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“The first principle is that you must not fool yourself.
And you are the easiest person to fool.”
— Richard P. Feynman






Abstract

In this thesis we study the influence of external confinemeterials on the dynamical prop-
erties of soft condensed matter systems. We analyze theswif properties of two specific
systems by means of Langevin and Brownian Dynamics sinauati In Chaptef, we intro-
duce the subject of soft condensed matter. We show sevemktical and experimental aspects
of these type of systems. We make a brief introduction todpetof diffusion (Secl.5), where
we discuss main aspects of Brownian motion. We introducsitigge-file diffusion (SFD) prob-
lem (Secl1.5.3 and discuss it in the context of soft condensed matter sysstieoth theoretically
and experimentally. In Chapt@ we introduce the computational method used in this thesis.
We discuss Molecular Dynamics (MD) and its variants, Lamgewnd Brownian Dynamics sim-
ulations. We also introduce numerical algorithms used enftlowing chapters. In Chapters
3, 4 and5, we analyze two different systems, namely (i) a system @raudting Yukawa parti-
cles confined in a parabolguastone-dimensional (q1D) channel and (ii) a system of magneti
colloidal particles under the influence of both a parabadicfmement potential and a periodic
external modulation along the unconfined direction. In tirener, we study the transition from
the single-file diffusion (SFD) regime to the two-dimensb(2D) diffusion regime. In the lat-
ter, we study the influence of several parameters that desizes the systene,.g, the strength
of an external magnetic field and the periodic modulation@line unconfined direction, on its
dynamical properties. Finally, we present the summaryehtiin findings reported in this the-
sis and we show some open questions as perspectives fag faggarch in the field of diffusion
in soft condensed matter systems.

Key-words: soft condensed matter. colloids. computer simulation.






Resumo

Nesta tese estudamos a influéncia de potenciais de confitm@erernos nas propriedades
dindmicas de sistemas de matéria condensada mole. Anafisampropriedades difusivas
de dois sistemas especificos utilizando simulagdes coripotas (Dinamica Molecular de
Langevin e Dinamica Browniana). No Capitdlpintroduzimos o topico sobre matéria conden-
sada mole. Mostramos varios aspectos tedricos e expedain@eiste tipo de sistema. Fazemos
uma breve introdugé&o ao topico de difuséo (3€8), onde discutimos os principais aspectos do
movimento Browniano. Introduzimos o problema de difusadieha (SFD, do inglésingle-
file diffusior) (Sec.1.5.3 e o discutimos, teorica e experimentalmente, no contexgisilemas
de matéria condensada mole. No Capi®jlmtroduzimos os métodos computacionais utiliza-
dos nesta tese. Discutimos os métodos de Dindmica Moleedaas variantes, 0 método de
Dinamica de Langevin e Dindmica Browniana. Também intrados algoritmos de integracao
utilizados nos capitulos posteriores. Nos Cahel e 5, analisamos dois sistemas distintos, (i)
um sistema de particulas de Yukawa confinadas em um canalgiacequastunidimensional
(g1D) e (ii) um sistema de col6ides magnéticos sob a infl@édeium potencial parabdlico
e uma modulacao periddica externa ao longo da direcdo ndmada. No primeiro sistema,
estudamos a transicéo do regime de difusdo em linha (SFB)geegime de difusdo normal
(2D). No segundo sistema, estudamos os efeitos de vari@mpaios que caracterizam o Sis-
tema €.g, a magnitude do campo magnético externo e a presenc¢a daagadyperiodica
externa) em suas propriedades dindmicas. Finalmenteseapaenos um sumario dos princi-
pais resultados obtidos nesta tese e mostramos algumadegies aberto como perspectivas
para pesquisas futuras na area de difusdo em sistemas darmatéensada mole.

Palavras-chave matéria condensada mole. coléides. simulacdo compuigcio






Samenvatting

In deze thesis werd de invloed van uitwendig aangelegdekimgespotentialen onderzocht op
de dynamische eigenschappen van zacht gecondenseerde mgstemen. De diffusie ei-
genschappen van twee specifieke systemen werden ondedamimiddel van Langevin en
Brownse dynamische simulaties. In Hfst.wordt het onderwerp van zacht gecondenseerde
materie geintroduceerd. Verschillende theoretische peraxentele aspecten van dit type van
systemen worden vermeld. Ook wordt er een korte inleidirggegen van het onderwerp diffu-
sie (Sec.1.5), waar de verschillende hoofd aspecten van Brownse begeganden vermeld.
Het probleem van ‘single file’ diffusie (SFD) (Sekc5.3 wordt geintroduceerd en besproken in
de context van zacht gecondenseerde materie systemen thearetisch als experimenteel. In
Hfst. 2, wordt de computationele methode besproken die in dezestivesd aangewend. We
bespreken de Moleculaire Dynamica (DM) simulatie methaddes varianten zoals Langevin
and Brownse dynamische simulaties. De numerieke algonitireein de volgende hoofstukken
worden aangewend worden geintroduceerd. In de Bfst.en5 analyzeren we twee verschil-
lende systemen, namelijk: (i) een systeem van interager¥okawa deeltjes die opgesloten
zijn in een parabolische kwasi-één-dimensionaal (q1lDy&hren (i) een systeem van mag-
netisch colloidale deeltjes onder de invloed van een péisgibhe inperkingspotentiaal en een
periodisch externe modulatie langs de vrije richting. It éerste systeem bestuderen we de
overgang van het ‘single-file’ diffusie regime naar het tvdegmensionaal diffusie regime. We
bestuderen de invloed van de verschillende parametersetsybteem karakteriseren, bijv. de
sterkte van het uitwendig magneetveld en de aanwezighaidemperiodische modulatie langs
de vrije richting op de dynamische eigenschappen. Eiggigsenteren we de overzicht van
de thesis en we vermelden een aantal open vragen die irgetegs voor toekomst onderzoek
in het gebied van diffusie van zacht gecondenseerde matesiemen.

Sleutelwoorden zachte gecondenseerde materie. colloiden. computdegieu
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1 Soft condensed matter

In this chapter we introduce the topic of Soft Condensed &latiVe define colloidal disper-
sions and we give motivation for using these particles asahsygktems for testing theoretical
predictions of statistical physics. Many of the ideas pnésg here can be found in the follow-
ing much more specialized textbooks: “Soft condensed midi{eR. A. L. Jones and “Soft
matter physics” by Masao Doi.

1.1 General considerations

Condensed matter physics is a discipline in the field of Riays$ciences which studies the
physical properties of condensed phases of matfer I is mainly concerned in addressing
problems related to liquid and solid systems, but it alsdsdeéh different condensed phases
as, for instance, the Bose-Einstein condensate (BEC) thatoimic systems2j and the super-
conducting phase3] found in low temperature materials.

However, there is a variety of materials found in nature Wtdo not fall into the cat-
egory of either simple liquids or crystalline solids. Fostiance, glues, paints, soaps, and col-
loidal gels (Fig.1l) are examples of these type of materials. They are usuddyreel to asoft
condensed mattesystems4) or soft mattey for short. These systems are formed of colloidal
particles (solute) which are dispersed in another liquadvent). For example, fat and proteins
in milk are types of colloidal dispersions (0.1 um of diameter) embedded in water.

All of these soft matter systems share some common chaisdier For example, the
characteristic length scale of colloidal dispersions iamintermediate regime between the
atomic scale and the macroscopic scale. It is thereforel tswafer to colloidal dispersions
as a class omesoscopisystems. The diameter of the colloidal particles rangewdet 10
nm and 1Qum. Another feature is that the common physical propertigbese materialse(g,
self-assembly and non-linear response to external patioris) are related to the fact that the
energy scales involved are of the order of the thermal en&gdy. This means that quantum
effects do not play an important role in the properties of s@dtter systems, which make them
strong candidates for testing theoretical models in stedisphysics using relatively simple
experimental setups.
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Figure 1 — Examples of soft condensed matter systems. Togl:péaeft) Paints, and (right)
powder soap. Bottom panel: (left) A colloidal gel dispersiand (right) glue.

1.2 Colloidal dispersions

A colloidal particle of diameter 1 um at room temperaturé = 300 K in water has a charac-
teristic relaxation timeé1s ~ 1 s. Therefore, the dynamics of this particle can be timelveso
using an experimental technique calledeo microscopywhich consists in recording the parti-
cle’s trajectory to extract useful information not only albthe dynamics of the particle itself,
but also about the fluid properties in which it is embedded in.

On the other hand, in atomic systems, where particles hanagreetker of a few angstroms,
the characteristic relaxation time is of the orderrgf~ 10~° s, which is too short for time-
resolved experiments with atomic resolution. In principles also possible to study atomic
systems by means of atomic force microscopy (AFM), but cdébdispersions are usually
more simple and flexible. The main experimental tools toythd static and dynamical proper-
ties of colloidal suspensions are static and dynamic ligattering (SLS and DLS, respectively)
(5, 6).

Furthermore, mesoscopic systems can be much more easglgt immexperiments. The
interaction of colloids with external fields and the intejicle interaction potential between

1 This is called the structural relaxation time, which is tiraet needed for a particle to diffuse a distance

comparable with its diameter.
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pairs of colloids are customizable in order to allow the gtoidifferent basic physical problems
in statistical physics. For instance, colloidal crystddews similar diffraction patterns/j as X-
ray diffraction in atomic systems. One could also, for exklnpse colloidal crystals as model
systems to study kinetics of crystallizatioBy @), a much more difficult task to achieve using
atomic systems.

Figure 2 — Schematic representation of polystyrene calgpdrticles of radiu®k = 1.4 um
dispersed in heavy water §D) and confined by external laser beams. Taken from
Ref. (10).

As stated above, one major advantage of using colloidalgbestas model systems
to study theoretical predictions of statistical physicghis possibility to tune inter-particle in-
teraction potentials. For instance, colloids can intetlaciugh a screened Coulomb potential
(commonly known as the Yukawa potential) or through a dijgbjmle potential, just to cite a
few. In the first case, the strength of interaction betwedloicis can be tuned by changing the
salt concentration of the solution in which the particles maoving in. In the second case, the
magnetic interaction (dipole-dipole) can be adjusted Isoaucing an external magnetic field
which induces a magnetic dipole moment inside the collop#aticles. The strength of this
interaction is then proportional to the magnitude of themdl magnetic field. The Yukawa po-
tential has an exponential decay fot(y) O exp(—r/Ap)/r and the dipole-dipole interaction
has a ¥r2 dependence, whereis the center-to-center distance between a pair of collaius
Ap is the so-called Debye screening length)(

Besides the tuning of the inter-particle interaction pa#iy adjusting external param-
eters, itis also possible to experimentally control therattion of colloidal particles with exter-
nal fields (cf. Fig2). For instance, colloidal dispersions can be placed onagpet modulated
(either periodic or random) substrates which are creataasing,e.g, light fields (L0, 12, 13).
Furthermore, several types of external potential shape®eanlso realized experimentally by
using topographic pattern$4, 15).

One of the devices used to experimentally trap colloidatgde particles is called a
Penning trap, where both an electric and a magnetic field sed to confined the particles.
This device usually has a cylindrical symmetry (F&y.and batteries are placed on the tips of
the cylinder to produce the external field$). An additional laser beam is used to decrease the
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temperature of the system to very low values, where liqudi@aystal phases are found.

Magnetic Field
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Figure 3 — (a) Schematic representation of a Penning traprexdharged particles are confined
by using electric and magnetic fields. (b) Sketch of the erpant used to confine
the particles and (c) image of the actual device used in thererents of Ref.X6).

1.3 Pair interaction between colloidal particles

1.3.1 van der Waals forces

In general, colloidal particles interact with each otheotlyh van der Waals forces. In the
case of the spherical particles, the van der Waals potestimen by the analytical expression

(17, 18)
R (Hﬁ)], w1

2
rij—4R2 rf rf

whererjj is the center-to-center distance between a pair of pasticéed j, R= 0/2 is the
radius of each particle, ar@ is a constant that depends on the type of colloidal particte a

V(I’ij):—C

the medium where it is embedded\ote that the negative sign in Ed..{) indicates that this
interaction is strongly attractive and therefore collbiparticles tend to stick together, which
Is known as the coagulation effect. In order to study diffiédend of effects other than the
coagulation, it is of course desirable to have stabilizdtbiztal suspensions. This is mainly
achieved by introducing repulsive interaction betweerpmicles, which can be done.g, by
electrostatic stabilization techniquel®y.

2

For instance, for polystyrene particles dispersed in wéter 0.23x 1029,
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1.3.2 Debye-Huckel inter-particle interaction potential

The surface of a colloidal particle is covered by moleculegtv are electrically neutral. How-
ever, when a colloidal particle is dispersed in water (fatamce) the positive charged counter
ions of the molecules are dissolved due to water molecularjzakion 0). Therefore, the
surface of the particle is negatively charged and the epttepds to spread the ions over the
whole volume. When equilibrium is reached, the balance betwenergy and entropy creates
an electric double layer2(). This layer consists of the positively charged cloud ofrdeu
ions around the colloidal particle and the negatively cadrgurface of the colloidal particle
itself. Therefore, the cloud of counter ions around theiglarts responsible for screening the
interaction between colloidal particles.

Figure 4 — (a) Schematic representation of the electric lgdalger, which consists of the posi-
tively charged cloud of counter ions around the colloidatipke and the negatively
charged surface (total charg@g of the colloidal particle. (b) Two colloidal particles
interact with each other through a repulsive inter-pagtioteraction potential which
is screened by the cloud of counter ions. Taken from R&). (

In order to calculate the inter-particle interaction paoirfor this case, the Poisson-
Boltzmann (PB) equation

gosw%q(r) O exp(—zf;o_f_r)) , (1.2)

can be solved analyticallyL{) in the first-order approximation cases(, by linearization of the
PB equation). By doing so, one gets the poterial) created by a colloidal particle at a point
r in space as
Ze exp(o/2Ap)exp(—r/Ap)

(p(r) - 41106 W (1+ O'/2)\D) r ’
whereZ is the total charge (in units of the elementary chaggen the surface of the colloidal
particle,eg andgy are the permittivity of vacuum and water, respectively. Diadye screening
length is given byA;t = \/g0ewksT /s with s= ¥i(eZ)c (z andg; are the valence and the
bulk concentration of the counter ions of tyjpeespectively). Linear superposition of Eq.3)
leads to the well-known Debye-Huck&l) inter-particle interaction potential

(287 (exp(U/Z)\D) ) 2 exp(—1ij /Ap)
Artepew \ (1+0/2Ap) rij

(1.3)

V(rij) ) (1.4)
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for a pair of colloidal particlesand ] separated by a distancg. Note that the screening effect
is directly related to the concentration of ions presertesamplei.e., )\D‘l 01/4/s. Therefore,

it is possible to experimentally tune the inter-particleemaction potential by adjusting the salt
(ions) concentration of the sample, as previously stated.

Note that, as opposed to the potential of Elql), the Debye-Hickel potential is pos-
itive, which means the interaction between particles isilpe. Consequently, experimental
techniques such as the electrostatic stabilization aralynaased on the adjustment of the salt
concentration of the samples. These adjustments preveaidigaagglomeration and allows the
creation of well-defined 2D and 3D lattices of colloidal seilspionse.g, nanocrystals43, 24).

1.4 Structural and dynamical properties of colloidal drspmns

1.4.1 Wigner crystals

In 1934, physicist Eugene Wigner predicted that a gas ofrelles could present a phase transi-
tion from a liquid phase to a solid (crystalline) structu?&)( This solid phase is now usually
called awigner crystal The main physical mechanism behind this effect is that foerdain
value below a critical densityn(< n¢), the potential energy of the electrons dominates over the
kinetic energy. Therefore, the spatial arrangement of kbetrens becomes very important. In
3D, the electrons form a body-centered cubic (bcc) strectun 2D, they form a triangular
lattice (Fig.5) and in 1D, the electrons become evenly spaced.

The first experimental observation of the Wigner crystatian of electrons was re-
ported by Grimes and Adamg&7) in 1979. They found that, under certain circumstances,
electrons deposited on a 2D substrate of liquid helium wauldnge themselves in a triangular
lattice, just like predicted by Wigner.

More recently, in 2009, an experimental and numerical si@8y also reported the
formation of Wigner crystal structures using trapped etew on the surface of liquid helium.
Even more, by experimentally manipulating electrons oneiby, the authors were able to
calculate the energy spectrum to add (or to extract) onéreteérom the trap with occupation
numberN. Depending orN, the system of electrons would arrange itself into ringctres.
Previously, in 1994, Bedanov and Peet@®) howed a theoretical prediction of the formation
of these ring structures (Fig) by means of numerical and analytical calculations.

Nowadays, Wigner crystals are also referred to as crystdgshfound in non-electronic
systemsé.g, soft condensed matter systems) at low density regimesn&iance, these phases
have been observed experimentally in dusty plas@as (In this experiment, dust particles
dispersed in a weakly ionized argon plasma acquire a negeltiarge (due to the ions present
in the plasma) on their surfaces (Ff).and become strongly repulsive. Similar to the colloidal
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Figure 5 — A 2D system oN = 230 electrons confined by a parabolic trap and interacting
through a repulsive potential tend to form a Wigner crystahie center. However,
some defects can appear due to the competition between tifie@ment potential
(trap) and the repulsion between the particles. Also, @esiin the borders tend to
be accommodated in a distorted triangular lattice. Takem fRef. @6).

particles in water (Sed..3.2, the interaction between dust particles is also screepadiouble
electric layer. Since the inter-particle interaction i@ between these particles is similar to
the one presented in EdL.@), there has been a large number of theoretical and expeiainen
investigations about the Wigner crystallization phenoamensing soft condensed matter as
model systems.

1.5 Diffusion and Brownian motion

1.5.1 Diffusion equation

Diffusive processes occur frequently in nature and theydaetly related to the transport of
any given physical quantity in space and time. For instathestransport of molecules in a fluid
(molecular diffusion), the heat conduction in a metal baattdiffusion) and the movement of a
suspended particle in a viscous fluid (Brownian motion) demaeexamples of known diffusive

processes.

One of the first mathematical description of a diffusion phmaenon was due to the
French mathematician Joseph Fourier, in Tigorie analytique de la chaleyiThe Analytic
Theory of Heat) published in 1822. He studied the heat camatu¢hrough a metal bar and
showed 82) that the temperature profilgx,t) of a 1D homogeneous metal bar obeys a heat
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Ground state configurations for N=3 to 100

Figure 6 — A series of Wigner crystal structures showing tinaregement of electrons in a cir-
cular island from an occupation numberff= 3 to N = 100. The electrons form
ring structures as more electrons are added. For Mrgetriangular Wigner lattice
forms in the center, while the outer electrons remain ingintpaken from Ref.Z9),
illustration by Alan Stonebraker.

equation of the form
2

17} 17}
EU(X,t) - DTWU(XJ): (15)
whereDr is known is as the thermal diffusion coefficient and it is aenial-specific quantity.

In 1855, German physician Adolf Fick published his work omtjgée diffusion and
established what is known today as the Fick’s laws of diffiasiThe first Fick’s law states that
the flux of molecules always goes from regions in space of bagitentration of particles to
regions of lower concentration, across a gradient of canagon. In mathematical terms, this
law is written as

j = —D(C)DC(r,t), (16)

wherej is flux (amount of matter per unit area per unit tim@jc) is the diffusion coefficient
which may depend on the concentration profile,t). Note that the negative sign in EQ..6)
comes from the postulate that the flux of molecules goes fl@ndgions of higher to lower con-
centrations, as stated above. Considering the simplesitigih where the continuity equation
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Figure 7 — Representation of a dusty plasma. The free pesis in the plasma adhere to
the surface of the dust particles creating a strong eldeatiogepulsive interaction
between these particles. Taken and adapted from B@f. (

G, .
Se(r+0-j=0, (1.7)

is valid (there are no sinks or sources,, there is no effective creation or destruction of matter),
the combination of Egqs.1(6) and (L.7) leads to a similar diffusion equation as obtained by
Fourier

%c(r,t) =0-(D(c)Oc(r,t)). (1.8)
Note that if the diffusion constant is independent of thecamrration profilec(r,t), Eq. (1.9
reduces to

4 _ D2
Ec(r,t) = DO%c(r,t), (1.9)

which is similar to the heat diffusion equation and also Uguzlled the second Fick’s law.
A solution to Eq. £.9), considering an initial conditior(r,0) = &(r — rg) (whereryg is the
initial position of the concentration of particles) andwsgng isotropy of space, is given by a
Gaussian propagato3d)

a2
c(r,t) = mlt)exp(— |rm(:§)| ) , (1.10)
wheré h(t) 0 v/t andm(t) Ot.

From the distributiorc(r,t) it is possible to calculate its moments. The first two mo-
ments are the commonly studied ones, i.e., the averageadespent

0]

() :/ re(r,t)dv, (1.11)

3 Forinstance, in the 1D casa(t) = v/4nDt andm(t) = 4Dt.
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and the mean square displacement (MSD)
(r?) — / r2¢(r,t)dV. (1.12)

These quantities are important because they can be obthimeah experiments. Furthermore,
they are directly related to macroscopic quantities, ssdemperature and viscosity, as we will
show in the following.

1.5.2 Brownian motion

The random movement of suspended particles on a fluid waslisgirved by Scottish botanist
Robert Brown in his workA Brief Account of Microscopical Observatio(34) published in
1828, where he reported the irregular motion of pollen granwvater. Brown was intrigued by
the phenomenon but could not explain it in terms of any presiypknown theory at the time.

Much longer after Brown'’s reports, in 1888, the French ptigsLouis-Georges Gouy
made some important remarks about these random movementgithese remarks, we cite a
few: (i) The motion is extremely irregular (Fig), the trajectory seems to be not differentiable,
and the motion never ceases; (ii) the motion is most atiivdess viscous liquids; (iii) the
motion is most active at higher temperatures.

Figure 8 — Trajectory of a particle executing a Brownian nrogat. Note that the movement is
very irregular and experiments by Robert Brown showed tiattovement is most
active in less viscous liquids and less active for lower terajures.

These observations were important for the later developroiea Brownian motion
theory by Albert Einstein35) published in 1905 and subsequent independent works by Paul
Langevin 86) in 1908, Marian Smoluchowsk8{) in 1915, and others.

4

In this context, “active” means that the particle experenlarger displacements from a given origin in the
same time interval.
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The Einstein theory of Brownian motion is based on the argusygresented now. Con-
sider a set oN independent (non-interacting) particles performing ssswtve random displace-
ments. In the time intervat, the coordinates of each particle are changed\ky= €. The
fraction of particles which changes their positions betweandx+ ¢ in the time interval can
be expressed by

dN

N = p(€)de, (1.13)
wherep(¢) is a distribution of displacements. It is evident that thigribution must obey the
normalization condition

/oo p(e)de = 1. (1.14)

The concentration of particles (number of particles pet lenigth) isc(x,t). Let us now
calculate the distribution of particles at a titne T from their previous distribution at instant
By the definition ofp(g), the number of particles in the intervabndx+ € at the instant 4t
is

c(x,t+r)dx:dx/ c(x+&,t)p(e)de. (1.15)
If we consider that the time intervalis sufficiently small and that the displacemernis also
small, we can expane(x,t) in powers oft ande up to second order. By doing so and replacing
the results into Eq.1(15, we get

dc(x,t) _ d%c(xt) % °°
i t)+ T o —c(x,t)/m p(e)de+

ac(x,t) [ 9°c(x,t) [ &2
S /_wep(e)d£+ iy /_wfp(s)de.

(1.16)

From the normalization condition [EdL.(L4)] and from the fact that the second term on
the r.h.s. of Eq.1.16) vanishe8, we obtain the following differential equation for the cene
trationc(x,t)

Td%c(x,t) | dc(xt) Dﬁzc(x,t)

2 o2 ot ok (1.17)
whereD is defined by the expression
1 [ g2
D:? 3 Ep(e)de. (1.18)

In the limit where the concentration of particles variespgowly in time (%c(x,t) > Tg—tzzc(x,t)),
we can drop the first term on the I.h.s. of Ef}.1(7) and find

4 c(x,t)=D o° c(x,t) (1.19)
ot Toxe '
From the construction of the functign(¢), it is clear that it must be an even function (otherwise the no
malization condition would not be satisfiedk., p(¢) = p(—¢). Therefore, sincep(e) is an odd function,
[©,ep(e)de = 0.

5
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which is the same as the second Fick’s law [EQ9)|. Therefore, by this analysis, Einstein
showed that the movement of the now called Brownian pasticie viscous fluid is governed
by a diffusion equation. The solution of this equation issgivy Eq. (.10 and in a 1D system
of non-interacting particles, the propagatgx,t) has the exact form3Q)

exp(— |X_XO|2) , (1.20)

c(x,t) =
(1) 4Dt

1
VanDt
which is a Gaussian arourxg and has a width proportional to the diffusion coefficientPlug-
ging Eq. (.20 into Eq. (L.12 one obtains the well-known resuBg)

(X(t)) =W(t) = 2Dt, (1.21)

which shows that the mean square displacement of a Browiditle in a fluid grows linearly
in time®. This is usually called the normal diffusion regime somesnalso known as Einstein
(or Fickian) diffusion.

1.5.3 Single-file diffusion (SFD)

In 1955, physiologists Hodgkin and Keyne®9| were studying the passage (dynamics) of
molecules through narrow pores. These channels were sownétat molecules could only
enter one by one, and therefore they would conserve thenatiggquence of molecules in a file.
This 1D process is now referred to as the single-file diffug®FD) problem.

As opposed to 2D and 3D diffusion, where normal diffusiom@Eein or Fickian dif-
fusion) is expected, i.e., the mean square displacementajged particle in the long-time
limit grows linearly in time W(t) O t), the dynamics of a tagged particle in a file of interacting
particles exhibits anomalous diffusion, i.e.,

W(t) = 2F /i, (1.22)

whereF is the so-called single file diffusion mobility.

The first mathematical description of the SFD problem wasdiced in the seminal
paper of Harris40), in 1965, where he obtained the result of E2@). The model of Harris
consisted in the following. Considdrpoint-like particles diffusing in a 1D infinite straight &n
with the fixed condition (t) < xz(t) < ... < xn—1(t) < xn(t) for all timest > 0. This condition
implies that the particles are not allowed to pass each bthtarris showed that the probability
distribution of a tagged particle is given by a Gaussian agaypor, similar to the one described
in Eg. (1.20 but where the width of the distribution is proportional keetsquare root of time,

6
7

This result holds at long-timebge., t — co.
The model of Harris also assumed periodic boundary comditamd that particles interact through a hard-core
potential.
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i.e.,
RPN,
Pr(xT,t) 0] exp( 2(x%(t)>) , (1.23)
with
(X&(t)) = (2/p)/Dt/m as t — oo, (1.24)

wherep is the average density of particles (in an uniform systefp,i4 the average distance be-
tween neighboring particles) amis the diffusion coefficient. Note that comparing Eds2@Q)
and (@.24), one arrives at

(1.25)

Figure 9 — (a) Circular narrow channels created by photajjitaphy. (b) Image of the channels
with the particles (black dots) inside. Taken from Réfl)(

Eq. .29 is the main result of the theory of SFD and it has been obteamalytically
(42, 43, 44, 45, 46, 47, 48, 49, 50) by several different approaches. Furthermore, it has also
been observed experimentally in different contexts, idicig in soft matter systems (colloidal
dispersions) 41, 51, 52) and in NMR (nuclear magnetic resonance) studies of diffusn
zeolites b3, 54). The heuristic argument to justify the anomalous diffeddehavior reported
by Harris is that the dynamics of a tagged particle in a filecareelated with its neighboring
particles due to the special geometric constraiat, the single-file condition). This means that
for a given particle to diffuse a certain distance its nemklalso needed to have diffused the
same amount.

For instance, one of the first experimental evidences oftibenalous diffusion behavior
[Eq. (1.22] was reported by Weat al. (41) in 2000. In this experiment, the authors constructed
1D circular narrow channels by a photolithography procéss. @) where super-paramagnetic
colloidal particles where dispersed to diffuse. Th@ @m diameter particles were subjected to
Brownian motion (thermal bath) and the narrow channel wastracted so that the single-file
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condition was fulfilled, i.e., particles could not pass eattter. Besides, the interaction between
particles was controlled by an external magnetic field, Whiduced a magnetic moment to
each particle. By following the trajectories of the padglover long periods of time with a
video microscopy technique, the authors showed that the swaare displacement of a tagged
particle followed Eq. .22 and its probability distribution was given by E4..23.

The single-file diffusion mobility factoir, has also been extensively investigated, both
theoretically and experimentally. In the seminal work ofllk@ann @6), the author showed
analytically that, regardless of the inter-particle iatgion potential, the SFD law is always
obtained. Kollmann imposed some restrictions in his mothed:inter-particle potential has to
be of finite range and the system must be homogeneous and liquftestate. Another result
of Kollman’s work was relation betwedn and the structure fact®(q), given by

F_ 1 /DS(Q)|0H0, (1.26)
o m

whereS(0) = §(q)|q—0 is the structure factor calculated in the limit of long waaregths ¢ — 0).
The transition from a liquid to a solid-like state in a 1D oidlal system has been recently
analyzed by Herrera-Velards al. (55). For finite-size particles (with diameter) interacting
through a hard-core potential, Lizana and Ambjornsson sklo@®6) that F = 1’;‘7 D/m,
which reduces to the point-like particle & 0) case [EqQ.1.25]. Last but not least, Leibovich

and Barkai recently showe87) thatF depends on the initial conditions of the system.
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2 Computer simulation

In this chapter we will discuss briefly some aspects abouipeder simulation. We will present
methods commonly used in simulations, for instance, theekldar Dynamics (MD) method,
as well as variations of this method, specifically Langevim@&mics (LD) and Brownian Dy-
namics (BD). Although we try to cover a fair amount of infortoa on the subject, the reader
is referred to much more specialized and complete textg, “Molecular Dynamics Simula-
tions”, by J. M. Haile, “The Art of Molecular Simulations” y. C. Rapaport, and “Computer
Simulation of Liquids” by M. P. Allen.

2.1 Introduction

Computer simulation techniques were initially developedirty the World War 1l, mainly
through the Manhattan Projédn order to model nuclear detonation processes. However, du
to the fast development of the electronic industry and thditation of access to personal
computers (PCs), computer simulations started to be usedveral other areas of scientific
research, specially in the mathematical modeling of playsachemical and biological systems,
market analysis in economic sciences, social sciences fvodels, disease spreading, etc), and
engineering processes of new technologies.

Computational physics, a discipline which uses numerilggdréhms to simulate phys-
ical systems, is considered an intermediate field betwesorétical and experimental physics.
Nowadays, the majority areas of Physical Scieneeg. @strophysics, statistical physics, fluid
dynamics, and solid state physics) uses numerical techsitpr the solution and analysis of
problems which can not be directly solved by analytical rod&h The role of computers in
scientific research has been very relevant both in the thiearand in the experimental realms.

From a theoretical point of view, computers allowed a nevag@m for scientists: in-
stead of using some analytical approximations to a spedifjsipal problem, it is now possible
to use a computer experiment (computer simulation) to gotheyhat approximation and to
examine directly the original system. It is clear, howetlesit computer simulations also use a
model system which includes certain approximations. Nbeeggss, it is still a very powerful
tool to analyze complicated systenesy, many-body problems.

1 The Manhattan Project (MP) was a research project, from 194246, led by the United States of America
(with the help of Canada and United Kingdom) during the WaXiar 11. The main objective was to create the
atomic bomb. Among others, the researchers in the MP indléaeerican physicists J. R. Oppenheimer (at
the time, he was the scientific director of the Los Alamos d&l Laboratory, where the atomic bombs were
designed) and R. P. Feynmann (one of the recipients of thelNwize in Physics in 1965).
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From an experimental point of view, computers have beconieeaVlaboratory, where
numerical experiments are carried out. The results frommapeer simulation can be com-
pletely unexpected,e., they were not completely evident from the mathematicahidation
of the model used to describe the real physical system. A wadety of computational model-
ing techniques have been developed over the years.

2.2 Molecular Dynamics (MD)

Molecular Dynamics (MD) simulations refers to a computadibset of methods (numerical
algorithms) widely used in scientific researehg, Physical Sciences, Chemistry, Biophysics,
and many others. This method allows one to calculate a setacfoncopic properties of a
given physical systenme(g, temperature, pressure, kinetic energy, etc). Furthesniballows
the calculation of both static and dynamical propertiese $tarting point of the method is
based on a well-defined microscopic description of the maysystem under consideration
(58). This description can be made through the Hamiltonian eiLigrangian formalisms, or
even directly by using Newton’s equations of motion.

In its most simple form, the MD method consists of choosingtao§initial conditions
(position and velocity of each particle), an inter-pagiahteraction potential, an appropriate
statistical ensemble, a numerical technique in order tegmatte the equations of motion and
the implementation of the periodic boundary conditionse Bhjective of the MD method is
then to calculate the trajectories, in phase space, of aatmh of particles which individually
obey classical coupled equations of motiéB8)( Therefore, it is necessary to solve numerically
(using appropriate algorithrjsthese coupled equations of motion.

The first MD simulations described in the literatut®,(60, 61) are:

e Simulation of a system of hard spheres, by Alder and Wairtv({$y957);

e Simulation of radiation damage events in a model of cryis&ltooper, by Vineyard
(1960);

e First simulation of a liquid system (liquid Argon), using &inard-Jones inter-particle
interaction potential, by Rahman (1964).

An important observation should be made: the MD method caappéied, in princi-
ple, for both equilibrium systems (where there is conse@matf total energy and number of
particles, for instance) and for systems out of equilibriufine reader is refereed to the fol-
lowing literature 62, 63, 64, 65) for a deep reading regarding MD methods for systems out of
equilibrium. In this thesis, however, we shall restrictsmlves to equilibrium systems.

2 As examples, there is the Verlet algorithm, the leapfrogai@ation of the original Verlet algorithm), and the
Runge-Kutta-Gill.
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2.2.1 Description of the MD method

The starting point of the MD method is to define a set of inipia@sitions and velocities to all
the particles in the system. The most common used geomatrét3 are FCC (face-centered
cubic) and cubic. In 2D, the preferred initial geometry ageae or triangular (hexagonal)
lattices. It is also possible to distribute the particleshia simulation box assigning random
initial coordinates. However, care should be taken in otdeavoid particle overlap The
crystalline arrangements.@. square or triangular lattices) are most used, in generalfalits
simplicity.

In general, the initial velocities for the particles arewdnafrom either an uniform dis-
tribution or a Maxwell-Boltzmanngg) distribution. For instance, if one desires to simulate a
system on the micro-canonical ensemiME (where the total energy of the system, the total
number of particle®N, and the volum& of the simulation box are conserved), the distribution
of velocities can be drawn following the equipartition themof*:

K:}va-zngkBT (2.1)
2; T2 ’ '

whereK is the total kinetic energy\ is the total number of particles in the systekg,is the
Boltzmann constanfl is the absolute temperature of the system, andndyv; are the mass
and velocity of thath particle, respectively. The total linear momentum of $lgstem should
be zero,i.e. there should not be external forces acting on the centerasisnof the system.
Therefore, the initial velocities should be re-scaled weoifor the center of mass of the system
to remain at restq?).

Given that all the particles’ positions and velocities anewn, the following step in the
MD method is to obtain the subsequent positions and veésodf all particles. This is done by
integrating the coupled equations of motion for each partiender conditions established by
the inter-particle interaction potential defined in the mlal/stem.

The choice of the inter-particle interaction potentiahioetn particles is a very impor-
tant step in order to correctly describe the physical sysieder consideration. In general, an
effective pairwise potentidlis chosen, which considers only interactions between phipsr-
ticlesi and j separated by a distancg = |rj —rj|, at each simulation step. Some very known
inter-particle interaction potential are, for instandes hard-sphere potential, the soft Lennard—
Jones potential and others much more complex potenéi@sthe ones used to model interac-
tions between ions and molecules (longitudinal and andagdading, and torsion potentials).

3 If two particles overlap and the distance between them ig serall compared to the length scale of the
problem, this could generate an infinite force between aqfgarticles, leading to numerical instabilities in
the integration algorithm.

See, for instance, F. Bloch, “Fundamentals of StatisticatManics” ICP (1989).
The term effective means that this potential incorporab@saverage, the interaction of all other particles
of the system. Generally speaking, the total potential@nef a set ofN particles is of the fornt (r) =

SV (rij) + ZiN<j<kV(rijk) + ZiN<j<k<|V(riikl )+
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The resulting forceF; acting on theth particle, due to all the other particles in the
system, is then obtained by taking the gradient of the ipgeticle interaction potentiad;

Fi:—Z_DiVij- (2.2)
JF#
If we apply Newton’s second law for théh particle, we obtain
2.
& _pype 23

whereF & represents any external forces acting on partidige to, for instance, a confinement
potential, an external electric or magnetic field, etc. €f@ne, the main objective of the MD
method is to numerically solve tlidé— 1 coupled equations of the forr.@), in order to obtain
the new positions;(t) of each particle, for any instant For this purpose, we can use some
computer algorithms for the numerical integration of thegaations. We will show a few of
these algorithms in the next section.

2.2.2 Numerical integration algorithms

The numerical integration algorithms used to obtain theitsms of the equations of move-
ment are based on the finite-difference method (F&Nhis method consists in expanding
the particles’ coordinates in a Taylor series around a gpa@nt. In these methods, there are
two different types of errors introduced by the discret@atof the equations of motion: (i)

truncation errors and (ii) round-off errors. The first onegatated to the precision at which

the method of finite differences approaches the real soldtivthe differential equation to be

solved numerically. The round-off errors encompassedallother errors which comes from
the implementation of the method. For instance, the calomaf exponential functions and

square roots can introduce this type of error. Another exanspthe storage of real numbers
(floating point numbepsin the computer memory.

In the following, we present two integration methods commarsed in MD simula-
tions: the Verlet algorithm and one of its variation, calted leapfrogmethod. We emphasize,
however, that there is a plethora of other much more sophistil integration methods.g, the
predictor-corrector and the fourth-order Runge-Kuttaetgm’.

2.2.2.1 The Verlet algorithm

One of the most common numerical integration schemes forgptlifferential equationsg(g,

Newton'’s equation of motion) was first introduced in compstmulations by the French physi-
6

One of the most common method is the Euler's method, whichfiisiaorder method where the expansion
is such that, given a functiof(x), then we should be able to expand it around the painat f (x+ Ax) =
f(x) + f'(x)Ax, wheref’(x) corresponds to the first derivative of the functiffx) in respect tox.

See, for instance, J. M. Haile, “Molecular Dynamics Simiolat- Elementary Methods”, Wiley-Interscience
(1997).
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cist Loup Verlet, in 19678). This method consists in expanding the particle cooreéirduring
a finite time step\t, in a Taylor series such as

rt+At) = r(t)—i—i‘(t)At—i—%f(t)At2+ﬁ(At3) (2.4)
rit—At) = r(t)—i‘(t)At—l—%f(t)Atz—ﬁ(AtS). (2.5)

By summing Egs.4.4) and @.5), we obtain one estimate for the position of the particlenaéet
t+ At
F(t+At) = 2r(t) —r(t—At) + i ()AL + 0(At%). (2.6)

The local truncation error in the position is of the ord&fAt?). Note that the velocity of the
particle is not needed in order to obtain the estimate foptiition (i.e, to obtain the trajectory
of the particle). However, the velocity can be obtained (iten to calculate, for instance, the
kinetic energy of the system) by subtracting Egs4)and @.5), which gives
r(t+At) —r(t—At)
rt)~

. (2.7)

An important consideration is in order. According to Eds4) and @.5), one can see
that the Verlet algorithm is appropriately centralized, r(t + At) andr (t — At) are symmetric
in time, which makes the algorithm time reversible. Finalhe algorithm is a two-step method,
since it estimate the future positiaiit + At) from the actual positiom(t) and the previous
positionr (t — At). The main characteristics of the method are (i) simplicitg@mputational
implementation and (ii) numerical stability for relatiydarge time steps. The latter property
leads to good conservation of total energy in dynamicaksystg7).

2.2.2.2 Thdeapfrogalgorithm

The main idea behind tHeapfrogmethod is that it is possible to write EQ.4) as

F(t+AL) ~ r(t) + At [r(t) +%Atf(t)} . (2.8)

Further inspection of Eq2(8) leads to the following formulé(t + 3At) ~ f (t) + 3At# ().
Similarly, we can also write (t — %At) ~ (L) — %Atf(t). By replacing the first formula into
Eqg. 2.4 and by subtracting both these previous expressions, vaolite formulas to update
the position and the velocity, respectively

rit+At) =~ r(t)+'r(t+%At)At (2.9)
. 1 . 1 .
r<t+§At) ~ r<t—§At)+r(t)At, (2.10)

which form theleapfrogalgorithm.
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2.2.3 Periodic boundary conditions (PBC)

Usually the MD method is applied to physical systems wheeesthe of the computational unit
cell is of the order of hundreds up to thousands particlegshodigh recently there has been
a huge increase in computational power, specially with geeaf GPU (Graphical processing
units) 69), the MD simulations of many-body systengsd, liquids, atomic systems, proteins,
etc) are still quite computationally expensive. Systemsnetihe numbeN of particles ranges
from N = 10 to N = 10° are dominated by the so-called surface effects (or bordectsj 66).

In MD simulations where there is no interest in these kindffefats, they can be minimized by
using periodic boundary conditions (PBQ). The use of PBC is then equivalent to consider-
ing a infinite set of identical copies of the main computagiamit cell. Fig.10 shows clearly
the concept of PBC. For instance, if a particle in the companal unit cell leaves this region,
it re-appears on the opposite side of the simulation boxj thie same velocity.

A
e _ 0 0 _0 0. 0
) ..C‘}" [5) ..(?'. ..O
®_0 0 _00_ 0
0.090.0 0.09

Figure 10 — Pictorial representation of periodic boundanyditions (PBC) for a 2D system. In
the center, there is the main computational unit cell, aeddbntical copies around
it. From Ref. 1)

Consider a computational unit cell (simulation box) of slzewhere the center of
the coordinate axis is situated in the center of the box, aedtical copies (images) dis-
tributed periodically around the simulation region. Giviat r; is the position of thdth
particle, there will be a set of image particles, whose pwsst are given byr; + nL, where
n=..-3-2,-10,123,...andnL is a vector which connects tht particle with itsnth
image particle. The potential energy of the system (takimg account all the image particles)
is given by

U(ri,....rn) =5 V(rij) + 5 > V(Iri—rj+nL|). (2.112)

<] ni<j
In order to avoid the numerical calculation of the infinitersuation in Eq. 2.11), one should
use the concept of the minimal image convention, which stidiat a particle is not allowed to
interact simultaneously with another particle and its imagrticle. By using this convention,
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a particle is able to interact only with particles which agparated by a distance smaller than
or equal toL/2. However, the use of the minimal image convention is onlidvé&the inter-
particle interaction potential is short-ran§edrherefore, the value df should be chosen in
such a way that the interaction forces between particles@gigible at distances larger than
L/2. This eliminates finite size effect67). In the case where the inter-particle interaction
potential is long-ranged, there will be a considerabledgase in the total potential energy of the
system, due to the interaction between particles in the ctatipnal unit cell and their image
particles. In order to deal with these undesired non-playsiects, there is a common method
known as the Ewald summation techniqu@)( In this thesis, however, we only deal with
short-range potentials.

2.2.4 Calculation of physical properties

A typical MD simulation run consists of the following basieps:

e Initialization of the system,e., assign initial coordinates and initial velocities for e
particles in the system);

e Calculation of the interaction force between pairs of pét. This is the most time-
consuming part of any MD simulation, since the computaticoat to calculate the dis-
tancesj = |rj —rj| is of order&’(N?);

e Use the numerical integration scheme chosen previouslingtance, either the Verlet or
theleapfrogalgorithm;

e Apply the periodic boundary conditions, if necessary.

These are all done in one single time-stepnlis the total number of time-steps in the simula-
tion, thenT;ot = MAt is the total time of the simulation run, add is the discrete time interval
between time-steps. After a given number of simulationsstée system should, in principle,
attain an equilibrium state. In order to check that the sydtas indeed reached an equilibrium
situation, one could, for instance, calculate the totatgynef the system (total potential energy
per particle plus the total kinetic energy per particle)rawme and check if it has reached a
stationary valuei.e., constant over time. The number of time-steps in order fersystem to
reach this equilibrium situation depends on each problezsipally, therefore a careful anal-
ysis should be done for each particular case. The time ialtéetween the beginning of the
simulation and the equilibrium state is usually called thermalization procedure. Only after

8  An inter-particle interaction potential is considered thranged if the interaction between particles decays
faster tharr—9, wherer is the center-to-center distance between a pair of pastateld is the dimension of
the systemg6).
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the thermalization procedure one should calculate phlyprogerties of interest, either struc-
tural properties€.g, radial distribution function (RDF)) or dynamical propes .9, mean
square displacement (MSD) and velocity autocorrelatioction (VACF)).

2.2.4.1 Radial distribution function (RDF)

The radial distribution functioy(r) (RDF), sometimes also referred as the pair distribution
function, is a measure of how the particles organizes theesaround other particleg J).
Specifically, the functiomy(r) is proportional to the ratio of the probability of finding tvpaur-
ticles separated by a distance- Ar and the probability for a completely random distribution
of particles at the same densityg]. From the point of view of statistical mechanics, where
usually the number of degrees of freedom is large, the fancgpresents an important physi-
cal measure to characterize structural properties of mtdesystemsg.g, liquids, glasses and
super-cooled liquids, etc. The MD method, as seen prewpaalculates individual particles’
positions. This allows the functiag(r) to be calculated ds

1 /NN
pg(r)—ﬁ<lzl .5“_r'”>’ (212)
whereN is the total number of particlep,= N/V is the density of particles;; is the distance
between a pair of particldsand j, and(...) represents an average over several realizations. It
is important to note that the distanggis invariant under a change of index., rij = rji. This
property reduces the number of terms in the previous equajiéN(N —1) and we can write
Eq. 2.12 as
2 /N N

pg<r>:N<lz];5<r—nj>>. (2.13)
By integrating both members of ER.L3 over all the possible range of separation between
particles and considering that the dengitis constant, we get

N N
p/g(r)dr = % <Z Z/c‘}(r—rij)dr>, (2.14)

<

and by the fundamental property of the delta functipd(r —rjj)dr =1,

p/g(r)dr =N-1. (2.15)

This was an expected result and can interpreted as followpp&e that we choose a given
particle of the system as the origin and by counting the nurobeemaining particles, the
result isN — 1 particles.

9 For uniform systems, the arrangement of particles depenlysom the distance between particles’ centers,

i.e, itis independent of the orientation of the veator



2.2. Molecular Dynamics (MD) 53

Computationally, one can calculaé ) from Eq. .13 by making a histogram to count
the number of particles, in a given shell of radiMrs which are at a distanaefrom the origin
(reference) particle. For a 3D system, considethe number of pairs of atoms, () with the
condition(n— 1)Ar <rjj < nAr. By counting the pair of atoms in the shall, one would get

(67)
hn

= 2.16
2niNpr2Ar’ (2.16)

g(rn)

wherer, = (n— 3) Ar andn is the index of the each bin of the histogram. If the total ekt
the calculation fog(r) is rmax then the total number of bins should be choseNgs: rmax/Ar.

rlo

Figure 11 — (a) In the center there is the reference partadek(circle). The circles around
it represents other particles in the system. A centeredigiyawn as reference
and it has radius and widthdr. (b) As an example, we show the typical radial
distribution function for a Lennard—Jones system in thaitigphase. Taken from
Ref. (74).

Furthermore, Eq.4.12) is useful in the probabilistic interpretation of the rddisstri-
bution function. The probability(r,dr) that a particle is in the region of a spherical shell of
radiusr and widthdr while the spherical shell is centered in the reference @arfcf. Fig.11)
is given by

N—1
As a final and brief comment, the functigfr) is also commonly used as an auxiliary function
to calculate thermodynamic macroscopic properties. Fiaite, pressurg), energy E) and
isothermal compressibilityg = (dp/dp)T) are related tg(r) by (73)

P(r,dr)z( p )g(r)dr. (2.17)

p = pkBT—%"pz/rSU’<r)g(r,p,T)d3r, (2.18)
Vv

3 N
E — éNkBT+p7/v(4m2)u(r)g(r,p,T)d3r, (2.19)

kT (‘;—g)T = 1+p/v[g(r)—1]d3r, (2.20)
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whereu(r) is the inter-particle interaction potenti#k is the Boltzmann constant arfdis the
absolute temperature.

2.2.5 Relation between MD and statistical mechanics

One of the reasons why the method of MD is justified is due t@tbedic principle of statistical
mechanics{5), which states that an ensemble average of a given physiealidy is equivalent
to a temporal average of the same quantity on the long-timi (i.e., the limit wheret — o).
In statistical mechanics, one is mainly interested in systevhere the number of degrees of
freedom is large. For instance, in the canonical ensembi@ {Nwhere there is conservation
of the number of particles, volume and temperature, themeblgeaverage (in equilibrium) of a
physical quantityA can be expressed in terms of phase space integrals takingaobunt the
total potential energy of the systelh,= U (rN), as
JA(rN)e PUIgeN
<A> = fe—BU(’N)drN )

N)

(2.21)

where{rN} is the set of coordinateZ = [e PY(")drN is the configurational partition func-
tion, B = 1/kgT andkg is the Boltzmann constant. This average corresponds toies safr
measurements over an ensemble of independent system&fdreethe MD method is based
on the assumption that the ergodic principle holds, and thetime that a particle spends in a
given region of the phase space is proportional to the volointigs region. In other words, the
ergodic principle states that all the accessible micrestate equally likely for the limit — oo
(76). Consequently, the temporal averaggobtained in a MD run should be, in principle, the
same as the ensemble average,

13N
An= i 3 A = (A, (2:22)

whereM is the total number of measurements (independent runs)ugina statistical ensemble
used in MD simulations is the microcanonical (NVE), where tlumber of particles, volume
and total energy are the conserved quantities. The systsits the whole phase space in a
trajectory where the total energy is constard. (there is no heat exchange between the system
and its surroundings). However, it is possible to adapt tierivethod for different ensembles.
For instance, for MD simulations in the canonical ensembT), one could use the Nosé-
Hoover thermostat7(7, 78), the Berendsen thermostatdj or the Langevin Dynamics (LD)
simulations, which will be described in details in the nesdtgon.

2.3 Langevin Dynamics (LD)

In the previous section we briefly described the MD methodiclvitonsists in finding the
trajectory of individual particles of a systemfparticles by numerical integration of Newton’s
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equations of motion [cf. Eq2(3)]. The usual choice for the MD method is the microcanonical
ensemble, where the system is not allowed to exchange h#aitsvsurroundings. One way
of introducing thermal fluctuations is to use the methodechllangevin Dynamics simulations.
In this case, Eq.4.3) is replaced by the Langevin equation (S&&.2, given by

m% = —mvi+Fi+FP 4+ F (1), (2.23)

wherey; is the velocity of thath particle,n is the damping constant (related to the dissipation
of energy in the systemf; is the interaction force between particles [cf. E32[], F&is any
external forces acting on the systeaig. confinement forces, electric and/or magnetic fields,
etc) and=iT(t) is a stochastic force which depends on the absolute tenupefaand represents
the coupling of the system with a heat bath.

The Langevin equation is a stochastic differential equatibere the term proportional
to the velocity £ mnv;) removes energy from the system while the stochastic de(-,Te{tQ)
introduces energy into the system in the form of thermal dlagbns. Since the whole system
(i.e. system of particles + heat bath) should also conserve tlaé ¢oergy, there must be a
relation between the dissipation)(and the coupling with the heat bath)( This relation is
known as the Fluctuation—-Dissipation theorem (FDT). Thetsastic ternF[ (t) is called a
Wiener process if it obeys the following conditions

(R'(t)) = 0, (2.24)
(FaMFLM)) = 2mnkeT &;jdad(t —t'), (2.25)

where @, b) represents spatial coordinatesg. Xy, z), d is the Kronecker delta andl(t —t’) is
the Dirac delta function. Note that such a choice for thelsstic term is basically due to its
simplicity. Also, in many real systemsé. experiments with colloidal particles and soft matter
systems in general) it is reasonable to assume a Wienergzr¢also known as “white noise”)
to describe the dynamics of the particles embedded in a la¢fat Bhe delta functiod(t —t’)
characterizes what is called a process without memory (Meéak process). Therefore, the
thermal fluctuations introduced by the stochastic term exfrm of Egs. 2.24—(2.25 are
uncorrelated in time and space.

2.3.1 Brownian Dynamics (BD)

The Brownian Dynamics (BD) method consists in disregartiregnertial term in the equation
of motion 2.23, i.e,,
dv;

— ~ 0. 2.2
mdt 0 (2.26)

This limit is only valid when the particle (usually callecetBrownian particle) is suspended in
a viscous fluid where the effects of the damping are more aalethan the inertial effects. For
instance, if the particle’s radius is sufficiently large quared to the size of the molecules of the
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fluid (whose effects are implicitly introduced through thiechastic force), then its superficial
area will be larger. As a consequence, the damping will haweee relevant effect on the
dynamics of the suspended particle. This effect makes thigitlalition of velocities of the
suspended particles reach an equilibrium situation mustefghan the change in their positions.
Therefore, the velocities of the Brownian particles wilveaan approximately constant value
during this characteristic time interval, which allows doeaise the approximatior2(26). This
regime is also usually called the over-damped limit.

The BD method is then based on the large difference betwearldixation time scales
for the velocities ) and the relaxation time scales for the positiong. (For instance, for a
colloidal particle of diameter 100 nm, one could estima&@) that 1, ~ 2.2 x 102 s, while
Ts~ 4.7 x 1073 s. Clearly,1y < Ts, Which indicates the large separation between time scales;
the velocities of the Brownian particles have relaxed madedr than any significant changes
in their positions.

Using the approximatior2(26), Eq. 2.23 can be written as

dr;

{5 =Fi+rFPFl ), (2:27)

where = mn and% = V;. Note that Eq. Z.27) is valid only for time scales much larger
thant,. The BD approximation is valid in several real physical eyss$, specifically in meso-
scopic systems where the particles have a diameter of tlee ofd0 nm up to 1Qum, i.e,, the
particles are much larger than the particles of the fluid, sehdiameters are of the order of a
few angstroms. Therefore, the BD method has been widely izsdtie study of mesoscopic
systems, such as suspensions of colloidal particles, ipsoite biological systems, and vortex
matter in type-1l superconductors, just to cite a few exaspl

As in the case of the MD method, both the LD and BD methods stgsi numerical
integration of the equations of motio®.23 or (2.27). Generally, the algorithms for integration
are similar to the ones used in the MD methoel.(the Verlet or the leapfrog algorithms showed
in previous sections) with some modifications in order teetadto account the stochastic term.
In the following, we will show an Euler-type method based afR 81, 82), and using the
Box-Muller (83) technique to generate the stochastic (thermal) forces.

2.3.2 Numerical integration of stochastic differentialiatjons

There are several methods to numerically integrate sttichdifferential equations, such as
Egs. .23 or (2.27). Here we present one of the simplest algorithm, which isaknas the
Ermak algorithm 84). It is a first-order method and is similar to the Euler metha& restrict
ourselves to the exposure of this method in particular sins¢he one we used in the following
chapters (Results).
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We start by a direct integration of EQ.R7) during a finite time intervai\t. This leads

to
g A M -
z/ it = /0 F.dt—i—/o F dt+/0 T (t)dt, (2.28)
TA\
ZIri(Bt) —ri(0)] ~ At[FiJrF?Xt]Jr/OtFiT(t)dt, (2.29)
A~ o M L ped] LT
) ~ o)+ Fi+FS }JFZ [ FT @ (2.30)

Note that we assume that the fordesand FieXt are constant over the time interval. This
is a reasonable consideration given that the time intekva sufficiently small. Furthermore,
assuming that the stochastic forEé (t) follows properties 2.24—(2.25, the integral in the
rh.s. of Eq. 2.30 can be replaced by the tergf2{ kg TALR [for details, see Refs8(, 82)],
whereR is a dimensionless stationary Gaussian process with zeao ared unit variances().
Therefore, Eq.4.30 can be written as

N o] | |2keTAL
ri(n) ~1i(0) + 7 [F Fs t} R (2.31)

which is known as the Ermak formula to update the positiomefdarticles.

For the Langevin equatior2(23, we may proceed in a similar fashion and obtain the
formula to update the position of the particles. The diffieenow is that the equation of motion
has to be integrated for the velocity and then the positicdh@particles are updated.

We integrate Eq.4.23 directly during a finite time intervaht, which gives

vi(At) = vi(0)—n /OAt vi(t)dt+ 1 /OAt(Fi +F&hdt 4 %/ON Fl(t)dt, (2.32)

Vi(A) ~ Vi(0) — nvi(0)At + — [F.+Fext] ,/MmTAtR. (2.33)

Finally, the position of the particles are updated accaydm

ri(At) =ri(0) +v;(0)At. (2.34)
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3 Single-file to two-dimensional diffusion

Diffusive properties of a mono-disperse system of inteénggbarticles confined to Quastone-
dimensional (q1D) channel are studied using Molecular Dyina (MD) simulations. We calcu-
late numerically the mean square displacement (MSD) arestigate the influence of the width
of the channel (or the strength of the confinement potergrat)iffusion in finite-size channels
of different shapesd.g., straight and circular). The transition from single-fil&wasion (SFD) to
the two dimensional diffusion regime is investigated. Tthasmsition (regarding the calculation
of the scaling exponentr( of the MSD(Ax?(t)) [ t%) as a function of the width of the channel,
is shown to change depending on the channel’s confinemetfitepio particular the transition
can be either smooth.€., for a parabolic confinement potential) or rather sharpisise {.e.,
for a hard-wall potential), as distinct from infinite chaiswhere this transition is abrupt. This
result can be explained by qualitatively different disitibns of the particle density for the
different confinement potentials.

3.1 Introduction

There is a considerable theoretical and practical intaresthe dynamics of systems of in-
teracting particles in confined geometri&%) Single-file diffusion (SFD) refers to a one-
dimensional (1D) process where the motion of particles iraaaw channeld.g, quasi1D
systems) is limited such that particles are not able to ceash other. As a consequence,
the system exhibits spatial correlations which resultsnonaalous diffusion. The mecha-
nism of SFD was first proposed by Hodgkin and Keyn&d) (n order to study the passage
of molecules through narrow pores. Since the order of théges is conserved over time,
this results in unusual dynamics of the systé®, 87), different from what is predicted from
diffusion governed by Fick’s law. The main characteristictle SFD phenomena is that,
in the long-time limit { > tc, wheret. is a characteristic relaxation time scale which de-
pends on the specificities of the system), the MSD (mean sagdigplacement, defined as
Wi(t) = (A (1)) = (SN (1/N)[xi(t) —xi(0)]?)) scales with time as

Jim V& (t) 0 £95, (3.1)

This relation was first obtained analytically in the pionegmwork of Harris @0). Re-
cent advances in nanotechnology have stimulated a growibegesst in SFD, in particular, in
the study of transport in nanopored8(89). lon channels of biological membranes and carbon
nanotubesd0) are examples of such nanopores. The macroscopic flux atlearthrough
such nanopores is of great importance for many practicdicgtions,e.g, particle transport
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across membranes is a crucial intermediate step in alnldsbhigical and chemical engineer-
ing processes. SFD was observed in experiments on diffegimmlecules in zeolite molecular
sieves 91). Zeolites with unconnected parallel channels may sengegsd realization of the
theoretically investigated one-dimensional systems. &Ridso related to growth phenomena
(92.

The theoretical background of SFD was developed in eartliession transport phenom-
ena in 1D channelsi@, 43, 44). It is also interesting to learn how the size of the systeith wi
influence the diffusive properties of the system. SFD indisize systems has been the focus
of increasing attention since there are few exact the@latgsults to date5g, 93, 94), which
showed the existence of different regimes of diffusion.

Colloidal systems, complex plasmas and vortex matter ie-tyguperconductors are
examples of systems where SFD may occur. The use of collpatétles is technically inter-
esting since it allows real time and spatial direct obs@madf their position, which is a great
advantage as compared to atoms or molecules, as shownlyeicerg.g, the experimental
study of defect induced meltin@%). One typically uses micro-meter size colloidal partigles
narrow channels, as shown il 96). The paramagnetic colloidal spheres of gré were con-
fined in circular trenches fabricated by photolithography #eir trajectories were followed
over long periods of time. Several other studies have fatusethe diffusive properties of
complex plasmas. A complex plasma consists of micrométedg“dust”) particles immersed
in a gaseous plasma background. Dust particles typicatjyiee a negative charge of several
thousand elementary charges, and thus they interact with @her through their strong elec-
trostatic repulsiong7).

Systems of particles moving in space of reduced dimenstgnal submitted to an
external confinement potential exhibit different behaWwom their free-of-border counterparts
(98). The combined effect of interaction between the partieled the confinement potential
plays a crucial role in their physical and chemical progsr®9). In Ref. (L00), it was found
that SFD depends on the inter-particle interaction and gan be suppressed if the interaction
is sufficiently strong, resulting in a slower sub-diffusivehavior, whergAx?(t)) [0 t9, with
a <0.5.

In this chapter we will investigate the effects of confineingotential on the diffusive
properties of a Q1D system of interacting particles. In thmting case of very narrow (wide)
channels, particle diffusion can be referred to SFD (2Dme&jicharacterized by a sub-diffusive
(normal diffusive) long-time regime where the mean squasgldcement (MSDJAX?(t)) 025
(0t19). Recall that the MSD of a tagged hard-sphere particle ineaddmensional infinite sys-
tem is characterized by two limiting diffusion behaviorer fime scales shorter than a certain
crossover timeg; = 1/Dp?, whereD is the diffusion coefficient angd is the particle concentra-
tion, (Ax?(t)) O t20 which is referred to as the normal diffusion regimi®f). For times larger
thante, the system exhibits a sub-diffusive behavior, with the M@R?(t)) 0t%°, which char-
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acterizes the single-file diffusion regime. Between thegeregimes, there is a transient regime
exhibiting a non-trivial functional form.

However, in case of éinite system of diffusing particlese(g, a circular chain or a
straight chain in the presence of periodic boundary comakii, the SFD regime.é., with
(AX?(1)) O19°) does not hold fot — o, unlike in an infinite system. Instead, for sufficiently
long times, the SFD regime turns to the regimeaifectivediffusion,i.e., when the whole sys-
tem diffuses as a single “particle” with a renormalized madss diffusive behavior has been
revealed in experimentg{, 102 and theoretical studied Q3 104, 45, 105). This collective
diffusion regime is similar to the initial short-time diion regime and it is characterized by
either (Ax?(t)) O t19, for over-damped particles [semg, (41, 100, 103)] or by (Ax?(t)) 0120
(followed by the MSD t1-9), for under-damped systens)4, 105). Correspondingly, the time
interval where the SFD regime is observed becofimé® in finite size systems. It depends on
the length of the chain of diffusing particles: the longer thain the longer the SFD time inter-
val. Therefore, in order to observe a clear power-law bedie., (Ax?(t)) 0t9) one should
consider sufficiently large systems.

Here we focus on this intermediate diffusion regime and wstat it can be charac-
terized by(Ax?(t)) Ot%, where 05 < a < 1.0, depending on the width (or the strength of the
confinement potential) of the channel. We analyze the MSDvordifferent channel geome-
tries: (i) a linear channel, and (ii) a circular channel. 3éeénvo systems correspond to different
experimental realizations of diffusion of charged paetcin narrow channelgly, 106). The
latter one {.e., a circular channel) has obvious advantages: (i) it allodsng-time observa-
tion of diffusion using a relatively short circuit, and (it)provides constant average particle
density and absence of density gradients (which occue.m, a linear channel due to the en-
try/exit of particles in/from the channel). Thus circularrow channels were used in diffusion
experiments with colloidsA(l) and metallic charged particles (ball§0@). Furthermore, using
different systems allows us to demonstrate that the resbttsned in our study are general and
do not depend on the specific experimental set-up.

3.2 Model system and numerical approach

Our model system consists Nfidentical charged particles interacting through a repalpair
potentialVin (rij). In this study, we use a screened Coulomb potential (Yukastanpial),
Vint J exp(—r/Ap)/r. In the transverse direction, the motion of the particlag#ricted either
by a hard-wall or by a parabolic confinement potential. Thgstotal potential energy of the
system can be written as

N N
H:_;VC(ri)—i— Z Vint(rij). (3.2)

i>]=1
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The first term in the right-hand side (r.h.s.) of E§.2) represents the confinement potential,
whereVc(r;) is given by

0 forlyi| <Ry/2
Vo(ri) = ] < Ru/ (3.3)
oo for [yi| > Rw/2,
for the hard-wall confinement,
Ve(ri) = —mouby2 (3.4)
for parabolic one-dimensional potential (in thelirection), and by
Ve(ri) = B(ro—ri)?, (3.5)

for parabolic circular confinement.

HereRy is the width of the channel (for the hard-wall potentiat)js the mass of the
particles,ay is the strength of the parabolic 1D confining potentiglis the coordinate of the
minimum of the potential energy amgdis the displacement of thi¢h particle fromrq (for the
parabolic circular potential). Note that in case of a ciacudhannelrg = rcnh, Wherergy, is the
radius of the channel.

The second term in the r.h.s. of E®.2) represents the interaction potential between
the particles. For the screened Coulomb potential,

2 o—|ri—r|/Ap

qQ-€ !
mt( IJ) € ‘ri_r” ( )

whereq is the charge of each particlejs the dielectric constant of the mediumy,= [rj — ]|
is the distance betweeth andjth particles, andp is the Debye screening length. Substituting

(3.6) into Eq. 3.2), we obtain the potential energy of the systein
H N V( )+q2 N e—|ri—rj|/)\D (3 7)
Y = i) +— ror '
_;C | € i ri—rj

In order to reveal important parameters which charactéheesystem, we rewrite the energy
Hy in a dimensionlessHy) form by making use of the following variable transformatso

Hy = (q%/eap)Hy, r = r'ag, whereag is the mean inter-particle distance. The energy of the
system then becomes

N efK\r-’—r’j|

H, = S VY S (3.8)
Yo Zl I>j =1 ‘rl_r,j|

wherek = ag/Ap is the screening parameter of the interaction potentiabuinsimulations in
Sec. lll, we use a typical value af= 1.0 for colloidal systems andlp = 10° m

The hard-wall confinement potential is written as

e o forlyl| > R,/2, '



3.2. Model system and numerical approach 65

WhereR:N is scaled by the inter-particle distanag We also introduce a dimensionless parame-
ter

~ m(wpap)?

X= " OkaT (3.10)

which is a measure of the strength of the parabolic 1D confammotential.

For colloidal particles moving in a nonmagnetic liquid,ithreotion is over-damped and
thus the stochastic Langevin equations of motion can becestiio those for Brownian particles
(84)

ar,_ D,

G KT L 2 OV (i)~ ONe(r) +F ()] (3.11)

J7

Note, however, that in Se8.4we will deal with massive metallic balls and therefore wel wil
keep the inertial term in the Langevin equations of motion.

In Egq. 3.11), ri, D; andm; are the position, the self-diffusion coefficient (measured
in m?/s) and the mass (in kg) of th¢h particle, respectively, is the time (in secondskg is
the Boltzmann constant, aridis the absolute temperature of the system. Finﬁliy,is a ran-
domly fluctuating force, which obeys the following condit® (F1) = 0 and(Fi (t)FL (1)) =
2(kgT g 0(t —t’), where( is the viscosity of the medium. Ed3.(L] can be written in dimen-
sionless form as follows

dr/

& = Dir|- > OV (ly) ~ OlVeon1) + Fit)). (3.12)
IEA]

/

where we use the following transformatidy = (9?/€ag)Vy, D/ = Dj/a3, and introduced
a coupling parametdr, which is the ratio of the average potential energy to theamges ki-
netic energyl” = (V) /(K), such thal = g?/ksT€ap. The timet’ is expressed in seconds and
distances are expressed in units of the inter-particladisay.

In what follows, we will abandon the primé) (notation. We have used a first order
finite difference method (Euler method) to integrate E2j19 numerically. In the case of a
straight channel, periodic boundary conditions (PBC) vagpglied in thex-direction while in
they-direction the system is confined either by a hard-wall or pgabolic potential. Also, we
use a timestet = 0.0001 and the coupling parameter is sef te 10. For a circular channel,
we use polar coordinatds, @) and model a 2D narrow channel of radiug with parabolic
potential-energy profile across the channel, in ther-direction.
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3.3 1D versus 2D diffusion in a straight channel

3.3.1 Mean-square displacement (MSD) calculations

In order to characterize the diffusion of the system, weudate the MSD as follows

<N Zl (t+At) — )]2>m, (3.13)

whereN is the total number of particles and.)x; represents a time average over the time
interval At. Note that in the general case.g, for small circular channels with the number
of particlesN = 20 — see Se@.4) the calculated MSD was averaged over time and over the
number of ensembled.Q7, 108 109 110. However, we found that for largd (i.e., several
hundred) the calculated MSD for various ensemble reatimaticoincide (with a maximum
deviation within the thickness of the line representingtiD).

To keep the inter-particle distance approximately equalrity, we defined the total
number of particle® for a 1D and Q1D system as

Ne— = Ry<1, (3.14)

VIR,
wherelL is the size of the simulation box (in dimensionless unitshhiax-direction. In our
simulations for a straight channel geometry, we typicabediN = 400— 900 particles. We
study the system for two different types of confinement piaer(i) a parabolic 1D potential in
they-direction, which can be tuned by the confinement streggdind (ii) a hard-wall potential,
where particles are confined by two parallel walls separayeal distancdR,y.

The results of calculations of the MSD as a function of timedifferent values of the
confinement strengti [Eqg. (3.10] and the width of the chann&,, are presented in Figj2(a)-
(c) and Figl3(a)-(c), respectively.

Initially, in both casesi(e., a parabolic and a hard-wall confinement potential), the sys
tem exhibits a short-time normal diffusion behavior, whéke?(t)) 0t10. This is the typical
initial “free-particle” diffusion regime. After this iniél regime, there is an intermediate sub-
diffusive regime (ITR). As discussed in Ret1(1), the ITR shows an apparent power-law behav-
ior (112), where 05 < a < 1.0, and it was also found previously in different diffusion dets
(113 114). In the ITR, we found a SFD regime for either a channel witbrgg parabolic con-
finement y = 3.5 (Fig. 12(a))] or a narrow hard-wall channeR], = 0.20 (Fig.13(a))]. This
is due to the fact that for large (small) values)of(Ry), the confinement prevents particles
from passing each other. The results fom the ITR are shown as a function gfandR, in
Fig. 12(d) and Fig.13(d), respectively. As can be seen in Fig(d) [Fig. 13(d)], o increases
with decreasingy [with increasingR,] and thus the SFD condition does not hold any longer.
The values ofx presented in these figures correspond to the minimum of feetek time de-
pendent exponermt(t). Following Ref. 115), a(t) is calculated using the “double logarithmic
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1D versus 2D diffusion in a straight channel

Figure 12 — (a)-(c) Log-log plot of the mean square displaa@nMSD) (Ax?(t)) as a function
of time for different values of. Different diffusion regimes can be distinguished:
normal diffusion regimed = 1.0) and intermediate sub-diffusive regime (ITd&R<
1.0). Note that for the case of = 1.5, there is a normal diffusion regimee(

o = 1.0) after the ITR. The dashed and solid lines in (a)-(c) are idggto the
eye. Panel (d) shows the dependence of the slap@f the MSD curves (in the
ITR, characterized by an apparent power-lgx?(t)) 0 t%) on the confinement
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Figure 13 — (a)-(c) Log-log plot of the mean square displaa@tMSD)(Ax2(t)) as a function
of time for different values oR,,. Different diffusion regimes can be distinguished:
normal diffusion regimed = 1.0) and intermediate sub-diffusive regime (IT&R<
1.0). Note that for the case &, = 0.60, there is a normal diffusion regimieg(
o = 1.0) after the ITR. The dashed and solid lines in (a)-(c) are ideggto the
eye. Panel (d) shows the dependence of the slap®f the MSD curves (in the
ITR, characterized by an apparent power-laix?(t)) 0t%) on the confinement
parameteRy.
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Figure 14 — (a)-(b) Exponent as a function of time, calculated from EdB.15 for different
values of the confinement parametgrandR, respectively.

time derivative”
_ dlog(Ax3(t))

a(t) = dlogt (3.15)

Y

and the results are shown in Filz.

The different diffusive regimes.e., normal diffusion regimed = 1.0) and SFD ¢ =
0.5), were also found recently in finite-size systert®4 45) although the transition from SFD
to normal diffusion was not analyzed. Thedependence on both the confinement parameters
(i.e, a(x) and a(Ry)) presents a different qualitative behavior, namely, th® 3€gime is
reached after a smoother crossover in the parabolic conéinecase as compared to the hard-
wall case. A similar smoother crossover is also found in @Eecof a circular channel with
parabolic confinement in the radial direction. A more dethdliscussion on these two different
types of the behavior af will be provided in Sec3.4.
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3.3.2 “Long-time” behavior of the MSD curves and crossingresC(t)

For small values of the parabolic confinemeaty( x = 1.5), the MSD curves present three
different diffusive regimes: (i) a short-time normal diion regime, where MSBAX?(t)) O
t10; (ii) a sub-diffusive regime witfAx?(t)) 0t%, where 05 < a < 1.0 and (iii) a “long-time”
diffusion regime, which is characterized t4x?(t)) Ot19. Note that the “long-time” term used
here is not to be confused with the long-time usedti@inite systems, as discussed in S8d.
However, for large values of the parabolic confinemeng( x = 3.5), we observe only two
distinct diffusive regimes, namely: (i) a short-time notrdéfusion regime (Ax?(t)) O t10)
and (i) a SFD regimeife., (Ax?(t)) Ot%9).

One question that arises naturally is whether this nornfgion regime ie., (Ax?(t))
0119 for “long-times”) is an effect of theolletivemotion of the system (center-of-mass mo-
tion) or an effect of the single-particle jumping processcs the confinement potentigl= 1.5
allows patrticles bypass. In order to answer this questi@ncalculate the number of crossing
eventsC(t) as a function of time and results are shown in Hifa). We found that for small
values of the confinement potentialg, x = 1.5) the number of crossing events grows linearly
in time,i.e, C(t) O wt, whereaw is the rate of crossing events. On the other hand, a strong con
finement potentiald.g, x = 3.5) prevents particles from bypassing, and t@s) = 0 during
the whole simulation time.

Therefore, the “long-time” normal diffusive behavidre(, (Ax?(t)) O t1° for “long-
times”) found in our simulations for the case where the Skgls-file) condition is broken
(e.g, x =1.5)is not due to a collective (center-of-mass) diffusiorstéad, this normal diffusive
behaviour is due to a single-particle jumping process, Whappens with a constant rate > 0
for the case of small values of the confinement 1.5) andw. = 0 (for x = 3.5). The same
analysis was done for the case of the hard-wall confinemegnpal, and the results are found
to be the same as for the parabolic confinement.

Nevertheless, we point out that the collective diffusiorslndeed exist, but our results
from simulations do not allow us to observe this collectigenter-of-mass) diffusion regime
because of the large size of our chain of particls=(400— 900). Simulations withN =
80— 100, and excluding the possibility of mutual bypass (stromgfinement potential), allowed
us to observe that th@\x?(t)) 0t regime is recovered in the “long-time” limit. In Se.5,
we will further discuss the long-time limit using a model aéatete sites.

As we demonstrated above, the transition from pure 1D ddfu§SFD) characterized
by a = 0.5 to aquast1lD behavior (witha > 0.5) could be either more “smooth” (as in
Fig. 12(d), for a parabolic confinement) or more “abrupt” (as in FA§d), for a hard-wall
confinement). One can intuitively expect that this diffex@m behavior can manifest itself also
in the crossing events rate, i.e., thatw, as a function ofy (or Ry) should display a clear
signature of either “smooth” or “abrupt” behavior.
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However, the link between the two quantitiés., the exponento (x/Ry), and the
crossing events rateg.(X/Ry) is not that straightforward. To understand this, let usrrede
the long-time limit (which will be addressed in detail withthe discrete-site model in S&5).

As we show, in the long-time limit the exponeatis defined by one of the two conditions:
. = 0 (thena = 0.5) or i > 0 (thena = 1) and it does not depend on the specific value of
. provided it is nonzero. Therefore, in the long-time limiettransition between 1D to 2D
behavior is not sensitive to the particular behavior of thectionw:(x /Rw)-

Although for “intermediate” times (considered in this sen) the conditionw. = 0 or
. > 0 is not critical, nevertheless, very small change in thegirg events ratex(x/Rw)
strongly influences the behavior of the exponeify /Ry). This is illustrated in Figs15(b)-
(c). In Fig. 15(b), the functionwy(x) gradually decreases from 1.45 to O fprvarying in a
broad interval from 1.5 to 3 (note that the segmentug(fy) for 2.5 < x < 3 is nonzero which
can be seen in the inset of Fi5(b) showing the derivativelw(x)/dx). Correspondingly,
the transition froma = 0.5 to a ~ 0.8 in that interval ofy is “smooth” (see Figl2(d)). On
the other hand, the functiom.(Ry) shown in Fig.15(c) mainly changes [note the change of
the slopedw:(Ry)/dRy shown in the inset of Figl5(c)] in a narrow interval & < Ry < 0.6.
Respectively, the transition for the functiariR,) occurs in the narrow interval®< Ry, < 0.6
and thus is (more) “abrupt”.

3.3.3 Distribution of particles along thedirection

For the ideal 1D case, particles are located on a straigét lincreasing the widtR,, of the
confining channel will lead to a zig-zag transitiddv(116). This zig-zag configuration can be
seen as a distorted triangular configuration in this trawsone. Further increase Bf, brings
the system into the 2D regime, where the normal diffusiorelih is recovered (see Fif6).

For the parabolic 1D confinement, we can see [Eiffa)] that the distribution of parti-
clesP(y) along the channel is symmetric along the axis 0. Also, for large values of (e.g,
X = 3.5) particles are confined in thedirection and thus can move only in tiedirection,
forming a single-chain structure. As the confinement desae& — 0), the distribution of par-
ticlesP(y) broadens resulting in the crossover from the SFD regjme 8.5) to the 2D normal
diffusion regime § = 0.5). Note that for small values of (e.g, x = 0.5), the system forms
a two-chain structure [represented by two small peakB(gf in Fig. 17(a)], thus allowing
particles to pass each other.
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Figure 15 — (a) Number of crossing eve@f) as a function of time folN = 400 particles,
for x = 1.5 (black open circles) ang = 3.5 (green open diamonds). The solid
red line is a linear fit taC(t). Panels (b) and (c) show the rate of the crossing
eventswy as a function of the confinement potential parametgrar(dR,). The
insets in the panels (b) and (c) show the derivatides(x)/dx anddw:(Ry)/dRy,
correspondingly.
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Figure 16 — For the hard-wall confinement case, we show typiggectories of particlesi.g.
10° MD simulation steps) confined by the channel of widthRg)= 0.20, (b)Ry =
0.60 and (c)Ry = 0.80.

3.4 Diffusion in a circular channel

In the previous section, we analyzed the transition (cnom3drom the SFD regime to 2D

diffusion in narrow channels of increasing width. The asaywas performed for a straight
channel with either hard-wall or parabolic confinement pté&é. However, in terms of possible
experimental verification of the studied effect, one face®lkvious limitation of this model:

although easy in simulation, it is hard to experimentallfilfuhe periodic boundary conditions

at the ends of an open channel. Therefore, in order to av@diifficulty, in SFD experiments

(41, 102 circular channels were used.

In this section, we investigate the transition (crossofrern SFD to 2D-diffusion in a
system of interacting particles diffusing in a channetifular shape. In particular, we will
study the influence of the strength of the confinemest, the depth of the potential profile
across the channel) on the diffusive behavior. Without tdggenerality, we will adhere to the
specific conditions and parameters of the experimentalgetsed in Ref.102). An additional
advantage of this model is that the motion of the system ofggthmetallic balls is not over-
damped, and we will solve the full Langevin equations of moto study the diffusive behavior
of the system.

We consideiN particles, interacting through a Yukawa potential [E}6)], which are
embedded in a ring channel of radiyg. We define a parabolic confinement potential across
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Figure 17 — Probability distribution of the particle degg®(y) along they-direction are shown
for (a) different values of (parabolic 1D confinement) and (b) four different values
of the widthR,, of the channel (hard-wall confinement).
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the channel in the form of Eq3(5) where parameteB is chosen as follows

5 V_027 Vo o ; exp[—ZKr-Chsin_<¥>] |
Yo € T 2rchsm(m2¢‘>

when all the particles are equidistantly distributed altmgbottom of the circular channel. It
should be noted that in this cas, is approximately equal t¥ys due to the weak Yukawa
interaction, which slightly shifts the particles away frahe bottom of the channel. Such a
choice of\j is related to the fact that we study the influence of the conferd on the diffusion
and, therefore, the potential energy of the particles masbftthe order of the inter-particle
interaction energy. Parametgrcharacterizes the distance where the external potensiehes
the valuevp/y, andVgs is the energy of the ground state of the systerll gfarticles as defined
by Eq. 8.7).

Parametey plays the role of a control parameter. By changyge can manipulate the
strength of the confinement and, therefore, control thellfukint of the single-file condition.
Increase iry corresponds to a decrease in the depth of the confinementd&j.which leads
to the expansion of the area of radial localization of ptic Therefore, an increase pf
results in a similar effect.g., spatial delocalization of particles) as an increase optrature,

(3.16)

i.e,, parametely can be considered as an “effective temperature”. Note that a choice of
the parameter that controls the confinement strength ieraéalistic. In the experiment of
Ref. (102 with metallic balls, the parabolic confinement was credigdin external electric
field, and the depth of the potential was controlled by turnhregstrength of the field.

To study diffusion of charged metallic balls, we solve th@gevin equation of motion
in the general formi(e., with the inertial terniJ m),
dzri dr;

m—— = —mn—— Y OVin(rij) — OVe(ri) +FF, (3.17)
dt at &

wherem= 2.5 x 106 kg is the mass of a particle, amdis the damping constant. Here all the
parameters of the system were chosen following the expati(f62), andAp = 4.8 x 104 m,

Ir =1 [which is a typical experimental value, seeg, also @1)]. Correspondingly, mass is
measured in kg, length in m, and time in seconds.

Also, we took a channel of radiug, = 9 mm (in the experiment, the external radius of
the channel was 10 mm, and the channel width 2 mm; note thatrimodel we do not define
the channel width: the motion of a particle in the transvelisection is only restricted by the
parabolic confinement potential). We also took experimBntalevant number of diffusing
particles,N, varying fromN = 12 toN = 40 (in the experiment, the ring channel contained
N = 12 orN = 16 diffusing balls).

Fig. 18 shows the results of calculations of the trajectoriell ef 20 particles diffusing
in a ring of radiusr¢n = 9 mm for the first 16 MD steps for various values of the parameter



76 Chapter 3. Single-file to two-dimensional diffusion

(a) (b) (c)
pity ‘i‘- | » *ﬁq‘
: . : f‘ ™ ¥
» “ & : o
n * & >
i\g-
‘1, . L 2 J‘
" e ¥ o [ " “!.:’3'
ﬁw @y
‘g'ﬁ “‘.:- ot ’1 -‘«f ?
% “ Yoy
/e ¥ £ \""
3(‘72 w? T2 -t

&b‘,

Figure 18 — Trajectories dfl = 20 particles diffusing in a ring of radiug, = 9 mm for 1®
consequent time steps for different valueyof=1 (a), 2 (b), 3 (c), 5(d), 7 (e), 9
().

y. As can be seen from the presented snapshots, the radiizédican of particles weakens
with increasingy. At a certain value oy this leads to the breakdown of the single-file behavior

[Figs. 18(c)-(f)].

3.4.1 Breakdown of SFD

Itis convenient to introduce the distribution of the proitigbdensity of particles in the channel
Pagalong the radial direction In order to calculate the functid®,q(r) we divided the circular
channel in a number of coaxial thin rings. The ratio of the banof observations of particles
in a sector of radius to the total number of observations during the simulatiateifined as the
probability densityPaq(ri). In Fig. 19, the probability densitya4(r) is presented for different
values ofy. With increasingy, the distribution of the probability densif,q(r) broaden and
the maximum of the functioRaq4(r) shifts away from the center of the channel (see ER).
The latter is explained by the softening of the localizatdparticles with increasing, which
tend to occupy an area with a larger radius due to the reuister-particle interaction. Si-
multaneously, the distribution of the probability dendiyq(r) acquires an additional bump
indicating the nucleation of a two-channel particle dizition (117). The observed broadening
and deformation of the functioR,q(r) is indicative of a gradual increase of the probability of
mutual bypass of particles.¢., the violation of the SF (single-file) condition, also cdlldhe
“overtake probability” (18)] with increasingy.

Let us now discuss a qualitative criterion for the breakdmfsFD, i.e., when the
majority of particles leave the SFD mode. For this purposeus consider a particle in the
potential created by its close neighbor (which is justified¢ase of short-range Yukawa inter-
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Figure 19 — The distribution of the probability density oftaesP44(r) in a circular channel
of radiusrcp, = 9 mm along the radial direction The different curves correspond
to variousy. Increasingy the width of the distributiorP54(r) increases due to a
weakening of the confinement.
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Figure 20 — Spatial distribution of the potenti4:(r, ) created by a particle (red (grey) cir-
cle) and the qualitative distribution of the probabilitydéy of particles in circular
channelPa4(r) (green (light grey) line) along the radial direction The function
Ar determines an approximate radial distance between metigchen the poten-
tial barrierUp,, becomes “permeable” for given temperatiireThe functionArg,
characterizes a width of the distributi®pg(r) at this temperaturé.
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particle interaction and low density of particles in a chelhshown in Fig20. Different lines
show the inter-particle potentisl,; as a function of angle for different radiir.

For small values of, the center of the distributioBaq(r) (see Figl19) almost coincides
with the center of the channelé., with the minimum of the confinement potential profile) and
the distributionPa4(r) is narrow. Therefore, mutual passage of particles is inipless.e., the
SF condition is fulfilled. The asymmetric broadening of thedtion R44(r) with increasing
y results in an increasing probability of mutual bypass ofiplas which have to overcome a
barrierUpar (See Fig20). This becomes possible whelgy, < kgT. In other words, the thermal
energyks T determines some minimal widfkr between adjacent particles when the breakdown
of the SF condition becomes possible.

It is clear that “massive” violation of the SF conditioine(, when the majority of par-
ticles bypass each other) occurs when the halfwixt}y, of the distribution of the probability
densityPaq(r) obeys the condition

Argw > A (3.18)

The functionArg,, is defined by the ratio of the thermal energyT to the external potential
Uconi(r) and is of the same order AS

% - (Br /2)% ~ kgT. (3.19)
0

Therefore the criterion3(18 can be presented in the form

Argy ~ Ar > Ar. (3.20)

This qualitative analysis of the breakdown of the SFD regafeeifies the role of the
width and the shape of the distribution of the probabilitysiey influenced by the asymmetry
of the circular channel. Note that the shape of the distiglus a signature of the breakdown of
the SF condition. This breakdown is caused by the mecharfismmnamization of the repulsive
inter-particle interaction energy.

3.4.2 Diffusion regimes

The MSD(A¢?(t)) is calculated as a function of tintes

(AgP(t)) = <Np 1N > [A(gj(r+t)—A(gj(t)]2> : (3.21)
arvens 7] ¢

whereNpqr is the total number of particles of an ensemble &gk is the total number of en-
sembles. In our calculations, the number of ensembles weseail00 for a system consisting
of 20 particles.
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The time dependence of the MSD for different valuey @ shown in Fig.21(a)—(c).
Initially the system exhibits normal diffusion, whe?) 0t1-0. This regime is followed by an
intermediate sub-diffusive regime, where tg?) 0t (0.5 < a < 1.0). For longer times, the
system recovers “long-time” normal diffusion (see distssin Sec3.3.2, with (Ag?) Ot19,
As in the case of straight channel geometry, this secondaoves {.e., from intermediate sub-
diffusion to “long-time” normal diffusion) can also be due tivo other reasons: (i) due to a
collective (center-of-mass) diffusion or (ii) due to a dexgarticle jumping process. However,
for the simulations in the case of a circular geometry, thaloer of particles is relatively small
(taking the fact that this is a finite-size system), and ttoeeg the crossover from sublinear to
linear regime is due to a collective (center-of-mass) diffn. We further address this issue in
Sec.3.5 where we consider a discrete site model and we exclude thereef-mass motion.

Fig. 21(d) showsa as a function ofy. The functiona(y) experiences a monotonic
gradual crossover from the = 0.5 to aa < 1 regime. Note that the observed deviation from
the normal diffusion behavior for large (Fig. 21) is related to the presence of, though weak
but nonzero, external confinement in the radial directidms Thange of the diffusive behavior
is explained by a weakening of the average radial locabpadif particles with increase of
(Fig. 19) and, as a consequence, by an increase of the probabilitytfaibypass of particles.

The observed crossover between the 1D single-file and 2Dsilif regimes,e., a(y)-
dependence, shows a significant different qualitativeaehas compared to the case of a hard-
wall confinement potential considered in S8, where a rather sharp transition between the
two regimes was found [Fid.3(d)]. The different behavior is due to the different confirern
profiles and can be understood from the analysis of the biigion of the probability density
of particles for these two cases. In the case of a hard-waltél, the uncompensateace(, by
the confinement) inter-particle repulsion leads to a higlaticle density near the boundaries
rather than near the center of the channel [see F8@nd Fig.17(b)]. As a consequence, the
breakdown of the SF condition — with increasing width of tharnel — happens simultaneously
for many patrticles in the vicinity of the boundary resulting sharp transition (see Fi$y3(d)).

On the contrary, in the case of parabolic confinement, thaitiedistribution function has a
maximum — sharp or broad, depending on the confinement slrergnear the center of the
channel [see Figd.7(a) and19]. With increasing the “width” of the channal€., weakening its
strength), only a small fraction of particles undergoedateakdown of the SF condition. This
fraction gradually increases with decreasing strengthefconfinement, therefore resulting in
a smooth crossover between the two diffusion regimes.

3.5 Discrete site model: The long-time limit

The calculated MSD for different geometries and confinerpergntials allowed us to explain
the evolution of the sub-diffusive regime with varying vhatf the channel (or potential strength
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Figure 21 — (a)—(c): Log-log plot of the mean square disptaae (MSD)(A¢?) as a function
of time for different values of the “effective” temperatwe= (a) 1, (b) 2, and (c)
3. Here(Nens= 100, Npar = 20). (d) The diffusion exponerdr as a function ofy.
Increase of the “effective” temperatuydeads to the gradual transformation of the
single-file regime of diffusion into the diffusion regime foée particles.
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in case of a parabolic potential). However, the obtainedltegare only valid for the intermedi-
ate regime and therefore they only describe the “onset’®fdhg-time behavior. The problem
of accessing the long-time behavior in a finite chain is egldb the fact that sooner or latee,
depending on the chain length) the interacting system wile into a collective, or “single-
particle”, diffusion mode which is characterized by= 1.0. Thus the question is whether the
observed behavior holds for the long-time linig,, is the transition from%® to t1° behavior
smooth?

To answer this question, we considered a simple moggela linear discrete chain of
fixed sites filled with either particles or “holes” (sites ratcupied by particles) [this model
was also recently used in Refl19]. The particles can move along the chain only due to
the exchange with adjacent vacancies (with holes). Withigmodel, the long-time diffusion
behavior was described analytically for an infinite linelgrin as well as for a finite cyclic
chain (L13). In particular, this model predicts that: (i) If the chaminfinite then the long-time
power law of the diffusion curve is 0.5 (MSD(Ax?(t)) 0t%9); (ii) If the chain is finite then the
sub-diffusive regime witlm = 0.5 is followed by eitheir = 1.0 regime (if the cyclic boundary
condition is realized), or by = 0 regime,i.e., the regime of saturation (if no cyclic boundary
condition is imposed46)). The latter regime is reached for times longer than théusion
time” of a “hole” along the whole chaiahain

Let us now apply this model to a finite-size chain of particl€®r this purpose, we
assume that adjacent particles are able to exchange thsiiops with some probability? at
every time step. For example, probabilRy= 0.1 means that a couple of any adjacent particles
certainly exchange their positions once for every 10 tinepst The results of our calculations
of the MSD performed using this model are presented in Eiga). We used the following
parameters: the chain length h§ = 150 sites and\, = 1 hole. Averaging was done over
1000 ensembles. The calculation was performed for theviatig values of the probability:
P=0,10"°,10410230.01,0.1, and 1.

We see in Fig22(a) clearly the above-mentioned two diffusion regimes, with the
MSD (Ax?(t)) 0t%° andOt10. The characteristic timipain shifts towards lower values with
increasing®. However this analysis (Fi@2(a)) does not allow to distinguish the contributions
to the long-time behavior{t%) due to: (i) the breakdown of single-file condition (diffasi
due to particle exchanges), and (ii) the “collective” d#flon (chain “rotation”). To overcome
this difficulty, we exclude the “collective” diffusion of ¢hsystem and introduce a modified
MSD (AX?(t))corr (Which is so-called “roughness” of the system of particks discussed in
Ref. @5)) as follows

(D) corr = ((x—%)?), (3.22)

where(...) is the average over time;is the average of an ensemble of particles at a given time,
or “collective” coordinate. It should be noted thia # x. If the system does not experience
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Figure 22 — Log-log plot of the MSDAX?(t)) (a) and corrected MSBAX(t)) corr (D) as a
function of time for different values of the probabiliBof bypassing. Averaging
was done oveNsim = 1000 ensembles.

“collective” diffusion thenx(t) = 0 and the modified MSD coincides with the conventional one

(D) corr = (X). (3.23)

The diffusion curves calculated by using the modified MSDpaesented in Figz2(b).
For P = 0, the diffusion curve (shown by black open squares) afterstib-diffusive regime
reaches saturatioru(xz(t)>CoIrr = const). The observed behavior is similar to that of a finite
linear chain with fixed ends (see Rek@)). For P # 0, all the diffusion curves in the long-
time limit are characterized by = 1.0, independenbf the value of the probabilitf, as seen
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in Fig. 22(b). In other words, the long-time diffusion does not defgead the probability of
mutual exchanges of particles and has the same long-time/ioeHor any probabilityP # 0.
Here we would like to emphasize again that the long-time Wehaf the diffusion curves is
free from the “collective” diffusion effect and is only deteined by particle jump diffusion.

Increasing the number of sites in the model correspondsaaty fo approaching the
model of infinite chain. We have found that the increasing benof sites leads to growth of
the (Ax?(t))corr limit of saturation, on the one hand, and to a shift.gf;,to largert, on the other
hand. Hence, extrapolating our results to the case of iafchiin, we can conclude that in this
case as well as in the case of finite-size chain, the breakddwimgle-file condition leads to
an abrupt transition from sub-diffusive to the normal dsfun regime. The difference in the
diffusive curves is just the timgya, from sub-diffusive regime to the normal regime: for |&w
it (Tyran) is long enough while for higl® it (Tyan) is short. It is easy to see thatan ~ 1/P(%).
Thus, we can conclude that in the long-time limit the trdosifrom t%° to t19 behavior is
abrupt. Note that our calculations performed using the fretiMSD <Ax2(t)>coIrr reproduce
the results of Ref.56) for a closed “box”. This is explained by the fact that in thesed “box”
geometry the center of mass (or collective) diffusion i©zand it is natural that the roughness
[see Ref. 45)] and the particles diffusion coincide.

3.6 Concluding remarks

We have studied a monodisperse system of interacting |esrtstibject to three types of con-
finement potentials: (i) a 1D hardwall potential, (ii) a 1Dg@aolic confinement potential which
both characterize quast1D system, and (iii) a circular confining potential, whiclodels a fi-
nite size system. In order to study the diffusive properntiethe system, we have calculated
the mean square displacement (MSD) numerically througteautér dynamics (MD) simula-
tions. For the case where particles diffuse in a straigbtilira Q1D channel, different diffusion
regimes were found for different values of the parametete@tonfining potentialy or Ry).

We have found that the normal diffusion is suppressed if thenoel widthR,, is be-
tween 020 and 050 (or by 20 < x < 3.5, for the case of parabolic 1D confinement), leading
the system to a SFD regime for intermediate time scales. &aes ofkR,, > 0.56, particles will
be able to cross each other and the SFD regime will be no Iqgrgsent. The case of a circu-
lar channel corresponds te,g, the set-up used in experiments with sub-millimetric migtal
massive balls diffusing in a ring with a parabolic potenpiadfile created by an external electric
field. The strength of the potential (which determines tlieative “width” of the channel) can
be tuned by the field strength.

Contrary to the case of hard-wall confinement, where thesitian (regarding the cal-
culation of the scaling exponentr] of the MSD (Ax?(t)) O t) is sharp, a smooth crossover
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between the 1D single-file and the 2D diffusive regimes wasepked. This behavior is ex-
plained by different profiles for the distribution of the pele density for the hard-wall and

parabolic confinement profiles. In the former case, the gartensity reaches its maximum
near the boundaries of the channel resulting in a massiaktdosvn of the SF condition and

thus in a sharp transition between the different diffusiegimes. In the latter case, on the
contrary, the density distribution function has a maximuwamthe center which broadens with
decreasing strength of the confinement. This results in ao8m@ossover between the two
diffusion regimesi.e., SFD and 2D regime.

The analysis of the crossing everits,, the rate of the crossing evertg as a function
of the confinement parametgror Ry, supports these results: the functi@g(x /Ry) displays
a clear signature of either “smooth” or “abrupt” behavioe ¥so addressed the case of a finite
discrete chain of diffusing particles. It was shown thathis tase the breakdown of the single-
file condition (when the probabilitl? of particles bypassing each other is non-zero) leads to an
abrupt transition from a sub-diffusive regime to the noraifilision regime.

Related publications

e D. Lucena, D. Tkachenko, K. Nelissen, V. R. Misko, W. P. Ferreira, G Farias, and F. M.
Peeters,Transition from single-file to two-dimensional diffusiohilteracting particles in a
quasi-one-dimensional channéhys. Rev. B5, 031147 (2012).



85

4 Tunable diffusion of magnetic particles

The diffusion of a system of ferromagnetic dipoles confimeglquastone-dimensional parabolic
trap is studied using Brownian dynamics simulations. Wenstat the dynamics of the system
is tunable by an in-plane external homogeneous magnetit fi&@r a strong applied magnetic
field, we find that the mobility of the system, the exponentifiidion and the crossover time

among different diffusion regimes can be tuned by the oaigonh of the magnetic field. For

weak magnetic fields, the exponent of diffusion in the sufusive regime is independent of

the orientation of the external field.

4.1 Introduction

The study of magnetic colloids is of great importance badimfia theoretical and an experimen-
tal point of view. Recently there has been an increaseddasten the study of the structural
and the dynamical properties of magnetic confined (in palegircon the meso- and nano-scale)
systems due to the possibility of biomedich2(Q, 121, 122) and engineering application$13).
Examples of these magnetic systems are ferrofluid nanofil@% 125 126) and magnetorhe-
ological (MR) fluids (27, 128). For instance, the translational dynamics of a mesos@ipic
system of permanent magnetic dipoles was studied in R29) (and it was found that the sys-
tem displays signatures of sub-diffusive motion due to theng suppression of orientational
fluctuations of the magnetic dipoles by the presence of arolgemous external magnetic field.
The formation of chains of magnetic dipoles [coagulatidieaf(130, 131, 132)] is also rele-
vant for the dynamical properties of these magnetic systerdsmay lead to different regimes
of diffusion. Magnetic clusters of dipolar particles weeeently investigated experimentally
(133 134, 135 and they may serves.g, as drug delivery mechanisms in biological applica-
tions. The structural properties of magnetic colloids weseently analyzed experimentally
(136) and by means of molecular dynamics simulatiat37, where novel field-induced struc-
tural transitions were observed in confined ferrofluid ndmsfi

In comparison with infinite 3D or 2D systems, confined systextsbit a particular
behavior due to the competition between the confining ptkard the inter-particle interaction
potential. For instance, for a 2D system of repulsive pkasiconfined in a circular parabolic
potential, previous studies clearly identified the effecth@ boundaries on the structural and
dynamical properties of the system, as well as on the me{iig§ 139 140, 141, 142 143.
Another interesting possibility of confined systems isiszal when the 2D system is subjected
to an external confining potentiad.Q. parabolic) in one direction. The system is caltpeast
one-dimensional (q1D). Such a gq1D system of repulsiveaaterg particles self-organize in a
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chain-like structure that was recently studied experi@én{144, 145 146, 147), and through
analytical and numerical calculations4@ 149 150, 151, 152).

Diffusion is strongly modified in confined systems, and madl¢o single-file diffu-
sion (SFD) (53 154, 155 156, 157), which is directly related to the geometrical constrains
imposed by an external confining potential. Furthermord®) g§stems can be used as mod-
els for the study of collective phenomena in low dimensi@ystemsge.g, vortex matter in
type-Il superconductorslb8), colloidal particles 159 and dusty plasmas. In addition, the
mechanisms of ion transport in narrow chann&BJ and DNA manipulation using magnetic
particles (61, 162 can be studied by modelling g1D systems.

In this chapter we investigate numerically the propertiea system of ferromagnetic
dipolar particles confined in a one-dimensional paraboéip {which models a q1D channel)
coupled to a thermal bath. The orientation and strength ai-mane external magnetic fiell
are now control parameters that are able to influence thenaigsaof the particles. For diluted
systems, particles are arranged in a single chain struictdine center of the parabolic channel.
WhenB is perpendicular to the channel, the magnetic particlesact through a pure repulsive
potential. For any other orientation &, an extra attractive term is present in the particle-
particle interaction potential. The latter can be domityeattractive or repulsive, depending on
the orientation of the external magnetic field. In our nuceranalysis, we perform extensive
Brownian dynamics (BD) simulations and calculate the megiae displacement (MSDY(t)
of the particles for different parameters which charazésithe system. For the case of normal
diffusion regime (Einstein or Fickian diffusion), one ha&t) = Dot?, whereDy is the “free
particle” diffusion coefficienta is the so-called exponent of diffusion (in this cage= 1.0)
andt is time. For values ofr # 1.0, diffusion is said to be anomalous. For instance, in the cas
of SFD,W(t) = 2Ft? (with a = 0.5) whereF is the single-file diffusion mobility factor. We
show that the application of an in-plane homogeneous eatteragnetic field leads to different
regimes of diffusion depending on the orientation and gfitenf the field.

We emphasize here that our analysis of the exponent of difig) is restricted to the
intermediate regime (ITR), which is found before the ondathe true “long-time” limit (.e.
t — o) (46). See also discussion in Rell57) and references therein. Note that in the limit
t — oo, the MSDW(t) 0 t%° for any pairwise interaction potential if the system fusfithe SF
(single-file) conditioni.e., no particle crossings are allowed. The reason is that tistaring of
particles, observed in our work due to the attractive irtgoa, can be considered as a system
of bigger particles with lower effective particle densitydasmaller diffusion constant. These
clusters should have the MSB(t) 0t%5 but now at a much larger time scale, which we do not
consider in this work.
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4.2 Model and Numerical Methods

4.2.1 Model System

Our system consists & interacting dipolar ferromagnetic particles confined iquastone-
dimensional (g1D) channel and which is in contact with artrerbath at absolute temperature
T. The pair interaction potentidha(r) is given by the sum of the dipole-dipole teigp(r)
and the short-range repulsidi(r), such as

. o . 12
Hi-H; 3(H; I’”)(IJJ I’”)+4 ( 0) , (4.1)

Voarlfi) =Tl Irij [° rij]
whererjj is the inter-particle separation vector between a pair dfiggasi and j, y; is the
permanent magnetic moment of particler is the diameter of each particle aads an energy
parameter which characterizes the short-range repulgitveen the particles and prevent them
from coalescing in a single poinl§3). We assume identical particlese., [p;| = [4j| =
The q1D channel is modeled by a parabolic confinement palatgfined a¥qons = mwzyiz/z,
wherem, w andy; are the mass of each patrticle, the confinement strengthu@rexy) and the
y coordinate of theth particle, respectively. We also apply an in-plane homogs external
magnetic fieldB, which forms an angle with respect to the-axis. The interaction torque
between particles is given bty = p; X 3 ;- B}?t (cf. A.1). The coupling between the magnetic
moment of each particle and the external field is givertBy= y; x B. In Fig. 23, we show a
schematic representation of the system under study tageitiethe relevant parameters.

B

Figure 23 — Schematic representation of the system. Thilearhave diametes and dipole
momenty;, which forms an anglé with respect to the-axis. Anin-plane external
magnetic fieldB is applied with magnitudB and ¢ is the angle betwee® and the
X-axis.

We assume that the motion of the particles is over-dampedhaitypical for colloids
moving in a liquid. The equations of motion for tite magnetic dipolar particle are

i = — z Vd|p+Vss]—DVconf+f (), (4.2)

j>i

{0%62 = T+T1P+0&(1)2 (4.3)
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wherer; = XX+ V;V is the position vector of particieand6; is the angle between the vecyay
and thex-axis. Furthermore{ is the viscosity of the medium anf}(t) is a stochastic white-
noise with the properties: ({§;(t)) = 0 and (ii) (&im(t)&jn(t’)) = 2{kaT & dmnd (t —t’), where
m, n corresponds to the componelxsy, 0), kg is the Boltzmann constant afidis the absolute
temperature of the system.

Note that the first and the second term on the r.h.s. of£8) &re related to the potential
energy of a dipole due to the magnetic field generated by albther dipoles

Uint = ;- Z BErj]t, (4_4)

>

and the potential energy of a dipole in the presence of thereak magnetic field
UEXt:—”i-B, (45)

respectively. Therefore, for the case of a strong magnedid {in the following we consider
B =100 as an example), the effect of the interaction tormuan be neglected since the dipoles
will tend to align completely to the external fielde., UM + Ut~ U (see main panel of
Fig. 24). On the other hand, if the external magnetic field is weak éf@ample B = 2.0), the
interaction torqud; can not be neglected since, for this case, we hH¥ex~ U (see inset of
Fig. 24). Nevertheless, in all our simulations we keep both teiras,r; and riB.

Finally, our model system does not take into account hydnadyic interaction (HI) ef-
fects (particle-fluid and particle-wall interactions), st usually have only a small effect on
the qualitative behavior of the diffusion properties, aserdgly demonstrated by Euan-Diaz
et al. (164). A similar approach was adopted for a dilute dipolar calédisuspension in
Refs. (L65 166), where, similar to our work, the interaction potentialveegn particles had
both a repulsive and an attractive term. The HI effects cameggected in our case because we
are in the dilute regima,e., the low density case. Note that the particles are almosptatsly
uniformly distributed along th&-direction,i.e., the system forms a single-chain configuration.
Furthermore, HI effects should play an important role ifiudifon (and in general, in dynamical
properties) for the case of highly concentrated colloidal®nsionsg0), a situation that is not
considered in our work.

4.2.2 Numerical Methods

Before we integrate numerically Eq#t.9) and @.3), we introduce the unit of time ag =
{a?/e, wheree = kgT is the unit of energy Ty is the unit of temperature) andl is the unit
of length. MoreoverBy = +/€/03 is the unit of magnetic field ando = V€03 is the unit of
magnetic momentey = (to) ! and the dimensionless parametet = m(wo)?/2¢ controls
the strength of the parabolic confinement potential inyttgrection. These scaling turn all
guantities into dimensionless (asterisk) form.
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Figure 24 — Potential energy, as defined by E4){(4.5), per particle as a function of tinte
for B=100,u = 2.0. In the inset we show the same, but B 2. In both cases,
the number of particles in the computational unit cell Was 300 and all the other
parameters are given in Sec2.2

Integrating the dimensionless over-damped equations ¢bmowe obtain the follow-
ing Ermak-type algorithm84) for updating the positiorr{) and angle §") of particlei during
the simulation time stefit™

rF(AY) = r7(0) +AUF; + At (w")%g + V2T A&,

6 (At*) = 65(0)+ AT + A TB + V2T A, (4.6)

whereff; = — 5 07 [V, +Ved, of = —O7[(v)), 7 = M} x 3 Bj™| (cf. A1) and7® =
|Ki x B*|. Furthermorey, andVgsare given by

M KT S(HE ) (B T)

i3 i > ’

Vs*s = 4/|ri*j|12~ (4.8)

4.7)

*
Vdp =

From this point onward we will abandon the asterisk notagiod all physical quantities
are dimensionless, unless stated otherwise. In our siron$atve use the following parameters:
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At =1.0x10° w=100, u =20 andT = 1.0. Note thatB andT can be related by the
dimensionless parameter= |U®"| /kgT, which is defined as the ratio between the coupling
energy of a dipole particle with the effective magnetic figd§™ = U'" + U ) and the thermal
energy ksT). We also use a simulation box of length (in theirection)Ly = 3750, and linear
densityp = N/Lx = 0.8. We choose this value af in order to cutoff the interaction potential
for distances larger than=r. = Lx/2 ~ 187.0, at which the interaction energy between a
pair of particles is approximateMyip(r)|r, ~ 1.0 x 1078, In thex direction, we apply periodic
boundary conditions and in the transverse direction, tetegyis confined by the parabolic trap,
which is controlled by the parametear. Note that in this work we set a value af which is
large enough to prevent particles from bypassing each,dleve demonstrated in a previous
study (L57). This forces the system into a strict 1D chain of particleshiex direction. The
initial configuration of the particles is chosen randomlyl dine system is equilibrated during
(1.0—5.0) x 10° simulation time steps. Other parameters which charaetéhie system are
the magnitude of the external magnetic fieR) @nd the anglep betweenB and thex-axis.
Furthermore, the stochastic white no&ét) is simulated using the Box-Muller transformation
technigue 83) and in all the results presented in this work, the error batise plots are smaller
than the symbol size.

4.3 Interaction potential between two dipoles

Before we study the complete system (the model describeddmS), let us first analyze the
behavior of the dipole-dipole interaction potenWah(r) between two particles as a function of
o (cf. Fig. 23), assuming that both dipoles are perfectly oriented in trecton of the external
field. In this case, the interaction potential may be writien

2
Vaip(Ir|) = % [1-3cod(p—6)] +4|r| 72, (4.9)

where@; (cf. Fig. 23) is the angle formed between the veat@and thex-axis. We assume the
simplest case, whei® = 0°, which means that particles are forming a perfect one-daioeal
chain along thex direction. The dependence &, [Eq. (4.9)] on the distance between two
particles is presented in Fi@5 for different values ofp. We found that forg 2 54°, the
interaction potential is dominantly repulsive. On the othand, forg < 54°, the interaction
potential has a Lennard-Jones foreng, ¢ = 0° in Fig. 25). For small values of, the repulsive
term 4r|~1? is dominant. For intermediate values 0{1.0 < r < 1.5), the particle can be
trapped in the potential well due to the presence of thedittspart in the interaction potential.
For larger distances (— ), the interaction vanishes.
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Figure 25 — Dipole-dipole interaction potentifiy(r) [Eq. (4.9)] as a function of the distance
r between two dipoles and for different valuesyof

4.4 Influence of a strong external magnetic field on diffusion

The influence of a strong homogeneous external magneticdielthe diffusive properties of
the model system described in Sdc2.1will now be investigated. The external fieRlwith
magnitudeB = 100 [which is a typical strong field value used in experimesee (67)] forms
an anglep with respect to the-axis (cf. Fig.23). Note that since we s@t= 1.0, the parameter
c~ 200> 1, which means thermal fluctuations are weak. We now invatgtigow diffusion
depends omp.

We will study the diffusive properties of the system througa analysis of the mean
square displacemew(t) along thex direction, defined as

W(t) = <% i[xi(m&) —xi(r)]2> , (4.10)

1=
whereN is the number of particles (we use a typical valueNsf300—900 particles)r is an
arbitrary time origin {04), &t is the time interval between measurements @hdis an average
over different time origins during the simulatiobg8).
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4.4.1 Region (1):58< @ <9°

First, we consider the external magnetic field perpendidoléhe parabolic confinement chan-
nel,i.e. =9C. In this case, the interaction is purely repulsivg(r) 0 (1/r)%] and the mean
square displacemeMi(t) [Fig. 26(a)] of the system exhibits a sub-diffusive regime [sinfifle-
diffusion (SFD)], withw (t) = 2F,t®° for time scales larger than the short-time normal diffusion
regime (STND), which is characterized y(t) = Dot (169. The crossover tim& between
these two distinct regimes of diffusion can be estimai€{ as the time where the curvest

and F,t%° intersect
0
The mean square displacementfoe 90° andg = 70° are presented in Fig&6(a)-(b),
respectively. We found that for 855 ¢ < 9C°, i.e., when the dipole-dipole interaction is purely

repulsive (cf. Fig25), W(t) has the following behavior

Dot fort <t
wity=4 % . <le (4.12)
2F;t fort > t,

where a straightforward calculation using E4.1(1) givest. ~ 7.58 x 103 (Fy ~ 4.79x 10°°
andDg ~ 0.110x 10~°). In this region (1), the crossover tintgand the SFD mobility, are
independent of the value ¢f

4.4.2 Region (I1): 0 < @ < 55°

For the case of 0< ¢ < 55°, the attractive term present in the dipole-dipole intécagpotential
becomes more relevant with decreasimgAs a consequence, we expect that the diffusion of
the dipoles to be affected by the orientatiorBofWe found that for this region (ll), the system
exhibits the STND followed by a sub-diffusive regime, With(t) = 2F,(@)t%®, where nowt.
andF, depends on the angteand

| Dot fort <tc(o)
o= { 2@ fort > te(@). #2)

with te(@) ~ (2R,(¢)/Do)>°. The mean square displacement §pe= 50° and @ = Q° is pre-
sented in Figs26(c)-(d), respectively.

In Figs.27(a)-(b) we show the mobilitf, (@) in region (II) and the crossover tintgas
a function ofgp, respectively. Note that bot, andt. decreases with decreasiggn region (I1).
On the other hand, as stated above, the crossovetdimeonstant in region (1).

The decrease df andF,, in region (Il), with decreasing can be explained by the
decrease of the minimum inter-particle distance betweeghber particles [cf. Fig28(a)].
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Figure 26 — Log-log plot of the mean square displacemenid($thck curves)V(t) as a func-
tion of the timet for B = 100 and (a)p = 90°, (b) ¢ = 7C°, (c) @ = 50° and (d)
@ = 0°. The dashed orange lines are a guide to the eye and the ceosisoet. for
each case is indicated by the vertical arrow.

When the interaction potential is dominated by the repalgart of the potential [region (I)],
the particles are distributed homogeneously along thenfired direction [Fig29a)], i.e., the
minimum inter-particle distance between neighbors is @gprately constant. In region (ll),
the attractive term in the interaction potential becomesemelevant, and the system starts to
form clusters of chains. Therefore, the particles are ngéoimomogenously distributed along
the channel. The minimum inter-particle distance decreas decreasing and the crossover
time t; is smaller than in region (I) because particles “feel” thieiaction with neighboring
particles much faster. Also, since the particles can be#dpnside the clusters of chains, the
mobility (R,) is reduced with decreasirg

4.5 Exponent of diffusiond) in the intermediate (ITR) sub-diffusive
regime

In the previous section we showed that the MSI)({)] exhibits two different regimes of sub-
diffusion depending on the region [(1) or (I1)]: the expomehdiffusion (a) in the sub-diffusive
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Figure 27 — (a) MobilityF, in region (Il) as a function ofp and (b) crossover timg between
the STND regime and the sub-diffusive regime as a functiog.ofhe solid lines
are a guide to the eye. The dashed vertical line in (b) dividgens with (Il) and
without (1) an attractive part in the inter-particle intetian potential.

regime changes frora = 0.5 to a = 0.6 as the angl® is decreased fronp = 90° to ¢ = Q°.
The exponentr is calculated by fitting the MSD of our simulation data in tlegion of interest
(for instance, the ITR regime) according to the relatié(t) 0t%. The increase in the diffusion
mechanism can be seen in FRB(b), wherea is presented as a function of the orientation
@. Note thata increases with decreasing which can be understood in terms of the dipole-
dipole interaction dependence gn For ¢ > 55°, the interaction potential is mainly repulsive
and therefore it leads the system into a sub-diffusive hehawherea = 0.5. The scaling
W(t) Ot%° has been observed experimentally in repulsive interagiargcles ¢1), and was
also found from simulationslQ4, 105 154) and through analyticab@g, 45) calculations. In
this case, the minimum inter-particle distance is appraxaly equal tad ~ (p) "t~ 1.2. On
the other hand, fop < 55°, the interaction potential exhibits a competition betwaeapulsive
and an attractive term (cf. Fi@5). The attractive part of the potential forces the formation
of clusters of chains [Fig29(b)], resulting in empty spaces along the unconfined divecti
This is illustrated in Fig28(a), where the minimum distance between partides shown as

a function of¢. Note thatd decreases with decreasipg Since the system has a fixed density
p, the empty spaces between the clusters of chains resultsimceease of diffusion, which
subsequently gives an exponent of diffusmmhat is slightly larger than.6.

In order to better understand the increase of the exponeiliffoion a, we calculate the
mean square displacement of egttparticle W;(t)] using an expression similar to Ect.(0

W (t) = (%) (T + 8t) —Xj(T)])x, (4.14)

wherej = 1,...,N represents each individual particle apg is an average over different time
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Figure 28 — (a) Minimum inter-particle distandebetween neighboring particles f&= 100
andT = 1.0 as a function of the orientatigmof the external field. (b) Exponent of
diffusion (a) as a function of the orientatiop of the external magnetic field. Note
thatd decreases with decreasiggn the region 8 < ¢ < 55°, which is the same
region where we found the increase of the diffusion mecmafc$. panel (b)]. The
solid lines are a guide to the eye.

origins during the simulation. In Fig80(a)-(b) we showN/(t) (open black circles) and(t)
(gray triangles) forp = 90° and ¢ = 0°. Note that for the cas@ = 90°, Wj(t) deviates very
little from the mean square displacement of the systéf). In this case the particles in the
system are distributed homogenously along the unconfimedtdin. Therefore, the diffusion
of a tagged particle should be the same as the diffusion ovtih@e system. On the other
hand, for the case @ = 0°, Wj(t) deviates [much more] froW/(t) [than in the case = 90°].
This is caused by the asymmetry along the unconfined directin this case, it is possible
that a tagged particle can diffuse differently than the wlgylstem because of the formation of
clusters of chains [cf. Fi®29(b)]. For instance, particles which are located at the bsrdéthe
cluster of chains diffuse faster than particles which asedi@ the cluster. This is the reason for
an exponentr that is slightly larger than.8 in the case where the interaction potential has both
repulsive and attractive terms [Region (I1), see Seé.3.
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Figure 29 — Typical snapshots of the system aftérsifulation time steps for (a) = 90° and
(b) @ = 30C°. Other parameters aB= 100 andT = 1.0.

4.6 Weak magnetic fields

In the previous section, we showed that the diffusion meichawf the system is affected by
the orientation of the strong external magnetic field. Now,twrn to the question of how the
magnitude oB influences the diffusive properties of the system. To thds @re perform similar
simulations using the same parameters of the previouosebitiit with a weaker magnetic field
B = 0.1. Note that since we sét = 1.0, the parametet ~ 0.2 < 1, which means thermal
fluctuations are strong. The mean square displacementdtofpscale) as a function of the
time is presented in Fi@1 for different values ofp.

There are two important observations regarding the refrl®8 = 0.1: (i) note that the
ITR regime for this case is shifted to larger time intervadscampared to the previous case
(see Fig.26), which is a consequence of the weaker coupling of the dgoai¢h the external
magnetic field, leading the system to larger relaxationggower) times. Here, the ITR regime
can be identified in the time interval 18 t < 10?; (ii) since the external magnetic field is small
(compared to the case of the previous sect®r; 100), the coupling between the magnetic
dipoles and the external field is weaker which results in gm@pmatelyg-independent regime
of diffusion [cf. Fig.31]. This means that the exponent of diffusianin the ITR regime is a
constant ¢ = 0.35) which is independent of the orientation of the externaginetic field. We
will further discuss this particular value of in the following section. Note that, as opposed to
the case of strong magnetic field, the clustering of pagioiea chain-like configuration along
the unconfined direction is less pronounced, as illustratédg. 32. Note that the orientation
of the dipoles of the ferromagnetic particles is almost cand
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Figure 30 — Mean-square displacement of the system [operk liacles, W(t)] and mean
square displacement of individual particles [gray tri@sgWV;(t)] as a function
of the timet for two different values ofp = (a) 9¢° and (b) @. The dashed orange
lines are a guide to the eye. Other parameter8as€l00 andT = 1.0.

4.7 Influence of the strength of the magnetic field

In this section, we further investigate how the strerigjtti the external magnetic field influences
the diffusion of the system. We analyze the caseger 90°, where the SFD is found in the
ITR regime forB = 100 [see Fig. 28(b)]. From the calculations of the MSD using E4.10

for different values oB, we found that folB = 10, the SFD regime is always present in the
ITR regime,i.e, W(t) 0t%5. Therefore, we only investigate the regiod & B < 10.0, and the

results are plotted in Fig83(a)-(d). ForB = 10 [Fig. 33(a)], as stated above, the SFD regime
is present in the ITR regime, which meams= 0.5.
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Figure 31 — Log-log plot of the mean square displacemenid{&thck curves)NV(t) as a func-
tion of the timet for B= 0.1 and (a)p = 90°, (b) @ = 70°, (c) @ = 50° and (d)
@ = 0°. The dashed orange lines are a guide to the eye and the ceosisost. for
each case is indicated by the vertical arrow.
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Figure 32 — Typical snapshots of the system aftérsifulation time steps for (a) = 90° and
(b) @ = 30C°. Other parameters aB= 0.1 andT = 1.0.

We found that by decreasing the valueR)fthe exponent of diffusiona)) decreases
from a = 0.5 to a = 0.35, as shown in Fig34. The reason for this behavior is explained by
the following: as the magnetic field is decreased, its cogplvith the dipoles also decreases,
leading to an increase in the rotational movement of theldgoTherefore, the energy of a
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dipole is more evenly distributed between translational arational motion. Recall that for
large values oB (= 100), the dipoles were almost completely aligned with thi fieThe
increase in the rotation of the dipoles thus leads to a slp@awn of the translational diffusion,
i.e., a decreases with decreasiBg
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Figure 33 — Log-log plot of the mean square displacemenid{&thck curves)V(t) as a func-
tion of the timet for ¢ = 90° and (a)B = 10, (b)B=2, (c)B=1 and (d)B=0.1.
The dashed orange lines are a guide to the eye.

0.5

° 0.4 — —

o3l L 1 v [ 4\ |

Figure 34 — Exponent of diffusioa (in the ITR regime) as a function of the strendgtof the
external magnetic field fop = 90°. The solid line is a guide to the eye.

In order to strengthen this conclusion, we calculate themsemare angular displace-
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ment (MSAD)W(t), which is defined similary to Eq4(10

N

Whe(t) = <%-Zf9'(” at) - e.<r>]2> , (4.15)

1= T

whereg is the angular coordinate of thh particle (cf. Fig23). The results of calculations of
the MSAD are shown in Fig35 for different values oB. Note that for all values dB, Woi(t)
saturates after the initial motion. Furthermore, the MSADRves increases with decreasiBg
which indicates that the rotational motion of the dipoles@ases with decreasing strength of
the external magnetic field.

4.8 Concluding remarks

We studied a system of interacting ferromagnetic dipolesfined in a q1D channel, that are
subjected to a homogeneous external magnetic field. Thgsasalf the mean square displace-
mentW(t) indicates that the diffusive properties of the system ddp@m the orientation and
on the strength of the external field. For the case of strongnetic fields (we considered
B = 100 as an example), we found that the exponent of diffusioncreases with decreasing
orientationg [cf. Fig. 28(b)] of the external fieldi.e., directing the magnetic field towards the
direction parallel to the channel. This increase of ditffuswas explained by the dependence
of the dipole-dipole interaction potential @n For ¢ = 55°, the interaction is dominantly re-
pulsive, leading the system into sub-diffusive motion ie tiiR regime. On the other hand,
for @ < 55°, the interaction potential has a Lennard-Jones form, whielates a competition
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between the repulsive and the attractive term of the didglete potential. The attractive part
of the potential leads the system into clusters of chaing. fF(b)]. The empty spaces in the
system allow for an increase in diffusion.

For small values of the magnetic fielel§. B= 0.1), the coupling between the magnetic
dipoles andB is weak and the dynamic behavior of the system becomes aintegiendent of
the orientation oB. This results in an exponeat in the sub-diffusive regime, that is a constant
(a = 0.35) for all values of the orientation of the external magnéld. The fact that for weak
magnetic fields the exponent of diffusion is smaller tham(€he slowing down of translational
diffusion) was explained by the weak coupling of the dipaléth the external field, leading to
an increase in the rotational motion of the dipoles. Not¢ tifavalue ofa = 0.35 only holds
for the ITR regime, as discussed in the Introduction. In bratbes (strong and weak external
magnetic fields), the system is still in the single-file, thldiregime.

Our results show that the diffusion mechanism in this systambe controlled by tun-
ing the orientation and the strength of the external magfietd. This will allow one to control
the dynamics of magnetic particles in narrow channels bybituning the parameters which
regulate the external magnetic field.

Related publications
e D. Lucena, F. F. Munarin, W. P. Ferreira, G. A. Farias, and F. M. Peefrsable diffusion
of magnetic particles in a quasi-one-dimensional chapRbls. Rev. B7, 012307 (2013).
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5 Single-file and normal diffusion of mag-
netic colloids

Diffusive properties of interacting magnetic dipoles coafl in a parabolic narrow channel and
in the presence of a periodic modulated (corrugated) palesdbng the unconfined direction
are studied using Brownian dynamics simulations. We compar simulation results with the
analytical result for the effective diffusion coefficiertaosingle-particle by Festa and d’Agliano
(170 and show the importance of inter-particle interactiontmndiffusion process. We present
results for the diffusion of magnetic dipoles as a functidrimear density, strength of the
periodic modulation and commensurability factor.

5.1 Introduction

Manipulation and control of magnetic colloidal particlemvik greatly increased over the last
years. Recent advances include fabrication of anisotnmgignetic particlesl(71) which can
have a wide range of applications, from drug deliver medrari (21, 172 to fabrication
of tunable self-assembly colloidal devicek/B8 174). Further examples of applications of
anisotropic particles are the so-called colloidal molesul 75 176), the patchy colloids(77,
178 179 and the magnetic Janus colloids80). The use of magnetic dipoles is particularly
interesting due to the fact that the inter-particle intéoacpotential introduces a natural source
of anisotropy. This is achieved by the application of a tueaxternal static homogeneous
(131, 181) or oscillating (82 183 magnetic field B). Diffusion and transport of colloidal
particles in periodic modulated (corrugated) chann&B4Y represent important phenomena
which allows the understanding of several mechanisms incemidensed mattee,g, molecu-
lar and cell crowding in biological system&35 186), pinning-depinning transition of vortices
in type-Il superconductorsl87, 188 189), and elastic stringsl@0, 191). Theoretical models
which describe the trapping dynamics of modulated systewisde, for instance, continuous
time random walk (CTRW)X92 and random walk with barrierd 3. Experimentally, cor-
rugated periodicX2) or random {0) landscapes can be realisedy, by light fields allowing
the control of the colloidal particles. Furthermore, dsilon in modulated landscapes is often
anomalousi.e., the mean square displacem#vift) (MSD) follows a power-law\V(t) [ t9]
with an exponent & o < 1 (194).

Diffusion in very narrow channels is governed by single-diiéusion (SFD) (L95). An
interesting quantity in this case is the single-file mowpifdactor, F. This factor has been pre-
viously analysed by Herrera-Velarde and Castafieda-P(ie8@) for the case of a system of
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repulsive interacting superparamagnetic colloids. Inaasge, however, the attractive part of
the inter-particle interaction potential [Edp.12)] introduces an anisotropy in the system. This
means that the external magnetic field, regulated by the imagnofB and its directionp, now
plays an important role in tuning the diffusive propertiédhe system. The effects of these
two parameters in a system without external modulation kas becently investigated by us in
Ref. (196). Here we extend these results to the case where the nareomehis periodically
modulated along the unconfined direction. We find that thernensurability between the inter-
particle distance and the period of the modulation is anrgsddactor that strongly influences
the diffusion.

5.2 Single-particle in an external periodic potential

First, we consider the simplest case of a single-parti¢faging in one dimension and subjected
both to Brownian motion and to an external periodic poténéiadscape. The equation of
motion for the particle is given by the over-damped Langegoation {97)

% = _a\gix) +E(1), (5.1)
where( is the viscosity of the mediunx is the position of the particld, is time,V(x) is the
external one-dimensional periodic potential of the fariix) = Vpcog2mnx/L), whereVy and

L are the magnitude and periodicity of the external potentegpectively. Essential here is
thatV (x) is periodic but it does not necessarily need to be of cosima.f@he only condition
is that the external potential obeys the periodicity relatV (x) =V (x+L). Furthermore,
(1) is a delta correlated noise which follows the well-knowngauies (i)(£ (t)) = 0 and (ii)
(E(1)E(t)) = 2¢kgTA(t —t'). kg is the Boltzmann constant afidis the absolute temperature

of the heat bath.

¢

In the case where the particle is frees., Vo = 0, it is straightforward to show1Q7)
that the self-diffusion coefficient of the particle is givey the Einstein relatiog = kgT /.
In the presence of a periodic potenti&(x), previous studiesl(r0, 198 199 showed that the
self-diffusion coefficient of the particle is modified into

Det L2

Do [5dxexp{V(X)/keT} & dzexp{—V (2)/keT}
It is easy to see that when(x) = 0, Eq. 6.2) reduces tdg as it should be. If we consider
the case ot = 2o andx — X 0 [V (X)) = VpcogX)], the solutions of the integrals iB () are

(5.2)

known 00) and given by
2
o /0 "X expV(X) /keT} = 270lo(Vo/kaT), (5.3)

o /0 T aX exp( -V (X) /keT) = 2molo(—Vo/keT). (5.4)
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wherelp(y) are the modified Bessel functions of the first kind @nig a unit of distance. There-
fore, the self-diffusion coefficiee depends only on the ratify/kgT. A series representation
of Ip(y) can be written as201)

2)2 2)4
({1/!))2 +(2’2/!))2 ... (5.5)

Taking the first order approximation in Ed.5), we have thaDes/Dy is given by

lo(y) =1+

Deff -~ 1
Do~ [1+(y/2)3*
Note that fory =Vp/ksT < 1, Desi/Do — 1, as expected. On the other hand et Vo /kgT >

1, the modified Bessel functioly(y) can be written to a first order approximation 202)
lo(y) ~ &//2my. Therefore et /Do has the form

(5.6)

— (2ny)e*2y. (5.7)

0.0 1.0 2.0 3.0 4.0 5.0
VolkgT

Figure 36 — Effective self-diffusion coefficieBlsr/Dg of a single-particle in one dimension in
the presence of a thermal bath and a periodic potevifid) = VpcogX').

5.3 Interacting magnetic dipoles

We now turn to the problem where instead of a single-pari@énaveN interacting magnetic
dipoles of diameter and magnetic momert diffusing in the plangx,y). The geometry
of the plane is then modulated by two external potentialseiq (i) a parabolic transversal
confinement potential in thedirection and (ii) a periodic potential in thedirection. We also
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apply an external homogeneous magnetic fRMhich can form an angle®0< ¢ < 90° with
thex axis. In this more complex situation, the equations of motihich describe the dynamics
of particlei are given byN over-damped coupled Langevin equations

{ri = — Z DVm O[Vmod(Xi) + Veont(¥i)] + &;(t), (5.8)

I>1
{0°62 = Ti+TP+0&()2 (5.9)

wherer; = xX + VY,V is the position vector of particleand 6; is the angle between the vector
U; and thex axis. T; and TP are the torque due to the magnetic field created on paitinfeall
other particles and the torque created by the external niadretd B, respectively. A similar
set of equationsy(.8)-(5.9) was recently used in Refl96), and therefore we report only on the
results related to the presence of the modulation irxttheection 03 204)

271X
Viod(X) = Vo cos(T') . (5.10)
The parabolic transversal confinement is given by

1
Veoni(Yi) = émwz)’iz7 (5.11)

wherew is the strength of the confinement (frequency) anid the mass of the identical parti-
cles. Furthermore, the pair interaction poterM?F is given by

- M-y 3K rij) (M -Tif) o \*

yint _ Ho ] _ | +4g , 512
T an P ri° T (642

whereLp is the medium permeability;; is the inter-particle separation vector between a pair

of particlesi and j ande is an energy parameter in order to prevent particles fronesomng
into a single point.

Following previous worksX96, 203 204), we use an Ermak-type algorithi®4) to inte-
grate equation$(8)-(5.9). The simulations were performed with fixed parametAts= 1.0 x
1074({0?/ksT), 4 = 1.0,/41kgT 03/ o andB = 100\/ks T po/4m03. We choose = kT as
unit of energyo as unit of distance and time is measured in unitgef { g2/ksT. Finally, the
stochastic white noisé;(t) is simulated using the Box-Miiller transformation techrd83)
and in all the results presented in this work, the error bratee plots are smaller than the sym-
bol size. Similarly to our previous papet96), hydrodynamic interactions (HI) are not taken
into account. Such interactions may have an impact on tlesilih properties [and in general
on the dynamical properties, seeg. Ref. (205)] for the case of highly concentrated colloidal
suspensions, which are not considered in the present work.

In order to study diffusion we calculate the mean squarelaigpnent (MSDW(t),

defined as104)
N
= <N1_Zl|ri(t) —ri(O)\2>, (5.13)
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where we use a typical value dfF = 300— 900 particlest is the time and...) is an average
over different time origins during the simulatiobg8). This equation can be split in two terms,
namelyW (t) andW(t), where the first refers to the mean square displacement indinection
and the latter refers to the mean square displacement yndhection.

The system is tuned by three parameters, namely (i) therldezesity,0 = N/Lx where
Ly is the size of the computational unit cell in tiedirection andN is the total number of
particles, (ii) the angle of the external magnetic field, and (iii) the strengthof the external
modulation in thex direction. Note that since we are using periodic boundangdimns in the
x direction, we have to guarantee the continuity of the extlarrodulation at the borders of the
computational unit cell. This is achieved by introducing tklation

Ly =nL, (5.14)

wheren € Z* and it represents the number of minima (or maxima) of thereatenodulation
within the computational unit cell.

5.4 Normal and single-file diffusion for fixed linear density

5.4.1 Caseo=1.0,/2kgT/mo?

In this section, we set the transversal confinement parametel.0+/2kgT /ma2 andg = 90°.

A snapshot of the configuration of the system together wighabntour plot of the periodic
modulation and transversal confinement is shown indigThe mean square displacement in
thex directionW(t) [Eq. (5.13)] for different values olp/kgT is shown in Fig38. Note that
for all the values o¥y/kgT, except for 40 and 50, Wi (t) exhibits a linear dependence on time
t for large time scales

lim W (t) = 2Dt (5.15)

whereDs is the self-diffusion coefficient ani, (indicated by gray open diamonds) is the time
scale at which this normal diffusion regime is recoveredteNbat since the system is coupled
to a heat bathkgT), the normal diffusion regime should be recovered for arlyeraf the ratio
Vo/ksT, with the condition thaty — o for Vp/kgT — . In other words, this means that the
intermediate regime (whek&(t) exhibits a slower-than-linear dependence on time/¢r) =
const) extends over a larger time interval for larger vahfég /ksT. This intermediate regime
is generally associated with a “cage” effect, which in owsecs represented by the localization
of particles in the potential minima. A similar effect wasuf@ previously in simulations on
mono-disperse glassy systen20€) and Lennard-Jones binary mixtureX){). However, in
these works, the caging effect was not induced by an extemodulation but rather by many-
body effects related to the specificities of their system.
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Figure 37 — Snapshot of the configuration of the systemVigksT = 2.0. The particles are
represented by yellow circles where the black arrows irdi¢he direction of
the dipoles. The contour plot of the potentifhod(X) + Veoni(Y) is also shown.
The linear density iso = 0.50~! and the transversal confinement strength is

w = 1.0,/2kgT /ma?2.

From these results, we also note that, as expected fromopie\gection, the self-
diffusion coefficient depends on the ratig/ksT. This dependence is shown in FR, where
Ds decreases with increasiMy/ksT. Ds is obtained by fitting our data with Eg.(L5. Note
that even though the behaviour B as a function of the rativp/kgT is qualitatively similar
to Dest(Vo/ksT) for a single-particle, it is clear thdds < Degs. This difference betweebs
andDegss is due to correlations between the particles, which now lssufhe movement of the
dipoles through the interaction potential. We estimate thiference by calculating the ratio
R = Ds/Degt Which is shown in the inset of Fig9. Note thatR drops to zero a¥p/ksT in-
creases. This means that in both cases,for single-particle and for interacting particles, the
self-diffusion coefficient goes to a value very close to Jetd does not vanish completely, see
Sec. 11IB of Ref. 08)] asVp/kgT increases. Therefore, there is no diffusion until tempeeat
is sufficiently high to allow the escape of the particles fribve potential wellsZ09). The effect
of the linear density on the self-diffusion coefficienDs, will be discussed in Seé.5.

5.4.2 Casev=10.0,/2kgT/mg?

In the case where the transversal confinement potentiacreased, the fluctuations of the
particles in they direction becomes smaller. This effect of confinement lwrithg system into
the single-file (SF) regime, which means that particles oabgpass each othet%7). This
special geometric constraint leads to a phenomenon cafigtdile diffusion (SFD), in which
one of the most striking feature is that the long-time meamase| displacement(t) of a
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W, (t)/0?

Figure 38 — Log-log plot of the mean square displacementan thirectionW(t) as a function
of timet for different values of the ratiuy/kgT. The yellow dotted line is a guide
to the eye. The open diamonds indicate approximately the $icale ) where the
normal diffusive regimei.e. W(t) O't, is recovered. The transversal confinement
strength isw = 1.0,/2kgT /ma2 and the linear density is = 0.50 L.

tagged particle along the unconfined direction (in our c#sex direction) displays typical
sub-diffusive motion with

; _ 0.5
lim Wi (1) = F°%, (5.16)

whereF is the so-called single-file diffusion mobility arnglis a characteristic relaxation time
of the system. In particulaF, andt; depend on the specifics of the syst&h@. Weiet al. (41)
showed experimentally that for a repulsive inter-partinteraction potentiak; decreases with
increasing strength of the interaction potential. This barunderstood from the fact that an
increase in the interaction leads to an increase in thesawllirate between the particleslQ).
Nelissenet al. (100 recently showed that when the inter-particle interaci®eomparable
to the viscosity (damping), an intermediate “under” sinfjfle diffusion regime,i.e. W(t) O

t? (with a < 0.5), is also observed. Such a behaviour was also found in iexpets with
millimetre metallic balls {02) and in numerical simulationd.05 taking into account spatial
correlated noises.

In our specific case, the modulation in tkelirection adds an additional restriction to
the movement of the particles. The effecMgfkgT on the mean square displacem@f(t) is
shown in Fig.40(a). Two effects are noticed here: First, the relaxatioretigrincreases with
increasing rati&/p/ksg T, which means that for higher values of this ratio a longeetismneeded
for a particle to feel the presence of its neighboring pkasic Once this time scale is reached,
the sub-diffusive law [Eq.5.16)] is recovered due to the interaction with its neighborsdbel,
the mobility factorF decreases with increasivg/ksT [cf. inset of Fig.40(a)], which results
from the restriction of the motion in thedirection, as stated above. Note that\WerksT > 0.0,
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Figure 39 — Long-time self-diffusion coefficieDt/Dg as a function of the ratidy /ks T, for dif-
ferent linear densities. The effective self-diffusion coefficiemes /Do [EQ. (5.2)]
as a function olp/kgT for a single particle is also shown (solid red curve) for
comparison. The inset shows the rae- Ds/De as a function o¥y/ksT for the
casep = 0.50 1.

the system exhibits an intermediate regime whagé) [0t%, with a < 0.5 before it reaches
the SFD regime. This intermediate regime extends to laigerst scales as the rafi/kgT
increases.

5.5 Effect of linear density on diffusion

In order to investigate the effect of the linear dengitpn the diffusion, we introduce a com-
mensurability factop = N/n, whereN is the total number of particles in the computational
unit cell andn is the total number of minima (or maxima) of the external pei¢ modulation

along thex direction. Using Eq.%.14) and the definition for the linear density, we may write

the following condition

= % = pL. (5.17)

We start by considering the simplest cape= 1), i.e., where there is one particle per poten-
tial well. In this section we analyse the system for thredediint densities, namelgo =
0.25,0.50,0.75. Also, we fixw = 1.01/2kgT /ma2 and@ = 9C°. In Figs.41(a)-(b) we show
shapshots of the configuration of the systemdor 0.250 1 andp = 0.750 1, respectively.
The mean square displacem@¥(t) for different values op is shown in Figs42(a)-(b).

The main effect of different densities @y is shown in Fig.39. The solid curve is the
single-particle case discussed in S&@, which corresponds to the limiting case of very dilute
systemsj.e., very low densities. As the density increasps={ 0.250~* andp = 0.50 1),
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Figure 40 — (a) Log-log plot of the mean square displacemerié x direction,W(t), as a
function of timet for different values of the ratigy/ksT. The yellow dotted line is
a guide to the eye. The transversal confinement strengbh=is10.0,/2kgT /ma?2
and the linear density is = 0.50 1. Vertical black arrows indicate the relaxation
timetc. Inset: Single-file diffusion mobilityr, obtained from the relatiorb(16), as
a function oMy /kgT. (b) Snapshot of the configuration of particles (black dfuis)
Vo/ksT = 1.0. The modulatioVned(X) is plotted as the solid red curve.

the self-diffusion coefficienDs decreases. This effect is related to the coupling between th
particles due to the inter-particle interaction potentfadr the case of very high densities, the
interaction energy is stronger and diffusion should beialrtsuppressed,e., Ds ~ 0 for all
values ofVp/ksT. Note that since the system is coupled to a heat bath, thesaifi coefficient

is not exactlyzero but goes to a very small value.

5.6 Effect of commensurability factor

We further investigate the effect of the commensurabibigtér p on the self-diffusion coeffi-
cient. In this section, we fix the linear densitydge= 0.50 ! and varyp, where we choose two
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Figure 41 — The same as F&j7 but now forVp/ksT = 4.0. Linear density is (ap = 0.250 %,
and (b)p = 0.750 1. For both cases, the transversal confinement strengbh-is

1.0,/2kgT /mo? and the commensurability factor js= 1.

half-integer valuesg = 1/2 andp = 3/2) and compare these results with the case of previous
section p = 1). The effect ofp on the mean square displacem@gtt) is shown in Figs43(a)-

(c). Note that for all cases, the system exhibits an interatedegime of diffusion wher@j(t)
shows a slower-than-linear dependence on timé4gt) = const before the long-time normal
diffusion regime sets in [Eq5(15]. The saturation regime of the MSD in tixedirection {.e.

W (t) = const) is similar to the one discussed previously in Set.1

An interesting effect of the commensurability facfoon diffusion can be observed in
Fig. 43(d). ForVp/ksT = 0.0, the self-diffusion coefficienDs, is the same for all the cases
(p=1/2,1,3/2). This is due to the fact that in the absence of the extermalutation, the
system is regulated only by the linear density (in this gase0.501). Therefore, the average
distance between neighbour particles is the same. On teelwdind, for sufficiently large values
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Figure 42 — The same as FBB8but now for density (ap = 0.250 1, and (b)o =0.750 1. The
transversal confinement strengthiis= 1.0/2kg T /ma? and the commensurability
factorisp=1.

of Vo/ksT = 3.0, the trapping of particles in the wells suppresses thesldh, and again the
self-diffusion coefficienDs is of the same order (close to zero) for all the cases. Howdwer
effect of p on Ds is more pronounced for intermediate value¥gfkgT = 0.5—2.0. This effect
is explained as follows. First, note that= 1/2 andp = 1 have both very similar behaviouis.,
Dscurve as a function &fp /ksT. From the definition op, we have thatfop=1/2— L =1.00
andp=1—L=2.00. In practice, this means that the neighbour inter-partiglragadistance
is the same for both casdse., d ~ 2.00 [cf. Figs.44(a)-(b)]. Forp = 3/2 (which means 3
particles per 2 potential wells, on average), the distaet@den particles in neighbouring wells
is larger,d ~ 3.00, which results in a larger self-diffusion coefficient. Irgstingly, this case
can be thought as a binary system, where one of the wells resbayi’ particle formed by
two dipoles and the other well has only one particle. Notefibvaall casesPs decreases with
increasingvp/kgT, although forp = 3/2 this decrease is slower compared to the other cases
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Figure 43 — (a)-(c) Log-log plot of the mean square displaa@nn thex directionW(t), as a
function of timet for different values of the ratidp/kgT. The yellow dotted line
has a slope of 1 and is a guide to the eye. The transversal eordimt strength is
w=1.0,/2kgT /ma? and the linear density jg = 0.50 . Color code is the same
as in Fig.42. (d) Long-time self-diffusion coefficienDs, as a function o¥y/kgT
for different values of the commensurability factar

(p=1landp=1/2).

5.7 Anisotropic diffusion and transversal sub-diffusion

5.7.1 Two particles per potential well

The competition between the external potentials inklamdy directions {(.e. the modulation
[Eg. (6.10] and the parabolic potential [Eg5.(L])], respectively) leads to an anisotropic dif-
fusion processi,e., Wx(t) # W, (t)1. In this section we analyse the effect of the raligksT

on both the parallebqdirection) and transversay @irection) diffusion independently. For this
case, the simulation parameters a@re- 2, p = 1.00 ! and w = 1.0,/2kgT /ma?2, which al-

1 Note that the mean square displacement (MSD) irxtaady direction are calculated similarly to Ecp.13),

whereW (t) = (N~ 5N, [Ii(t) —1i(0)]2) andl; is thex or y coordinate of eactth particle.
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Figure 44 — Snapshot of the configuration of the system fdemtint values of the commensu-
rability factor p = (a) 1/2, (b) 1 and (c) 32. For all cases, the strenght of tke
direction modulation i8,/ksT = 2.0. Note that. changes according to the value
of p.

lows the accommodation of two particles per potential wellaerage[cf. Fig. 45(a)]. As

a representative example, we show in Fi¢f§(b)-(c) the MSD in the parallel and transversal
direction, respectively, for different values\df/kgT. Note that the diffusion in the parallel di-
rection is very different from the transversal directiomieh is a direct effect of the anisotropy
of spacej.e., the competition between periodic modulation in fdirection and the parabolic

confinement in the direction.

In the x direction (parallel diffusion), the MSD exhibits [cf. Fig5(b)] a short-time
normal diffusion behaviour fot < tg, which is followed by a saturation regime due to the
periodic modulation. Finally, fot > tg, the long-time normal diffusion regime is recovered,
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with

lim W (t) = Dt (5.18)

whereD | is the parallel self-diffusion coefficient. The dependeat®, onVp/kgT is shown
in Fig. 45(d), and as expected it decreases with increagifgsT .

On the other hand, in thg direction (transversal diffusion), the MSD exhibits [cf.
Fig. 45(c)] a very different behaviour. The initial short-time nwal diffusion is also present.
However, for intermediate time scalgs< t < tsgthe system exhibits a sub-diffusive regime
with a non-linear time-dependence of the form

\Ny(t) - KtranJa, (5-19)

whereKiransis the anomalous transversal diffusion coeffici@itl) andtsatis a saturation time
scale in which the diffusion is suppressed due to the confemérm they direction. Note
thata < 0.5 and thus a smaller power-law behaviour, as compared tarngeedile diffusion
(SFD) case, is observed. In Fig5(c) we show this intermediate regime and fiadwz 0.35.
Finally, bothKyans[cf. Fig. 45(e)] andtsa:depends on the periodic modulation strendgtfksT,
which is a measure of a type of “effective” confinement in xtdirection. This indicates that
the periodic modulation in the parallel direction affectsedtly the diffusion process in the
transversal direction. A transversal sub-diffusive béhawvwas recently found and analysed
by Delfauet al. (212 in a quastone-dimensional system of interacting particles in artiar
bath. Note that our discussion is only valid for iatermediate regimg@lTR) of sub-diffusion,
as discussed previously in Refd5{F, 196) and references therein. The sub-diffusive regime
in the transversal direction is a well-defined regime witheaponent of diffusioma ~ 0.35,
which extends to at least one order of magnitude in time. NaeforVp/ksT > 0.0, the time
scalety [cf. Fig. 45(b)] where the system reaches the normal diffusive regintlear direction,
i.e. W(t) Ot, is approximately the same as the time scale where the systrhes the sub-
diffusive regime in the transversal direction [cf. F#&p(c)]. For this time scaléy, a particle
crosses the potential barrier imposed by the external natidul and it reaches the neighbor
well. Once this time scale is reached, the correlations gnpamticles in different wells give
rise to the sub-diffusive regime in the transversal digegti.e., W, (t) 0935, before there is a
complete saturation regime due to the parabolic confinepmential.

5.7.2 Four particles per potential well

In this section we analyze the transversal diffusion meigmarior p = 4, which gives four
particles per potential well. As in the previous section,cateulate the transversal MSI(t)
as a function of the strength of the external periodic maituid/y/ksT, and the results are
shown in Fig 46.
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For the case of weak external modulatieng; \§/ksT = 0.5), the initial short-time
linear MSD W (t) L t] is followed by a saturation regime due to the finite size @ #lystem
in the transversal direction. With the increase of the extemodulation, an intermediate sub-
diffusive regime takes place before the onset of the satureggime [cf. Fig46, Vo/ksT = 4.0].
This is explained by the formation of a chain of particleswglthe transversal direction [cf. inset
of Fig. 46]. Note that, as opposed to the previous section, wigfe) [ t%35, in this case the
MSD presents a clear SFD scaling,, W, (t) 0 t%°.

These results indicate that even though the chain of pestid relatively small, the
correlations between particles is sufficiently stroB@3) to induce an intermediate single-file
diffusion regime.

5.8 Concluding remarks

We studied the diffusive properties of a system of interecthagnetic dipoles in the presence
of a modulated (corrugated) channel alongxtdérection and confined in thgdirection by a
parabolic confinement potential. In order to study the diffa of the system, we used Brow-
nian dynamics simulations. The analysis of the mean squaptademeniV(t) showed that
the system exhibits different regimes of diffusion depagdn the external parameter®(ex-
ternal modulation, magnetic field) that regulate the pkrdlynamics. In principle, this system
could be realised experimentally using optical tweezgrsttand our results could be verified
by, e.g, a microscopy imaging technique to track individual pdesttrajectories213).

We characterized the dynamics of the system for severahpeas, namely the linear
densityp, the commensurability factqr and the strength of the external periodic modulation
Vo/ksT. Our main results are summarized as follows: (i) the sdftigion coefficientDs is
modified by the inter-particle interaction potential as pamed to the case of a single-particle
diffusing in a periodic potential landscape. The differemicreases with the linear density of
particles; (ii) the effect of the commensurability factoon the self-diffusion coefficierDs is
pronounced for the case of a semi-integer commensurafaltpr (as an example we consid-
eredp = 3/2). The system turns into an effective “artificial” binaryssgm, with the presence
of a “big” particle formed by two dipoles in a potential welida single particle in a neighbour
potential well; (iii) the presence of the external moduataffects the diffusion of the magnetic
dipoles as compared to the case where there is no modulafioRdf. (L96)]; for instance, we
found that a transversal sub-diffusive regime, includifR@Scan be induced depending on the
value of the external modulatidfy/ksT and on the commensurability factpr

Related publications
e D. Lucena, J. E. Galvan-Moya, W. P. Ferreira, and F. M. Peet8iagle-file and normal
diffusion of magnetic dipoles in modulated channBlsys. Rev. B9, 032306 (2014).
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Figure 45 — (a) Snapshot of the configuration of particleadkldots) fony/kgT = 3.0. The
modulationVineg(X) is plotted as the solid red curve. (b), (c) Log-log plot of the
MSD as a function of time in the parallel and transversal direction, respectively,
for different values olp/ksT. The dotted yellow line has a slope of 1, the ma-
genta dotted-dashed line has a slope of 0.35 and both are guithe eye. The
open diamonds in (b) [(c)] indicate approximately the tinsals {y) where the
normal diffusive regime [sub-diffusive regime] appears) Rarallel self-diffusion
coefficientD| and (e) anomalous transversal diffusion coefficikpins both as

a function ofV/ksT. Parameters of the simulation ape= 2, p = 1.0c~* and

w=1.0/2kgT /ma?2.
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Figure 46 — Log-log plot of the transversal MSHj,(t) as a function of time, for different
values of\p/kgT. The magenta dotted-dashed line has a slope of 0.5 and is a
guide to the eye. Inset: snapshot of the configuration ofghest (black dots) for
Vo/kseT = 4.0. The modulatioVmog(X) is plotted as the solid red curve. Parameters
of the simulation argp =4, p = 2.00~* andw = 1.0,/2kgT /ma2.
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Summary

In this thesis we studied the diffusive properties of softaensed matter systems under differ-
ent types of external confinement potentials by using nuwaksimulation techniques, specifi-
cally Langevin and Brownian dynamics simulations. In Cleaptwe presented an overview of
soft condensed matter systems, diffusion (S€B). and single-file diffusion (SFD, Se&.5.3,
respectively. In Chapté? we presented the numerical methods that we used to anakyaysh
tems investigated in the subsequent chapters. The resuts mvestigations were presented
in Chapters3, 4 and5, and they can be summarized as follows.

In Chapter3, the diffusive properties of a mono-disperse system ofaatéeng particles
confined to aquastone-dimensional (q1D) channel were studied using MobacDlynamics
(MD) simulations. We calculated numerically the mean squsplacement (MSD) and inves-
tigated the influence of the width of the channel (or the gftlerof the confinement potential)
on diffusion in finite-size channels of different shapies.(straight and circular). The transition
from single-file diffusion (SFD) to the two dimensional difion regime was investigated. This
transition (regarding the calculation of the scaling exgnria) of the MSD[Jt¥) as a function
of the width of the channel, is shown to change depending®slihnnel’s confinement profile.
In particular the transition could be either smoathk.( for a parabolic confinement potential)
or rather sharp/stepwised., for a hard-wall potential), as distinct from infinite chahswhere
this transition is abrupt. This result could be explainedjbglitatively different distributions of
the particle density for the different confinement potdatid@his transition from SFD to normal
diffusion has been recently observed in experiments wipesparamagnetic colloidal particles
confined by a hard-wall confinement potenti2l{). This transition seems to indeed occur in
real systems, however one main open question regardingrbidem is the following: what
is the physical mechanism behind the sub-diffusive regioumd in the intermediate regime
(ITR)? Also, why is the exponent of diffusion non-univefdalhese questions are currently
under investigation and will be published elsewhere.

In Chapter4, the diffusion of a system of ferromagnetic dipoles confiired quast
one-dimensional parabolic trap was studied using Browdyaramics simulations. We showed
that the dynamics of the system is tunable by an in-planegmaitbomogeneous magnetic field.
For a strong applied magnetic field, we found that the mghditthe system, the exponent
of diffusion and the crossover time among different diftusregimes could be tuned by the
orientation of the magnetic field. For weak magnetic fieltig, éxponent of diffusion in the
sub-diffusive regime was shown to be independent of thentaimn of the external field.

In Chapter5, the diffusive properties of interacting magnetic dipotesfined in a
parabolic narrow channel and in the presence of a periodauhated (corrugated) potential
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along the unconfined direction were analyzed using Browdiaramics simulations. We com-
pared our simulation results with the analytical resulttfoe effective diffusion coefficient of
a single-particle by Festa and d’Aglianb7(0 and we showed the importance of inter-particle
interaction on the diffusion process. We presented retuitihe diffusion of magnetic dipoles
as a function of linear density, strength of the periodic mation and commensurability factor.
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APPENDIX A — Appendix

A.1 Interaction torque and external magnetic field torque

In this appendix, we calculate the firgtj and the second ternri‘?) present in the r.h.s. of
the equation of motion4(3) in cartesian coordinates. The interaction torques given by the
relation

T= % Y B (A1)

>

wherey; is the magnetic moment ath particle andy ;. ; B'”t is the magnetic field generated by
all j particles on theth particle. Following Refs.182 215), we write

Bint ~ ﬁ(ﬁ'“j)_“j
] — .13 9
Irij

(A.2)

wheren =rj;/|rij|. Since the system is (in practice) two-dimensional (2D) may write

BI' = BiX+8BY, (A.3)
rj = OXjX+Ay;Y, (A.4)
H; = pcosfX+pusing;y, (A.5)

in cartesian coordinates. Therefore, directly calcutatbdb Eq. (A.1) using Egs. A.2)—(A.5)
gives
Ti=2|ucosg S B, —using S BX |, (A.6)

where the termBin andBiyj are given by

3% 1 cos) + Axij Ay 1 SinGj] — p cosBj[rij 2
Irij[° ,
3[Ax;j Ayij 1 cosB; +Ayi2j psing;] — pusing;|rij B

BY — ) A.8
! Irij° #9

5

(A.7)

Similary, we can calculate the torqué€ due to the external magnetic fieRl= ByX + Byy on
theith particle as
T8 = p; x B = 2[1cosH By — usingBy. (A.9)

Note that since the problem is 2D, the torquesnd riB [Egs. A.6) and A.9), respectively]
are in thez-direction,i.e., perpendicular to they-plane.
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