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Abstract

The International Telecommunications Union (ITU) established through the International

Mobile Telecommunications (IMT)-Advanced a set of requirements for high performance of

4th Generation (4G) communication systems and, with the aim of meeting such requirements,

3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is considering a set

of enhancements, referred to as LTE-Advanced. In the LTE-Advanced context, Coordinated

Multi-Point (CoMP) communication appears as a promising technology to boost system

throughput and to allow for an efficient Radio Resource Allocation (RRA). CoMP systems

promise very high performance in terms of spectral efficiency and coverage benefits when

perfect Channel State Information (CSI) is available at the transmitter. However, perfect CSI

is difficult to obtain in CoMP systems due to an increased number of channel parameters to

be estimated at the receiver and to be fed back to the transmitter. So, the performance of such

systems is compromised when the CSI is not perfectly known during CoMP processing, which

is an important problem to be addressed. Space Division Multiple Access (SDMA) grouping

algorithms are usually employed in order to find a suitable set of users for spatial multiplexing.

The largest SDMA group is not always the best group in a given data transmission such that

higher gains might be achieved by dynamically adjusting the SDMA group size. Besides,

algorithms that balance the Signal to Interference-plus-Noise Ratio (SINR) among different

links might ensure a certain level of link quality and so provide a more reliable communication

for the scheduled users.

This master thesis provides system-level analyses for RRA algorithms that exploit

coordination in the downlink of CoMP systems to implement adaptive resource reuse and

so improve system throughput. Herein, RRA strategies which consider dynamic SDMA

grouping, joint precoding and power allocation for SINR balancing are studied in CoMP

systems assuming imperfect CSI in order to obtain a better approximation with regard to

the real-world implementations. It is shown through system-level analyses that quite high

throughput gains are achieved through intelligent RRA. In conclusion, the results show that

Sequential Removal Algorithms (SRAs) and SINR balancing provide system spectral efficiency

gains. However, a critical degradation on the performance of these RRA strategies due to

imperfect CSI is also shown.

Keywords: CoMP, imperfect CSI, SDMA grouping, SINR balancing.
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Resumo

A União Internacional para Telecomunicações (ITU) estabeleceu através da iniciativa para

o Sistema Avançado Internacional de Telecomunicações Móveis (IMT-Advanced), um conjunto

de requisitos de alto desempenho para os sistemas de comunicação de quarta geração (4G)

e, com o objetivo de atender tais requisitos, a Evolução de Longo Prazo (LTE) do Projeto

de Parceria para a Terceira Geração (3GPP) está considerando um conjunto de melhorias,

referidas como LTE-Avançado. No contexto do LTE-Avançado, a comunicação multi-ponto

coordenada (CoMP) aparece como uma tecnologia promissora para aumentar a vazão do

sistema e permitir uma Alocação de Recursos de Rádio (RRA) eficiente. Os sistemas CoMP

prometem alto desempenho em termos de eficiência espectral e benefícios de cobertura

quando a Informação do Estado do Canal (CSI) perfeita está disponível no transmissor. No

entanto, CSI perfeita é difícil de se obter em sistemas CoMP devido a um alto número de

parâmetros de canal a serem estimados no receptor e enviados para o transmissor. Assim, o

desempenho de tais sistemas é comprometido quando a CSI não é perfeitamente conhecida

durante o processamento CoMP tal que esse é um problema importante a ser abordado.

Algoritmos de agrupamento para Múltiplo Acesso por Divisão no Espaço (SDMA) geralmente

são utilizados a fim de encontrar um conjunto adequado de usuários para multiplexação

espacial. O maior grupo SDMA nem sempre é o melhor grupo em uma transmissão de dados

tal que maiores ganhos podem ser obtidos ajustando dinamicamente o tamanho do grupo

SDMA. Além disso, os algoritmos que balanceiam a Razão Sinal-Interferência mais Ruído

(SINR) entre diferentes canais podem garantir um certo nível de qualidade de canal e assim

proporcionar uma comunicação mais confiável para os usuários agrupados.

Esta dissertação de mestrado fornece análises em nível sistêmico para algoritmos de

RRA que exploram a coordenação no enlace direto de sistemas CoMP para implementar

reuso adaptativo de recursos e assim melhorar o desempenho do sistema. São estudadas

aqui estratégias de RRA em sistemas CoMP que consideram agrupamento SDMA dinâmico,

precodificação e alocação de potência conjuntas para balanceamento de SINR, sendo

assumida CSI imperfeita a fim de conseguir maior aproximação com relação às implementaçõs

em cenários reais. É mostrado através de análises em nível sistêmico que ganhos de vazão

bastante altos são alcançados através de RRA inteligente. Em conclusão, os resultados

mostram que Algoritmos de Remoção Sequencial (SRAs) e de balanceamento de SINR

proporcionam ganhos de eficiência espectral do sistema. No entanto, é também mostrada

uma degradação crítica no desempenho dessas estratégias de RRA devido à CSI imperfeita.

Palavras-chave: CoMP, CSI imperfeita, agrupamento SDMA, balanceamente de SINR.
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Chapter 1
Introduction

1.1 4G communication systems

The evolution of Radio Access Networks (RANs) has enabled the users of portable devices

connectivity to multimedia services anytime and anywhere, which will demand high spectral

efficiency of upcoming wireless cellular systems. The technology to support the offer and

supply the demand of these services must improve the performance of the 3rd Generation (3G)

wireless cellular systems. The International Telecommunications Union (ITU) is the leading

united nation’s agency for Information and Communication Technology (ICT) issues and it is

committed to connecting the world, ensuring interoperability of radio access technologies

and convergence of heterogeneous services. ITU established through the International

Mobile Telecommunications (IMT)-Advanced a set of requirements for high performance

4th Generation (4G) communication systems [1].

These key requirements include high quality multimedia applications within a wide range

of services and platforms, high instantaneous peak data transmission rates, high average user

throughput, low latency packet data transmission, flexible frequency allocation, multibeam

transmission, among others [1]. With the aim of meeting the requirements of IMT-Advanced

as defined by ITU, the Institute of Electrical and Electronics Engineers (IEEE) has specified

a technology known as Worldwide Interoperability for Microwave Access (WiMAX) while the

3rd Generation Partnership Project (3GPP) has specified an Evolved Universal Terrestrial Radio

Access (UTRA) technology known as Long Term Evolution (LTE)-Advanced [2].

3GPP continues to study further advancements for the Evolved UTRA networks with the

objective of developing a framework for the evolution of the 3GPP radio access technology

towards a high data rate, low latency and packet optimized radio access technology. These

targets/requirements are documented in 3GPP TR 36.913 [2]. These requirements will include

further significant enhancements in terms of performance and capability compared to the 3G

wireless cellular systems [3].

LTE-Advanced should fulfill and even surpass all the IMT-Advanced requirements in terms

of capacity, data rates and low-cost deployment [3]. The data rates targeted by LTE-Advanced

require a significant improvement in the link quality at the User Equipment (UE). But the

link capacity of current cellular systems such as LTE is already quite close to the Shannon

limit [3]. Although some link improvements are possible, e.g. using additional bandwidth

as a means to improve the coding/modulation efficiency, it is necessary to find methods for

improving the link quality. Already in current networks, multiple, geographically dispersed

antennas connected to a central baseband processing unit are used as a cost-efficient way
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of building networks. Such structures open up for new Radio Resource Allocation (RRA)

strategies.

Recently, advanced antenna architectures have been attracting a lot of interest as an

efficient means to improve the performance of conventional cellular networks. Alike

Multiple Input Multiple Output (MIMO) systems, multi-cell cooperative transmission was

recently raised in the LTE-Advanced context as a promising solution to improve levels of link

quality and, consequently, the system performance compared to the conventional cellular

networks [4]. In the context of LTE-Advanced, multiple transmission points responsible for

Coordinated Multi-Point (CoMP) transmission are arranged in a distributed way and each cell

can be equipped with co-located multiple antennas. The use of multiple antennas at both the

transmitter and receiver sides has attracted attention in wireless communications, because

MIMO technology offers significant improvement to the radio link and, consequently, to

the system throughput without requiring additional bandwidth or increased transmit power.

Indeed, LTE-Advanced has regarded the CoMP technology as an efficient means of meeting

the IMT-Advanced requirements [5]. In addition, efficient RRA strategies are necessary to

explore the available spatial degrees of freedom, coordinate the resources usage, and manage

the intra-CoMP-cell interference [6].

In current systems, geographically distributed multiple transmission points over the

coverage area play the role of transmit antennas to the UE. In LTE-Advanced systems,

CoMP transmission implies dynamic coordination among multiple geographically separated

transmission points. From a radio interface perspective, there is no difference from the user

perspective if the transmission points belong to the same Evolved Node B (eNB) or different

eNBs [5].

The actual number and placement of transmission points depend on several factors, such

as the geographical user and service densities, planned coverage, Quality of Service (QoS)

requirements, propagation environment, among others. For example, for the upgrade of an

existing system the current position of the existing sites might be considered to place the

transmission points. In this way, investments made on the already deployed cellular system

are protected and new RRA strategies can be employed to enhance the link quality and evolve

networks in a cost-efficient manner [3].

CoMP transmission is considered as a promising candidate in future 4G wireless networks

(LTE-Advanced) to combat the inter-cell interference that degrades the cell-edge throughput

performance, to enhance link quality and consequently boost the capacity of cellular

systems [3–5,7,8].

1.2 Coordinated Multi-Point systems

In the following, a brief introduction to essential background on downlink CoMP is given.

CoMP systems allow to decrease the average access distances between eNBs and UEs.

Moreover, CoMP provides coverage handling, decreasing transmit powers, and/or increasing

system capacity. CoMP transmission has been proposed as an efficient way to suppress

the inter-cell interference and appears as a promising architecture to increase the downlink

capacity of cellular systems [9].

CoMP systems can be seen as multiple transmission points geographically distributed

over the system’s coverage area performing cooperative transmission for several UEs.

Multiple transmission points constitute a set of geographically separated transmit antennas

participating in the cooperative transmission, which in the 3GPP context are installed

at eNBs. For cooperative transmission it is necessary that data be shared among the
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multiple transmission points. The manner by which the data is made available at the

multiple transmission points and is transmitted from the participating points defines a CoMP

transmission approach.

In fact, CoMP transmission techniques take advantage of characteristics of the CoMP

network architecture to implement efficient RRA strategies. One key challenge inherent to

cooperation among multiple transmission points in the downlink is to improve the system

spectral efficiency and, more importantly, the throughput of cell-edge users, since they

are strongly influenced by the inter-cell interference [10]. Thus, the CoMP processing is

compromised in establishing cooperative transmission as well as in managing intra-cell

interference. By allowing full coordination among multiple transmission points the intra-cell

interference can be reduced or even completely eliminated depending on the transmission

approach and on the availability and quality of Channel State Information (CSI).

In the LTE downlink, the UEs measure the perceived CSI and report it to a set of

transmission points. As the CSI is typically made available through feedback channels, it

is subject to feedback delays and/or errors and so presents inaccuracies. Although the

CoMP technology has potentially significant capacity and coverage benefits, it naturally

increases system complexity. Indeed, CoMP systems promise very high performance in

terms of spectral efficiency and coverage benefits when perfect CSI knowledge is available

at the transmitter [11]. However, in a real-world implementation of cooperative techniques,

a substantial amount of signaling is required to ensure reliable CSI to be available wherever

necessary. Moreover, the performance of such systems is compromised when the CSI is not

perfectly known during CoMP processing so that this is an important issue to be investigated.

In this context, prediction schemes for the inter-cell interference could be used to reduce the

high demand for link quality estimates in CoMP systems [12].

In the following, important aspects for the performance evaluation of RRA strategies in

CoMP systems are addressed. In Section 1.2.1, the downlink CoMP transmission is treated in

terms of network architectures and transmission approaches. CSI feedback in CoMP systems

also needs to be addressed since its benefits are strongly constrained to practical aspects.

In Section 1.2.2, considerations about CSI feedback in the downlink of CoMP systems are

detailed. Finally, the RRA problem in CoMP systems is investigated in Section 1.2.3.

1.2.1 Downlink CoMP transmission

In downlink CoMP systems, data transmission is performed across several geographically

distributed antennas, which requires a network architecture for the available CoMP

transmission approaches. While the network architecture deals with the availability of CSI

and UEs data among the multiple transmission points, the downlink CoMP transmission

approach limits the degree of coordination available to transmission strategies.

In the literature [9, 13], two basic architectures for enabling the CoMP transmission are

found: centralized and decentralized architectures. In downlink CoMP, the main design choice

is whether signal processing is to be done in a centralized or decentralized way. Figure 1.1

illustrates these two principal downlink CoMP architectures.

As it can be seen in Figure 1.1, the CoMP cooperating sets are organized by two network

architectures where the difference between them is in the manner on how the CSI as well as

the UE data are shared. Both architectures require the knowledge of the overall or global CSI

relating to all UEs served by the CoMP cooperating set. These two network architectures are

briefly explained in the sequel.

◮ Centralized: As shown in Figure 1.1(a), all eNBs in a CoMP set are connected to a central
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Figure 1.1: Downlink CoMP architectures.

controller for coordinated processing through the backhaul network. In this model, the

CSI of a given UE with respect to all transmission points is reported to its serving cell.

Afterwards, the local CSI in each eNB is reported to the central controller via backhaul

in order to form the overall CSI [9,13];

◮ Decentralized: As shown in Figure 1.1(b), there is not a central controller connecting

all eNBs such that it is necessary to perform individual processing in each eNB. Thus,

each eNB of the network needs to have the global CSI with regard to all UEs served by

the CoMP cooperating set, which can be shared via fast backhaul links [9,13].

Indeed, CoMP systems are able to exchange data, control information and CSI with all

eNBs and, consequently, coordinate interference. In CoMP systems, the availability of CSI

allows the coordination by transmission strategies, such as power allocation, beamforming

and time-frequency scheduling. In the following, different downlink CoMP transmission

approaches that can be used in order to implement spatial reuse of radio resources are

discussed.

In the downlink of CoMP systems, 3GPP distinguishes the Coordinated Scheduling

(CS)/Coordinated Beamforming (CB) and the Joint Processing (JP)/Joint Transmission (JT)

transmission approaches [5] and they are illustrated in Figure 1.2.
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Figure 1.2: Downlink CoMP transmission approaches.

These approaches are detailed in the sequel.
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◮ Coordinated Scheduling (CS): As shown in Figure 1.2(a), UE data is only available in

one eNB, i.e., a transmission to a scheduled UE is performed by a unique transmission

point, which is termed serving cell. No sharing of UE data or signal-level synchronization

between eNBs is necessary since they only acquire and exchange CSI [5,7,9,13];

◮ Joint Processing (JP): As shown in Figure 1.2(b), data to a single UE is simultaneously

transmitted from multiple transmission points, being possible that a single or even

multiple UEs be served. In this approach, the eNBs acquire and exchange both

CSI and UEs data. Note that the concept of an individual serving cell for one UE

disappears [5,7,9,13].

Depending on the CoMP transmission approach considered, the downlink CoMP

transmissions intended to multiple UEs can be mutually orthogonal or not in the spatial

domain. When observing the CS approach, transmissions to different UEs are not mutually

orthogonal in the spatial domain. Although the interference inside a CoMP cooperating set can

not be “perfectly” canceled, the CSI available at the eNB can be used by efficient RRA strategies

in order to, at least, reduce/manage the interference inside the CoMP cooperating set. When

observing the JP approach, the spatial orthogonality is achieved from joint transmission

through the use of spatial multiplexing techniques, which is sometimes referred to as Space

Division Multiplexing (SDM), and interference-free transmissions become possible.

1.2.2 CSI feedback on downlink CoMP

In the LTE downlink, the CSI is obtained by measurement and feedback mechanisms

from the UE, in which the reporting of CSI between the UEs and the multiple transmission

points occurs in order to facilitate scheduling decisions. It is almost impossible for the CSI to

perfectly reflect the actual channel conditions at the instant of CoMP transmission because it

is subject to several sources of imperfections in real-world situations. In the following, these

causes of imperfections are presented.

Firstly, there can be errors when measuring the channel perceived by each UE. Also,

there is limitation on the number of channel measurements that can be reported through

feedback channels. In addition to this, the reporting period is usually much higher than once

every Transmission Time Interval (TTI) due to the overhead for measuring and reporting on

the feedback channel. Finally, there is an inevitable time delay from the time the channel

measurement is taken until the actual CoMP transmission takes place, due to processing

and reporting delays. During this time, the channel conditions may change considerably and

unpredictably due to fast fading, making the CSI outdated at the time it is being used.

Regarding those uncertainties in the measurements of CSI as well as limited feedback,

imperfections can be introduced into the CSI available for CoMP processing. In a realistic

CoMP scenario, channel estimation errors, periodicity on measurement of the CSI, partial CSI

feedback and outdated CSI shall be assumed in an imperfect CSI model.

The two main categories of imperfect CSI model have been identified to be [5]:

◮ Explicit CSI feedback: The explicit feedback mechanism in support of downlink CoMP

is characterized by having a channel part and an interference part. In the former,

the channel as observed by each UE relating to CoMP transmission points is reported

to the eNB, without assuming any transmission or receiver processing. In the latter,

interference outside the CoMP transmission points is reported to the eNB [5];

◮ Implicit CSI feedback: Considering ways to reduce reporting overhead, it considers

hypotheses of different transmission and/or reception processing, e.g., Channel Quality
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Indicator (CQI)/Precoding Matrix Indicator (PMI)/Rank Indicator (RI). CQI is a measure

of prevailing channel conditions. In [14] the CQI is a quantized value of the measured

Signal to Interference-plus-Noise Ratio (SINR) at the UE. PMI is an index of a selected

precoding matrix and RI is the number of spatial transmission layers [5].

The uplink feedback overhead versus downlink performance trade-off should be assessed

with the goal of achieving minimum overhead for a given performance.

1.2.3 Radio resource allocation in CoMP systems

Orthogonal Frequency Division Multiple Access (OFDMA)-based systems provide a high

flexibility for the RRA that can be exploited by efficient strategies. Indeed, RRA in

OFDMA-based systems allows each UE to be assigned resources that are orthogonal

in time and frequency by design. Thus, the RRA is simplified because signals sent

to UEs on orthogonal resources do not interfere with each other. Furthermore, the

time-frequency diversity in an OFDMA-based system allows to dynamically allocate resources

for different UEs, and to adapt the Modulation and Coding Scheme (MCS) and power for each

time-frequency resource according to the current channel conditions. In this way, efficient

RRA strategies can significantly improve the performance of OFDMA-based systems, achieving

a higher resource utilization and system capacity.

Together with the inherent resource granularity of OFDMA, advanced RRA algorithms can

be developed for CoMP systems. However, RRA in such systems is a very complex task due

to the inclusion of the space dimension. Herein, space resources result from the spatial

reuse of the same frequency-time resource and signals transmitted by the eNB to a group

of UEs on the resource essentially interfere with each other. Thus, the CoMP transmission

for different UEs on a same resource is inherently coupled by the co-channel interference.

Herein, frequency-time resources are shared among UEs using Space Division Multiple Access

(SDMA) [6].

The general RRA problem in an OFDMA-based CoMP system can be viewed as

implementing spatial reuse of radio resources among multiple geographically separated

transmission points. However, because there is a large number of resources to be managed

and a large number of possible assignments, the RRA in such systems has many degrees of

freedom and becomes therefore a very complex task.

In the following, the RRA is introduced for each CoMP transmission approach detailed

in Section 1.2.1:

◮ Coordinated Scheduling (CS): As stated before, a transmission to a scheduled UE is

performed by a unique transmission point. However, decisions with respect to RRA

are made with coordination among the cells by the eNB in order to control interference

among cells;

◮ Joint Processing (JP): In this approach, multiple transmission points work as a

distributed antenna array under coordination of the eNB in order to serve a single or

even multiple UEs, forming a macroscopic MIMO system, such that spatial multiplexing

techniques can be used for joint data transmission to multiple UEs [9]. Thus, SDMA

and precoding techniques can be used for RRA in order to obtain throughput gains by

exploiting the spatial degrees of freedom [6,15].

Both RRA strategies introduced above have in common the ability of CoMP processing with

the CSI among all UEs and transmission points involved on the downlink CoMP transmission.
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By exploiting the available CSI, the possibilities for allocating radio resources are increased in

CoMP.

However, the good performance of RRA strategies in both CoMP approaches requires that

the UEs participating in the CoMP transmission be spatially compatible. In the CS approach,

UEs spatially compatible are those that share the same resource in space while the levels of

inter-cell interference are under control. In JP approach, these UEs are those whose channels

are favorable for spatial separation [6].

Once the set of UEs able to efficiently share the same spatial resource is defined, it is

necessary to perform an adequate power allocation among the grouped UEs in order to achieve

high spectral efficiency on the usage of the considered resource. The power allocation shall

enhance link quality and consequently boost the capacity of cellular systems.

From the exposition, three main topics for RRA can be highlighted:

◮ Spatial grouping of UEs that are able to efficiently share the same resource in the spatial

domain;

◮ Spatial separation of signals intended to different UEs by SDM techniques when

considering JP approaches;

◮ Power allocation among the used resources and UEs grouped on each CoMP

transmission.

Indeed, by combining the inherent resource granularity of OFDMA with the flexibility

of the CoMP architecture, advanced RRA algorithms can be developed to control the UE

spatial grouping, spatial separation of signals and the power allocation. On the other hand,

imperfections on the CSI and inter-cell interference might hinder finding the optimal RRA

solutions.

1.3 State-of-the-art

In this section, a literature review on RRA strategies for CoMP systems is provided. Initially,

the degrees of freedom on downlink CoMP transmission with respect to CoMP network

architecture, transmission approaches and imperfect CSI are addressed.

Table 1.1 gives a set of works related to network architectures and transmission

approaches introduced in Section 1.2.1 and imperfect CSI feedback introduced

in Section 1.2.2.
Table 1.1: State-of-the-art references for CoMP.

Parameter References

CoMP architecture
Centralized [9,13]
Decentralized [9,13]

CoMP transmission approach
CS [5,7,9,13]
JP [5,7,9,13]

Imperfect CSI

Channel estimation [16–19]
Quantization [16,17,19,20]
Partial feedback [9,20,21]
Time delay [17,19,22]

In the following, the state-of-the-art references for CoMP presented in Table 1.1 are

discussed.

The authors in [13] and in [9] agree in the manner on how the CSI is shared among the

multiple points in a centralized CoMP architecture. However, the model presented by [9] for

the decentralized CoMP architecture differs from the model of [13]. In [9], eNBs are connected

to other eNBs in a same CoMP cooperating set through backhaul links. Hence, each UE

reports its CSI only to its serving cell. This model requires less feedback channel resources
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for sharing of CSI, since the sharing of CSI among eNBs can be carried out via fast backhaul

links. In [4], each UE reports its CSI to all eNBs. Therefore, there is no need for a backhaul

network because each eNB has its own version of the CSI of all UEs. However, the feedback

link must support the sharing of the CSI of all UEs involved in CoMP transmission.

In CoMP systems, the optimal number of eNBs within the clusters depends on the reliability

of CSI, as well as on the overhead that can be supported [9]. In fact, a substantial amount

of signaling is required to ensure reliable knowledge of the complete CSI, which requires a

large bandwidth for the feedback channel and an enhanced backhaul network connecting the

eNBs. Indeed, there is a trade-off between the potential performance gains of cooperation

versus the increased signaling overhead [5].

As stated in Section 1.2.2, in real-world implementations of cooperative techniques,

practical aspects of the system such as channel estimation, outdated CSI and limited

feedback channel bandwidth need to be addressed. In the following, the previous works listed

in Table 1.1 about imperfect CSI feedback introduced in Section 1.2.2 are shortly discussed.

Usually, CSI at the UE is obtained through channel estimation, which is in general

inaccurate and thus the measured CSI is only an imperfect estimate of the actual CSI [16,18].

The UE can generate a meaningful estimate of the CSI, for example, by Maximum Likelihood

(ML) and linear Minimum Mean Square Error (MMSE) estimation. In practice, CSI is often

obtained by sending known training symbols to the UE [11].

Due to quantization at the UE, the CSI available at the eNB is usually assumed to be

imperfect, which leads to a partial interference cancellation. In order to reduce feedback

signal overhead achieved by JP transmissions, the precoding is codebook-based in [7]. In

principle, the best precoding matrices for interference coordination within a CoMP cooperating

set are selected in addition to the individual selection of the best precoding matrix at each cell

so that the received SINR is maximized at a UE [7]. In [17], two models for imperfect CSI

are presented: noisy/outdated CSI and quantized CSI. In the first one, two sources of error

are considered: channel estimation error and feedback delay; while in the second one, the

feedback is digitized before transmission. It is shown that these sources of errors cause a

degradation in performance of Multi-User (MU)-MIMO systems [17, 19]. In [16], because of

limitation in the backhaul bandwidth, the channel estimates are quantized and fed back in

the form of codebooks indices. In this work, a limited feedback model was considered, where

each UE feeds back quantized Channel Direction Information (CDI) as well as unquantized

CQI, being it a channel magnitude or SINR information. In [20], the authors point out a

channel quantization model in which the quantization is chosen from a codebook of channel

vectors with unit norm.

Since each UE has performed channel estimation, the UE should inform its CSI to the eNB

by using the uplink feedback channel. But there is always a time delay between the instant

of CSI measurement and the actual instant of transmission of the data. From this, it follows

that the CSI available at the eNB is outdated [17]. In [16], feedback delay is modeled through

a correlation coefficient between the CSI at the eNB and the CSI at the UE, which is known

to both receiver and transmitter. Then, the authors additionally incorporated the opposite

effect of time delay to the estimated channel in order to suppress it. Clearly, CoMP processing

under an outdated CSI may harm the performance of the system when the feedback delay is

a significant measure.

Other limitation with respect to the limited CSI concerns the number of channels that can

be reported to the eNB via feedback channel [9]. In general, the channel estimation is also

limited, since each UE is not able to estimate their channels for all the eNBs in the CoMP
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system [16, 18], but instead it performs estimation only for the strongest channels [23]. In

general, scheduling and space-domain precoding require a lot of CSI, such that this subject

has been considered in a number of papers. In [21], a two-phase feedback strategy is

proposed, in which all the UEs feed back part of the channel information for scheduling –

in the first phase –, and only the selected UEs feed back the rest of channel information for

precoding – in the second phase. In [20], the authors showed that in the downlink of coherent

CoMP systems, UEs located in different cells have small spatial correlation and so they can

be selected based only on their channel norms, since in this case the orthogonality depends

more on the larger-scale fading than on small-scale fading. From this observation the authors

propose a low feedback UE scheduler based on UEs’ locations and channel norms. In [22], CSI

was considered to be the instantaneous Signal to Noise Ratio (SNR) of the different subcarriers

and its report was assumed to be outdated.

In the following, a literature review on RRA strategies is provided. Table 1.2 shows the set

of RRA strategies discussed in Section 1.2.3.

Table 1.2: State-of-the-art references for RRA.
Parameter References

UEs scheduling

Classical schedulers [7,8,24–28]
Power allocation [29–32]
SDMA in MU-MIMO [6,15,33–36]
UE spatial grouping in CoMP [10,37,38]

SINR balancing Power allocation [19,37,39–41]

In the following, the state-of-the-art references for RRA presented in Table 1.2 are

discussed.

In recent works found in literature [7, 8, 24–26, 28], it has been shown that MU-MIMO

transmission schemes applied to the downlink of CoMP systems can bring significant gains in

the average cell throughput, cell-edge user throughput and fairness. Classical RRA strategies,

such as Proportional Fair (PF) and Round Robin (RR), show different performances regarding

the three aforementioned aspects [7, 25, 26]. In [7], the UEs are selected independently of

channel quality. In [24,25], the scheduler of UEs uses an RR policy and, in [8,26,28,42], the

scheduler of UEs uses a PF policy.

Indeed, average cell throughput, cell-edge user throughput and fairness are crucial aspects

for RRA in CoMP systems [27]. As it is known, spectral efficiency is maximized by efficient

RRA strategies based on a Maximum Rate (MR) policy [27]. It is well-known that, when no

interference is considered, the system throughput is maximized by assigning each subcarrier

on each transmission point to the UE with the highest channel gain and by allocating

afterwards power to the Physical Resource Blocks (PRBs) according to the Water Filling (WF)

algorithm [32]. Equal Power Allocation (EPA) is simpler and performs only marginally worse

than WF, especially for high SNRs [29–31]. When interference from multiple transmission

points is considered, this solution should still provide high system throughput by selecting

UEs close to the transmission points [27].

All these works focus on the CoMP transmission using simple strategies of UEs scheduling.

However, as introduced in Section 1.2.3, the good performance of RRA strategies in both

CoMP approaches requires that the UEs participating in the CoMP transmission be spatially

compatible. Thus, dynamic RRA strategies should try to exploit the spatial degrees of freedom

of downlink CoMP transmission.

For the CS transmission approach, in [10], a dynamic RRA algorithm for the downlink

of CoMP systems that exploits the CSI in order to improve the system spectral efficiency

implements spatial reuse of radio resources among multiple geographically separated

transmission points as well as controls the inter-cell interference. In [24], a dynamic grouping
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algorithm of cooperating eNBs for the uplink of CoMP systems significantly improves fairness

amongst the UEs of the network. These approaches effectively make use of coordinated spatial

grouping.

For MU-MIMO systems, in [6, 15, 33–36], UE spatial grouping algorithms are considered,

which avoid placing UEs with highly correlated channels on the same transmission. Among

them, the Successive Projection (SP) algorithm [15, 34, 35] can be highlighted, in which the

channels of a set of UEs are successively projected onto the null space of the channels

of previously selected UEs. In general, the higher the channel gains are, the higher the

achievable throughput is. However, considering null space projections, the effective gains

of the channels of the UEs are conditioned to the degree of spatial correlation among the

channels. Due to the null space SPs keeping a significant similarity with the projection

performed by linear spatial precoding, the SP algorithm effectively captures the spatial

compatibility among the UEs [6,15,34,35].

Given the above, it is important to highlight that the UE spatial grouping problem in

the CoMP scenario has been only partially investigated and that there is a great motivation

for applying SDMA techniques in CoMP systems. In [9], the JP transmission approach is

exploited by mimicking the benefits of a large virtual MIMO array, i.e., allowing the UE

data to be jointly processed by several interfering eNBs. Indeed, the use of SDMA in CoMP

systems, as in MU-MIMO wireless systems that are affected by the inter-cell interference, can

provide a substantial gain in the system throughput [15]. This is possible by exploiting the

available spatial degrees of freedom and using spatial processing techniques to best separate

the signals intended for different UEs. Such techniques are widely known from the classical

array processing literature (see, e.g., [15,34,43] for an overview).

The CSI can be used to mitigate the interference and efficiently separate streams intended

to different UEs through spatial precoding and adaptive UE spatial grouping. For example,

it is possible to guarantee that the data streams sent to different UEs will not interfere with

each other [34]. This is a spatial scheduling task and an UE spatial grouping algorithm is

usually employed in order to find a suitable set of UEs for spatial multiplexing. In [10], an

UE’s grouping algorithm for CoMP systems selects a set of spatially compatible UEs that can

efficiently share the same resource in space while the spatial multiplexing of signals conveyed

through them is done by using Zero-Forcing (ZF) precoding. This algorithm deals with user

orthogonalization in an MU-CoMP system based on successive projections onto null space.

However, the system throughput might be improved in [10] with an adaptive size of the UEs

set, such that it can be dynamically adapted according to the channel conditions and the load

of UEs [37].

The throughput of the scheduled UEs can still be improved regarding a transmitter

optimization problem where each one is subject to a SINR constraint. The SINR balancing

problem with joint beamforming and power control has the objective of providing a minimum

quality to the scheduled UEs. In [19] and [40], the optimal power allocation problem for

downlink MU-MIMO systems was solved, respectively, under per-eNB and per-antenna power

constraints. In [41], an alternative solution via Second-Order Cone Program (SOCP) is

proposed in considering both per-eNB and per-antenna power constraints. Nevertheless, it is

difficult to obtain an efficient solution for the optimization problem and so it is desirable to

obtain more efficient algorithms. It was shown in [19] that the sub-optimal power allocation

based on the scaled water-filling algorithm provides near-optimal performance. An iterative

algorithm to maximize the minimum SINR of a set of co-channel links is proposed in [39]

such that data streams are transmitted from multiple antennas to several single-antenna
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UEs under a sum power constraint. The referred algorithm considers both precoding and

power allocation optimization problems, which are both formulated as eigenvalue problems.

The precoding problem and the power allocation problem are solved alternately in an iterative

way and it is shown in [39] that the algorithm converges after a few iterations. However, this

solution has some limitations in the CoMP scenario, in which UEs are subject to a strong

inter-cell interference and there is a power limitation per antenna [37]. This solution is not

optimal when per-antenna power constraints are considered [39]. While the authors in [39]

have studied a single cell scenario, the solution can easily be extended to the joint optimization

of several cells [39].

Different CoMP transmission approaches as well as the several RRA strategies presented

above have impacts on performance and signaling requirements. For CoMP transmission

approaches, any imperfect estimation of channel, delay and feedback error assumptions

should also be indicated [5]. 3GPP also defines that performance evaluations should include

a high-level description of the RRA strategies simulated [5].

1.4 Open problems

The general problem of RRA in a CoMP system to maximize the throughput is a

complex optimization problem. It involves subproblems like resource reuse, UE spatial

grouping, antenna selection, resource assignment, precoding and power allocation, among

others [6]. The study of grouping UEs along with the JP transmission approach is a crucial

problem, since it has been considered the main CoMP transmission approach adopted in the

literature [5,7,8,24–26,28]. Besides, it allows the usage of SDM techniques which can provide

throughput gains by exploiting the spatial degrees of freedom [15,34,43]. Thus, the focus in

this dissertation is on the JP transmission approach, but the CS transmission approach has

also been investigated within this dissertation.

Initially, it is focused more specifically on the RRA subproblem of determining a suitable

set of UEs to spatially reuse a given radio resource among multiple geographically separated

transmission points, having as objective the maximization of the total system throughput.

After that, for the JP approach, the SINR balancing problem, which has the objective of

providing a minimum quality to the downlink CoMP transmissions of the UEs grouped, is

discussed. In the following, the considered RRAs subproblems for both CoMP transmission

approaches are stated.

◮ UE spatial grouping problem: In the CS approach, the CSI is used to coordinate

the decisions of scheduling and to control the inter-cell interference perceived by each

UE. The UE spatial grouping problem for this transmission approach corresponds

to determining which UEs can simultaneously use the same resource on different

transmission points. In the JP approach, the multiple transmission points are treated

as a distributed antenna array to perform MU-MIMO canceling the interference between

UEs participating of the CoMP transmission. For example, it is possible to guarantee

that the data streams sent to different UEs will not interfere with each other. Thus, RRA

strategies can be used for joint data transmission to multiple UEs by the antenna array

of the CoMP system. The problem to be solved here is to choose a set of UEs that can

efficiently share the same resource in space, which is termed SDMA group.

◮ SINR balancing problem: In the JP approach, in order to provide a more reliable

communication for the UEs of the SDMA group, it is desirable to support a certain level

of link quality, which mainly depends on the SINR. In the SINR balancing problem, each
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UE is subject to an SINR constraint. Hence, the quality of UEs’ links might be assured if

individual target SINR values are met [39].

The 3GPP offers only guidelines to follow, but does not specify how to implement RRA

strategies for the problems considered above as well as to ensure the requirements for high

performance 4G communication systems previously introduced in Section 1.1. That is, the

standard proposes what to do and does not specify how, leaving several open issues and

opportunities for Research and Development (RD).

1.5 Contents

This section explains what this dissertation aims to contribute with, namely with the

proposal and study of RRA strategies for the subproblems treated in Section 1.4. As

mentioned before, in this dissertation, the focus is on the RRA subproblem of spatially reusing

PRBs among multiple transmission points to maximize the system throughput. The RRA in

an OFDMA-based CoMP system consists basically in determining a suitable set of UEs to

spatially use the radio resources available among the multiple transmission points.

In the CS approach, because dynamic resource reuse and interference coordination

became major concerns for the sub-problem considered, it is moved from a single-cell to

a multi-cell system model in order to capture the effects of inter-cell interference and of

intra-cell interference coordination in both conventional and CoMP scenarios. In the JP

approach, the UE spatial grouping is employed in order to find a suitable set of UEs for spatial

multiplexing. Next, the SINR balancing problem is solved efficiently in the CoMP scenario by

an iterative beamformer and power update algorithm [39].

It is well-know that the optimum solution of these subproblems may also be quite complex.

It is difficult to obtain an efficient solution for the optimization problem, which motivates the

use of efficient and low-complexity algorithms. Therefore, the focus is on simple and effective

algorithms for solving the involved RRA subproblems, avoiding excessive and/or non-linear

operations.

The RRA strategies in this dissertation were considered for the downlink of CoMP systems

mainly based on LTE characteristics, which has been chosen as representative of 4G

communication systems. Initially, it is assumed perfect CSI in studies about RRA strategies.

But, the influence of several error sources on the CSI is also investigated.

In the following, Section 1.5.1 lists the main contributions and Section 1.5.2 lists the

scientific production of this master’s work. Section 1.5.3 presents the organization of the rest

of this dissertation.

1.5.1 Contributions

This dissertation provides system-level analyses for the performance gains achieved with

different degrees of coordination using different RRA strategies in CoMP systems. In the

following, the main contributions of this master thesis aligned to this objective are described.

◮ In the conventional system, each cell performs scheduling independently, so that no

information about other eNBs and transmissions is used and no coordination is possible.

Its performance is observed when an estimate of the inter-cell interference perceived by

each UE is available or not.

◮ Since the information about the interference can be accurately determined by processing

the CSI between all UEs and transmission points involved on the downlink CoMP

transmission, a better choice of the modulation can be done.
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◮ The use of the CSI can be done to schedule a certain number of UEs while coordinating

interference among eNB-UE links, and therefore implement a dynamic RRA, which

corresponds to the CS approach.

◮ The JP approach transmits from multiple points to a given set of UEs using spatial

precoding. This precoding may be employed to reduce the interference levels or to

increase the received power perceived by each UE and so enhance the UE link quality.

The evaluation of JP performance is a main topic in this master thesis.

◮ In the JP approach, the objective of the UE spatial grouping is to find a suitable set of

UEs for spatial multiplexing [10]. Improvements on the UE spatial grouping might be

achieved when the SDMA group size is dynamically adjusted [37].

◮ The SINR balancing aims to ensure a certain level of link quality and thus provide a more

reliable communication for the grouped UEs in an SDMA group [39]. The SINR balancing

algorithm [39] with small modifications is investigated in a multiuser CoMP scenario, in

which UEs are subject to an SINR constraint and strong inter-cell interference, and there

is a power limitation per antenna [37]. SINR balancing with scaled power allocation

is performed for SDMA group [19, 39]. The considered solution in this dissertation

extends the algorithm in [39] which is based on the single cell scenario and a sum power

constraint.

◮ Power minimization is performed after the SINR balancing in order to reduce the power

used in excess and so the inter-cell interference [39].

◮ The performance gains achieved with the RRA strategies and the impact of imperfect

CSI on the performance of the RRA strategies is also investigated [38].

1.5.2 Scientific production

Throughout the master’s course this dissertation has contributed with the following

publications. A list with three conference papers follows below:

i. Rodrigo L. Batista, Tarcisio F. Maciel, Yuri C. B. Silva and Francisco

Rodrigo P. Cavalcanti, "Impact Evaluation of Imperfect Channel State Information

on the Performance of Downlink CoMP Systems", 28th Brazilian Symposium on

Telecommunications (SBrT’11), Curitiba, Paraná, Brazil, Sept 2011.

ii. Rodrigo L. Batista, Tarcisio F. Maciel, Yuri C. B. Silva and Francisco

Rodrigo P. Cavalcanti, "SINR balancing combined with SDMA grouping for CoMP

systems", 74th Vehicular Technology Conference (VTC2011-Fall), San Francisco, USA,

Sept 2011.

iii. Rodrigo L. Batista, R. B. dos Santos, Tarcisio F. Maciel, Walter C. Freitas Jr., and

Francisco Rodrigo P. Cavalcanti, "Performance evaluation for Radio Resource Allocation

algorithms in CoMP systems", 72nd Vehicular Technology Conference (VTC2010-Fall),

Otawa, Canada, Sept 2010.

This master thesis has been conceived in the context of UFC.22 and UFC.32 research

projects, that belong to a cooperation between GTEL and Ericsson Research. Five technical

reports have been produced during the period of the master’s course and one is in the process

of writing. The list follows below:



1.5. Contents 14

i. Elvis M. G. Stancanelli, Rodrigo L. Batista, Yuri C. B. Silva, Tarcisio F. Maciel and

Francisco Rodrigo P. Cavalcanti, "Initial studies on dynamic UE spatial grouping for

CoMP systems", Second Technical Report of UFC.32 Project, July 2011.

ii. Elvis M. G. Stancanelli, Rodrigo L. Batista, Yuri C. B. Silva, Tarcisio F. Maciel and

Francisco Rodrigo P. Cavalcanti, "Initial studies on dynamic UE spatial grouping for

CoMP systems", First Technical Report of UFC.32 Project, December 2010.

iii. Ricardo B. dos Santos, Rodrigo L. Batista, Tarcisio F. Maciel, Elvis M. G. Stancanelli,

Walter C. Freitas Jr. and Francisco Rodrigo P. Cavalcanti, "RRA for Rate Maximization in

CoMP Systems", Final Technical Report of UFC.22 Project, July 2010.

iv. Ricardo B. dos Santos, Rodrigo L. Batista, Tarcisio F. Maciel, Elvis M. G. Stancanelli,

Walter C. Freitas Jr. and Francisco Rodrigo P. Cavalcanti, "RRA for Rate Maximization in

CoMP Systems", Third Technical Report of UFC.22 Project, February 2010.

v. Ricardo B. dos Santos, Elvis M. G. Stancanelli, João César M. Feitosa, Rodrigo L. Batista,

Tarcisio F. Maciel, Walter C. Freitas Jr. and Francisco Rodrigo P. Cavalcanti, "RRA in

Coordinated Multi-Point Systems", Second Technical Report of UFC.22 Project, August

2009.

1.5.3 Outline

This chapter provided some background required to the good understanding of RRA

problems in CoMP systems. It started with a review on the evolution of RANs. After that,

some concepts with respect to the CoMP transmission are provided as well as some relevant

works related to CoMP systems and RRA are referred. The remainder of this document is

organized as follows:

◮ Chapter 2: In this chapter, the system model is addressed. Herein, the models adopted

for CoMP systems and the needs for CoMP processing are presented. Aspects such as

frame structure, multi-cell network deployment, wireless channel model, downlink CoMP

transmission model, imperfect CSI model, RRA and link-to-system level interface are

discussed. All models presented in this chapter relate to definitions made in Section 1.2

concerning RRA in CoMP systems.

◮ Chapter 3: In this chapter, RRA strategies for the UE spatial grouping problem

are presented. Initially, the UE spatial grouping problem, which was introduced

in Section 1.4, is formulated. After that, several RRA strategies for the UE spatial

grouping problem observing both CS and JP transmission approaches are presented.

Finally, the results are presented and discussed, being summarized at the end of the

chapter.

◮ Chapter 4: In this chapter, the formulation for the SINR balancing problem in the

CoMP scenario is discussed, which was also introduced in Section 1.4. After that,

a well-known solution for the SINR balancing problem is considered by doing some

particular considerations for its application in CoMP systems. Next, power minimization

is performed while the SINR constraints are maintained feasible. General discussions

and conclusions are also given at the end of the chapter.

◮ Chapter 5: This chapter draws the main conclusions regarding the RRA problems in

CoMP systems studied in this work.



Chapter 2
System model

2.1 Introduction

This dissertation focuses on communication in the downlink of a centralized Coordinated

Multi-Point (CoMP) network whose architecture has been shortly presented in Section 1.2.1.

The Evolved Node Bs (eNBs) available in the network are grouped into disjoint clusters (or

CoMP cooperating sets) so that a given eNB cannot belong to more than one cluster operating

at the same time-frequency resource. It is assumed perfect synchronization and that eNBs in

a cluster are connected via a fast backhaul link to a central controller. Thus, eNB antennas

act as inputs of a generalized Multi-User (MU)-Multiple Input Multiple Output (MIMO) system,

while User Equipment (UE) antennas from multiple UEs are considered as the outputs.

Physical modeling of wireless channels requires knowledge of the electromagnetic field

between transmitter and receiver. In principle, one could study the system performance based

on field equations and taking into account the influence of obstructions and other elements

of the environment (as ground, buildings and vehicles in the vicinity between the eNBs UEs)

onto this electromagnetic field. However, a performance evaluation of a CoMP system (or

other wireless systems as well) considering real electromagnetic propagation presents very

high complexity, mainly due to the large physical dimension of the system and large number

of variables involved in electromagnetic propagation. Thus, it is adopted a system model based

on statistical characterization of the system and of the involved radio channels, which require

only channel parameters [43,44].

In CoMP systems, multiple transmission points belonging to adjacent eNBs apply

transmission strategies in order to coordinate resources usage and manage intra-cluster

interference. By allowing full coordination among the eNBs within a cluster, the intra-cluster

interference can be managed or even completely eliminated depending on the selected

transmission schemes and on the available Channel State Information (CSI) [5]. For the Long

Term Evolution (LTE)-alike system model considered in this dissertation, one has that CSI is

periodically measured and reported by UEs and used for CoMP processing in the system, a

feature that is supported by LTE [5]. Using the available CSI, Coordinated Scheduling (CS)

and Joint Processing (JP) techniques may be used to coordinate the intra-cluster interference,

as introduced in Section 1.2.1. This dissertation gives more attention to JP techniques and

focus on CoMP processing considering that CSI is available at the time of transmission.

Nevertheless, CS approaches are also considered.

In general, imperfect CSI limits the regimes in which downlink CoMP is beneficial [9] such

that the success of CoMP transmissions depends on the reliability of CSI. In general, perfect
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CSI is difficult to obtain in CoMP systems due to an increased number of channel parameters

to estimate and feed back to the transmitter. In fact, a substantial amount of signaling

would be required to ensure a reliable CSI. Consequently, in practical cases, CSI is usually

inaccurate. Inaccuracies originate, for example, from measurement errors, quantization of

the reported values, feedback delays, etc., as mentioned in Section 1.2.2. In this dissertation,

some types of imperfections of CSI due to measurement delays, partial CSI feedback and

imprecise estimation of the CoMP channels are addressed.

The performance of the considered CoMP system is evaluated by means of system-level

simulations, in which the impact of different Radio Resource Allocation (RRA) strategies on

the performance of CoMP systems is investigated. Semi-static simulations composed by a high

number of system snapshots with fixed time duration are adopted. The system modeling and

notation is highly LTE-oriented and, consequently, most of the notation and terms correspond

to those adopted by 3rd Generation Partnership Project (3GPP) LTE.

In the following, the models adopted to evaluate the system performance are presented.

The rest of this chapter is organized as follows. In Section 2.2, the considered frame structure

is discussed. The CoMP scenario is addressed in Section 2.3. The main features of the

models employed for the radio channel are presented in Section 2.4. In Section 2.5, the

downlink CoMP transmission model used in this dissertation is detailed. In Section 2.6,

the transmission model from Section 2.5 is extended to consider imperfect CSI. Section 2.7

introduces the main considerations for the RRA problem modeling. Section 2.8 contains a

simple mechanism for inter-cluster interference estimation. The link-to-system interface is

described in Section 2.9. Finally, in Section 2.10, simulation details are presented.

2.2 Downlink physical resource

In order to achieve high data transmission rates, 3GPP decided to use Orthogonal

Frequency Division Multiplexing (OFDM) as basis for its signal bearer, which is a transmission

form that uses a large number of closely spaced carriers and that can be efficiently modulated

with low rate each. OFDM has many advantages including its robustness to multipath fading

and interference [43].

In 3GPP, downlink transmission using OFDM is designed to work in both Frequency

Division Duplexing (FDD) and Time Division Duplexing (TDD) modes of operation [43]. FDD

is suitable for bi-directional voice service since it occupies a symmetric downlink and uplink

channel pair. However, FDD is inefficient for handling asymmetric data services since data

traffic may only occupy a small portion of a channel bandwidth at any given time. On the

other hand, TDD can flexibly handle both symmetric and asymmetric broadband traffic. It

requires only one channel for transmitting downlink and uplink sub-frames at two distinct

time slots. Here, only the downlink FDD mode is discussed.

For downlink, 3GPP specifies the Orthogonal Frequency Division Multiple Access (OFDMA)

technology (which is based on OFDM) as radio access technique. It allows each UE to be

assigned resources that are orthogonal in frequency. OFDMA also has the advantage of

enabling the baseband transmission on a single frequency-flat sub-carrier. In the downlink,

an OFDM frame structure takes the form of a frequency-time resource grid as shown

in Figure 2.1.

As it can be seen in Figure 2.1, each radio frame has a bandwidth BW and the duration

of one Transmission Time Interval (TTI). Usually, due to signaling constraints, subcarriers

are not allocated individually, but in blocks of adjacent subcarriers, which represent the

Physical Resource Blocks (PRBs) [45]. Channel coherence bandwidth is assumed larger than
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Figure 2.1: OFDMA frame structure.

the bandwidth of a PRB leading to flat fading over each PRB. The PRB is defined as one TTI in

time domain, which is divided into NSYM symbols, and NSUB contiguous OFDM sub-carriers

spaced of ∆f Hz.

While the minimum physical resource in OFDMA can be seen as a unit comprising one

OFDM symbol in time domain and one OFDM sub-carrier in frequency domain, the minimum

allocable resource in real LTE systems is the PRB. This unit corresponds to the available

resource that can be assigned to UEs by an RRA function of the system. Since the number of

UEs is typically larger than the number of available resources, UEs have to be scheduled by

the RRA algorithm. As shown in Figure 2.1, there exist NPRB PRBs in the system, indicated

by n = 1, 2, . . . , NPRB, and each of them might be assigned to one or more UEs in each cluster.

2.3 Multi-cell system

This dissertation focuses on the downlink of a multi-cell system under dynamic

coordination among multiple geographically separated transmission points over the system’s

coverage area.

Let us assume that each eNB is placed on the corner shared by the sectors of the 3-sector

cell and each sector is represented by a regular hexagon, whose maximal diameter is given by

R. The 3-sector model of cell adopted in this dissertation is shown in Figure 2.2.

R

eNB

Figure 2.2: 3-sector cell.

The scenario considered in this dissertation corresponds to a cell network with eNBs

uniformly distributed over the coverage area. In the considered notation, it is assumed

that the multi-cell system is composed of C clusters, indicated by c = 1, 2, . . . , C. It is

considered that a cluster comprises a number of NeNB eNBs under its control and the number
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of sectors/cluster is denoted by NSEC = 3NeNB.

Graphically, the considered conventional and CoMP scenarios are shown in Figure 2.3.

3-sector cell

base station

(a) Conventional scenario for C = 147 sectors

cluster

(b) CoMP scenario for C = 7 clusters and NeNB = 7
eNBs/cluster

Figure 2.3: Coverage area of the system for NeNB = 49 eNBs.

Figure 2.3(b) presents the coverage area of the CoMP system for C = 7 clusters and NeNB = 7

eNBs/cluster where a center cluster is surrounded by one tier of clusters. The inter-cell

interference perceived by a given UE within its cluster is managed. However, the UEs at the

cluster-edge perceive a strong inter-cell interference from other clusters. From Figure 2.3(a),

the conventional scenario is analogous to the CoMP scenario when each sector is similar to

a cluster and it has its own isolated central controller. The central controller is not shown

in Figure 2.3, but it can be co-located in some eNB or placed at any point in the coverage area

of the multi-cell system connecting eNBs belonging to a given cluster through a fast backhaul.

It is possible to note in Figure 2.3 that UEs belonging to sectors placed on the system

edge experience less interference than those UEs placed on the central sector, making the

Signal to Interference-plus-Noise Ratio (SINR) values of these UEs more optimistic. The

wrap-around technique aims to eliminate these unwanted border effects and generally use

the cell replication or a virtual geometric model. The wrap-around model described in [26]

is considered here. The multi-cell layout that is folded like a torus consists of a mapping

between the plane and toroidal models.

Let us assume that each sector is equipped with NANT directional transmit antennas and

serves NUE UEs uniformly distributed over its coverage area. It is assumed that frequency

resources can be fully reused in all sectors. In the CoMP scenario, it is also assumed that

a cluster comprises M = NSECNANT transmission points, indicated by m = 1, 2, . . . ,M , whose

resource usage and transmission strategies are coordinated. The cluster serves a number J =

NSECNUE of single-antenna UEs, indicated by j = 1, 2, . . . , J , which are uniformly distributed

over its coverage area. In the conventional scenario the sector is equipped with M = NANT

transmit antennas and serves J = NUE UEs. In the considered notation, the antennas of each

sector at the eNB will be referred as Antenna Ports (APs).

2.4 Wireless channel model

The 3GPP defines the following three fading environments: suburban macrocell, urban

macrocell and urban microcell [44]. In the macrocell environment, it is usually assumed
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that the eNB antennas are above rooftop height and the scatterers surrounding the UE are

about the same height as or are higher than the UE, while in the microcell environment the

surrounding objects are usually at the same height as the eNB antennas [46]. This implies

that the multipath richness is higher in microcell environment. In this dissertation, the

urban microcell environment was chosen due to higher throughput, which is an important

characteristic to be evaluated by RRA strategies for the rate maximization, as mentioned

in Section 1.4.

The modeling of wireless channels adopted herein considers variations of the channel

strength over time and frequency. The variations can be roughly divided into two types:

large-scale fading and short-scale fading. The former originates due to path loss of signal,

as a function of distance, and shadowing, due to large objects such as buildings and

hills obstructing the communication path. Large-scale fading changes occur as the UE

moves through distances of the order of the cell size and is typically frequency independent.

Short-scale fading originates from constructive and destructive interference of signal replicas

coming through multiple signal paths between transmitter and receiver. Short-scale fading

changes occur at the spatial scale of the order of the carrier wavelength and is often frequency

dependent. Shadowing and distance dependent path loss will also affect the average received

signal strength significantly. Frequency-selective fading will result in rapid and random

variations in the channel attenuation.

The distance dependent path loss is based on the COST 231 Walfish-Ikegami Non Line

of Sight (NLOS) model. Particular aspects of path loss modeling for the urban microcell

environment are described in [44]. Low channel variations due to shadowing are modeled

by a lognormal distribution of mean zero and standard deviation σ.

In order to incorporate physical concepts about short-scale fading into the wireless channel

model, the Spatial Channel Model (SCM) is adopted which is a stochastic channel model

developed by 3GPP for evaluating MIMO system performance. It incorporates important

parameters such as phases, delays, Doppler shifts, Angle of Departure (AoD), Angle of

Arrival (AoA) and angle spread models to provide a description of MIMO channels [44].

The details of the generation of relevant parameters for the SCM as well as the values of

such parameters are specified by 3GPP and can be found in [44]. This dissertation uses the

SCM implementation available in [47] in order to obtain values for short-scale fading.

In this dissertation, the complex channel coefficient denotes the sampled frequency

response of the channel in the frequency domain, including path loss, shadowing and

short-scale fading effects. The frequency response of the channel is obtained by applying

the Fast Fourrier Transform (FFT) to the channel responses obtained with help of the SCM.

For a given PRB, the complex channel coefficient corresponds to the middle subcarrier of

the considered PRB. Let hj,m,c,n denote the complex channel coefficient between the transmit

antenna m of cluster c and the UE j on the PRB n. Let hj,c,n ∈ C
1×M denote the complex

channel vector that models the link between the UE j and all M transmit antennas of cluster

c on the PRB n. The channel vector hj,c,n is given by

hj,c,n =
[

hj,1,c,n hj,2,c,n · · · hj,M,c,n

]

, (2.1)

where:

◮ j = 1, 2, . . . , J , and J is the number of UEs in a cluster;

◮ c = 1, 2, . . . , C, and C is the number of clusters in the multi-cell scenario;
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◮ n = 1, 2, . . . , NPRB, and NPRB is the number of PRBs in the CoMP system.

2.5 Downlink CoMP transmission model

In the following, the discussion is restricted to one PRB n, such that the index n will be

omitted for simplicity of notation. When considering the transmission on a single PRB of a

given cluster of the multi-cell system, a cellular network consisting of M transmit antennas

and J UEs is typically observed. Assuming that UE j is served and scheduled by the RRA

algorithm in cluster c, the downlink signal yj,c received by UE j on a given PRB from all M

transmit antennas in cluster c is given by

yj,c = hj,cxj,c +

J∑

j′ 6=j

hj,cxj′,c

︸ ︷︷ ︸

zintra
j,c

+

C∑

c′ 6=c

J∑

j′

hj,c′xj′,c′

︸ ︷︷ ︸

zinter
j,c

+ηj,c, (2.2)

where:

◮ xj,c ∈ CM×1 is the symbol vector transmitted by the M antennas of cluster c to the jth

UE;

◮ ηj,c ∈ R is the Additive White Gaussian Noise (AWGN), with zero mean and variance σ2
η,

perceived by the jth UE in the cluster c;

◮ zintraj,c is the intra-cluster interference. This is the interference originated from antennas

of a same cluster and it is known to the eNB, since it is assumed perfect channel

knowledge inside the cluster;

◮ and zinterj,c is the inter-cluster interference. This is the interference originated from

antennas of other clusters. Even though it is unknown to the eNBs it can be estimated

by the UE j and reported via feedback channels.

For each PRB and cluster c, whose index is also omitted in the sequel for simplicity of

notation, the transmitted signal xj for the UE j is given by

xj = wj
√
pj

︸ ︷︷ ︸

uj

dj = ujdj , (2.3)

where:

◮ wj ∈ CM×1 is the unitary-norm precoding vector for the link between UE j and all

antennas of the cluster;

◮ pj ∈ R is the transmit power allocated for the UE j;

◮ uj ∈ CM×1 is the precoding vector including the transmit power pj allocated for the UE j;

◮ and dj ∈ C is the unit-variance data symbol to be sent to UE j.

As stated in Section 1.2.1, downlink CoMP transmissions can be or not mutually

orthogonal between UEs within a same cluster depending on the considered CoMP

transmission approach. In the CS transmission approach, data is only available at the serving

sector such that there is intra-cluster interference between transmissions to different UEs

within a same cluster. In the JP transmission approach, transmissions to different UEs
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within a same cluster will be typically mutually orthogonal herein, implying that there is no

interference between the transmissions, i.e., no intra-cluster interference.

In both approaches, RRA decisions are made with coordination among eNBs corresponding

to the cluster such that the intra-cluster interference can be managed by different CoMP

transmission strategies. However, CoMP transmission strategies are only allowed between

eNBs belonging to the same cluster, whereas eNBs belonging to different clusters are not

coordinated and thus they are potential inter-cluster interference sources.

In the following, the SINR is modeled as a measure of link quality perceived by a UE j

receiving data in a cluster on a given PRB. Using hj of (2.1), let us define the approximate

spatial matrices Rj for the UE j as

Rj = hH
j hj . (2.4)

Then, using (2.4), the SINR γj perceived by the UE j can be given by

γj =
pjw

H
j Rjwj

G∑

j′ 6=j

pj′w
H
j′ Rjwj′

︸ ︷︷ ︸

zintra
j

+zinterj + σ2
η

. (2.5)

where:

◮ σ2
η ∈ R is the noise power;

2.6 CSI modeling

This section lists the form of explicit CSI considered in the dissertation. Imperfect CSI

feedback is addressed and modeled by considering CSI estimation errors, partial CSI feedback

and outdated CSI knowledge.

In the following, CSI estimation errors are modeled. Usually, CSI at the receiver is obtained

through estimation, which is in general inaccurate and thus the measured CSI is only an

erroneous estimate of the actual CSI [16]. The receiver can generate a meaningful estimate

of the CSI, for example, by Maximum Likelihood (ML) and linear Minimum Mean Square

Error (MMSE) estimates [11]. Here is assumed MMSE estimation, so that the channel estimate

ĥj can be modeled as [48]

ĥj = h
ρ
j =

√

1− ρhj +
√
ρej , (2.6)

where:

◮ ej ∈ C1×M is the complex channel estimation error vector whose entries are Zero-Mean

Circular Symmetric Complex Gaussian (ZMCSCG) random variables with variance σ2
e;

◮ and ρ is a parameter that captures the quality of the channel estimation.

By the property of MMSE estimation [11], the channel estimate ĥj, whose entries are i.i.d.

ZMCSCG variables with variance σ2
ĥ
, is uncorrelated with ej. Assuming σ2

e = σ2
h, the estimated

channel variance is given by σ2
ĥ
= (1− ρ)σ2

h + ρσ2
e = σ2

h and so the channel energy is preserved.

Note that the parameter ρ models exactly the percent of channel error ej in comparison to the

estimated channel ĥj and it is given by

E

{[√
ρej
]2
}

E

{[

ĥj

]2
} = ρ

σ2
e

σ2
ĥ

= ρ. (2.7)
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Now, the partial CSI due to the limitation on number of reported channels is introduced. In

the considered model, the UE j is able to generate a meaningful estimate for the channels with

the l ≤ M highest channel gains ‖hj,m‖21 among a number M of antennas in all the cluster.

Each link among the UE j and the M antennas of its cluster c that can not be estimated and

so can not be reported to the eNB, is filled with zero in the resulting channel vector, which is

denoted by ĥj = h
ρ,l
j .

The CSI after estimation is reported to the transmitter via feedback channel in which time

delays can occur. For the sake of simplicity, it is assumed that all UEs in the CoMP system

experience the same time delay, which is denoted by an integer number ∆τ of TTIs. Finally,

the outdated CSI is given in ∆τ TTIs, i.e., ĥj = h
ρ,l,∆τ
j . This is the CSI effectively used as CSI

of UE j during the CoMP processing.

In this dissertation, the imperfect CSI issue is addressed in order to illustrate conditions

closer to real-world implementations of CoMP transmission techniques. It is also investigated

the performance achieved by RRA strategies in CoMP systems for perfect CSI, which occurs

for ρ = 0, l = M , and ∆τ = 0. In the rest of this work, the indexes ρ, l and ∆τ will be omitted

for simplicity of notation, using such indexes only when each is the parameter being varied in

analyses. In this way, both perfect and imperfect CSI for each UE j are denoted in the form

of channel vectors ĥj.

2.7 Radio resource allocation

In order to control the allocation of the shared resources among the UEs at each instant

of time, the RRA tries to exploit the channel variations through appropriate CoMP processing

using the CSI available at the time of the data transmission. In this way, the RRA in a

CoMP system will choose a set of UEs within a cluster that can efficiently share the same

PRB in space and will try to improve the received signal quality and/or cancel intra-cluster

interference. The RRA strategies considered in this dissertation consider two main steps:

scheduling and power allocation.

The scheduling is the process of dynamically allocating the available PRBs among the UEs

based on some set of rules that characterize the scheduling algorithm. In particular, the

scheduling algorithm in the conventional scenario performs individual allocation of PRBs in

each sector without knowledge of RRA decisions in other sectors. The scheduling algorithm in

an OFDMA-based CoMP system implements spatial reuse of radio resources among multiple

geographically separated transmission points. Here, the assignment decisions are taken

independently for each PRB. For each PRB and cluster, the scheduling algorithm will select a

set G ⊂ {1, 2, . . . , J} of UEs to receive data, where the number of UEs it contains will be denoted

by G = |G| ≤ M . Then, considering a group G, a channel matrix Ĥ ∈ CG×M can be defined as

follows

Ĥ =
[

ĥT
1 ĥT

2 . . . ĥT
G

]T
. (2.8)

In the JP transmission approach, data to a single UE is simultaneously transmitted

from multiple transmission points belonging to a cluster through spatial precoding. Then,

considering a group G, a precoding matrix W ∈ CM×G can be defined as follows

W =
[

w1 w2 . . . wG

]

, (2.9)

where each wj ∈ CM×1 is defined over all M transmit antennas such that the precoding vector
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wj for each UE j belonging to the group G can be written as follows

wj =
[

w1,j w2,j . . . wM,j

]T

. (2.10)

When considering the CS approach, the scheduling algorithm consists in determining

which sectors will transmit and which UEs will receive on each PRB of the cluster. In

this approach, while the scheduling decisions are made with coordination among all sectors

belonging to the same cluster, the data intended to each UE is only available at the serving

sector of this UE. This scenario provides flexibility to decide if all sectors associated to a

cluster will be used or if some of them will be turned off to avoid the intra-cluster interference

and reduce the error probabilities. In this approach, the precoding vector wj of the UE j,

defined in (2.10), becomes a sector selection vector, whose entries wm,j, ∀ 1 ≤ m ≤ M , are

binary variables indicating whether sector m sends data to the UE j, as defined in

wm,j =

{

1 If the UE j is allocated in sector m,

0 Otherwise,
(2.11a)

subject to

∑

1≤m≤M

wm,j ≤ 1, ∀j. (2.11b)

where constraint (2.11b) limits the number of sectors selected for transmission to a given UE

to be one.

In the sequel, the power allocation is described. In this dissertation, it has been assumed

per-sector power constraints, which are motivated by the fact that each sector has a separate

power amplifier with a limited linear range. Although optimal, Water Filling (WF) is not

considered in this dissertation, but Equal Power Allocation (EPA) is performed among the

subcarriers. While the EPA approach is not optimal, references in the literature [29–31] show

that the difference in performance is minimal. Let the total transmit power available on each

sector be defined herein as PTOT. Thus, PTOT is equally divided among the NPRB PRBs and the

maximum transmit power allocated to each PRB is given by

PPRB =
PTOT

NPRB
. (2.12)

It is worth mentioning that in the JP transmission approach the maximum per-PRB

transmit power PPRB will draw only an upper bound on the per-PRB transmit power of a

given sector, since each sector is shared among several UEs. On the other hand, in the

CS transmission approach, the transmission power pj is totally allocated for the UE j, i.e.,

pj = PPRB, in a given sector m when the UE j is allocated on that sector, i.e., wm,j = 1.

When observing the JP approach, the RRA strategies consider the downlink of a cluster

with M transmission antennas and also a total power constraint on all antennas together

expressed as PSUM = MPPRB, besides per-sector power constraints. The power assignment

can achieve different power allocations pj for each UE j, such that a power allocation vector

is defined as follows

p = [p1 p2 · · · pG]T , (2.13a)
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subject to

‖p‖1 ≤ PSUM. (2.13b)

For the JP approach, the modeling of a power allocation vector p is motivated due to use

of a total power constraint PSUM by RRA strategies.

Considering the previous definitions, the matrix U ∈ CM×G comprised by the precoding

matrix W and by the power allocation vector p, see Section 2.5, can be written as

U = [UT
1 UT

2 · · · UT
NSEC

]T = W
√

diag {p}, (2.14)

where Ui ∈ CNANT×G is the part of the matrix U relating to the sector i and all G UEs.

2.8 Inter-cluster interference estimation

CoMP transmission strategies are only allowed between eNBs belonging to the same

cluster, whereas eNBs belonging to different clusters are not coordinated and thus are

potential interference sources. Hence, while a given transmission point can enhance the

communication within a given cluster, this same transmission point probably will harm

another cluster depending on the leakage.

In the CoMP processing, the intra-cluster interference zintraj can be perfectly controlled. On

the other hand, the inter-cluster interference zinterj is hard to be perfectly known, but it can

be estimated. It is known that each UE is able to generate an estimate for the inter-cluster

interference zinterj . According to the 3GPP [5] an interference measure received by the eNB

should be used in order to perform link adaptation. Hence the accuracy of inter-cluster

interference estimation directly affects the system throughput. This mechanism seeks to

explore whether it is possible to further improve the inter-cluster interference estimation and

to improve system throughput. However, no definition of this measure is provided in 3GPP [5].

Here, an approach for inter-cluster interference estimation is considered in which the

link adaptation can be significantly improved. In the following, it is defined a simple

interference estimation mechanism, taking the interference measurement capability of the

UE into account. Since the information necessary to calculate the inter-cluster interference

zinterj is available, it is employed an approximation based on exponential filtering. Thus, the

inter-cluster interference estimate ẑinterj (t) of UE j at TTI t is modeled by [10,37,38]

ẑinterj (t) = α · zinterj (t− 1) + (1− α) · ẑinterj (t− 1), (2.15)

where:

◮ ẑinterj (t− 1) is the last interference estimate;

◮ zinterj (t− 1) is the interference obtained from the last TTI t− 1;

◮ and α is a factor that controls the oblivion of the exponential filter.

Please note that such an inter-cell interference estimate ẑinterj should be more precise for

schedulers that select the same UEs on the same PRBs for several consecutive TTIs.

2.9 Link-to-system interface

In the following, the link-to-system interface is addressed, which is used to map the

system-level metrics, such as SINR into link-level performance figures, such as Block Error
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Rate (BLER). First, the RRA schedules a set G of UEs to receive data. Then, based on the

available CSI, the link adaptation will set the data transmission rate of each radio link in

order to provide the best possible quality through the use of a suitable Modulation and

Coding Scheme (MCS). A high order modulation scheme transports more bits per symbol

and allows higher throughputs at the cost of correspondingly higher SINR values at the

UE. The throughput in a transmission is determined by the chosen MCS and the BLER

associated to a transmission depends on the instantaneous channel quality. Hence, the

link adaptation technique will try to adapt the Modulation and Coding Scheme in order to

maximize the throughput or reduce the BLER for each transmission, handling variations in

the instantaneous radio link quality [49].

For the sake of simplicity, the MCS for each PRB is adapted independently, likewise the

RRA strategies work. The SINR measured for a given link using (2.5) is employed to determine

the BLER for the block of data sent on each PRB. The BLER is used instead of the Bit Error

Rate (BER), since the PRB is composed by several OFDMA symbols.

The curves of BLER are obtained from [49], which plots the BLER(γ, MCS) as a function of

the Signal to Noise Ratio (SNR) γ perceived by a given UE and the MCS employed on the link.

On their turn, the curves of average throughput are derived from the BLER function for each

MCS, as follows

r(γ,MCS) = (1− BLER(γ,MCS)) · r(MCS)L. (2.16)

where:

◮ r(MCS) is the number of bits/symbol supported for a given MCS;

◮ and L = NSYMNSUB is the total number of symbols per block of the PRB.

Aligned with LTE, a set of fifteen MCSs are available for link adaptation. Figure 2.9 shows

the BLER and the average throughput curves available for link adaptation, from MCS-1

(leftmost) to MCS-15 (rightmost).
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Figure 2.4: Curves of link-level used for link adaptation.

In each transmission, the link adaptation is determined such that the MCS that yields the

maximum average throughput r(MCS) is selected according to

MCS⋆ = argmax
MCS

{r(γ,MCS)} . (2.17)

By (2.17), SINR thresholds can be found for each MCS, i.e., minimal SINR values required

to use each MCS. Regarding the available modulation schemes in 3GPP described in [23],
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which take into account 4-, 16- and 64-Quadrature Amplitude Modulation (QAM), as well as

the code rate also defined in [23], which is between 1/13 and 1, the MCSs considered in this

dissertation and its respective SINR thresholds are summarized in Table 2.1.

Table 2.1: SINR thresholds for link adaptation.
MCS Modulation Code rate [*1024] Rate [Bits/symbol] SINR threshold [dB]
MCS-1 4-QAM 78 0.1523 -6.2
MCS-2 4-QAM 120 0.2344 -5.6
MCS-3 4-QAM 193 0.3770 -3.5
MCS-4 4-QAM 308 0.6016 -1.5
MCS-5 4-QAM 449 0.8770 0.5
MCS-6 4-QAM 602 1.1758 2.5
MCS-7 16-QAM 378 1.4766 4.6
MCS-8 16-QAM 490 1.9141 6.4
MCS-9 16-QAM 616 2.4062 8.3
MCS-10 64-QAM 466 2.7305 10.4
MCS-11 64-QAM 567 3.3223 12.2
MCS-12 64-QAM 666 3.9023 14.1
MCS-13 64-QAM 772 4.5234 15.9
MCS-14 64-QAM 873 5.1152 17.7
MCS-15 64-QAM 948 5.5547 19.7

Note that UEs with an SINR value below -6.2 dB do not receive data because the BLER

would be too high and the resource probably wasted. This value was determined in order to

obtain a BLER of 1 % on transmissions with MCS-1. When a scheduled UE does not have a

high enough estimated SINR for its transmission to occur, it is considered to be allocated with

MCS-0, i.e., rate zero, and the transmission for this UE is not considered.

In CoMP systems, the link adaptation selects a proper MCS for each link of UEs in G based

on the involved CoMP processing, the available CSI, and estimated inter-cluster interference

ẑinterj values [14]. It should be noted that the link adaptation can be affected by imperfections

on the CSI Ĥ as well as random variations on inter-cluster interference level zinterj perceived by

each UE j. Thus, the selected MCS can be too conservative or too aggressive for the prevailing

channel conditions at the time of transmission, resulting in waste of resources or too many

errors. In either case, the system throughput will fall below what is achievable with perfect

CSI ẑinterj and accurate inter-cluster interference estimate ẑinterj .

In order to capture packet reception errors and their impact on the system throughput, the

SINR and the BLER are employed as link quality measurements. Consider a transmission for

the UE j, where the SINR γ̂j estimated and used for link adaptation is determined using (2.5),

such that it uses a certain MCS. First, by taking into account the estimated inter-cluster

interference ẑinterj , it is determined the BLER(γ̂j , MCS) for that transmission based on the

curves of BLER presented in Figure 2.4(a). After that, a random test is performed in order to

determine whether the transmitted data has been successfully received or not by the UE j.

2.10 System-level simulation

This section provides an initial performance assessment of downlink CoMP. Initially, it

should be noted that the evaluations are done based on relatively ideal assumptions. The

assessment should thus be seen as an indication of the potential of CoMP as a technological

component of LTE-Advanced. Later, at the end of Chapter 4, performance evaluations are

provided considering non-ideal conditions regarding CSI.

Computer simulation is taken as an important tool to analyze and assess the performance

of complex systems such as CoMP. Thus, a system-level simulation tool based on the

system model described in this chapter has been implemented. It is oriented to embrace
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features aligned with the 3GPP LTE-Advanced architecture [2] and it is used to investigate

the performance of RRA strategies. The models and assumptions are aligned with the 3GPP

urban micro-cell environment and the SCM is used [47].

In the following, the most relevant simulation parameters and the performance

metrics used to evaluate the performance achieved by the RRA strategies are introduced

in Section 2.10.1.

2.10.1 Simulation parameters and performance metrics

The main parameters considered in the simulations are summarized in Table 2.2.

Table 2.2: Simulation parameters.
Parameter Symbol Value Unit Remark

Cellular scenario

Number of clusters C 7 – w/ wrap-around [7,10,25]
Number of eNBs per cluster B 7 – three-sectorized cells
Number of sectors per cluster – 21 – 3 sectors/cell
Number of antennas per eNB NeNB 1 – –
Number of antennas per cluster M 21 – –
Number of antennas per UE NUE 1 – –
Site-to-site distance 500 m 3/2 · radius of the sector
Minimum distance between eNB and UE 35 m –
Average UEs speed v 3 km/h –

OFDMA

Carrier frequency fc 2 GHz –
System bandwidth BW 1.92 MHz –
Subcarrier spacing ∆fc 15 kHz –
Number of symbols per TTI NSYM 14 – –
Number of subcarriers per PRB NSUB 12 – 180 kHz bandwidth
Number of PRBs NPRB 6 – –
Transmit power per PRB PPRB 29.4 dBm –
Required SNR at the sector border – -6.2 dB –

Antenna pattern A(θ°) −min

{

12
[

θ°
70°

]2

, 20

}

dB cf. [44]

Propagation

Path loss model – 35.7 + 38 log10(d) dB cf. [44]
Shadowing standard deviation σ 8 dB –
Spatial channel model – 3GPP SCM – urban-micro scenario,

NLOS
Algorithms

Spatial precoding – ZF – cf. [50]
Power allocation – EPA –
Link adaptation – – – Based on CSI and

inter-cluster interference,
MCSs according to [23]

Exponential filter constant α [0, 0.1, · · · , 1] – –
Simulation

Number of snapshots – 10 – –
Snapshot duration – 1 s –
Effective TTI duration – 1 ms –
User distribution – Uniform – –
Traffic model – Full buffer – –
Offered load – 2, 4, 6, and 8 UEs/sector –

Basically, the simulation events are organized in snapshots, during which path loss and

shadowing are assumed to remain constant for all the UEs while the time variations of fast

fading are considered. The dynamics of fast fading can be captured by assuring that each

snapshot takes at least 1 s, which is longer than 10 times the channel coherence time for the

simulation parameters. In order to capture the impact of long term propagation effects on the

system performance, several snapshots are simulated.

In the following, the metrics considered to evaluate the performance of the RRA strategies

investigated in CoMP systems are described:

◮ System spectral efficiency measures the amount of bits per time-frequency resource and

per sector. It does not take into account UEs left out on the scheduling;
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◮ Offered load means the number of UEs physically present in a sector. Due to multi-user

diversity, the larger the offered load, the larger the system spectral efficiency;

◮ Average inter-cluster interference power measures the amount of interference from

external clusters. It allows to evaluate the efficiency of interference management;

◮ Cumulative Distribution Function (CDF) of the BLER observed by UEs in system;

◮ Probability Distribution Function (PDF) of the usage of the MCSs in all transmissions;

◮ PDF of the group size gives the distribution of the number of UEs in a cluster. It provides

a general view of the dynamic adaptation of the group size.



Chapter 3
UE spatial grouping

3.1 Introduction

For Long Term Evolution (LTE) systems, finding an optimum Physical Resource Block (PRB)

reuse is a complex task because of the interdependencies between resource assignment and

power allocation that arise when determining which User Equipments (UEs) should share a

same PRB. Moreover, the high number of PRBs and UEs within a cluster gives high dimension

to the Radio Resource Allocation (RRA) problem and makes prohibitively time-consuming

finding its optimum solution. Therefore, one concentrates here on studying heuristics for

solving the intra-cell resource reuse problem, which intend to be simple, effective, and to

avoid excessive and non-linear operations.

In this chapter, the focus is more specifically on the RRA subproblem of determining a

suitable set of UEs to spatially reuse a given PRB within a cluster having as objective the

maximization of the total system throughput. Herein, UEs spatially compatible are those ones

which can efficiently share the same PRB in space within each cluster using Space Division

Multiple Access (SDMA) [6].

The Coordinated Scheduling (CS) and Joint Processing (JP) approaches introduced

in Section 1.2.1 are considered here. In the CS case, one obtains an adaptive resource reuse

scenario in which the interference is coordinated among the Antenna Ports (APs) from the

same cluster. In the JP case, the multiple APs work as a distributed antenna array, so that

the set of served UEs is considered as an SDMA group whose signals are separated in space

using precoding, as it is usual in Multi-User (MU)-Multiple Input Multiple Output (MIMO)

scenarios. For each Coordinated Multi-Point (CoMP) transmission approach, different Evolved

Node Bs (eNBs) within a cluster cooperate with each other and exchange Channel State

Information (CSI) through a fast backhaul in order to adjust their RRA strategies and mitigate

the effects of intra-cluster interference.

The rest of this chapter is organized as follows. Section 3.2 presents a particular

formulation of the UE grouping problem introduced in Section 1.4 for both CS and JP

transmission approaches. RRA strategies employed to solve the UE spatial grouping problem

observing the CS and JP transmission approaches are described in Sections 3.3 and 3.4,

respectively. Finally, a brief summary of the chapter is provided in Section 3.5.

3.2 Problem statement

In this section, the RRA problem considered in this chapter is discussed. As stated before,

the focus in this dissertation is on the RRA subproblem of spatially reusing PRBs within a
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cluster as to maximize the system throughput such that the problem to be solved here is the

choice of a set G ⊂ {1, 2, . . . , J} of UEs spatially compatible, i.e., which can efficiently share the

same PRB in space. However, RRA in frequency, time, and space is a complex task in such

systems due to the large number of degrees of freedom to be handled. Here, the assignment

decisions in each PRB are taken independently, so that information about scheduling in some

PRB is not used in each other. It makes the RRA problem less complex.

When observing the CS approach, UE scheduling decisions are made with coordination

among cells within a cluster. This approach determines which PRBs should be used by which

AP-UE links. Herein, each AP is assigned to only one UE such that wj,m = 1 if the UE j

is being served by AP m and wj,m = 0 otherwise. So, a variable intra-cell resource reuse is

implemented. In this approach, the power allocated to each UE j, as well as the power that

the AP m will transmit, is the maximum transmit power allocated to each PRB, i.e., pj = PPRB.

In the CS approach, the general problem consists in maximizing the utility function U(G,U)

for a given cluster regarding a certain RRA described by the UEs’ group G and precoding

matrix U. Here, the utility function represents the throughput of a cluster. This problem can

be formulated as

{G⋆,U⋆} = argmax
{G,U}

{U(G,U)} , (3.1a)

subject to

G ⊂ {1, 2, . . . , J}, (3.1b)

|G| ≤M, (3.1c)
∑

1≤m≤M

wm,j ≤ 1, 1 ≤ j ≤ J, (3.1d)

‖Ui‖2FRO ≤ PPRB, 1 ≤ i ≤M. (3.1e)

where constraint (3.1b) imposes that only UEs belonging to the cluster can be served by a RRA

strategy. Constraint (3.1c) limits the total number of UEs selected to the number of APs in

the cluster. Constraint (3.1d) limits the number of APs selected for coordinated transmission

to a given UE. As it was introduced in Section 2.7, in the CS approach the precoding vector

wj of the UE j becomes a sector selection vector, whose entries wm,j, ∀ 1 ≤ m ≤ M , are

binary variables indicating whether sector m sends data to the UE j. Finally, per-sector

power constraints in (3.1e) limit the total transmit power of each AP within the cluster.

When observing the JP transmission approach, multiple APs within a cluster cooperate in

jointly transmitting precoded data symbols to multiple UEs such that desired signals overlap

coherently and the intra-cluster interference is minimized. The CSI available is used to design

individual transmit precoding vectors wj for each scheduled UE j. Therefore, the cluster of

the CoMP scenario can be seen as a distributed MU-MIMO system using APs as elements of a

distributed antenna array.

In the JP approach, the general problem consists in maximizing the utility function U(G,U)

for a given cluster regarding a certain RRA described by the UEs group G and precoding matrix

U. Here, the utility function also represents the throughput of a cluster. This problem can be

formulated as

{G⋆,U⋆} = argmax
{G,U}

{U(G,U)} , (3.2a)
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subject to

G ⊂ {1, 2, . . . , J}, (3.2b)

|G| ≤M, (3.2c)

‖Ui‖2FRO ≤ PPRB, 1 ≤ i ≤M. (3.2d)

where constraint (3.2c) limits the total number of UEs selected to the number of APs in

cluster. For the JP approach, the power allocation is conducted for the whole cluster by

considering a sum-power constraint on all sectors together as expressed in (2.13), however,

the effective transmit power of each sector should be smaller than or equal to PPRB. Thus,

constraint (3.2d) limits the total transmit power of each AP within the cluster. As it can be

noted, the formulation in (3.2) considers a precoding matrix U such that it is quite general

and can be extended straightforwardly to cases where RRA strategies perform separately

precoding and power control. On the one hand, constraint (3.2d) on power usage might hinder

finding the optimal RRA solution. On the other hand, it could be alleviated when regarding

sub-optimal solutions.

As cooperation among different clusters was not assumed, both problems in (3.1) and (3.2)

were formulated for a single cluster. From the CoMP system perspective, the individual

maximization of utility function in a cluster still leads to a sub-optimal solution for the

multi-objective problem of the overall multi-cell scenario, since the interactions among

clusters are ignored. However, the complexity issues mentioned for both problems are

expected to become even more significant for this multi-objective problem.

Even so, both problems (3.1) and (3.2) are hard-to-solve combinatorial problems and an

optimum solution to theses problems might be too complex for application in a practical CoMP

system. Indeed, the general problem of allocating resources in a CoMP system to maximize

the system throughput is a very complex optimization problem [51]. It involves subproblems

like resource assignment, power allocation, antenna selection, resource reuse, UE spatial

grouping, among others [6]. The optimum solution of some of these subproblems may also be

quite complex, requiring the use of efficient suboptimal solutions. From now on, the study

will be restricted to efficient suboptimal solutions.

3.3 Coordinated scheduling approach

Since the CSI is available among cooperating cells, in this approach the problem (3.1)

can be seen as a dynamic channel allocation problem [5]. Having knowledge about all links

associated with their controlled APs, each cluster can estimate the intra-cluster interference

induced by the PRB reuse. Then, scheduling algorithms can be used to determine dynamically

which AP-UE links can simultaneously use the same PRB. This scenario provides flexibility to

decide if all APs within each cluster will be used or if some of them will be turned off to avoid

the inter- and intra-cluster-interference and reduce the error probabilities.

Due to perfect knowledge of the intra-cluster interference, the CoMP system has an

improved link adaptation in comparison to the conventional system. In the conventional

system, the UE estimates the inter-cell interference due to the transmission of surrounding

APs. In a CoMP system, the UE only estimates the inter-cluster interference while the

interference caused by the APs within a same cluster is accurately determined. In this way,

the information of interference used by link adaptation can be separated in two components:

estimate for the inter-cluster interference, which is measured and reported by each UE, and

knowledge of the intra-cluster interference, which is accurately determined.
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In this approach, different amounts of information available for RRA in a cluster are

considered. Initially, let a cluster in which each eNB performs individual RRA with perfect

knowledge about the intra-cluster interference, while the UEs are able to estimate the

inter-cluster interference. In this scenario, both interference-aware and interference-unaware

schedulers are observed. While the former selects UEs without taking into account

information on interference levels, the latter considers both channel quality and estimates

for the inter-cluster interference. After that, the level of cooperation is then increased

by performing joint multi-cell scheduling. Thus, two kinds of scheduling algorithms are

classified: individual single-cell scheduling and joint multi-cell scheduling. The former

assigns APs within a cluster individually one-by-one and uses the perfect knowledge about

the intra-cluster interference to achieve an enhanced link adaptation. The latter performs

decisions of scheduling with coordination among the transmissions of different APs within a

cluster.

In the following, the single-cell scheduling and joint multi-cell scheduling are considered in

Sections 3.3.1 and 3.3.2, respectively. The performance of RRA strategies in the conventional

system is evaluated in Section 3.3.3. Finally, the performance of the CS approach for

single-cell scheduling and multi-cell scheduling is analyzed in Section 3.3.4.

3.3.1 Individual single-cell scheduling

Single-cell schedulers assign each AP to a UE on each PRB and so lead to full resource

reuse, assigning APs within a cluster individually, one-by-one, so that no actual information

about other APs of the cluster is used for scheduling. For these schedulers, all PRBs are

reused at all APs, unless no UE associated with the AP perceives a link quality high enough

to support communication (see Section 2.9).

For comparison purposes, the single-cell schedulers are also employed in the conventional

system, in which an estimate of the inter-cell interference perceived by each UE can or not

be available. When it is available, it is important to highlight that the interference due to

the cluster is viewed as a part of the estimate of total inter-cell interference. Although

the knowledge about the transmissions is not fully available, the link adaptation will use

a significant estimate for the inter-cell interference. Moreover, when it is not available, the

link adaptation will be optimistic being based only on the Signal to Noise Ratio (SNR) and

the system performance will be degraded. The operation of single-cell schedulers in the

conventional system is similar to its operation in a CoMP system.

Three kinds of single-cell schedulers for the CS approach are considered:

◮ Random (RND) scheduler: this scheduler performs random scheduling;

◮ Maximum Gain (MaxGain) scheduler: this scheduler performs interference-unaware

scheduling;

◮ Maximum SINR (MaxSINR) scheduler: it is based on interference-aware scheduling;

In the following, the RND, MaxGain and MaxSINR schedulers are described for the CoMP

system, as well as an extension of each one for the conventional scenario is discussed.

3.3.1.1 Random

This scheduler selects UEs within the sector of a given AP in random manner, i.e., each UE

within the sector has equal chance to be scheduled. It is important to highlight that due to

random scheduling many UEs that don’t contribute for the rate maximization will be selected.
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For this scenario, an AP uses a PRB unless no UE associated with this AP perceives a link

quality high enough to support communication (see Section 2.9).

In order to provide a better description of the RND scheduler, Algorithm 3.1 presents it in

algorithmic form.

Algorithm 3.1 RND scheduler for CS.
for each PRB do

for each cluster do
for each AP do

Selects a link within the sector at random with uniform distribution
end for
for each scheduled UE do

Calculates the perceived intra-cluster interference
Performs link adaptation

end for
end for

end for

As it can be observed, there is a loop over the PRBs and a loop over the APs in Algorithm 3.1,

which are thus assigned one-by-one. In other words, for each resource allocation the RND

scheduler selects a link at random on each PRB and AP and then performs link adaptation.

3.3.1.2 Maximum gain

It is well-known that, when no interference is considered, the system throughput is

maximized by assigning each PRB at each AP m to the UE j⋆ with the highest channel gain [27].

For each PRB and AP, the MaxGain scheduler assigns the UE j with the highest channel gain

according to

j⋆ = argmax
j

{|hj,m|} . (3.3)

As it can be seen in (3.3), this scheduler performs interference-unaware scheduling by

always selecting the UE with the highest channel gain on each PRB and AP.

In order to provide a better description of the MaxGain scheduler, Algorithm 3.2 presents

it in algorithmic form.

Algorithm 3.2 MaxGain scheduler for CS.
for each PRB do

for each cluster do
for each AP do

Selects the link with the highest channel gain
end for
for each scheduled UE do

Calculates the perceived intra-cluster interference
Performs link adaptation

end for
end for

end for

As it can be observed in Algorithm 3.2, the MaxGain scheduler treats each cell as an

independent cell (see Section 2.3) such that no information about other APs of the cluster is

used. For each resource allocation, the MaxGain scheduler selects the link with the highest

channel gain on each PRB and AP, and then performs link adaptation. The difference to

the MaxGain scheduler applied in the conventional scenario relies on the usage of accurate

information about intra-cluster interference for link adaptation. This additional information

shall not change substantially the UEs scheduled on each PRB.

3.3.1.3 Maximum SINR

The MaxGain scheduler has no information about interference. When intra-cluster

interference is considered, this solution is expected to provide higher system throughput,



3.3. Coordinated scheduling approach 34

since it still tends to select UEs close to the APs. For each PRB and AP, the MaxSINR

scheduler assigns the UE j with the maximum Signal to Interference-plus-Noise Ratio (SINR)

value according to

j⋆ = argmax
j

{γ̂j} . (3.4)

From (3.4), this interference-aware scheduler takes advantage of the CSI for scheduling

UEs with high channel gains like the MaxGain scheduler, as well as it uses the estimate of

intra-cluster interference for choosing the UEs with best link quality. However, even if the

information about the CSI and estimate of the inter-cluster interference for all UEs within a

cluster is available, determining the optimal scheduling would still be difficult because the

number of APs transmitting on each PRB can change interference.

In order to provide a better description of the MaxSINR scheduler, Algorithm 3.3 presents

it in algorithmic form.

Algorithm 3.3 MaxSINR scheduler for CS.
for each PRB do

for each cluster do
for each AP do

Selects the link with the highest SINR
end for
for each scheduled UE do

Calculates the perceived intra-cluster interference
Performs link adaptation

end for
end for

end for

3.3.2 Joint multi-cell scheduling

The joint multi-cell scheduling makes use of the CSI to schedule a certain number of UEs

while coordinating interference among AP-UE links, and therefore implements a dynamic

RRA. For this approach, it is considered an interference-aware scheduler that adapts the

number of APs transmitting in each PRB to provide a trade-off between cluster throughput

and intra-cluster interference, which is termed here Best Rate Allocation (BRA).

The BRA scheduler sequentially increases the number of transmitting APs until the

intra-cluster interference causes the cluster throughput to decrease. It is based on a greedy

search-tree logic that tries to find a close to optimum solution without checking all the possible

solutions [10]. The BRA scheduler starts by scheduling the AP-UE link with highest channel

gain within the whole cluster. Then it calculates the throughput by scheduling each available

AP-UE link on other APs together with the previously scheduled link. The scheduled link

is the one which leads to the highest throughput and, in case of ties, the link with highest

channel gain is chosen. This procedure continues adding new links whenever the cluster

throughput increases. Otherwise, it finishes and goes to the next PRB. Algorithm 3.4 presents

an algorithmic description of the BRA scheduler.

In Algorithm 3.4, for each PRB and cluster, the BRA scheduler selects the link with the

highest channel gain and checks if the sum of the throughputs of all the scheduled links

of the cluster decreased. After that, it selects the new link that maximizes the sum of the

link throughputs by testing all possibilities. Then, it performs link adaptation and estimates

the sum of the throughputs of scheduled links. Finally, the BRA scheduler removes the last

scheduled link. This is necessary because the last scheduled link was the one that decreased

the sum throughput. The solution provided by this algorithm should be close to optimal. But

this good performance comes at the expense of a high number of iterations that make this
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Algorithm 3.4 BRA scheduler for CS.
for each PRB do

for each cluster do
Selects the AP-UE link with highest channel gain
Estimates cluster throughput
while cluster throughput is increasing do

Selects the AP-UE link with highest channel gain
Estimates cluster throughput
Performs link adaptation

end while
Removes last AP-UE link

end for
end for

much slower than the MaxGain and MaxSINR schedulers.

3.3.3 Performance in the conventional scenario

In the following, the conventional scenario is simulated for comparison purposes. For

calibration purposes, Section 3.3.3.1 presents the adjustment of the inter-cell interference

estimation scheme described in Section 2.8, which will be used by other RRA strategies in the

CoMP scenario, and Section 3.3.3.2 presents the performance of RRA strategies considered

for rate maximization in the conventional scenario introduced in Section 3.3.1.

3.3.3.1 Inter-cell interference measurement scheme

In this section, the performance of the exponential filtering is evaluated over RRA strategies

for the conventional scenario with different characteristics of UEs scheduling (see Section 2.8

for more details). For this purpose, the RND and MaxSINR schedulers are chosen. The former

tends to schedule a varying set of UEs and the latter tends to choose the same UEs to receive

data.

Figure 3.1 shows the Cumulative Distribution Function (CDF) of Block Error Rate (BLER)

obtained by the RND and MaxSINR schedulers in the conventional scenario for a range of the

parameter α, which is a factor that controls the oblivion of the exponential filter.
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Figure 3.1: CDF of BLER varying the parameter α of the exponential filter.

From Figure 3.1(a) the RND scheduler has the lowest levels of BLER for α = 0.2 while

from Figure 3.1(b) the MaxSINR scheduler presents the best performance for α = 1. The

BLER of each algorithm has different behaviors when varying α. The RND scheduler has

its best performance for a more conservative estimate of inter-cell interference, while the

best performance of MaxSINR scheduler is for the more aggressive estimate of inter-cell

interference, i.e., the last estimate. Being the inter-cell interference estimate predictable
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it makes sense to believe that Maximum Rate (MR) algorithms like the MaxSINR scheduler

select the same UEs for scheduling.

It was seen that the gains of using exponential filtering increased as the transmissions got

less random being the last estimate of inter-cell interference adequate for MR algorithms. As

the focus here is kept on RRA strategies for rate maximization, α = 1 is adopted in the rest of

this dissertation. Thus, regarding the knowledge assumed about the inter-cell interference in

the CoMP scenario for a given UE and PRB, it is used the last measured interference value as

the inter-cell interference estimate of the current Transmission Time Interval (TTI).

3.3.3.2 RRA in conventional scenario

In the following, the performance for the RRA strategies introduced in Section 3.3.1 are

evaluated in a conventional system. The MaxGain and MaxSINR schedulers, which perform

interference-unaware and interference-aware scheduling for rate maximization, respectively,

and the RND scheduler as well as the MaxGain scheduler with interference-unaware link

adaptation, which is termed by MaxGain-blind scheduler, are considered.

Figure 3.2 shows the system spectral efficiency of RRA strategies considered in the

conventional scenario.
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Figure 3.2: System spectral efficiency achieved by single-cell scheduling algorithms in the conventional
scenario.

As it can be seen in Figure 3.2, the higher the load in UEs/sector is, the lower the system

spectral efficiency of the RND scheduler is and the higher the system spectral efficiency of MR

algorithms is. The performance of MaxGain-blind scheduler is compromised by the lack of an

estimate of inter-cell interference for link adaptation, as it would happen to any of the other

algorithms.

Besides that, the higher the load in UEs/sector is, the higher the performance gain of the

MaxSINR scheduler becomes in comparison to MaxGain scheduler. However, a performance

gain was only possible with high loads. At the lowest load in UEs/sector, both schedulers

have the same performance.

Figure 3.3 presents the CDF of BLER and the Probability Distribution Function (PDF) of

the usage of the Modulation and Coding Schemes (MCSs) for the MaxSINR and MaxGain

schedulers.

As it can be seen in Figure 3.3, for high loads, the MaxSINR scheduler has lower BLER

as well as higher usage of higher MCSs than the MaxGain scheduler. It happens because

interference-aware scheduling, which is the case of the MaxSINR scheduler, takes advantage

of availability of the estimate of the inter-cell interference to better map the link quality

perceived by each UE.
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Figure 3.3: CDF of BLER and PDF of the usage of the MCSs presented by single-cell scheduling
algorithms in the conventional scenario.

From Figure 3.3(a) and Figure 3.3(b), both MaxSINR and MaxGain schedulers have

the same performance for low loads, as observed in Figure 3.2. From Figure 3.3(a)

and Figure 3.3(b), it may be seen that it occurs because both algorithms have approximately

the same curves of BLER and percentage of use of MCSs. As the MaxGain scheduler selects

UEs with the highest channel gains and also with the lowest inter-cell interference estimates

as the MaxSINR scheduler, for low UEs load both algorithms tend to select the same UEs.

3.3.4 Performance with coordinated scheduling

For CoMP schemes based on interference coordination, performance evaluation of RRA

strategies introduced in Section 3.3 have been conducted considering different amounts of

information. Initially, it is assumed a CoMP scenario which just considers the accurate

knowledge of the intra-cluster interference to perform a better choice of MCSs. Afterwards, it

is increased the level of coordination using the CSI to determine the intra-cluster interference

and to perform adaptive UE spatial grouping.

RRA strategies for single-cell scheduling and multi-cell scheduling are presented

in Section 3.3.4.2 and in Section 3.3.4.2, respectively.

3.3.4.1 Single-cell scheduling

In this section, RRA strategies for the CoMP scenario that perform scheduling

independently by all sectors, as in the conventional scenario, are evaluated, but the

inter-cluster interference that will occur during the associated data transmission is

determined in a cooperative manner in order to improve the link adaptation process.

Figure 3.4 shows the system spectral efficiency achieved by RRA strategies considered

for the CoMP scenario and the CDF of BLER for the MaxSINR scheduler in both CoMP and

conventional scenarios.

As it can be seen in Figure 3.4(a), an enhanced link adaptation does not have a significant

contribution to increase the spectral efficiency of the CoMP system when RRA strategies

for rate maximization are considered. Spectral efficiency gains are only possible for the

RND scheduler, which has its performance compromised due to the difficulty of interference

estimation mechanisms when scheduled UEs change constantly.

From Figure 3.4(b), the majority of UEs experience lower BLER values in the CoMP scenario

than in the conventional scenario, especially for low loads in UEs/sector. Therefore, even

though the single-cell scheduling does not add significant gains in spectral efficiency to the
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Figure 3.4: System spectral efficiency and CDF of BLER presented by single-cell scheduling algorithms
in the both conventional and CoMP scenarios.

CoMP scenario it contributes to a better performance of link adaptation; in addition to not

taking advantage of the availability of CSI for performing CS.

3.3.4.2 Joint multi-cell scheduling

In this section, the performance of the BRA scheduler, an interference-aware algorithm of

joint multi-cell scheduling that effectively makes use of coordinated scheduling, is evaluated

(see Section 3.3.2 for more details about this scheduler).

In the following, performance is evaluated for the best RRA strategy in the conventional

scenario, i.e., MaxSINR scheduler, and the RRA strategy considered for joint multi-cell

scheduling, i.e., BRA scheduler. Figure 3.5 shows the system spectral efficiency and the PDF

of the usage of the MCSs for both RRA strategies and both scenarios.
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Figure 3.5: System spectral efficiency and PDF of the usage of the MCSs achieved by the joint multi-cell
scheduling algorithm considered for the CoMP scenario.

It is shown in Figure 3.5(a) that the BRA scheduler has a gain in system spectral efficiency,

especially for low loads in UEs/sector, clearly showing that not reusing all PRBs within a

cluster can provide better results whenever inter-cluster interference can be estimated and

employed to perform intelligent RRA. However, for high load in UEs/sector, the coordination

was not able to provide a considerable gain.

From Figure 3.5(b), for both schedulers, the higher the load is, the higher the percentage

of allocated high MCSs is and, for both loads, the BRA scheduler has higher usage of higher
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MCSs than the MaxSINR scheduler. Due to the perfect knowledge about the intra-cluster

interference, this scheduler determines more accurately the SINR and chooses better the

MCS to be used on each link resulting in high spectral efficiency.

In order to try to understand the similar performance achieved by the BRA and MaxSINR

schedulers for the highest load, the average inter-cluster interference power as well as the

BLER presented by both schedulers is evaluated. Figure 3.6 shows the average inter-cluster

interference power and the CDF of BLER for the BRA and MaxSINR schedulers.

2 3 4 5 6 7 8
−95

−90

−85

−80

−75

−70

 

 

BRA
MaxSINR

A
ve

ra
ge

in
te

r-
cl

us
te

ri
nt

er
fe

re
nc

e
po

w
er

[d
B

m
]

Load in UEs/sector

(a) Average inter-cluster interference power

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

60

70

80

90

100

 

 

C
D

F
(%

)

BLER

MaxSINR - 8 UEs/sector

MaxSINR - 2 UEs/sector

BRA - 8 UEs/sector

BRA - 2 UEs/sector

(b) CDF of the BLER

Figure 3.6: Average inter-cluster interference power and CDF of the BLER achieved by the joint
multi-cell scheduling algorithm considered for the CoMP scenario.

As it is seen in Figure 3.6(a), BRA presents higher levels of average inter-cluster

interference than the MaxSINR scheduler, indicating a greater number of transmissions in

the CoMP system. The full reuse transmission achieved by the MaxSINR scheduler in the

conventional scenario leads to higher interference and lower SINR values, resulting in a

lower system spectral efficiency. Although the BRA scheduler decreases the inter-cluster

interference levels, which is achieved with more transmissions, it makes a better management

of interference and thus achieves a better use of higher MCSs.

From Figure 3.6(b), it can be seen that BRA has much higher BLER values than the

MaxSINR scheduler, which is due to the link adaptation being more sensitive to variations of

the inter-cluster interference with a joint multi-cell scheduling. Given that BRA forms groups

of various sizes in subsequent TTIs, the inter-cluster interference estimation mechanism is

not able to follow these variations, since it is based on the last estimate of the inter-cluster

interference. Despite showing higher BLER values, BRA has a better performance than the

MaxSINR scheduler.

3.4 Joint processing approach

This approach multiplexes in space several UEs on the same PRB, which in fact already

happens in the CS approach. While the spatial multiplexing of signals intended to different

UEs is done using space-domain precoding techniques [50], spectral efficiency gains are

often obtained by transmitting to spatially compatible UEs, i.e., a given group of UEs whose

channels are favorable for spatial separation [6]. When the JP transmission approach is

considered, the problem (3.2) can be seen as an SDMA grouping problem [6].

To solve this problem, SDMA grouping algorithms which avoid placing UEs with highly

correlated channels in the same SDMA group G are usually employed [6]. Normally, SDMA

grouping algorithms are heuristics composed by two elements: a grouping metric and a
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grouping algorithm [6]. While the metric measures the spatial compatibility among the UEs

in an SDMA group based on the CSI available at the cluster, the grouping algorithm, based

on the grouping metric, builds and compares different SDMA groups. Once the SDMA group

G is determined, spatial precoding, power allocation and link adaptation can be realized.

Additionally, performance gains can be achieved with dynamic adaptation of the SDMA group

size.

Herein, particular SDMA algorithms which follow this model are considered. First, the

grouping algorithm is discussed in Section 3.4.1. Next, the grouping metric is discussed

in Section 3.4.2. Then, Section 3.4.3 describes dynamic adaptation of SDMA group size. After

that, some information about the considered precoding is provided in Section 3.4.4. The

power allocation is treated in Section 3.4.5 while respecting the per-sector power constraints,

as introduced in Section 2.7. Finally, the performance of the JP approach is analyzed

in Section 3.4.6.

3.4.1 Grouping algorithm

The task of the grouping algorithm is to arrange the UEs of the cluster in a spatially

compatible SDMA group by using the grouping metric. Here, two algorithms for building

SDMA groups are considered:

◮ Best Fit (BF) grouping algorithm: It is also a greedy algorithm similar to the one described

in Section 3.3.2 for the CS transmission approach [10,52–54];

◮ RND grouping algorithm: It just randomly builds an SDMA group of specific group

size the same way the RND algorithm for the CS transmission approach described

in Section 3.3.1 performs. It does not consider any grouping metric.

The grouping algorithm adds UEs to an SDMA group while a stop criterion is not satisfied.

Here, two stop criteria are considered:

◮ Target Group Size (TGS) stop criterion: In this case, adding UEs is done until the group

size G reaches the target SDMA group size G⋆;

◮ Maximum Grouping Metric (MGM) stop criterion: The stop happens when the grouping

metric value is not increasing.

In the following, the BF and RND algorithms for the JP approach are described.

3.4.1.1 BF grouping algorithm

Starting from an SDMA group containing an initial UE j′, the BF algorithm extends the

group by sequentially admitting the most spatially compatible UE with respect to the UEs

already admitted to the SDMA group.

Let G = {j′} be the initial SDMA group containing only the UE j′, chosen as the UE with the

highest channel norm, and let G be the size of the group G. Then, the BF algorithm computes

the grouping metric φ(G∪{j}) for each UE j 6∈ G. Next, the UE which leads to the highest value

for the grouping metric φ(·) is inserted into the group.

The same procedure is repeated with the remaining UEs and an additional UE is admitted

to the group, and so on while the stop criterion (either TGS or MGM criterion) is not satisfied.

An algorithmic description of the BF grouping algorithm is given later for each grouping

metric.
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3.4.1.2 RND grouping algorithm

For comparison purposes, a random grouping algorithm is also considered, which selects

UEs within a cluster in a random manner, like the RND algorithm presented in Algorithm 3.1

for the CS transmission approach. The only difference is that it selects UEs within a cluster

while the RND algorithm for the CS approach selects UEs within a sector. By definition, the

RND grouping algorithm considers TGS stop criterion.

The RND grouping-based algorithm under TGS criterion is sketched in the following.

Algorithm 3.5 RND grouping-based algorithm under TGS criterion.
for each PRB do

for each cluster do
while G ≤ G⋆ do

Selects a link within the sector at random with uniform distribution
end while
for each scheduled UE do

Calculates the perceived intra-cluster interference
Performs link adaptation

end for
end for

end for

3.4.2 Grouping metric

In general, the higher the channel gains are, the higher their achievable throughput.

Therefore, UEs with high channel gains should be preferred. However, the effective gain of

the channels of the UEs in an SDMA group are conditioned to the degree of spatial correlation

among their channels [6, 15, 34, 35]. Because the higher the group throughput is, the more

spatially compatible the UEs in an SDMA are, grouping metrics should favor SDMA groups

whose UEs have high channel gain and whose UEs’ channels are highly spatially uncorrelated.

The grouping metric is employed by the grouping algorithm to measure the spatial

compatibility among UEs. In general, all grouping metrics make use of the CSI representing

the channel matrix of the UEs available for CoMP processing.

In the following, three grouping metrics are:

◮ Capacity (CAP) grouping metric: It considers the capacity of an SDMA group as metric of

spatial compatibility;

◮ Convex Combination (CC) grouping metric: It is a convex combination of the total spatial

correlation and gain of the channels;

◮ Successive Projection (SP) grouping metric: It performs successive projections of the

channel of the candidate UEs to an SDMA group onto the null space of the channels of

previously selected UEs for an SDMA group.

In the following, each one of these grouping metrics is discussed.

3.4.2.1 CAP grouping metric

CAP grouping metric exactly reflects the estimated throughput of the SDMA group. The

higher the group throughput is, the more spatially compatible the UEs in an SDMA group are.

Therefore, the CAP grouping metric efficiently measures the spatial compatibility among the

UEs. However, this grouping metric takes into account precoding, power allocation and link

adaptation for each candidate UE to an SDMA group. Since precoding depends on complex

operations, the good performance achieved by this metric comes at the expense of increased

complexity [48].
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This grouping metric resolves the problem of maximizing the utility function U(G,U), which

represents the throughput of a given cluster, as stated in (3.2), and involves the determination

of the UEs group G and its precoding matrix U. As the intra-cluster interference is totally

cancelled by spatial precoding, the SINR estimate used to perform link adaptation only

depends on the estimate of inter-cluster interference and, consequently, this solution is not

necessarily optimal, since the inter-cluster interference might be unknown.

The BF grouping algorithm using the CAP metric under MGM stop criterion is sketched in

the following.

Algorithm 3.6 BF grouping algorithm using the CAP metric under MGM stop criterion.
for each PRB do

for each cluster do
j′ ← argmax

j∈J

{‖hj‖2}

G ← {j′}
while cluster throughput is increasing do

j∗ ← argmax
j 6∈G

{φCAP(G ∪ {j})}

G ← G ∪ {j∗}
end while
G⋆ ← G

end for
end for

Since precoding involves complex operations such as matrix inversion, the complexity is

expected to be high, specially for larger SDMA groups [48]. Therefore, this algorithm is only

used for comparison purposes.

3.4.2.2 CC grouping metric

In the following, the CC grouping metric, which involves the convex combination of the

spatial correlation and channel gains, is addressed [48]. First, an attenuation vector a ∈ R
J×1
+

containing the inverse of the channel gains of all UEs belonging to the cluster is defined as

a =
[

‖h1‖−2
2 ‖h2‖−2

2 . . . ‖hJ‖−2
2

]T

, (3.5)

and a spatial correlation matrix C ∈ R
J×J
+ is defined as

C =
∣
∣
∣

√

diag {a}
(
HHH

)√

diag {a}
∣
∣
∣ . (3.6)

Let the binary selection vector s be defined as

s =
[

s1 s2 . . . sJ

]T

, (3.7)

where sj is a binary variable indicating whether the UE j belongs to the SDMA group G, i.e.,

sj = 1, ∀j ∈ G, otherwise sj = 0.

After that, when combining (3.5) and (3.6), the convex combination φCC(G) ∈ R
1×J
+ , which

is composed by the spatial correlation and channel gains, is defined as

φCC(G) = β
aT

‖a‖2
s + (1− β) sT

C

‖C‖FRO

s, (3.8)

where β is a parameter that controls the trade-off between spatial correlation and channel

gain. Thus, the UE j∗ to be added to group G is given by [48]

j∗ = argmin
j

{φCC(G)j} , 1 ≤ j ≤ K. (3.9)
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The BF grouping algorithm using the CC metric under TGS criterion is sketched in the

following.

Algorithm 3.7 BF grouping algorithm using the CC metric under TGS criterion.
for each PRB do

for each cluster do
j′ ← argmax

j∈J

{‖hj‖2}

G ← {j′}
while G ≤ G⋆ do

j∗ ← argmin
j 6∈G

{φCC(G ∪ {j})}

G ← G ∪ {j∗}
end while
G⋆ ← G

end for
end for

3.4.2.3 SP grouping metric

Here, the sum of channel gains with null space Successive Projections (SPs) is considered

as grouping metric [6,15,34,35]. For this metric, the channels of a set of UEs are successively

projected onto the null space of the channels of previously selected UEs for the SDMA group.

In general, the higher the channel gain ‖hj‖22 of UE j, the higher its achievable throughput.

However, considering null space projections, the effective gains of the channels of the UEs in

an SDMA group are conditioned to the degree of spatial correlation among the channels [6,

15,34,35].

Let N1 and N2 denote the null spaces of the channels h1 and h2, respectively, and consider

that h1 is projected onto N2 and h2 is projected onto N1. Then, if the channels h1 and h2

are highly spatially uncorrelated, much of the gains of the original channels are preserved in

the equivalent channel after the projections. However, if the channels h1 and h2 are highly

spatially correlated, a considerable part of the channel gains gets lost after the projection [6,

15,34,35].

This principle is also valid for an SDMA group G with more than two UEs. However, in this

case, the channel hj of each UE j ∈ G would have to be projected onto the joint null space of

the UEs j′ ∈ G, j′ 6= j. Using SPs, the channel hj of UE j ∈ G is projected only onto the null

space of all UEs j′ ∈ G, j′ = 1, 2, . . . , j − 1 [34,35]. Let IM denote an M ×M identity matrix and

Tj ∈ CM×M denote the matrix that projects the channel hj of UE j onto the null space of the

channels of UEs j′ [34,35]. Then, Tj is written as

Tj =







IM , j = 1,

Tj−1 −
TH

j−1h
H
j−1hj−1Tj−1

‖hj−1Tj−1‖22
, j = 2, . . . , G.

(3.10)

Using (3.10), the sum of the channel gains with null space SPs φSP(G) is written as

φSP(G) =
G∑

j=1

‖hjTj‖22 , (3.11)

which will be used by the grouping algorithm to select a set of spatially compatible UEs for G.

The BF grouping algorithm using the SP metric under TGS criterion is sketched in the

following.

In the first loop, the first encoded UE is chosen to be the one with largest channel gain. In

the second loop, considering the null space of the channel of the first encoded UE, the second
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Algorithm 3.8 BF grouping algorithm using the SP metric under TGS criterion.
for each PRB do

for each cluster do
j′ ← argmax

j∈J

{‖hj‖2}

G ← {j′}
while G ≤ G⋆ do

j∗ ← argmax
j 6∈G

{φSP(G ∪ {j})}

G ← G ∪ {j∗}
end while
G⋆ ← G

end for
end for

encoded UE is chosen to be the one that exhibits the largest gain in this subspace. At any

step of the algorithm, the UE is selected that exhibits the largest gain within the subspace

orthogonal to the channels of previously selected UEs.

3.4.3 Dynamic SDMA group size

The larger the SDMA group size G is, the higher the spatial multiplexing gains can be

achieved [55] such that larger SDMA groups G should be preferred. However, the previous

steps may be insufficient to ensure a reliable transmission of all UEs in an SDMA group

G, mainly when the maximum group size is achieved, i.e., G = M . Besides that, often

maximal spectral efficiency is achieved by transmitting to less UEs or using less beams than

the available number of spatial dimensions [56].

Hence, the ideal SDMA group size G∗ should be determined dynamically. Sequential

Removal Algorithms (SRAs) remove UEs from an SDMA group G while throughput gains

are achieved. Thus, the power released after each removal can be redistributed among the

remaining UEs in order to improve their performance.

It is important to mention again that the SRA removes UEs while throughput gains are

achieved such that it is aware of the spatial precoding and power allocation. The grouping

metrics considered in Section 3.4.2, that use grouping algorithm with TGS stop criterion, i.e.,

adding UEs until a fixed group size G is achieved, build SDMA groups unaware of the spatial

precoding and power allocation. On the other hand, SRA is not employed when the MGM

stop criterion is considered, since it has the same objective of the SRA, i.e., the group size G

is dynamically determined while throughput gains are achieved. In this way, the SRA has a

particular contribution for algorithms that consider fixed group size. Algorithm 3.9 presents

an algorithmic description of the SRA.

Algorithm 3.9 SRA with a given removal criterion.
for each PRB do

for each cluster do
Removes a UE under a given removal criterion
Estimates cluster throughput
while cluster throughput is increasing do

Removes a UE under a given removal criterion
Estimates cluster throughput
Performs link adaptation

end while
Adds the last UE

end for
end for

In the following, three removal criteria are considered:

◮ MCS-0 removal criterion: It removes UEs allocated with MCS-0;
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◮ Minimum Gain (MinGain) criterion: It removes the UE with the lowest channel gain;

◮ Minimum SINR (MinSINR) criterion: It removes the UE with the lowest estimated SINR.

In the following, each one of these criteria is described with more details.

3.4.3.1 MCS criterion

When UEs grouped in the SDMA group do not have a high enough estimated SINR so that

its transmission can occur, it can be allocated with MCS-0 by the link adaptation. In this way,

power resources among the APs cooperating will be unnecessarily allocated for them.

In this criterion, among the UEs with MCS-0 the UE j∗ with the lowest estimated SINR γ̂j

is removed as defined below

j∗ = argmin
j

{γ̂j} , ∀j ∈ G | MCSj = 0. (3.12)

3.4.3.2 MinGain criterion

Since UEs whose channels are not spatially compatible affect the spatial separation of

other UEs in the SDMA group, the effective channel gain will be affected. This criterion

removes the UE with the lowest effective channel gain.

The UE j∗ with the lowest effective channel gain is removed as defined below [48]

j∗ = argmin
j

{
|hjwj |2

}
, ∀j ∈ G. (3.13)

This criterion is employed after the MCS-0 criterion, since it is necessary to assure that

there are no UEs allocated with MCS-0 at the SDMA group after the removals.

3.4.3.3 MinSINR criterion

This criterion removes the UE with the lowest estimated SINR, like in the MCS-0 criterion,

and it is employed after the MCS-0 criterion, like in the MinSINR criterion. The difference

to both criteria previously presented relies on the removal of UEs with the lowest estimated

SINRs among all UEs belonging to the SDMA group.

In this criterion, the UE j∗ with the lowest estimated SINR γ̂j is removed as defined below

j∗ = argmin
j

{γ̂j} , ∀j ∈ G. (3.14)

3.4.4 Spatial precoding

The CSI can be used to mitigate the intra-cell interference zintraj,c and efficiently separate

streams intended to different UEs. This task is accomplished, e.g., by employing precoding

techniques [50] which adaptively weight the symbols transmitted from each antenna in the

cluster. The precoding is often used for obtaining orthogonal transmissions among UEs.

There exist different spatial precoding techniques that allow to separate signals intended to

the UEs belonging to the SDMA group G. Among them, linear precoding techniques are often

considered by future wireless systems due to their simplicity and good performance [6,34].

Linear precoding, in case of spatial multiplexing, implies linear processing by means of

M × G precoding matrix W that is applied at the transmitter side. In the general case, G is

smaller or equal than M , implying that G signals are spatially multiplexed and transmitted

using M transmit antennas.
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In this dissertation, Zero-Forcing (ZF) precoding is considered, which steers a beam

towards UE j direction and nulls in the direction of the UEs j′ 6= j, thus eliminating

intra-cluster interference [50]. For the SDMA group G with channel matrix H, the precoding

matrix W is given by

W = H†, (3.15)

where H† represents the pseudo-inverse H† = HH
(
HHH

)−1
of the group channel matrix H of

SDMA group G.

The precoding vectors wj, with j ∈ G, do not have unit norm initially. However, per-UE

normalization under the precoding vectors wj building the ZF precoding matrix W can be

performed by

wj =
wj

‖wj‖2
, ∀j ∈ G, (3.16)

where wj represents the jth column of the precoding matrix W of SDMA group G.

For ZF precoding, the interference suppression comes at the cost of a reduction in the

effective channel gains, which might lead to large performance losses if UEs with spatially

correlated channels belong to the SDMA group G.

3.4.5 Power allocation

In this section, the power allocation is addressed. To each UE j ∈ G, power is allocated

afterwards while respecting the constraint on the maximum power per PRB PPRB available

at each AP. Since the RRA strategies employed for the JP approach consider a total power

constraint in all antennas together of a cluster with M transmission antennas given by PSUM

(see Section 2.7). It is initially done Equal Power Allocation (EPA) among the G UEs belonging

to the SDMA group G as follows

pj =
PSUM

G
, ∀j ∈ G. (3.17)

Because the power ratio among elements of each column of the matrix U cannot be

changed in order to preserve the properties of the spatial precoding and because no AP can

use more power than PPRB, the per-sector power constraints are respected by scaling the

whole precoding matrix U so that the squared norm of the row with highest norm becomes

equal to PPRB.

Considering the precoding matrix U ∈ CM×G, the power scaling can be easily handled as

follows. First, the sector i∗ which consumes the highest power is chosen as

i∗ = argmax
1≤i≤NSEC

{PSEC, i} , (3.18a)

where

PSEC, i = ‖Ui‖22. (3.18b)

As it can be seen in (3.18), the total power spent by a sector i corresponds to the sum of the

squared absolute value of the weights it employs to each transmit signal. Hence, the transmit

power of AP i corresponds to the squared norm of the ith row of precoding matrix U.

After that, the power scaling must be performed by scaling the whole U matrix so that the

squared norm of the row ui∗ with highest norm becomes equal to PPRB, i.e.,

U =
U

√
PSEC, i∗

. (3.19)
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3.4.6 Performance with SDMA grouping

In this section, the performance obtained by SDMA grouping algorithms is

investigated. The performance of the CAP-based SDMA grouping algorithm, which performs

interference-aware grouping, is investigated in Section 3.4.6.1. Section 3.4.6.2 provides a

performance assessment of some interference-unaware SDMA grouping algorithms, namely,

RND, CC and SP algorithms. Finally, Section 3.4.6.3 deals with the performance evaluation

of interference-unaware SDMA grouping combined with SRAs.

3.4.6.1 Interference-aware grouping

In this section, the performance obtained by the CAP algorithm is presented comparing its

performance with the BRA’s performance. For the grouping performed by the CAP algorithm,

the group size is dynamically adjusted. Thus, the distribution of the group size provides a

general view of the behavior of UE spatial grouping, which allows us to analyze the efficiency

of the CAP algorithm.

Figure 3.7 presents the system spectral efficiency achieved by the CAP algorithm with and

without precoding normalization in comparison to system spectral efficiency achieved by the

BRA scheduler. The same figure also presents the PDF of the group size for the CAP algorithm

with and without precoding normalization and the BRA scheduler.
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Figure 3.7: System spectral efficiency and PDF of the group size achieved by the CAP grouping
algorithm.

As it can be seen in Figure 3.7(a), the CAP algorithm without precoding normalization

presents a gain of spectral efficiency with respect to the BRA algorithm. This gain represents

a shift that occurs in practically all loads, being around 11% for the lowest load and around

7% for the highest load. Now, observing the CAP algorithm with precoding normalization in

comparison to BRA, the higher the load in UEs/sector is, the higher the comparative gain is.

Here, the gain achieves almost 30% for the highest load.

From Figure 3.7(b), for both loads the CAP algorithm achieves higher SDMA group sizes

G than the CAP algorithm without precoding normalization. When BRA and CAP algorithms

are compared, it is shown that, for the lowest load, the behavior of group size for the CAP

algorithm is almost kept in relation to BRA. For the highest load, there is a small difference.

The average group size achieved by the CAP algorithm is between 19 and 20 UEs while it for

the BRA algorithm is between 18 and 19 UEs. Thus, dynamics of the UE spatial grouping

with JP transmission is maintained in comparison to CS transmission.

Figure 3.8 presents the CDF of BLER and the PDF of the usage of the MCSs for the BRA
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and CAP algorithms.
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Figure 3.8: CDF of BLER and PDF of the usage of the MCSs presented by the CAP grouping algorithm.

Even though the CAP algorithm has a better spectral efficiency than the BRA scheduler, it

shows high BLER values for any value of load in UEs/sector, as it is shown in Figure 3.8(a).

The CAP algorithm, like the BRA scheduler, uses the CSI to iteratively build a group of

UEs that achieves high joint throughput. Since this approach compares achievable cluster

throughputs when building a given set of UEs, it indirectly chooses UEs that have high

channel gain, receive little interference from other clusters and are more spatially compatible.

Since the grouping performed by the CAP algorithm is based on estimates for the inter-cluster

interference, the SDMA groups are much diversified in subsequent TTIs, like the BRA

scheduler. Figure 3.8(a) allows to infer that the link adaptation performed for dynamic UE

spatial grouping under the JP approach is more sensitive to variations of the inter-cluster

interference than under the CS approach.

From Figure 3.8(b), for both loads the CAP algorithm has higher percentage of use of

the highest MCS than the BRA scheduler. For the highest load, it is shown that with the

CAP algorithm almost 60% of the transmissions achieve the highest MCS while with the

BRA algorithm the highest MCS is achieved by less of 20% of transmissions. This happens

because the SDMA grouping algorithms performs spatial precoding in order to mitigate the

intra-cluster interference, which is totally canceled by using the ZF precoder. Since the

intra-cluster interference is canceled, the UEs are able to be serviced with higher MCSs.

Besides that, due to the power scaling performed for the JP approach because no AP can use

more power than PPRB, only one AP transmits with the maximum power per PRB PPRB while

the other APs transmit with power bellow PPRB. This strategy reduces the power consumption

on the system and consequently reduces the levels of inter-cluster interference in comparison

to the conventional scenario and CS approach, also favoring the use of higher MCSs.

3.4.6.2 Interference-unaware grouping

As observed in Section 3.4.6.1, the CAP algorithm has a gain in system spectral efficiency

in comparison to the BRA algorithm, the main algorithm considered for the CS approach.

However, as stated in Section 3.4.2.1, the computation of the CAP-based metric involves

computing precoding vectors for each UE to be added in the SDMA group such that this

algorithm is only used for comparison purposes. Besides that, interference-aware grouping

algorithms, like the BRA and CAP algorithms, have shown high levels of BLER.

In the following, the performance of algorithms described in Section 3.4.2 that
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perform interference-unaware grouping is presented. The first algorithm considered is

the RND algorithm, which is considered only for comparison purposes, being it described

in Section 3.4.1. Next, the second algorithm considered is the CC algorithm, which is

composed by a more simple metric that involves the convex combination of the spatial

correlation and channel gains, being it described in Section 3.4.2.2. After that, the

SP algorithm is considered, which deals with user orthogonalization based on successive

projections onto null space (see Section 3.4.2.3 for more details).

Figure 3.9 presents the system spectral efficiency for the RND, CC, CAP and SP algorithms.
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Figure 3.9: System spectral efficiency achieved by the RND, CC, CAP and SP grouping algorithms.

As it can be seen in Figure 3.9(a), the CC algorithm has the worst performance for β = 0,

i.e., when only spatial correlation is considered for grouping. The best performance is achieved

introducing a small amount of correlation in combination with channel gains of the UEs,

which is given by β around 0.8 for almost all loads.

From Figure 3.9(b), it can be seen from the performance of the RND algorithm that

grouping UEs not spatially compatible affects very much the spatial separation achieved

by the ZF precoding, reducing the spectral efficiency of the system. Similarly, the CC

algorithm was also not appropriate to the task of grouping spatially compatible UEs, since

this performance was far below the CAP’s performance.

It was shown that the SP algorithm performed very well and obtained performance gains

for almost all loads. However, for the lowest load the performance of the SP algorithm was

worse than the performance achieved by the CAP algorithm.

In order to try to understand the worse performance achieved by the SP algorithm in

comparison to CAP for the lowest load, the distribution of the percentage of use of the MCSs

as well as the BLER presented by both algorithms are evaluated. Figure 3.10 presents the

CDF of BLER and the PDF of the usage of the MCSs for the CAP and SP algorithms.

From Figure 3.10(a), for the highest load, both SP and CAP algorithms have the same

performance. However, it is shown that for the lowest load the SP algorithm has lower

percentage of use of the highest MCS and higher percentage of use of other MCSs than

the CAP algorithm. Due to low load in UEs/sector the SP algorithm with fixed group size

is forced to group UEs whose channels are not spatially compatible, which affects very much

the spatial separation achieved by the ZF precoding reducing the spectral efficiency of the

system, as shown in Figure 3.9(b).



3.4. Joint processing approach 50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

 

 

P
D

F
(%

)

MCS

CAP - 8 UEs/sector
CAP - 2 UEs/sector

SP - 8 UEs/sector
SP - 2 UEs/sector

(a) PDF of the usage of the MCSs

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

70

80

90

100

 

 

C
D

F
(%

)

BLER

CAP - 8 UEs/sector

CAP - 2 UEs/sector

SP - 8 UEs/sector

SP - 2 UEs/sector

(b) CDF of BLER

Figure 3.10: PDF of the usage of the MCSs and CDF of BLER presented by the SP and CAP grouping
algorithms with fixed group size.

As it can be seen in Figure 3.10(b), the performance in terms of BLER was worse with the

CAP algorithm than with the SP algorithm, which allows to infer that the link adaptation is

much more sensitive to variations on the inter-cluster interference when estimates for the

inter-cluster interference are used for grouping. Unlike the CAP algorithm, the SP algorithm

tends to select the same UEs, which contributes to reduce the levels of BLER. Indeed, since

the SP algorithm performs an interference-unaware grouping it chooses the most spatially

compatible UEs without considering the estimates for inter-cluster interference to building

the SDMA group and thus it is more stable.

In order to obtain more gains with the SP algorithm, the performance regarding several

fixed group sizes less than G = 21 is evaluated. Figure 3.11 presents the system spectral

efficiency achieved by the SP algorithm regarding several fixed group sizes.
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Figure 3.11: System spectral efficiency achieved by the SP grouping algorithm regarding several fixed
group sizes.

By Figure 3.11(a), for the lowest load, the maximum spectral efficiency is achieved by

SDMA group sizes G smaller than the maximum SDMA group size G = 21, while for the

highest load, the maximum spectral efficiency value is reached for G = 21.

From Figure 3.11(b), the SP algorithm with fixed group size was not appropriate to

the task of grouping UEs spatially compatible for low load in UEs/sector, since this
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performance was far below the CAP’s performance, but by properly selecting the best group

sizes given in Figure 3.11(a), the SP algorithm achieved better performance than the CAP

algorithm. This result indicates that SDMA grouping with dynamic group size should achieve

better performance than the interference-unaware grouping algorithms under TGS stopping

criterion considered in this section.

3.4.6.3 SDMA grouping with dynamic group size

In order to obtain more gains, the SDMA group size can be dynamically adapted according

to channel conditions and the load by employing sequential removals of UEs of the SDMA

group, which is possible by the use of SRAs. The SRAs introduced in Section 3.4.3 are

employed in order to obtain an adaptive size of the SDMA group and so higher system spectral

efficiency. Here, the removal criteria defined in Section 3.12, which remove UEs by MCS-0,

MinGain and MinSINR criteria, are considered.

Figure 3.12 presents the system spectral efficiency achieved by the SP algorithm combined

with SRAs comparing its performance with the CAP’s performance.
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Figure 3.12: System spectral efficiency achieved by several SRAs.

As it can be seen in Figure 3.12(a), for low loads, significant gains in spectral efficiency

can be achieved with use of SRAs. For high loads the SDMA grouping is better capable of

choosing spatially uncorrelated UEs, due to the multi-user diversity, reducing the need for

UE removal. Further, removing UEs with MCS-0 is responsible for most of the gain. Between

the MinGain and MinSINR criteria, removing UEs by the MinGain criterion proved to be more

efficient than removing UEs by the MinSINR criterion. Besides that, SRAs are able to provide

gains in spectral efficiency compared to the performance achieved by the CAP algorithm for

the lowest load, which was not possible with the use of the SP algorithm with fixed group size.

From Figure 3.12(b), the performance in terms of BLER was worse with the SRA than with

the SP algorithm under fixed group size although it has better performance in terms of system

spectral efficiency. Since the removals are based on increasing the cluster throughput and so

based on computation of the SINR estimates for each UE belonging to the SDMA group, this

strategy tends to choose a diversified number of UEs, which contributes to increase the levels

of BLER, like the CAP algorithm. Although the SRA shows high BLER values, it has a better

performance than the SP algorithm.

In the following, the PDF of the usage of the MCSs and the PDF of the group size achieved

by the SRA-MinGain and CAP algorithms are presented in Figure 3.13.
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Figure 3.13: PDFs of the usage of the MCSs and group sizes achieved by the SP grouping algorithm
combined with SRA MinGain.

As it can be seen in Figure 3.13(a), the effect observed in Figure 3.10(a) for low loads does

not happen with SRA. Here, the SRA removes the UEs whose channels are not spatially

compatible and that were forcibly grouped into the SDMA group by the SP algorithm with

fixed group size, G = 21.

From Figure 3.13(b), it has been verified that the most frequent group size is not always

the one that provides maximum spectral efficiency. This implies that the performance of the

SP algorithm for a fixed group size is somehow degraded, especially for G = 21. For example,

for the lowest load the best performance of the SP algorithm with fixed group size is achieved

for G = 15 (see Figure 3.11(a)), while the most frequent group size with the use of SRA is

G = 18. When the SRA and CAP algorithms are compared, it is shown that, for both loads

the SRA achieves higher SDMA group sizes G than the CAP algorithm. It is also seen that,

for the highest load, the average group size achieved by the SRA is given between 20 and 21

UEs, thus being close to the maximum allowed value of 21. This result indicates that the SRA

performs almost full reuse within a cluster for high loads.

3.5 Summary

This chapter provided system-level analyses for strategies of RRA in CoMP systems

considering UE spatial grouping observing both CS and JP transmission approaches. This

chapter has shown the performance gains of using interference knowledge and spatial

processing in the scheduling of a CoMP system in terms of system spectral efficiency as a

function of the number of UEs/sector.

Initially, the MaxGain algorithm was simulated in the conventional scenario with

interference-unaware link adaptation and it has been shown to have the worst performance.

This happens because the link adaptation uses a very optimistic estimate of the UEs channel

quality resulting in high levels of BLER. This result shows clearly that the inter-cell

interference is an important issue to be considered by efficient link adaptation schemes that

have as objective the maximization of the throughput. The single-cell schedulers simulated

in the CoMP scenario with an enhanced link adaptation presented similar performance

than the same algorithms simulated in the conventional scenario. This result showed that

the estimates of inter-cell interference used for link adaptation were very accurate when

single-cell rate maximization strategies performed full reuse of the PRBs in the conventional

scenario.
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Taking advantage of the availability of CSI for performing interference coordination, the

BRA scheduler, which indeed models the CS transmission approach, provided considerable

gains compared to the conventional schedulers. The CS approach uses the CSI available to

iteratively build a group of UEs that achieves high joint throughput. Because this approach

compares achievable cluster throughputs when building a given set of UEs, it indirectly

chooses UEs that have high channel gain and receive little interference from other APs.

Differently from what happened in the conventional scenario, in which full reuse of PRBs in

all sectors has been used, the BRA performs adaptive multi-cell scheduling. It has been seen

that the BRA scheduler outperformed the MaxGain and MaxSINR schedulers, clearly showing

that not reusing all PRBs can provide better results whenever inter-cluster interference can

be estimated and employed to perform intelligent RRA.

Additionally, the RND, CC, CAP and SP algorithms considered for the JP transmission

approach were simulated. It was shown that the SP algorithm achieves the best performance

when compared to the other algorithms previously presented for high loads in UEs/sector.

However, for low loads in UEs/sector the algorithms under fixed group size have worse

performance than the dynamic algorithms such that the best group size G⋆ should vary

from load to load and shall depend on the channel conditions. It has been shown that the

performance of the SP algorithm for a fixed group size is somehow degraded, mainly for low

loads in UEs/sector. In particular, the SP algorithm combined with SRA-MinGain algorithm

has achieved the best performance for all considered loads.



Chapter 4
SINR balancing

4.1 Introduction

In order to provide a more reliable communication to the User Equipments (UEs) grouped

in the SDMA group G, it is desirable to support a certain level of link quality. As it is known,

the link quality mainly depends on the Signal to Interference-plus-Noise Ratio (SINR). Hence,

the quality of UEs’ links might be assured if individual target SINRs values γt
j, ∀ j ∈ G, are

met [39].

The target SINRs represent minimum values of quality defined for a given service type.

According to each service class, there might exist a relation between a target SINR and the

required SINR for a given Modulation and Coding Scheme (MCS) in order to be possible to

achieve a necessary rate required by the service class. This way, the SINR balancing has

the objective of providing a minimum quality to the downlink Coordinated Multi-Point (CoMP)

transmissions of the grouped UEs. In this dissertation, the target SINR values are considered

as the SINR thresholds of the MCS defined by the link adaptation for each UE j ∈ G.

The SINR balancing problem introduced in Section 1.4 is investigated in a multiuser CoMP

scenario, in which UEs are subject to an SINR constraint and strong inter-cell interference,

and there is a power limitation per antenna [37]. Therefore, the considered solution in this

dissertation extends the algorithm in [39], which is based on the single-cell scenario and a

sum power constraint.

It is important to account for the possibility that the SINR constraints may be infeasible,

i.e., that they cannot be jointly supported. If the constraints are infeasible, the initial

conditions must be relaxed, e.g., by reducing the target SINR values or number of UEs

grouped. Given that the constraints are feasible, power minimization can be performed after

the SINR balancing in order to reduce the power used in excess and thus the inter-cluster

interference [39].

The remainder of this chapter is organized as follows: The formulation of SINR balancing

problem with joint beamforming and power control is treated in Section 4.2. In Section 4.3,

the SINR balancing solution under sum-power constraint is presented. In Section 4.4,

the feasibility of the SINR balancing algorithm is established through Sequential Removal

Algorithms (SRAs). Power minimization after SINR balancing is treated in Section 4.5.

In Section 4.6, simulation results are presented and discussed. Finally, a brief summary

of the chapter is provided in Section 3.5.
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4.2 Problem statement

In order to state the problem of balancing the SINR among several co-channel UEs, a

total power constraint on the power allocation vector p, defined as PSUM in Section 2.7, is

considered for each cluster. Consider the target SINRs values γt
j, ∀ j ∈ G, as above defined.

Using the power allocation vector p and the precoding matrix W, both defined in Section 2.7,

and considering the downlink SINR γj(W,p), defined in (2.5), the downlink SINR balancing

problem can be written as

CDL(PSUM) = maxmin
W,p

γj(W, p)

γt
j

, ∀ j ∈ G, (4.1a)

subject to

‖wj‖2 = 1, (4.1b)

‖p‖1 ≤ PSUM. (4.1c)

As it was shown in (2.5), the downlink SINR values γj of all UEs j are coupled by the

intra-cell interference zintraj , which depends on both precoding vectors wj′ and transmission

powers pj′ . Therefore, the power allocation vector p and the precoding matrix W cannot be

optimized separately. Thus, the downlink problem (4.1) is hard to solve, but its uplink dual

can be more easily solved by an iterative uplink beamformer and power update algorithm [39].

The uplink SINR γUL
j (wj ,q) is given by

γUL
j (wj , q) =

qjw
H
j Rjwj

wH
j

(

∑G
j′=1
j′ 6=j

qj′Rj′ + (zinterj + σ2
η)I

)

wj

, ∀ j ∈ G. (4.2)

As it can be observed in (4.2), the uplink SINRs γUL
j (wj ,q), ∀ j ∈ G are coupled only by the

transmission powers qj′ but not by the beamformers wj. This makes the uplink case much

easier to solve than the downlink case. Indeed, in [39] the authors showed that the downlink

SINR balancing problem (4.1) can be more easily solved by solving its uplink dual. Assuming

equal receiver noise and exploiting duality between uplink and downlink, it can be shown

that if a set of target SINR values γt
j, ∀ j ∈ G, may be achieved in the uplink using a set of

beamformers wj, then the same target SINR values can be achieved in the downlink with the

same beamformers wj and an adequate power allocation.

However, in [39], only a single-cell case is considered, i.e., one sector, and inter-cell

interference is not included in the model. This solution is investigated with some modifications

in a CoMP scenario, in which there is a power limitation per sector and UEs are subject to

strong inter-site-cell interference. In order to achieve similar conditions to the single-cell

case, the effect of inter-cell interference is incorporated into the effect of noise. Initially, it

is assumed that the inter-cluster interference is Gaussian distributed in the same way that

the noise, which allows us to simply add the interfering power estimate ẑinterj directly to the

noise power σ2
η to take the SINR measurements. Now, considering unequal noise, the matrices

R̃j = Rj/(z
inter
j +σ2

η) and interferences plus noise variances zinterj +σ2
η = 1, 1 ≤ j ≤ K are scaled.



4.3. SINR balancing under sum-power constraint 56

Let q be the power allocation vector in the uplink. Therewith, the uplink SINR becomes

γUL
j (wj , q) =

qjw
H
j R̃jwj

K∑

k=1
k 6=j

qkw
H
j R̃kwj

︸ ︷︷ ︸

zintra
j

+1

, ∀ j ∈ G. (4.3)

Considering the uplink SINR γUL
j (w,q) defined above, the uplink SINR balancing problem

can be written as

CUL(PSUM) = maxmin
wj ,q

γUL
j (wj , q)

γt
j

, ∀ j ∈ G, (4.4a)

subject to

‖wj‖2 = 1, (4.4b)

‖q‖1 ≤ PSUM. (4.4c)

4.3 SINR balancing under sum-power constraint

The downlink beamforming problem (4.1) under SINR constraints can be solved efficiently

by an iterative uplink beamformer and power update algorithm [39]. The solution achieved

by [39] for the SINR balancing problem (4.1) is presented here in a CoMP scenario under

sum-power constraint.

In the following, the power assignment and the beamforming algorithms are separately

performed in Sections 4.3.1 and 4.3.2, respectively.

4.3.1 Power assignment

For fixed beamformers W̃, the downlink problem (4.1) reduces to a pure power assignment.

The authors in [39] give the proof that the optimum downlink power assignment is achieved for

PSUM = ‖p‖1. In the following, the power assignment is presented. First, consider a coupling

matrix Ψ(W̃)

[Ψ(W̃)]j,j′ =

{

w̃H
j′ R̃jw̃j′ j′ 6= j,

0 j′ = j.
(4.5)

Consider also a noise vector σ = [11 12 · · · 1G]T and a weight matrix D defined as

D = diag

{

γt
1

w̃H
1 R̃1w̃1

,
γt
2

w̃H
2 R̃2w̃2

, · · · , γt
G

w̃H
G R̃Gw̃G

}

. (4.6)

In the downlink scenario, consider an extended power vector pext =

(
p

1

)

and an extended

downlink coupling matrix Υ(W̃, PSUM)

Υ(W̃, PSUM) =

[

DΨ(W̃) Dσ

1
PSUM

1TDΨ(W̃) 1
PSUM

1TDσ

]

. (4.7)

An eigensystem can be formulated for problem (4.1) such that the optimal downlink power

vector p is obtained by the dominant eigenvector associated to the maximal eigenvalue [39].
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Let the eigensystem be organized in the following

Υ(W̃, PSUM)pext =
1

CDL(W̃, PSUM)
pext with [pext]K+1 = 1. (4.8)

The dominant eigenvector pext of the extended downlink coupling matrix Υ(W̃, PSUM),

associated to the maximal eigenvalue λmax = 1/CDL(W̃, PSUM), is scaled so that the last

component be one. This way, the extended power vector pext provides the optimal downlink

power vector p [39].

Now, in the uplink scenario, consider an extended power vector qext =
(
q

1

)
and an extended

uplink coupling matrix Λ(W̃, PSUM)

Λ(W̃, PSUM) =

[

DΨT (W̃) Dσ

1
PSUM

1TDΨT (W̃) 1
PSUM

1TDσ

]

. (4.9)

Thus, considering fixed beamformers W̃, the downlink problem (4.1) reduces to a pure

power assignment problem and an eigensystem can be formulated for this problem as follows

Λ(W̃, PSUM)qext = λmax

(

Λ(W̃, PSUM)
)

qext. (4.10)

The dominant eigenvector qext of the extended uplink coupling matrix Λ(W̃, PSUM),

associated to the maximal eigenvalue λmax, is scaled so that the last component be one.

This way, the extended power vector qext provides the optimal uplink power vector q [39].

4.3.2 Beamforming

For a given power allocation vector q̃, the beamformers w̃j, ∀ j ∈ G, which maximize (4.3),

are obtained by G decoupled problems. The optimal beamformer of each UE is the solution of

a generalized eigenvector problem [39] as seen below

ŵj = arg max
wj

wH
j R̃jwj

wH
j Qj(qext)wj

, ∀ j ∈ G, (4.11a)

subject to

‖wj‖2 = 1. (4.11b)

So, the optimal beamformer ŵj of the UE j is the solution of the generalized eigenvector

problem (R̃j , Qj(q̃ext)), ∀ j ∈ G, where

Qj(q̃ext) =

G∑

j′=1
j′ 6=j

[q̃ext]j′R̃j′ + I. (4.12)

Thus, the iterative algorithm proposed by [39] can be summarized in Algorithm 4.1( see [39]

for more details).

4.4 Target SINR feasibility and SRAs

The problem (4.1) is only feasible if the target SINRs can be simultaneously achieved. In

other words, the target SINRs γt
1, γ

t
2, · · · , γt

G are jointly feasible if and only if CDL(PSUM) > 1.

When the SINR constraints cannot be fulfilled, it is necessary to relax some of the constraints

until the problem becomes feasible.
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Algorithm 4.1 SINR balancing algorithm.

for each Physical Resource Block (PRB) do
for each cluster do
n← 0
q(0) ← [1, 1, · · · , 1]T
R̃j ← Rj/(z

inter
j + σ2

η), 1 ≤ j ≤ K

σ2
η ← 1, 1 ≤ j ≤ K

repeat
n← n+ 1
solve (R̃j ,Qj(qext)), 1 ≤ j ≤ K

w
(n)
j ← w

(n)
j /‖w(n)

j ‖2, 1 ≤ j ≤ K

solve Λ(W(n), PSUM)
[
q(n)

1

]
= λmax(n)

[
q(n)

1

]

until λmax(n− 1)− λmax(n) < ǫ

solve Υ(W(n), PSUM)
[
p(n)

1

]
= λmax(n)

[
p(n)

1

]

end for
end for

This can be done by relaxing the target SINRs γt
1, γ

t
2, · · · , γt

G until the SINR balancing

problem becomes feasible. However, this strategy can hide the problem of the significant

efficiency loss due to spatial separation of correlated UEs when these are jointly grouped in a

same group G.

Alternatively, removal of UEs can also make the SINR balancing problem become feasible.

In each removal, the released resources can be allocated to the remaining UEs, so that various

removal strategies could be adopted. SRAs remove UEs from the system until the SINR targets

of the remaining UEs are achieved.

In the following, two criteria for UEs removal when the SINR feasibility is not achieved by

the SINR balancing algorithm are presented. The first criterion is only based on power, while

the second is based on both power and correlation.

Due to the potential energy to be released to the remaining UEs, intuitively, the best metric

to verify which UE should be removed is the maximum power criterion. The UE j∗ which

demands the highest amount of power is removed as defined below [48]

j⋆ = argmax
j

{pj} , ∀ j ∈ G. (4.13)

Indeed, the maximum power criterion is one of the most commonly used criteria to

determine which UEs should be removed [48]. Nevertheless, due to the power penalty achieved

with the spatial separation of correlated UEs channels, the removal of UEs that consume

much power and that are highly correlated with other UEs may result in large gains.

Furthermore, a removal metric based on the power and on the spatial correlation is

developed. First, combining (2.13) and (3.6), the removal metric is defined as

φ = pT (1−C) , (4.14)

and the UE j∗ to be removed is given by

j⋆ = argmin
j

{φj} , ∀ j ∈ G. (4.15)

Each element φj in the vector φ is obtained by the product of the power vector pT with

the jth column of the matrix of inverse correlation (1−C). Since the main diagonal of (1−C)

is null, the power pj of all UE j does not make up the element φj. Thus, UEs j with high



4.5. Power minimization under SINR constraints 59

power pj contribute to increase the elements φj′ of UEs j′, ∀ j′ 6= j, but the high power pj is

not considered in φj. Besides, UEs j that consume low power and that are highly correlated

with UEs j′, ∀ j′ 6= j, contribute to decrease the element φj′ because the matrix of inverse

correlation provides low values for high correlations. Furthermore, minimizing the removal

metric φ tends to select the UE j∗ that both consumes much power and is very correlated to

other UEs that consume little power. This strategy distributes better the power among the

remaining UEs.

4.5 Power minimization under SINR constraints

It is known that the total transmission power achieved with the SINR balancing can be

minimized while the SINR feasibility is kept, i.e, CDL(PSUM) > 1 [39]. When applied in a

CoMP system, this strategy minimizes the interference and improves the power efficiency

of the system. Clearly, the minimum transmit power is achieved to CDL(PSUM) = 1, i.e.,

γj(dB) = γt
j(dB), ∀ j ∈ G.

In order to improve the SINRs, it is possible to establish a safety margin under the target

SINR γt
j(dB), denoted here by SINR gap ∆γt

j
(dB). Whenever γj(dB) > γt

j(dB) +∆γt
j
(dB), ∀ j ∈ G, the

power vector p is scaled to ensure a minimum safety margin for all UEs.

This strategy adds power to the CoMP system in comparison to the previous strategy, but

it improves the SINR levels. In this way, increasing the SINR gap ∆γt
j
(dB) means to make

the SINR more robust against possible imprecisions that can affect the performance of the

SINR balancing algorithm. Hence, it possibly reduces the Block Error Rate (BLER) and it may

achieve an additional improvement on system throughput.

4.6 Results

In this section, the Radio Resource Allocation (RRA) strategies introduced in this chapter

are used to balance the SINR of the UEs grouped by a Space Division Multiple Access (SDMA)

grouping algorithm and the performance evaluation of the SINR balancing strategies is

performed considering the same parameters defined in Section 2.10.1. In this section, the

improvement in the performance achieved by the SINR balancing algorithm is investigated

in comparison to the performance obtained by an SDMA grouping algorithm combined with

Zero-Forcing (ZF) precoding.

The strategies for SINR balancing treated in previous sections are summarized

in Section 4.6.1. The performance metrics used to evaluate the performance achieved by the

SINR balancing algorithm are introduced in Section 4.6.2. In Section 4.6.3, the performance

achieved by the SINR balancing algorithm is investigated. Finally, Section 4.6.4 shows the

effect of imperfect Channel State Information (CSI) on the performance of RRA strategies for

the SINR balancing studied in this chapter and the RRA strategies for UE spatial grouping

defined in Chapter 3.

4.6.1 SINR balancing strategies definition

In this section, the definition of SINR balancing strategies is presented. Before this, it is

important to mention that the SINR balancing is combined with the best SDMA grouping so

far, i.e., the Successive Projection (SP) algorithm combined with SRA and using the Minimum

Gain (MinGain) criterion. This algorithm is referred in this chapter simply as SDMA grouping

algorithm (see Section 3.4.2.3 and Section 3.4.3 for more details).

The RRA strategies considered in this chapter and their names are listed in Table 4.1.

It is important to highlight that the use of estimates of the inter-cluster interference in the
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Table 4.1: SINR balancing strategies definition.
SDMA grouping SINR balancing

Metric SRA SRA Power
minimization

Definition

SP MinGain - - SINR balancing
SP MinGain Power-based - SINR balancing w/ SRA power
SP MinGain Power &

correlation-based
- SINR balancing w/ SRA power & corr.

SP MinGain - Power scaling SINR balancing w/ power min.

SINR balancing algorithm (introduced in Section 4.2) is considered usual so that a statement

indicating its use is omitted. On the other hand, the non-usage of estimates of inter-cluster

interference is followed by a statement on the name of the SINR balancing algorithm.

The improvement in the system spectral efficiency achieved by the SINR balancing

algorithm is compared to the SDMA grouping’s performance. Moreover, in order to get more

gains compared to the performance of the SINR balancing algorithm, removal of UEs and

power minimization are considered for several SINR target values.

When power minimization and SRA are considered, it is possible to establish a safety

margin for the target SINR γt
j, denoted in Section 4.5 by SINR gap ∆γt

j
, in order to improve the

SINRs perceived by the grouped UEs.

4.6.2 Performance metrics

In the following, performance metrics considered to evaluate the performance of the SINR

balancing algorithm are described:

◮ Cumulative Distribution Function (CDF) of the SINR means the cumulative distribution

of the SINR observed by the UEs in the system;

◮ SINR gap ∆γt
j

represents a safety margin, which is provided by the SINR balancing

algorithm, under the target SINR γt
j(dB), which is achieved by the SDMA grouping

algorithm, such that the balanced SINR for each UE j is given by γj(dB) = γt
j(dB)+∆γt

j
(dB);

◮ Power economy represents the percentual gain in power consumption achieved with

power minimization.

4.6.3 Performance with SINR balancing

In the following, the performance obtained with the SINR balancing algorithm is

investigated by analyzing the system spectral efficiency, power consumption and group size

achieved with the SRAs. The power consumption is an important variable to be evaluated

because of the power distribution performed by the SINR balancing algorithm. In its turn, the

distribution of group sizes provides a general view of the behavior of removals, allowing us to

evaluate the efficiency of each SRA. Finally, the BLER is another important variable, since

the SINR balancing algorithm provides guarantees of SINR levels.

The analyses are organized as follows. Performance evaluation of the SINR balancing under

SDMA grouping is shown in Section 4.6.3.1. Section 4.6.3.2 presents the SINR feasibility

analysis and the power minimization analysis is presented in Section 4.6.3.3.

4.6.3.1 SINR balancing under SDMA grouping

In the following, the performance gains achieved by the SINR balancing algorithm are

evaluated. Figure 4.1 presents the spectral efficiency of the SINR balancing with and without

inter-cluster interference knowledge and the CDF of the BLER of the SINR balancing with

inter-cluster interference knowledge in comparison to the SDMA grouping algorithm.
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Figure 4.1: System spectral efficiency achieved by the SINR balancing with and without inter-cluster
interference knowledge and CDF of the BLER presented by the SINR balancing algorithm.

It may be seen in Figure 4.1(a) that incorporating the effect of inter-CoMP-cell interference

into the effect of noise provides satisfactory gains to SINR balancing. It is also seen that the

SINR balancing provides significant gains in relation to SDMA grouping, since it performs

a better power distribution. From Figure 4.1(b), it is seen that the improvement of system

throughput achieved by the SINR balancing algorithm is due to reduced levels of BLER.

Figure 4.2 presents the CDF of the SINR obtained with the SDMA grouping and SINR

balancing algorithms.
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Figure 4.2: CDFs of the SINR and balanced SINR presented by the SINR balancing algorithm.

As it can be seen in Figure 4.2(a), the better power distribution presented by the SINR

balancing algorithm reduces the levels of high SINR in order to establish a safety margin of

SINR mainly for those UEs that have estimated SINR close to the SINR target level given by

the MCS used on the transmission. From Figure 4.2(b), it is seen that the SINR balancing

always achieves SINR feasibility.

4.6.3.2 SINR feasibility analysis

As shown in Section 4.6.3.1, the SINR balancing always achieves SINR feasibility. In this

section, the SINR feasibility is evaluated with the most aggressive SINR targets γt
j by increasing

the SINR gap ∆γt
j
. When the SINR feasibility is not achieved by the SINR balancing algorithm

removal of UEs is performed according to the criteria introduced in Section 4.4.

Figure 4.3 presents the system spectral efficiency of the SINR balancing algorithm without
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and with removal of UEs considering the criterion of maximal power and the criterion based

on power and correlation.
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Figure 4.3: System spectral efficiency achieved by SRAs for several SINR gaps ∆γt
j
.

As it can be seen in Figure 4.3(a) and Figure 4.3(b), both SRAs combined with more

aggressive SINR gap ∆γt
j

have performed worse than the SINR balancing algorithm for ∆γt
j
= 0

dB. It is seen that introducing a safety margin ∆γt
j

does not contributes for increasing the

system spectral efficiency.

Besides that, the SINR balancing algorithm with removal of UEs does not provide

considerable performance gains in the system spectral efficiency even for ∆γt
j
= 0 dB. It occurs

because the SDMA grouping algorithm already selects a suitable set of UEs which does not

need removing UEs in order to achieve feasibility for SINR values, as shown in Figure 4.2(b).

4.6.3.3 Power minimization analysis

In order to get more gains on the performance of the SINR balancing algorithm, power

minimization is considered for several SINR target values. In the following, the performance

gains achieved with power minimization is evaluated for 2 and 8 UEs/sector.

Figure 4.4 presents the spectral efficiency of the SINR balancing with power minimization

for various SINR gaps ∆γt
j

and for two loads in UEs/sector.
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Figure 4.4: System spectral efficiency achieved by the power minimization algorithm for several SINR
gaps ∆γt

j
[dB].

It can be seen in Figure 4.4 that the power minimization algorithm with an SINR gap

∆γt
j
= 0 dB has the worst performance on both loads. This happens because this algorithm
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balances the lowest SINRs γj at the SINR target level γt
j, i.e., CDL(W, Pmax) = 1, which leaves

no safety margin for eventual errors and, consequently, the system performance is slightly

degraded. However, the maximum gain achieved with the power minimization occurs for an

SINR gap ∆γt
j
= 1 dB and has value around 2% for 8 UEs/sector, which is negligible.

Figure 4.5 presents the CDF of the balanced SINR and the CDF of the BLER of the SINR

balancing algorithm with power minimization for SINR gap ∆γt
j
= 0 dB and ∆γt

j
= 1 dB. As
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Figure 4.5: CDFs of the balanced SINR and BLER presented by the power minimization algorithm.

it can be seen in Figure 4.5(a), for both loads the power minimization leads almost 80% of

the transmissions to the SINR target γt
j, i.e, SINR gap ∆γt

j
= 0 dB. From Figure 4.5(b), the

power minimization for SINR gap ∆γt
j
= 0 dB presents higher BLER than the SDMA grouping

algorithm.

On the other hand, when the power minimization is performed for all transmissions with

SINR higher than γt
j +∆γt

j
, it is seen in Figure 4.5(a) that less than 20% of the transmissions

have SINR values below γt
j +∆γt

j
for the lowest load, and less than 10% of the transmissions

have SINR below γt
j +∆γt

j
for the highest load. However, from Figure 4.5(b), the performance

in terms of BLER was worse with the power minimization for ∆γt
j
= 1 dB than with the SINR

balancing algorithm without power minimization although it has better performance in terms

of system spectral efficiency.

Although the power minimization does not add significant spectral efficiency gains to

SINR balancing for both loads, it still minimizes the power consumption, thus being more

energy-efficient. Figure 4.6 presents the spectral efficiency of the SINR balancing with power

minimization for SINR gaps ∆γt
j
= 0 dB and ∆γt

j
= 1 and the power economy achieved by the

SINR balancing algorithm with and without power minimization in relation to SDMA grouping

for an SINR gap ∆γt
j
= 1 dB.

As it can be seen in Figure 4.6(a), the power minimization algorithm with an SINR gap

∆γt
j
= 1 dB does not provide significant spectral efficiency gains but it considerably reduces

power consumption.

Figure 4.6(b) shows that, for the highest load, the SINR balancing saves up to 33% of

the power, while the SINR balancing with power minimization saves up to 48% in the power

consumption of SDMA grouping, which are substantial amounts of power. At the same time,

it preserves the same spectral efficiency. This strategy is also motivated by the low complexity

of the power scaling and is more energy-efficient than the other studied strategies.
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Figure 4.6: System spectral efficiency and power economy achieved by the power minimization
algorithm.

4.6.4 Impact of imperfect CSI on the CoMP performance

So far the implementations have assumed an instantaneous and error-free CSI feedback

to simplify the analysis. However, imperfect CSI should be addressed to achieve results closer

to the ones expected in real-world implementations.

In the following, the impact of imperfect CSI is investigated on the performance of the

RRA strategies described in this chapter and in Chapter 3. This issue has been addressed

in Section 2.6 and modeled by channel estimation errors, partial feedback and outdated

channel knowledge. The performance achieved with perfect CSI will be compared with that

achieved with the different CSI imperfections in terms of system spectral efficiency.

Figure 4.7 shows the effect of channel estimation errors, partial CSI feedback and feedback

delay on the system spectral efficiency achieved by the SINR balancing and SDMA grouping

algorithms.

As it can be seen in Figure 4.7(a), when the channel estimation errors are quite significant,

the SINR balancing is less sensitive to imperfections on channel estimation than the SDMA

grouping. The SINR balancing provides significant gains in relation to SDMA grouping for both

loads, because it performs a better power distribution as well as adapts precoding vectors. The

losses in the spectral efficiency are apparent just from a given value of ρ. It is observed that for

8 UEs/sector and ρ = 10−2 the spectral efficiency decreases significantly for both algorithms.

Note that ρ = 10−2 represents the introduction of estimation errors in the estimated channel

vector ĥj with 10% of magnitude of the error vector ej.

It is shown in Figure 4.7(b) that just a small part of the CSI of all available Antenna

Ports (APs) in a CoMP system is necessary for maintaining the performance achieved with

complete CSI. When complete CSI is considered, each UE reports the CSI relative to APs.

On its turn, partial CSI feedback requires just a small part of the CSI. Note also that the

reduction of overhead is much more significant than the performance loss due to partial CSI

feedback. It is important to mention that the amount of signaling reported by each UE varies

depending on the UE’s location.

As it is shown in Figure 4.7(c), the system spectral efficiency decreases almost linearly

with the feedback delay such that its effect could not be neglected when considering CoMP

systems.
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Figure 4.7: Effect of channel estimation errors, partial CSI feedback and feedback delay on the system
spectral efficiency.

4.7 Summary

In general, this chapter evaluated the performance of RRA strategies over models for perfect

and imperfect CSI. An SINR balancing algorithm [39] has been studied as a Joint Processing

(JP) transmission approach for the downlink of CoMP systems. For this purpose, the SINR

balancing algorithm presented in [39] for the single-cell scenario has been investigated with

some small modifications in a Multi-User (MU) CoMP scenario, in which UEs are subject to

an SINR constraint and strong inter-cluster interference, and there is a power limitation per

antenna [37].

From the results presented in Section 4.6.3, it was observed an increase in system spectral

efficiency with the balancing of the SINR values perceived by the UEs. The SINR balancing

also provides a considerable gain in terms of BLER. On the other hand, the SINR balancing

with power minimization does not provide reasonable additional gains in the system spectral

efficiency, but provides an expressive gain in power economy.

When channel estimation errors, partial CSI feedback and outdated CSI were assumed in

an imperfect CSI model, the results presented in Section 4.6.4 showed that there was a very

large decrease in performance in terms of system spectral efficiency, due to imperfect CSI,

when compared to the ideal situation.

Results about channel estimation errors corroborated that it is a very critical point on
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the performance of CoMP systems. It is known that a large amount of signaling is required

to ensure the complete CSI to be available at each Evolved Node B (eNB). Indeed, it has

been shown that there is a trade-off between the potential performance gains of cooperation

versus the increased signaling overhead. It has been verified that just a considerably smaller

amount of signaling is required to ensure a reliable cooperative transmission compared to full

CSI. Results about outdated channel knowledge showed that it deserves attention, specially

if some feedback delay constraint is assumed.

From the results, it is possible to verify that the performance loss due to imperfect CSI is

inherent to CoMP systems. Thus, practical aspects such as channel estimation errors, limited

feedback and feedback delay can not be neglected by RRA strategies for CoMP systems. It

was also seen that the performance of the SINR balancing outperformed the SDMA grouping

algorithm for both perfect and imperfect CSI.



Chapter 5
Conclusions

5.1 Summary of the dissertation

The main objective of this dissertation was to study Radio Resource Allocation (RRA)

strategies that aim at maximizing the throughput of a Coordinated Multi-Point (CoMP) system.

The RRA subproblem of determining a suitable set of User Equipments (UEs) to spatially reuse

a given radio resource considering the multiple geographically separated transmission points

was investigated. The UE spatial grouping problem was studied in different scenarios.

Initially, an interference-unaware link adaptation was simulated in the conventional

scenario. It has been shown to achieve the worst performance, clearly showing that the

inter-cell interference is an important variable to be considered by efficient link adaptation

schemes that have as objective the maximization of the throughput. After that, an

interference-aware scheduler was shown to achieve improvements in the system spectral

efficiency, specially for high diversity in UEs/sector, in comparison to an interference-unaware

scheduler.

In the CoMP scenario, the single-cell schedulers use the perfect knowledge about the

intra-cluster interference to enhance the link adaptation. However, single-cell schedulers

presented similar performance in both conventional and CoMP scenarios. Thus, the estimates

of inter-cell interference used for link adaptation in the conventional scenario were shown

be sufficiently accurate. After that, the Channel State Information (CSI) was also used to

implement a dynamic joint multi-cell scheduling and thus coordinate the transmissions. This

strategy indeed models a coordinated scheduling.

Next, different Space Division Multiple Access (SDMA) grouping algorithms with fixed and

dynamic group sizes were employed to determine an efficient group of UEs that efficiently

shares the same resource in space; while the spatial multiplexing of signals conveyed through

them was done using precoding. Since the intra-cluster interference is totally canceled by

using Zero-Forcing (ZF) spatial precoding, the UEs are able to achieve higher throughput.

In order to obtain more performance gains in the system spectral efficiency and to

provide a more reliable communication for the UEs selected by SDMA grouping algorithms, a

well-known Signal to Interference-plus-Noise Ratio (SINR) balancing algorithm was analyzed.

This algorithm was simulated in order to solve both precoding and power control problems

by alternating them in a novel scenario, in which there was a power limitation per Antenna

Port (AP) and UEs were subject to strong inter-cluster interference. In order to guarantee

the feasibility of the solution achieved by the SINR balancing algorithm, Sequential Removal

Algorithms (SRAs) were developed to remove UEs in an SDMA group until the remaining UEs
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reach their SINR targets.

Finally, the SDMA grouping and SINR balancing algorithms were evaluated over models

for imperfect CSI in order to have performance results somewhat closer to those expected in

the real-world implementations.

5.2 Conclusions about RRA for CoMP systems

This master thesis provided system-level analyses for RRA strategies that exploit

coordination in the downlink of CoMP systems to implement adaptive frequency reuse and

so improve system throughput. The results showed that quite high throughput gains are

achieved through intelligent RRA. However, it is also shown a critical degradation on

performance of these RRA strategies due to imperfect CSI. In the following, the main

conclusions regarding the RRA strategies studied in this dissertation are discussed.

System-level analyses were provided considering UE spatial grouping observing both

Coordinated Scheduling (CS) and Joint Processing (JP) approaches. The interference-aware

grouping algorithms — Best Rate Allocation (BRA) and Capacity (CAP) algorithms — take

advantage of the availability of CSI in order to perform adaptive multi-cell scheduling. Both

algorithms iteratively build a group of UEs that achieves high joint throughput. Because

these algorithms choose UEs based on their intra and/or inter-cluster interference estimate

the UEs groups are much diversified in subsequent Transmission Time Intervals (TTIs). It was

seen that interference-aware grouping algorithms have much higher Block Error Rate (BLER)

values than interference-unaware grouping algorithms, as the Successive Projection (SP)

algorithm, which is due to the fact of the link adaptation being more sensitive to fast variations

of the inter-cluster interference. From this, it can be concluded that to take advantage of

availability of the CSI, the inter-cluster interference should be efficiently predicted or the link

adaptation should be less sensitive to variations on the inter-cluster interference estimate.

In addition, the SP algorithm with fixed group size was observed to lead to better

performance for high loads than the above mentioned algorithms with dynamic group size.

Besides the interference cancellation, this gain is obtained also due to the null space sucessive

projections which keep a significant similarity with the projection performed by a ZF precoder

and so effectively capture the spatial compatibility among the UEs. However, for low diversity

in UEs/sector the algorithms under fixed group size have worse performance than the

dynamic algorithms such that the best group size G⋆ should vary from load to load and shall

depend on the channel conditions. It was shown that the SP algorithm combined with the

SRA-Minimum Gain (MinGain) algorithm outperformed all the other algorithms for any load.

It was also shown that SRAs achieved performance gains in low load situations. For higher

loads, the SDMA grouping is better capable of choosing spatially uncorrelated UEs, due to the

multi-user diversity, reducing the need for UE removal.

As for the SINR balancing, even though it does not aim at rate maximization, slight

throughput gains were achieved, given that by reaching the SINR targets the BLER is

reduced. According to the results of balanced SINR, it can be concluded that the SDMA

grouping already selects a suitable set of UEs, which achieves suitable SINR feasibility when

considering SINR balancing. It is also seen that the SINR balancing provides power reduction

in relation to the SDMA grouping, since it performs a better power distribution. Despite the

power minimization not providing significant spectral efficiency gains, it still minimizes power

consumption thus being more energy-efficient.

The SINR balancing has outperformed the SDMA grouping algorithm even when imperfect

CSI is assumed. However, compared to the SINR balancing, the SDMA grouping has shown a
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slightly worse degradation due to imperfect CSI. From the results presented in Section 4.6.4,

it could be seen that the performance loss due to imperfect CSI is inherent to CoMP

systems. Results about channel estimation errors corroborated that it is a critical point on

the performance of CoMP systems. It is known that a large amount of signaling is required to

ensure that the complete CSI will be available at the Evolved Node B (eNB). However, it runs

into the trade-off between the potential performance gains of cooperation versus the increased

signaling overhead. It was verified that just a substantially smaller amount of signaling

is required to ensure a reliable cooperative transmission. Results about outdated channel

knowledge showed that it deserves attention specially if some feedback delay constraint is

assumed. Thus, practical aspects such as channel estimation errors, limited feedback and

feedback delay can not be neglected by the cooperative transmission techniques of CoMP

systems.

The performance evaluation of the RRA strategies has shown promising results regarding

the provision of high spectral efficiency values in CoMP systems, as it is expected from Long

Term Evolution (LTE)-Advanced systems.

5.3 Perspectives of future works

This section points out perspectives that look promising for the RRA in CoMP systems. The

solution derived in this dissertation opens up many ways for the design of new system-level

techniques. In the following, some interesting topics as an extension to the work carried out

in this dissertation are presented:

◮ Higher number of antennas per cluster: Since the system throughput for the SDMA

is much higher than any other algorithms, other scenarios with a higher number of

antennas per cluster (e.g., multi-antenna eNBs) could result on even better throughputs

for the system.

◮ Link adaptation: Rapid and significant variations in the instantaneous channel

conditions due to propagation effects present in mobile radio communication, which

are mentioned in Section 2.4, as well as the interference level due to transmissions

in other cells and by other UEs will impact the experienced quality of each radio-link.

Therefore, in order to take advantage of availability of the CSI, variations of the radio-link

quality must be taken into account and preferably exploited such that the inter-cluster

interference should be efficiently predicted or the link adaptation should be less sensitive

to variations on the inter-cluster interference estimate. However, due to imperfect CSI

and random nature of interference, perfect adaptation to the instantaneous radio-link

quality is never possible.

◮ Multiple Input Multiple Output (MIMO)-like schemes: In the MIMO scenario, UEs

can also perform spatial processing to mitigate the effects of the intra-cluster

interference [56]. Multiple antennas for both transmitting and receiving ends and the use

of cooperative transmission/reception techniques may allow to achieve higher capacity

and link reliability.

◮ Multi-group SDMA: By now, it has been considered the single-SDMA group case.

However, the system performance might be eventually enhanced by clustering groups

of antennas within the cluster and allocating them to different SDMA groups. In this

case, intra-cell/inter-group interference could be mitigated using spatial processing.

For example, each group of UEs might be seen as a single user and beamforming
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techniques can be applied to guarantee that the data streams sent to different groups

will not interfere with each other. Besides, in practice, only a limited number of eNBs

can cooperate in order to keep the overhead manageable.

◮ Quality of Service (QoS)-aware scheduling: This dissertation focused on maximizing the

system throughput, but CoMP is also compromised with the throughput of cell-edge

UEs. The impact of the solutions on the QoS and fairness are still open for analysis,

which aroused the interest of many researchers, as shown in the literature review. The

RRA becomes more complex when QoS constraints are considered, due to the existing

trade-off between system throughput and UE satisfaction. Simulating other traffic model

such as File Transfer Protocol (FTP) and Voice over Internet Protocol (VoIP) traffics in

order to investigate the behavior of the algorithms can be of interest.
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