and again the

self-diffusion coefficientDs is of the same order (close to zero) for all the cases. However, the

effect ofp onDs is more pronounced for intermediate values ofV0/kBT = 0.5−2.0. This effect

is explained as follows. First, note thatp=1/2 andp= 1 have both very similar behaviours,i.e.,

Ds curve as a function ofV0/kBT. From the definition ofp, we have that forp= 1/2→L=1.0σ
andp= 1→ L= 2.0σ . In practice, this means that the neighbour inter-particleaveragedistance

is the same for both cases,i.e., d ≈ 2.0σ [cf. Figs. 44(a)-(b)]. Forp = 3/2 (which means 3

particles per 2 potential wells, on average), the distance between particles in neighbouring wells

is larger,d ≈ 3.0σ , which results in a larger self-diffusion coefficient. Interestingly, this case

can be thought as a binary system, where one of the wells has one “big” particle formed by

two dipoles and the other well has only one particle. Note that for all cases,Ds decreases with

increasingV0/kBT, although forp = 3/2 this decrease is slower compared to the other cases
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Figure 43 – (a)-(c) Log-log plot of the mean square displacement in thex directionWx(t), as a
function of timet for different values of the ratioV0/kBT. The yellow dotted line
has a slope of 1 and is a guide to the eye. The transversal confinement strength is
ω = 1.0

√
2kBT/mσ2 and the linear density isρ = 0.5σ−1. Color code is the same

as in Fig.42. (d) Long-time self-diffusion coefficient,Ds, as a function ofV0/kBT
for different values of the commensurability factorp.

(p= 1 andp= 1/2).

5.7 Anisotropic diffusion and transversal sub-diffusion

5.7.1 Two particles per potential well

The competition between the external potentials in thex andy directions (i.e. the modulation

[Eq. (5.10)] and the parabolic potential [Eq. (5.11)], respectively) leads to an anisotropic dif-

fusion process,i.e., Wx(t) 6= Wy(t)1. In this section we analyse the effect of the ratioV0/kBT

on both the parallel (x direction) and transversal (y direction) diffusion independently. For this

case, the simulation parameters arep = 2, ρ = 1.0σ−1 andω = 1.0
√

2kBT/mσ2, which al-

1 Note that the mean square displacement (MSD) in thex andy direction are calculated similarly to Eq. (5.13),
whereWl (t) = 〈N−1 ∑N

i=1[l i(t)− l i(0)]2〉 andl i is thex or y coordinate of eachith particle.
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Figure 44 – Snapshot of the configuration of the system for different values of the commensu-
rability factor p = (a) 1/2, (b) 1 and (c) 3/2. For all cases, the strenght of thex
direction modulation isV0/kBT = 2.0. Note thatL changes according to the value
of p.

lows the accommodation of two particles per potential well on average[cf. Fig. 45(a)]. As

a representative example, we show in Figs.45(b)-(c) the MSD in the parallel and transversal

direction, respectively, for different values ofV0/kBT. Note that the diffusion in the parallel di-

rection is very different from the transversal direction, which is a direct effect of the anisotropy

of space,i.e., the competition between periodic modulation in thex direction and the parabolic

confinement in they direction.

In the x direction (parallel diffusion), the MSD exhibits [cf. Fig.45(b)] a short-time

normal diffusion behaviour fort < tB, which is followed by a saturation regime due to the

periodic modulation. Finally, fort ≫ tB, the long-time normal diffusion regime is recovered,
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with

lim
t≫tB

Wx(t) = D||t, (5.18)

whereD|| is the parallel self-diffusion coefficient. The dependenceof D|| onV0/kBT is shown

in Fig. 45(d), and as expected it decreases with increasingV0/kBT.

On the other hand, in they direction (transversal diffusion), the MSD exhibits [cf.

Fig. 45(c)] a very different behaviour. The initial short-time normal diffusion is also present.

However, for intermediate time scalestB < t < tsat the system exhibits a sub-diffusive regime

with a non-linear time-dependence of the form

Wy(t) = Ktranst
α , (5.19)

whereKtrans is the anomalous transversal diffusion coefficient (211) andtsat is a saturation time

scale in which the diffusion is suppressed due to the confinement in they direction. Note

that α < 0.5 and thus a smaller power-law behaviour, as compared to the single-file diffusion

(SFD) case, is observed. In Fig.45(c) we show this intermediate regime and findα ≈ 0.35.

Finally, bothKtrans[cf. Fig. 45(e)] andtsatdepends on the periodic modulation strengthV0/kBT,

which is a measure of a type of “effective” confinement in thex direction. This indicates that

the periodic modulation in the parallel direction affects directly the diffusion process in the

transversal direction. A transversal sub-diffusive behaviour was recently found and analysed

by Delfauet al. (212) in a quasi-one-dimensional system of interacting particles in a thermal

bath. Note that our discussion is only valid for anintermediate regime(ITR) of sub-diffusion,

as discussed previously in Refs. (157, 196) and references therein. The sub-diffusive regime

in the transversal direction is a well-defined regime with anexponent of diffusionα ≈ 0.35,

which extends to at least one order of magnitude in time. Notethat forV0/kBT > 0.0, the time

scaletN [cf. Fig. 45(b)] where the system reaches the normal diffusive regime inthex direction,

i.e. Wx(t) ∝ t, is approximately the same as the time scale where the systemreaches the sub-

diffusive regime in the transversal direction [cf. Fig.45(c)]. For this time scaletN, a particle

crosses the potential barrier imposed by the external modulation and it reaches the neighbor

well. Once this time scale is reached, the correlations among particles in different wells give

rise to the sub-diffusive regime in the transversal direction, i.e., Wy(t) ∝ t0.35, before there is a

complete saturation regime due to the parabolic confinementpotential.

5.7.2 Four particles per potential well

In this section we analyze the transversal diffusion mechanism for p = 4, which gives four

particles per potential well. As in the previous section, wecalculate the transversal MSDWy(t)

as a function of the strength of the external periodic modulation V0/kBT, and the results are

shown in Fig.46.
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For the case of weak external modulation (e.g. V0/kBT = 0.5), the initial short-time

linear MSD [Wy(t) ∝ t] is followed by a saturation regime due to the finite size of the system

in the transversal direction. With the increase of the external modulation, an intermediate sub-

diffusive regime takes place before the onset of the saturation regime [cf. Fig.46,V0/kBT = 4.0].

This is explained by the formation of a chain of particles along the transversal direction [cf. inset

of Fig. 46]. Note that, as opposed to the previous section, whereWy(t) ∝ t0.35, in this case the

MSD presents a clear SFD scaling,i.e., Wy(t) ∝ t0.5.

These results indicate that even though the chain of particles is relatively small, the

correlations between particles is sufficiently strong (212) to induce an intermediate single-file

diffusion regime.

5.8 Concluding remarks

We studied the diffusive properties of a system of interacting magnetic dipoles in the presence

of a modulated (corrugated) channel along thex direction and confined in they direction by a

parabolic confinement potential. In order to study the diffusion of the system, we used Brow-

nian dynamics simulations. The analysis of the mean square displacementW(t) showed that

the system exhibits different regimes of diffusion depending on the external parameters (i.e. ex-

ternal modulation, magnetic field) that regulate the particle dynamics. In principle, this system

could be realised experimentally using optical tweezer traps and our results could be verified

by, e.g., a microscopy imaging technique to track individual particles’ trajectories (213).

We characterized the dynamics of the system for several parameters, namely the linear

densityρ , the commensurability factorp and the strength of the external periodic modulation

V0/kBT. Our main results are summarized as follows: (i) the self-diffusion coefficientDs is

modified by the inter-particle interaction potential as compared to the case of a single-particle

diffusing in a periodic potential landscape. The difference increases with the linear density of

particles; (ii) the effect of the commensurability factorp on the self-diffusion coefficientDs is

pronounced for the case of a semi-integer commensurabilityfactor (as an example we consid-

eredp= 3/2). The system turns into an effective “artificial” binary system, with the presence

of a “big” particle formed by two dipoles in a potential well and a single particle in a neighbour

potential well; (iii) the presence of the external modulation affects the diffusion of the magnetic

dipoles as compared to the case where there is no modulation [cf. Ref. (196)]; for instance, we

found that a transversal sub-diffusive regime, including SFD, can be induced depending on the

value of the external modulationV0/kBT and on the commensurability factorp.

Related publications

• D. Lucena, J. E. Galván-Moya, W. P. Ferreira, and F. M. Peeters,Single-file and normal

diffusion of magnetic dipoles in modulated channels, Phys. Rev. E89, 032306 (2014).
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Figure 45 – (a) Snapshot of the configuration of particles (black dots) forV0/kBT = 3.0. The
modulationVmod(x) is plotted as the solid red curve. (b), (c) Log-log plot of the
MSD as a function of timet in the parallel and transversal direction, respectively,
for different values ofV0/kBT. The dotted yellow line has a slope of 1, the ma-
genta dotted-dashed line has a slope of 0.35 and both are guide to the eye. The
open diamonds in (b) [(c)] indicate approximately the time scale (tN) where the
normal diffusive regime [sub-diffusive regime] appears. (d) Parallel self-diffusion
coefficientD|| and (e) anomalous transversal diffusion coefficientKtrans, both as
a function ofV0/kBT. Parameters of the simulation arep = 2, ρ = 1.0σ−1 and
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Summary

In this thesis we studied the diffusive properties of soft condensed matter systems under differ-

ent types of external confinement potentials by using numerical simulation techniques, specifi-

cally Langevin and Brownian dynamics simulations. In Chapter1 we presented an overview of

soft condensed matter systems, diffusion (Sec.1.5) and single-file diffusion (SFD, Sec.1.5.3),

respectively. In Chapter2 we presented the numerical methods that we used to analyze the sys-

tems investigated in the subsequent chapters. The results of our investigations were presented

in Chapters3, 4 and5, and they can be summarized as follows.

In Chapter3, the diffusive properties of a mono-disperse system of interacting particles

confined to aquasi-one-dimensional (q1D) channel were studied using Molecular Dynamics

(MD) simulations. We calculated numerically the mean square displacement (MSD) and inves-

tigated the influence of the width of the channel (or the strength of the confinement potential)

on diffusion in finite-size channels of different shapes (i.e., straight and circular). The transition

from single-file diffusion (SFD) to the two dimensional diffusion regime was investigated. This

transition (regarding the calculation of the scaling exponent (α) of the MSD∝ tα) as a function

of the width of the channel, is shown to change depending on the channel’s confinement profile.

In particular the transition could be either smooth (i.e., for a parabolic confinement potential)

or rather sharp/stepwise (i.e., for a hard-wall potential), as distinct from infinite channels where

this transition is abrupt. This result could be explained byqualitatively different distributions of

the particle density for the different confinement potentials. This transition from SFD to normal

diffusion has been recently observed in experiments with super-paramagnetic colloidal particles

confined by a hard-wall confinement potential (214). This transition seems to indeed occur in

real systems, however one main open question regarding thisproblem is the following: what

is the physical mechanism behind the sub-diffusive regime found in the intermediate regime

(ITR)? Also, why is the exponent of diffusion non-universal? These questions are currently

under investigation and will be published elsewhere.

In Chapter4, the diffusion of a system of ferromagnetic dipoles confinedin a quasi-

one-dimensional parabolic trap was studied using Browniandynamics simulations. We showed

that the dynamics of the system is tunable by an in-plane external homogeneous magnetic field.

For a strong applied magnetic field, we found that the mobility of the system, the exponent

of diffusion and the crossover time among different diffusion regimes could be tuned by the

orientation of the magnetic field. For weak magnetic fields, the exponent of diffusion in the

sub-diffusive regime was shown to be independent of the orientation of the external field.

In Chapter5, the diffusive properties of interacting magnetic dipolesconfined in a

parabolic narrow channel and in the presence of a periodic modulated (corrugated) potential
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along the unconfined direction were analyzed using Browniandynamics simulations. We com-

pared our simulation results with the analytical result forthe effective diffusion coefficient of

a single-particle by Festa and d’Agliano (170) and we showed the importance of inter-particle

interaction on the diffusion process. We presented resultsfor the diffusion of magnetic dipoles

as a function of linear density, strength of the periodic modulation and commensurability factor.
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APPENDIX A – Appendix

A.1 Interaction torque and external magnetic field torque

In this appendix, we calculate the first (τττ i) and the second term (τττB
i ) present in the r.h.s. of

the equation of motion (4.3) in cartesian coordinates. The interaction torqueτττ i is given by the

relation

τττ i = µµµ i ×∑
j>i

Bint
i j , (A.1)

whereµµµ i is the magnetic moment ofith particle and∑ j>i B
int
i j is the magnetic field generated by

all j particles on theith particle. Following Refs. (182, 215), we write

Bint
i j ≃

3n̂(n̂ ·µµµ j)−µµµ j

|r i j |3
, (A.2)

wheren̂ = r i j/|r i j |. Since the system is (in practice) two-dimensional (2D), wemay write

Bint
i j = Bx

i j x̂+By
i j ŷ, (A.3)

r i j = ∆xi j x̂+∆yi j ŷ, (A.4)

µµµ j = µ cosθ j x̂+µ sinθ j ŷ, (A.5)

in cartesian coordinates. Therefore, directly calculation of Eq. (A.1) using Eqs. (A.2)–(A.5)

gives

τττ i = ẑ

[
µ cosθi ∑

j>i
By

i j −µ sinθi ∑
j>i

Bx
i j

]
, (A.6)

where the termsBx
i j andBy

i j are given by

Bx
i j =

3[∆x2
i j µ cosθ j +∆xi j ∆yi j µ sinθ j ]−µ cosθ j |r i j |2

|r i j |5
, (A.7)

By
i j =

3[∆xi j ∆yi j µ cosθ j +∆y2
i j µ sinθ j ]−µ sinθ j |r i j |2

|r i j |5
. (A.8)

Similary, we can calculate the torqueτττB
i due to the external magnetic fieldB = Bxx̂+Byŷ on

the ith particle as

τττB
i = µµµ i ×B = ẑ[µ cosθiBy−µ sinθiBx]. (A.9)

Note that since the problem is 2D, the torquesτττ i andτττB
i [Eqs. (A.6) and (A.9), respectively]

are in thez-direction,i.e., perpendicular to thexy-plane.
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A.1 List of publications related with this thesis

1) D. Lucena, D. Tkachenko, K. Nelissen, V. R. Misko, W. P. Ferreira, G. A.Farias, and F.

M. Peeters,Transition from single-file to two-dimensional diffusion of interacting particles in a

quasi-one-dimensional channel, Phys. Rev. E85, 031147 (2012).

2) D. Lucena, F. F. Munarin, W. P. Ferreira, G. A. Farias, and F. M. Peeters, Tunable diffusion

of magnetic particles in a quasi-one-dimensional channel, Phys. Rev. E87, 012307 (2013).

3) D. Lucena, J. E. Galván-Moya, W. P. Ferreira, and F. M. Peeters,Single-file and normal

diffusion of magnetic dipoles in modulated channels, Phys. Rev. E89, 032306 (2014).

4) J. E. Galván-Moya,D. Lucena, W. P. Ferreira, and F. M. Peeters,Magnetic particles con-

fined in a modulated channel: Structural transitions tunable by tilting a magnetic field, Phys.

Rev. E89, 032309 (2014).
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1) D. Lucena, V. R. Misko, W. P. Ferreira, and F. M. Peeters,Dynamics of vortices in a Corbino

disk in the presence of a regular array of pinning sites, manuscript in preparation.
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