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ABSTRACT 

 

In reservoir simulation, the compositional model is one of the most used models for enhanced 

oil recovery. However, the physical model involves a large number of equations with a very 

complex interplay between equations. The model is basically composed of balance equations 

and equilibrium constraints. The way these equations are solved, the degree of implicitness, 

the selection of the primary equations, primary and secondary variables have a great impact 

on the computation time. In order to verify these effects, this work proposes the 

implementation and comparison of some implicit and semi-implicit methods. The following 

formulations are tested: an IMPEC (implicit pressure, explicit composition), an IMPSAT 

(implicit pressure and saturations), and two fully implicit formulations, in which one these 

formulations is being proposed in this work. However, the literature reports some intrinsic 

inconsistencies of the IMPSAT formulation mentioned. In order to verify it, an iterative 

IMPSAT is implemented to check the quality of the IMPSAT method previously mentioned. 

The finite volume method is used to discretize the formulations using Cartesian grids and 

unstructured grids in conjunction with the EbFVM (Element based finite volume method) for 

2D and 3D reservoirs. The implementations have been performed in the UTCOMP simulator 

from the University of Texas at Austin. The results of several case studies are compared in 

terms of volumetric oil and gas rates and the total CPU time. It was verified that the FI 

approaches increase their performance, when compared to the other approaches, as the grid is 

refined. A good performance was observed for the IMPSAT approach when compared to the 

IMPEC formulation. However, as more complex stencils are used, the IMPSAT performance 

reduces.  

 

Keywords: Compositional Simulation, EbFVM, IMPEC, IMPSAT, Fully Implicit, 

Unstructured grids. 

  



 

 

 

RESUMO 

 

Em simulação de reservatórios, o modelo composicional é um dos mais usados para a 

recuperação avançada de petróleo. Entretanto, o modelo físico envolve um grande número de 

equações com uma complexa interelação entre elas. O modelo é basicamente composto por 

equações de balanço e restrições de equilíbrio. A forma como essas equações são resolvidas 

como, o grau de implicitude, a seleção das equações primárias, variáveis primárias e 

secundárias tem um grande impacto no tempo de computação. Com o intuito de verificar esse 

efeito, esse trabalho propõe a implementação e comparação de alguns métodos implícitos e 

semi-implícitos. As seguintes formulações são testadas: uma IMPEC (implicit pressure, 

explicit composition), uma IMPSAT (implicit pressure and saturations), e duas formulações 

totalmente implicitas, das quais uma destas está sendo proposta neste trabalho. Entretanto, a 

literatura relata algumas inconsistências intrínsecas da formulação IMPSAT mencionada. Para 

verificar isso, um IMPSAT iterativo foi implementado para verificar a qualidade nos 

resultados do método IMPSAT préviamente mencionado. O método de volumes finitos é 

usado para discretizar as formulações usando malhas Cartesianas e não-estruturadas em 

conjunto com o EbFVM (Element based finite volume method) para reservatórios 2D e 3D. A 

implementação foi realizada no simulador UTCOMP da Univeristy of Texas at Austin. Os 

resultados de diversos casos de estudo são comparados em termos das vazões volumétricas de 

óleo e gás e do tempo total de CPU. Verificou-se que as abordagens totalmente implícitas 

melhoram sua performance, quando comparado com os demais métodos, a medidaque a 

malha é refinada. Um bom desempenho foi observado para as formulações IMPSAT quando 

comparadas com a formulação IMPEC. Entretando, com o uso de conexões mais complexas 

entre os blocos da malha, o desempho da formulação IMPSAT reduziu. 

 

Palavras-chave: Simulação Composicional, EbFVM, IMPEC, IMPSAT, Totalmente 

Implícito, Malhas não-estruturadas. 

  



 

 

 

LIST OF ILUSTRATIONS 

 

CHAPTER 1 

Figure 1.1 – Illustration of a typical oil and gas reservoir ........................................................ 22 

 

CHAPTER 2 

Figure 2.1 – Illustration of the REV ......................................................................................... 38 

 

CHAPTER 3 

Figure 3.1 – Cartesian control volume. a) three dimensional view; b) x-y plane view ............ 63 

Figure 3.2 – Illustration of a dual mesh for the EbFVM approach .......................................... 66 

Figure 3.3 – 2D elements in the physical and computational planes. a) Triangle element; b) 

quadrilateral element ................................................................................................................ 67 

Figure 3.4 – 3D elements into the physical plane and computational local plane. a) 

Hexahedron element; b) tetrahedron element; c) prism element; d) pyramid element ............ 69 

 

CHAPTER 4 

Figure 4.1 – Flowchart of the IMPEC formulation for a time-step .......................................... 76 

Figure 4.2 – Flowchart of the IMPSAT-0 formulation for a time-step .................................... 78 

Figure 4.3 – Flowchart of the IMPSAT-1 formulation for a time-step .................................... 79 

Figure 4.4 – Flowchart of the IMPSAT-2 formulation for a time-step .................................... 81 

Figure 4.5 – Flowchart for performing one time-step FI-0 formulation .................................. 87 

Figure 4.6 – Flowchart for performing one time-step for the FI-1 formulation ....................... 88 

 

CHAPTER 5 

Figure 5.1 – Five-spot layout (quarter of five-spot filled). ....................................................... 90 

Figure 5.2 – 2D Cartesian grids - Case 1. Injectors in blue and producers in red. ................... 92 

Figure 5.3 – Production rates comparison between IMPEC and IMPSAT-0 – Case 1. a) oil; 

and b) gas. ................................................................................................................................. 94 

Figure 5.4 – Production rates comparison between IMPEC and IMPSAT-1 – Case 1. a) oil; 

and b) gas. ................................................................................................................................. 94 

Figure 5.5 – Production rates comparison between IMPEC and IMPSAT-2 – Case 1. a) oil; 

and b) gas. ................................................................................................................................. 95 



 

 

 

Figure 5.6 – Production rates comparison between IMPEC and FI-0* – Case 1. a) oil; and b) 

gas. ............................................................................................................................................ 95 

Figure 5.7 – Production rates comparison between IMPEC and FI-1* – Case 1. a) oil; and b) 

gas. ............................................................................................................................................ 96 

Figure 5.8 – Production rates comparison between IMPEC and FI-0 – Case 1. a) oil; and b) 

gas. ............................................................................................................................................ 96 

Figure 5.9 – Production rates comparison between IMPEC and FI-1 Case 1. a) oil; and b) gas.

 .................................................................................................................................................. 97 

Figure 5.10 – Time-stepping profiles for all formulations – Case 1. a) 20x20; b) 40x40; and c) 

80x80. ....................................................................................................................................... 98 

Figure 5.11 – Gas saturation fields at 500 days for all formulations - Case 1 using a 20x20 

Cartesian grid. a) IMPEC; b) IMPSAT-0; c) IMPSAT-1; d) IMPSAT-2; e) FI-0; and f) FI-1.

 .................................................................................................................................................. 99 

Figure 5.12 – Gas saturation fields at 500 days for all formulations - Case 1 using a 40x40 

Cartesian grid. a) IMPEC; b) IMPSAT-0; c) IMPSAT-1; d) IMPSAT-2; e) FI-0; and f) FI-1.

 ................................................................................................................................................ 100 

Figure 5.13 – Gas saturation fields at 500 days for all formulations - Case 1 using a 80x80 

Cartesian grid. a) IMPEC; b) IMPSAT-0; c) IMPSAT-1; d) IMPSAT-2; e) FI-0; and f) FI-1

 ................................................................................................................................................ 101 

Figure 5.14 – 3D Cartesian grids - Case 1. a) 20x20x5; b) 40x40x10; and c) 60x60x15. ..... 103 

Figure 5.15 – Production rates comparison for 3D Cartesian 60x60x15 between IMPEC and 

IMPSAT-0 - Case 1. a) oil; and b) gas. .................................................................................. 104 

Figure 5.16 – Production rates comparison for 3D Cartesian 60x60x15 between IMPEC and 

FI-0 for Case 1. a) oil; and b) gas. .......................................................................................... 104 

Figure 5.17 – Time-stepping profiles for all formulations – Case 1 using 3D Cartesian grids.

 ................................................................................................................................................ 105 

Figure 5.18 – Gas saturation fields at 700 days for all formulations - Case 1 using a 60x60x15 

Cartesian grid. a) IMPEC; b) IMPSAT-0; c) IMPSAT-1; d) IMPSAT-2; e) FI-0; and f) FI-1.

 ................................................................................................................................................ 106 

Figure 5.19 – 2D regular quadrilateral element grids - Case 1. a) 20x20; b) 40x40; and c) 

60x60. ..................................................................................................................................... 107 

Figure 5.20 – 2D unstructured quadrilateral grids - Case 1. a) 1199 vertices (1134 elements); 

b) 2661 vertices (2568 elements); and c) 3387 vertices (3282 elements). ............................. 108 



 

 

 

Figure 5.21 – 2D unstructured triangular grids - Case 1. a) 1220 vertices (2310 elements); b) 

2330 vertices (4482 elements); and c) 3329 vertices (6444 elements). .................................. 108 

Figure 5.22 – Production rates comparison between IMPEC and IMPSAT-0 - Case 1, using 

2D regular quadrilateral grids. a) oil; and b) gas. ................................................................... 109 

Figure 5.23 – Production rates comparison between IMPEC and FI-0 - Case 1, using 2D 

regular quadrilateral grids. a) oil; and b) gas. ......................................................................... 109 

Figure 5.24 – Production rates comparison between IMPEC and IMPSAT-0 - Case 1 for 2D 

unstructured quadrilateral grid. a) oil; and b) gas. .................................................................. 110 

Figure 5.25 – Production rates comparison between IMPEC and FI-0 - Case 1 for 2D 

unstructured quadrilateral grid. a) oil; and b) gas. .................................................................. 110 

Figure 5.26 – Production rates comparison between IMPEC and IMPSAT-0 - Case 1 for 2D 

unstructured triangular grid. a) oil; and b) gas. ...................................................................... 111 

Figure 5.27 – Production rates comparison between IMPEC and FI-0 - Case 1 for 2D 

unstructured triangular grid. a) oil; and b) gas. ...................................................................... 111 

Figure 5.28 – Gas saturation field at 500 days for 2D EbFVM - Case 1. a) quadrilateral 60x60 

IMPEC; b) quadrilateral 60x60 IMPSAT-0; c) quadrilateral 60x60 FI-0; d) quadrilateral 3387 

vertices IMPEC; e) quadrilateral 3387 vertices IMPSAT-0; f) quadrilateral 3387 vertices FI-0; 

g) triangle 3329 vertices IMPEC; h) triangle 3329 vertices IMPSAT-0; and i) triangle 3329 

vertices FI-0. ........................................................................................................................... 112 

Figure 5.29 – 3D hexahedron element grids - Case 1. a) 1024 vertices; b) 6480 vertices; and 

c) 11767 vertices. .................................................................................................................... 114 

Figure 5.30 – 3D tetrahedron element grids - Case 1. a) 1024 vertices; b) 4056 vertices; and c) 

16810 vertices. ........................................................................................................................ 115 

Figure 5.31 – 3D prism element grids - Case 1. a) 1024 vertices; b) 4056 vertices; and c) 

13448 vertices. ........................................................................................................................ 115 

Figure 5.32 – 3D pyramid element grids - Case 1. a) 1699 vertices; b) 7181 vertices; and c) 

24648 vertices. ........................................................................................................................ 116 

Figure 5.33 – Production rates comparison between IMPEC and IMPSAT-0 - Case 1 for 3D 

unstructured hexahedron grid. a) oil; and b) gas. ................................................................... 117 

Figure 5.34 – Production rates comparison between IMPEC and FI-0 - Case 1 for 3D 

unstructured hexahedron grid. a) oil; and b) gas. ................................................................... 117 

Figure 5.35 – Production rates comparison between IMPEC and IMPSAT-0 - Case 1 for 3D 

unstructured tetrahedron grid. a) oil; and b) gas. .................................................................... 118 



 

 

 

Figure 5.36 – Production rates comparison between IMPEC and FI-0 - Case 1 for 3D 

unstructured tetrahedron grid. a) oil; and b) gas. .................................................................... 118 

Figure 5.37 – Production rates comparison between IMPEC and IMPSAT-0 - Case 1 for 3D 

unstructured prism grid. a) oil; and b) gas. ............................................................................. 119 

Figure 5.38 – Production rates comparison between IMPEC and FI-0 - Case 1 for 3D 

unstructured prism grid. a) oil; and b) gas. ............................................................................. 119 

Figure 5.39 – Production rates comparison between IMPEC and IMPSAT-0 - Case 1 for 3D 

unstructured pyramid grid. a) oil; and b) gas. ......................................................................... 120 

Figure 5.40 – Production rates comparison between IMPEC and FI-0 - Case 1 for 3D 

unstructured pyramid grid. a) oil; and b) gas. ......................................................................... 120 

Figure 5.41 – Gas saturation field at 700 days for 3D hexahedron EbFVM with 11767 vertices 

- Case 1. a) IMPEC; b) IMPSAT-0; and c) FI-0. ................................................................... 121 

Figure 5.42 – Gas saturation field at 700 days for 3D tetrahedron EbFVM with 16810 vertices 

- Case 1. a) IMPEC; b) IMPSAT-0; and c) FI-0. ................................................................... 121 

Figure 5.43 – Gas saturation field at 700 days for 3D prism EbFVM with 13448 vertices - 

Case 1. a) IMPEC; b) IMPSAT-0; and c) FI-0. ...................................................................... 121 

Figure 5.44 – Gas saturation field at 700 days for 3D pyramid EbFVM with 24648 vertices - 

Case 1. a) IMPEC; b) IMPSAT-0; and c) FI-0. ...................................................................... 122 

Figure 5.45 – Hybrid grid: 20298 vertices; 3254 triangle elements and 18195 quadrilateral 

elements - Case 2.  .................................................................................................................. 126 

Figure 5.46 – Production rates comparison between IMPEC and IMPSAT-0 - Case 2. a) oil; 

and b) gas. ............................................................................................................................... 126 

Figure 5.47 – Production rates comparison between IMPEC and FI-0 - Case 2. a) oil; and b) 

gas. .......................................................................................................................................... 127 

Figure 5.48 – Gas saturation fields at 6000 days of simulation - Case 2. a) IMPEC; b) 

IMPSAT-0; and c) FI-0. ......................................................................................................... 127 

Figure 5.49 – 2D 40x80 Cartesian grid - Case 3. ................................................................... 131 

Figure 5.50 – Heterogeneous absolute permeability in X and Y directions field - Case 3. ... 131 

Figure 5.51 – Production rates comparison between IMPEC and IMPSAT-0 - Case 3 for the 

Cartesian grid. a) oil; and b) gas. ............................................................................................ 132 

Figure 5.52 – Production rates comparison between IMPEC and FI-0 - Case 3 for the 

Cartesian grid. a) oil; and b) gas. ............................................................................................ 132 

Figure 5.53 – Gas saturation field at 3000 days for 2D Cartesian grid - Case 3. a) IMPEC; b) 

IMPSAT-0; and c) FI-0. ......................................................................................................... 133 



 

 

 

Figure 5.54 – Second hydrocarbon liquid saturation field at 3000 days for 2D Cartesian grid - 

Case 3. a) IMPEC; b) IMPSAT-0; and c) FI-0. ...................................................................... 133 

Figure 5.55 – Time-stepping profiles for the IMPEC, IMPSAT-0 and FI-0 formulations – 

Case 3 using Cartesian grid. ................................................................................................... 134 

Figure 5.56 – 2D 3016 vertices grid with 818 triangular and 2490 quadrilateral elements - 

Case 3. .................................................................................................................................... 136 

Figure 5.57 – Heterogeneous absolute permeability in X and Y directions field for the element 

grid - Case 3. ........................................................................................................................... 136 

Figure 5.58 – Production rates comparison between IMPSAT-0 and FI-0 - Case 3 for the 

EbFVM. a) oil; and b) gas. ..................................................................................................... 137 

Figure 5.59 – Gas saturation field at 3500 days for 2D element grid - Case 3. a) IMPSAT-0; 

and b) FI-0. ............................................................................................................................. 138 

Figure 5.60 – Second liquid hydrocarbon phase saturation field at 3500 days for 2D element 

grid - Case 3. a) IMPSAT-0; and b) FI-0. .............................................................................. 138 

Figure 5.61 – Time-stepping profiles for the IMPSAT-0 and FI-0 formulations – Case 3 using 

the element grid. ..................................................................................................................... 139 

Figure 5.62 – 40x40x5 Cartesian grid - Case 4. ..................................................................... 142 

Figure 5.63 – Heterogeneous absolute permeability in X and Y directions field - Case 4. ... 142 

Figure 5.64 – Production rates comparison between IMPEC and IMPSAT-0 - Case 4. a) oil; 

and b) gas. ............................................................................................................................... 143 

Figure 5.65 – Production rates comparison between IMPEC and IMPSAT-1 - Case 4. a) oil; 

and b) gas. ............................................................................................................................... 143 

Figure 5.66 – Production rates comparison between IMPEC and IMPSAT-2 - Case 4. a) oil; 

and b) gas. ............................................................................................................................... 144 

Figure 5.67 – Production rates comparison between IMPEC and FI-0 - Case 4. a) oil; and b) 

gas. .......................................................................................................................................... 144 

Figure 5.68 – Production rates comparison between IMPEC and FI-1 - Case 4. a) oil; and b) 

gas. .......................................................................................................................................... 145 

Figure 5.69 – Gas saturation field at 250 days - Case 4. a) IMPEC; b) IMPSAT-0; c) 

IMPSAT-1; d) IMPSAT-2; e) FI-0; and f) FI-1. .................................................................... 145 

Figure 5.70 – Time-stepping profiles – Case 4. a) IMPEC and IMPSAT formulations; and b) 

IMPEC and FI formulations. .................................................................................................. 146 

  



 

 

 

LIST OF TABLES 

 

CHAPTER 1  

Table 1.1 – Variables in compositional reservoir simulation. .................................................. 26 

Table 1.2 – General concepts of the formulations for compositional reservoir simulation. .... 32 

 

CHAPTER 5 

Table 5.1 – Reservoir data for Case 1. ..................................................................................... 90 

Table 5.2 – Fluid composition data for Case 1. ........................................................................ 90 

Table 5.3 – Component data for Case 1. .................................................................................. 91 

Table 5.4 – Binary interaction coefficients for Case 1. ............................................................ 91 

Table 5.5 – Relative permeability data for Case 1. .................................................................. 91 

Table 5.6 – CPU time (s) for all simulations - Case 1 using 2D Cartesian grids. .................. 102 

Table 5.7 – CPU time (s) of all simulations - Case 1 using 3D Cartesian grids. ................... 105 

Table 5.8 – CPU time (s) of all simulations - Case 1 using 2D regular quadrilateral grids. .. 113 

Table 5.9 – CPU time (s) of all simulations - Case 1 using 2D unstructured quadrilateral grids.

 ................................................................................................................................................ 113 

Table 5.10 – CPU time (s) of all simulations - Case 1 using 2D unstructured triangular grids.

 ................................................................................................................................................ 113 

Table 5.11 – CPU time (s) of all simulations - Case 1 using 3D hexahedron grids. .............. 122 

Table 5.12 – CPU time (s) of all simulations - Case 1 using 3D tetrahedron grids. .............. 122 

Table 5.13 – CPU time (s) of all simulations - Case 1 using 3D prism grids. ....................... 123 

Table 5.14 – CPU time (s) of all simulations – Case 1 using 3D pyramid grids.................... 123 

Table 5.15 – Reservoir data for Case 2. ................................................................................. 124 

Table 5.16 – Fluid composition data for Case 2. .................................................................... 124 

Table 5.17 – Component data for Case 2. .............................................................................. 125 

Table 5.18 – Binary interaction coefficients for Case 2. ........................................................ 125 

Table 5.19 – Relative permeability data for Case 2. .............................................................. 125 

Table 5.20 – CPU time (s) of all simulations – Case 2. ......................................................... 128 

Table 5.21 – Reservoir data for Case 3. ................................................................................. 129 

Table 5.22 – Fluid composition data for Case 3. .................................................................... 129 

Table 5.23 – Component data for Case 3. .............................................................................. 130 

Table 5.24 – Binary interaction coefficients for Case 3. ........................................................ 130 

Table 5.25 – Relative permeability data for Case 3. .............................................................. 130 



 

 

 

Table 5.26 – CPU time (s) for all simulations - Case 3 using a 40x80 2D Cartesian grid. .... 135 

Table 5.27 – CPU time (s) for all simulations - Case 3 using a hybrid grid with 3016 vertices.

 ................................................................................................................................................ 139 

Table 5.28 – Reservoir data for Case 4. ................................................................................. 140 

Table 5.29 – Fluid composition data for Case 4. .................................................................... 140 

Table 5.30 – Component data for Case 4. .............................................................................. 141 

Table 5.31 – Binary interaction coefficients for Case 4. ........................................................ 141 

Table 5.32 – Relative permeability data for Case 4. .............................................................. 141 

Table 5.33 – CPU time (s) of all simulations – Case 4. ......................................................... 146 

 

APPENDIX A 

Table A.1. Time-stepping control parameters for Case 1 using 2D Cartesian grids. ............. 157 

Table A.2. Time-stepping control parameters for Case 1 using 3D Cartesian grids. ............. 158 

Table A.3. Time-step control parameters - Case 1 using 2D uniform  quadrilateral grids. ... 159 

Table A.4. Time-step control parameters for Case 1 using 2D unstructured quadrilateral grids.

 ................................................................................................................................................ 160 

Table A.5. Time-step control parameters for Case 1 using 2D unstructured triangular grids.

 ................................................................................................................................................ 161 

Table A.6. Time-step control parameters for Case 1 using 3D unstructured hexahedron grids.

 ................................................................................................................................................ 162 

Table A.7. Time-step control parameters for Case 1 using 3D unstructured tetrahedron grids.

 ................................................................................................................................................ 163 

Table A.8. Time-step control parameters for Case 1 using 3D unstructured prism grids. ..... 164 

Table A.9. Time-step control parameters for Case 1 using 3D unstructured pyramid grids. . 165 

Table A.10. Time-step control parameters for Case 2. ........................................................... 165 

Table A.11. Time-step control parameters for Case 3 using Cartesian grid. ......................... 166 

Table A.12. Time-step control parameters for Case 3 using the element grid. ...................... 166 

Table A.13. Time-step control parameters for Case 4. ........................................................... 167 

 



 

 

 

LIST OF ABBREVIATIONS AND ACRONYMS 

 

BF Boundary Fitted 

CP Corner Point 

CV Control-Volume 

CVFEM Control Volume Finite Element Method 

EbFVM Element based Finite Volume Method 

EOR Enhanced Oil Recovery 

EOS Equation of State 

FEM Finite Element Method 

FI Fully Implicit 

FVM Finite Volume Method 

IFT Interfacial Tension 

IMPEC Implicit Pressure, Explicit Compositions 

IMPEM Implicit Pressure, Explicit Overall Mass/Moles 

IMPES Implicit Pressure, Explicit Saturations 

IMPSAT Implicit Pressure and Saturations 

IP Integration Point 

MAW Mass Weighted Upwind 

MCM Multiple Contacts Miscibility 

MVNR Minimum Variable Newton-Raphson 

NOBF Non-Orthogonal Boundary Fitted 

PEBI Perpendicular Bisector 

PREOS Peng-Robinson Equation of State 

REV Representative Elementary Volume 

SCV Subcontrol-Volume 

SUCV Streamline Upwind Control-Volume 

TVD Total Variation Diminishing 

UTCOMP University of Texas Compositional Simulator 

  

  

  

 



 

 

 

LIST OF SYMBOLS 

 

a Equation of state parameter. 

A Equation of state parameter or area (m
2
). 

b Equation of state parameter or back interface. 

B Equation of state parameter or back control-volume. 

Cf Formation compressibility (MPa
-1

). 

Cw Water compressibility (MPa
-1

). 

D Depth (m). 

e East interface. 

E East control-volume. 

f Fractionary flow (dimensionless) or fugacity (MPa). 

F Volumetric flow rate (m
3
/d). 

g Gravity acceleration (m/d
2
). 

G Gibbs free energy (J). 

J  Mole flux transported by dispersion (kmol/m
2
d). 

L Phase mole fraction (dimensionless). 

kr Relative permeability (dimensionless). 

K  Absolute permeability tensor (m
2
). 

nc Number of components. 

np Number of phases. 

nj Number of moles of phase j (kmol). 

nij Number of moles of component i in phase j (kmol). 

nf Number of control volume interfaces. 

nv Number of element vertices. 

N Total number of moles (kmol) or shape function. 

N  Total number of moles per pore volume (kmon/m
3
). 

P Pressure (MPa). 

Pc Capillary pressure (MPa). 

q  Mole rate being injected or produced (kmol/d). 

Q  Volumetric flow rate injected or produced (m
3
/d) 

R Gases universal constant (MPa m
3
 kmol

-1
 K

-1
). 



 

 

 

S Saturation (dimensionless). 

t Time (days). 

T Temperature (K) or transmissibility (m
3
). 

U  Velocity vector (m/d). 

V Volume (m
3
). 

V  Partial molar volume (m
3
/kmol). 

w West interface. 

W West control-volume. 

WI Well index (m
3
). 

x Cartesian coordinate in X direction (m). 

xij Mole fraction of component i in phase j (dimensionless). 

y Cartesian coordinate in Y direction (m). 

z Cartesian coordinate in Z direction (m). 

zi Overall mole fraction of component i (dimensionless). 

Z Compressibility factor (dimensionless). 

 

Greek letters 

ξ Mole density (kmol/m
3
) or coordinate in the computational plane. 

λ Mobility (MPa
-1

 d
-1

). 

μ Viscosity (MPa d). 

ρ Mass density (kg/m
3
). 

η Coordinate in the computational plane. 

γ Coordinate in the computational plane. 

ϕ Porosity (dimensionless). 

κ Binary interaction coefficient (dimensionless). 

ω Acentric factor (dimensionless). 

Φ Hydraulic potential (MPa). 

 

Subscripts 

b Bulk. 

g Gas phase. 

l Second liquid phase. 



 

 

 

o Oil phase. 

p Pore or control-volume P. 

T Total. 

w Water phase or component. 

 

Superscripts 

n Previous time-step. 

n+1 Current time-step. 

m Implicit level to be defined. 

0 Reference condition. 
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1 INTRODUCTION 

 

Petroleum is one of the most important items in the modern society. Not only 

petroleum is the main energy source in the world, but it is also used as a raw material in 

countless consumer goods and has numerous applications in industrial processes. The 

importance of the oil impacts all areas of the society including politics, environment, science, 

and technology. 

Petroleum is a non-renewable mixture of hydrocarbons found naturally in rock 

formations in the subsurface. Two theories try to explain the origin of these mixtures: the 

biogenic and abiogenic theories. The biogenic theory, the most accepted one, claims that the 

hydrocarbon mixtures are formed through the deposition of dead organic matter under lakes 

and seas through millions of years. During this period, these remains are continuously 

covered by layers of sediments which become later sedimentary rocks. The heat and pressure 

under these layers generates innumerous complex chemical reactions converting the organic 

remains in oil and gas in a very slow process. On the other hand, the abiogenic theory claims 

that petroleum was formed without the need of biological remains. One of the abiogenic 

hypothesis, proposed that the petroleum comes from deep carbon deposits as old as the Earth 

formation. The hydrocarbons then migrate upward reaching the reservoir rocks. Since the 

biogenic theory has been more successful in the discovery of oil and gas fields, it is much 

more popular and supported than the abiogenic theory, as concluded by Glasby (2006). 

The oil rock formations are permeable porous media called reservoirs. These 

reservoirs are usually surrounded by impermeable rocks called trap, seal, or cap rocks. The 

hydrocarbons present in the rock pores at reservoir conditions can have complex phase 

behavior and can form phases such as oil, gas, another liquid or solid (such as asphaltene). 

Water is always present in oil reservoirs, thus an aqueous phase is always present. To produce 

the oil from the fields it is necessary to drill wells to connect the reservoir with the surface. 

Figure 1.1 illustrates a well drilled through the formation. If the pressure difference between 

the reservoir and the surface is enough to produce a fluid flow from the reservoir to the 

producing wells, this recovery process is called primary recovery, and it consists of the 

simplest recovery mechanism. After the initial depletion, the reservoir pressure decreases and 

also the production rates. In order to continue the production, it is possible to inject water or 

recycled gas into the reservoir to increase the reservoir pressure; this mechanism is called 

secondary recovery. Any oil recovery technique that is not classified as primary or secondary 

recovery is called tertiary recovery or enhanced oil recovery (EOR). The EOR can be 
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summarized as thermal recovery, gas flooding, chemical injection, among others. The EOR 

techniques can recover up to 60% (U.S. Department of Energy, 2011) of the original oil in 

place, while the primary recovery goes up to 20%, and the secondary recovery up to 40% 

(EPRI, 1999). It is important to mention that these recovered amounts depend on the oil type 

and reservoir depth. 

Figure 1.1 – Illustration of a typical oil and gas reservoir. 

 

The modelling and simulation of oil and gas recovery processes allows engineers 

to have a good idea of the oil and gas production rates, which aids the formulation of 

economic analysis and in the selection of the recovery strategies. Modelling oil recovery 

processes consists of mass, volume, and energy balances that can reproduce the fluid 

dynamics inside the reservoir with the desirable degree of realism and accuracy. These 

balances form a set of nonlinear differential equations that cannot be solved without the use of 

numerical approaches unless several simplifications are made. These models have been used 

in reservoir simulations since the 1930’s (Coats, 1982a; Coats, 1982b). According to Coats 

(1982a; 1982b), the early simulations consisted of analytical solutions, zero-dimensional 

material balances and one dimensional Buckley-Leverett (Buckley and Leverett, 1942) 

calculations. The use of computers to solve these models started at the beginning of the 

1960’s and became a great advance in petroleum reservoir area, extending the solution of 
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monophasic one-dimension flow to two and three dimensions, with multiphase flow in 

transient regime and heterogeneous media (Coats, 1982a; Coats, 1982b). Before the 70’s, the 

computational models were mainly based on Black-Oil models. The Black-Oil model assumes 

that three pseudo-components exist inside the reservoir: oil, gas and water. In general, the gas 

component can exist in the oil and gas phase, but the oil and water components cannot be 

transferred to the other phases. Although the Black-Oil model is simple and has a low 

computational cost, it lacks realism and it is suitable only for heavy oils. The increase in oil 

prices led to the development of many EOR techniques. These processes could not be 

modelled with the Black-Oil model unless large errors in the predictions with this model were 

acceptable. Several models emerged to treat each EOR processes. However these models 

were soon replaced by multipurpose models that could handle several processes. According to 

Ács et al. (1985), two reasons led to this: first, the expenses involved in training, development 

and maintenance of these multiple models; and second, the search for a model which could 

have a common basis to help surveys and comparisons for the understanding of different oil 

recovery mechanisms. 

The reservoir simulation had a great evolution since its beginning, not only in the 

physical modelling equations used but also in many other features such as: numerical 

formulations, gridding, flux approximation schemes, phase behavior calculations, 

geomechanics models, fractures and fault models and linear solvers. 

Solving the equations involved is still a difficult task, consuming even days of 

computation even with the most modern computers to provide a single result. In order to 

provide feasible computation times, many algorithms were proposed for all types of models, 

from black-oil to thermal compositional models, differing in complexity, robustness and 

consistency. These algorithms are called numerical formulations. Although the development 

of compositional simulators is underway for more than three decades, this is still a 

challenging task, given the large number of partial differential equations to be solved and the 

large number of variables that must be determined. The main goal of this work is to 

investigate several numerical formulations using Cartesian and unstructured grids, with the 

goal of evaluating the performance of each formulation in terms of accuracy and overall 

computational cost for processes like miscible and immiscible gas flooding and CO2 injection 

for isothermal compositional reservoir simulation. 

The numerical formulations of reservoir models can be classified as IMPES 

(Implicit Pressure, Explicit Saturations), IMPSAT (Implicit Pressure and Saturations), AIM 

(Adaptive Implicit Method), and FI (Fully Implicit). The IMPES formulations are also called 
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by IMPEM (Implicit Pressure, Explicit Overall Mass/Moles) (Wong and Aziz, 1989) and 

IMPEC (Implicit Pressure, Explicit Compositions). The IMPES, IMPEM and IMPEC 

formulations share the same basis of evaluating in which only pressure is evaluated implicitly 

and the use of each one of these nomenclatures are used according to the variables that are 

computed explicitly through the other material balance equations. Since saturation is not a 

common term in chemical engineering field, it is important to mention that it refers to the 

volumetric fraction of each phase that resides into the pore volume.  

 

1.1 Literature review 

 

A literature review is presented in this section. First, a review of the numerical 

formulations for isothermal compositional simulation, then a review of the gridding 

techniques used in reservoir simulation is presented. 

 

1.1.1 Numerical formulations 

 

The physical models used in petroleum reservoir simulation evolved in realism 

and robustness through time, but they also increased their complexity as a consequence. One 

of the first models used was the Buckley-Leverett model (1942). This model describes an 

incompressible/immiscible multiphase flow. Buckley and Leverett (1942) also presented the 

analytical solution for the two-phase flow of oil and water using this model. Muskat (1949) 

developed the three-phase Black-Oil model which was improved and modified for several 

applications in the oil industry being used up to date. The compositional models are relatively 

more recent. The development of compositional reservoir models was supported by the 

development of accurate Equations of State (EOS) for the phase behavior of oil and gas 

calculations. Although the use of EOS increased the computational cost of the models, the use 

of these models was encouraged by the evolution in the computers’ processing power.   

The early compositional models neither used fugacity nor EOS. Physical 

properties were evaluated through correlations. These simulators presented several 

convergence problems. Fussel and Fussel (1979) were the first to use an EOS to evaluate 

properties and phase behavior and have overcome the convergence problems of the previous 

simulators. Thele (1984) presents a review of the compositional models that did not use EOS. 

Some of the most important methods developed are presented next. The 

differences between the formulations are the choices and nature of the balance equations, the 
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coupling with the phase equilibrium equations, and the choice of the variables to be solved 

with the balance equations.  

Before looking at the compositional formulations it is necessary to define the 

concept of primary and secondary variables. The hypothesis of local equilibrium is usually 

accepted in the field of reservoir engineering and considers that each point of the reservoir is 

in a thermodynamic equilibrium related to the conditions and overall compositions at that 

point. This assumption makes valid the Gibbs’ phase rule: 

thermo PF N N  2 , (1.1) 

where Fthermo is the degree of freedom, NP is the number of phases in equilibrium, and N is the 

number of components present in the phases in equilibrium. The degrees of freedom are the 

number of independent intensive parameters that determine the all other intensive variables of 

the system. Water component is not usually included into flash calculations; therefore there is 

no mass transfer between the water phase and the other hydrocarbon phases. With these 

assumptions, the value of N becomes nc and the value of NP becomes np-1, where nc is the 

number of components excluding water and np is the number of phases existing inside the 

reservoir. If the model is to be considered isothermal, then one of the independent intensive 

parameters is fixed and one parameter less needs to be determined. Additionally, in 

multiphase flow in porous media, it is necessary to determine the phase saturations in order to 

compute the phase flow; this will include np more independent variables to be determined. 

However, one saturation can be eliminated with the saturation constraint, which is given by 

np

j

j

S




1

1 . (1.2) 

Applying the above assumptions, eliminating one parameter with Eq. (1.2), and 

substituting it in Eq. (1.1), the number of independent variables reduces to 

thermo cF n 1 . (1.3) 

The nc+1 intensive parameters that must be determined are called primary 

variables, and are usually determined through the flow equations. If the extensive state of the 

system is desired, then another degree of freedom is included and we have to solve the system 

for nc+2 primary variables. The primary variables determine all other variables in the system. 

The main variables used in compositional reservoir simulation are presented in Table 1.1. 
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Table 1.1 – Variables in compositional reservoir simulation. 

Variable Definition Total quantity Number 

eliminated 

Final 

quantity 

Pj Phase pressures. np np-1 1 

Sj Phase saturations. np 1 np-1 

xij Phase compositions. nc(np-1) np-1 (nc-1)(np-1) 

 Total: np(nc+2)-nc 2np-1 nc(np-1)+1 

 

As shown in Table 1.1, the total number of variables to be determined are 

np(nc+2)-nc. All other properties and parameters involved in a isothermal reservoir simulation 

considering local equilibrium can be obtained using these variables. Note that quantities in 

Table 1.1 are taken assuming that water is present only in water phase and the water 

component cannot be found in any of the hydrocarbon phases. The phase pressures are related 

to each other through the capillary pressure relations. The capillary pressure relations allow 

selecting just one phase pressure as a reference and then computing the others from this 

reference. This eliminates np-1 variables. One of the saturations is also dependent from the 

others through the saturation constraint and eliminates one more variable, as it was shown 

previously.  Also, the phase compositions of each phase must sum up to one. It adds one more 

equation to determine the composition for each hydrocarbon phases, therefore np-1 variables 

can be eliminated. Finally, after the elimination of all depending variables, nc(np-1)+1 

variable still remain, as shown in Table 1.1. If the most typical situation in a reservoir is 

assumed, namely a three phase system (water, oil and gas), then the number of variables 

becomes 2nc+1. Since the nc+1 primary variables are usually determined from the flow 

equations, it will be necessary to compute nc(np-2) more variables. These variables are called 

the secondary variables, and most models use the equilibrium relations to determine them. 

The equilibrium relations are the isofugacity equations. The equilibrium relations will be 

discussed later in chapter 2. 

Most of the numerical formulations use the concepts of primary and secondary 

variables. The literature review of the numerical formulations will be now addressed. 

Fussel and Fussel (1979) were the first ones to develop a simulator using EOS for 

both phase equilibrium and density calculations. This approach solved the convergence 

problems faced by the previous compositional approaches. The model proposed by Fussel and 

Fussel (1979) were tridimensional, three-phase and used the modified Redlich-Kwong EOS 

(Zudkevitch and Joffe, 1970). The authors did not consider the effects of physical dispersion 
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and capillary pressure. Additionally, the mass transfer between the hydrocarbon and the water 

phase was not considered. This formulation differs from all other isothermal compositional 

formulations since it is the only formulation that uses constraint equations (equilibrium 

equations and volume constraint) to solve nc+1 primary variables. This formulation is an 

IMPES-type and uses a Minimum Variable Newton-Raphson (MVNR) method to reduce the 

number of equations and variables by a Gauss elimination procedure. The primary variables 

are not fixed and are selected according to the predominance of oil or gas in a given grid 

block. The phase predominance is determined by verifying which phase has the greater 

number of moles per pore volume. If liquid phase prevails in a grid block, then the primary 

variables will be the pressure, the number of moles per pore volume of gas phase and nc-1 

compositions of the gas phase {P, gN , 
gx2 , …, n gc

x }. On the other hand, if the gas phase 

prevails, then the set of variables will be the pressure, the number of moles per pore volume 

of oil phase and nc-1 compositions of the oil phase {P, 
oN , ox2 , …, n oc

x }. The authors called 

the MVRN using the first set of variables by V-Y-P iteration and the MVRN using the second 

set by L-X-P iteration. All the flow equations of this formulation are based on mole balance 

equations. 

Coats (1980) presented the first FI formulation for the isothermal compositional 

model. The model considered three dimensions and three phases, and the gravity and capillary 

pressure effects were taken into account. Furthermore, the capillary pressure and relative 

permeabilities are considered as functions of saturations and also of the interfacial tensions 

(IFT). The modified Redlich-Kwong EOS (Zudkevitch and Joffe, 1970) was used by the 

author for the density and phase equilibrium calculations. This model also does not consider 

mass transfer between the water phase and the hydrocarbon phases. The primary equations are 

the nc hydrocarbon material balance equations and the water balance equation. A Newton-

Raphson method is used to solve the discretized set of equations, generating a block Jacobian 

matrix in which each entry has (2nc+1) (2nc+1) size for the two hydrocarbon phases 

presented into the system. It is worthwhile to mention that primary and secondary variables 

are coupled into the Jacobian matrix. In order to decouple them, a Gauss elimination approach 

is used reducing each block of the Jacobian matrix to a (nc+1) (nc+1). The secondary 

variables are then computed after solving the primary variables. The primary variables for a 

grid block with both oil and gas phases are the gas phase pressure, oil and gas saturations, and 

nc-2 compositions of the gas phase {Pg, oS , 
gS , 

gx3 , …, n gc
x }. If the grid block has only gas 
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phase, the primary variables are: {Pg, gS , 
gx2 , …, n gc

x }. If the grid block has only oil phase, 

the primary variables will be: {Po, oS , ox2 , …, n oc
x }. The author also mentions that for grid 

blocks with immobile water, the water saturation is kept constant and one more saturation is 

eliminated. Coats (1980) treated the phase disappearance verifying the saturation value at the 

end of a Newton iteration; if a saturation is less than zero, the saturation of the grid-block is 

set to zero for the next Newton iteration. The phase appearance was treated by calculating a 

saturation pressure. If the saturation pressure is less than the grid block pressure, then the 

grid-block is single hydrocarbon phase, otherwise the grid block is considered to have two 

hydrocarbon phase and the value of the saturation of the absent phase is set to 0.001. The 

great advantage of the Coats formulation is that most terms of the Jacobian matrix are directly 

calculated, since most of the primary variables are explicitly in the mole balance equations. 

Due to this feature, this set of primary variables is normally called the natural variables. On 

the other hand, the flash procedure is treated in a special way, making impossible to use 

general flash algorithms. In his paper, the author used the formulation to solve problems of 

multicontact-miscibility (MCM) problems. According to Coats (1980) these simulations are 

characterized by a great amount of numerical dispersion. 

Nghiem et al. (1981) developed an IMPES-type formulation that differs from the 

previous ones by solving pressure and compositions separately. Nghiem et al. (1981) 

considered a three dimensional model with three phase flow. The Peng-Robinson (1976) EOS 

was used and the effects the IFT were included into the relative permeabilities and capillary 

pressures. The physical dispersion was not considered. The Nghiem et al. (1981) formulation 

is a modification of the Kazemi et al. (1978). Basically, the authors have modified the 

weighting factors of the pressure equation proposed by Kazemi et al. (1978). Wong and Aziz 

(1989) emphasized that this modification has the great advantage of making the Jacobian 

matrix strictly diagonal dominant and symmetric. A Newton-Raphson method was used to 

linearize this equation in terms of pressure. Observing that the pressure sometimes oscillates, 

Mansoori (1982) suggested the use of numerical approximation for the jacobian, what would 

require an extra flash calculation per iteration. Nghiem (1982) suggested the use of a damping 

function to avoid the oscillations.  

Young and Stephenson (1983) developed a new approach based on the 

formulation proposed by Fussel and Fussel (1979). As in the original formulation, it is also an 

IMPES-type formulation. The major difference between the Fussel and Fussel (1979) and the 

Young and Stephenson (1983) formulations were in the selection of the primary variables and 
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in the ordering of the equations. In this formulation, the ordering and variables are the same 

whether oil or gas prevails. For single phase grid blocks, the residues of the equilibrium 

constraints are set to zero and only diagonal terms corresponding to these equations are equal 

to one. The primary variables chosen are: {P, gN , 
gx2 , …, n gc

x }. The authors used the 

Redlich-Kwong (1949) EOS, and the capillary pressure and gravity were not considered. 

Another FI model was proposed by Chien et al. (1985). In this model the primary 

equations are obtained from the material balance equations for each component. The authors 

proposed a set of primary variables similar to that one proposed by Coats (1980), except that 

gas mole fractions were replaced by the equilibrium ratios (K-values). The authors used this 

formulation to solve multiple contacts miscibility problems for one, two and three 

dimensions. 

Ács et al. (1985) proposed a new IMPES formulation that shares the primary 

variables of Kazemi et al. (1978) and Nghiem et al. (1981). Although the pressure equation is 

based on a volume balance as in the other two works, this equation is obtained in a special 

way. Ács et al. (1985) used a Taylor series truncated in the first order terms to expand the 

porous volume and the total fluid volume at the new time-step level. Then, they equate these 

two expansions in order to obtain an equation fully decoupled from the flash calculation. 

Additionally, the discretized form of this equation is already linear and thus, no Newton’s 

iterations are required. Also, the expansion of the volumes naturally gives rise to a term called 

volume discrepancy. This volume discrepancy is the error between the porous volume 

computed through the conservation equation and the fluid volume computed after the flash 

calculation. This discrepancy is used to control the volume error that can arise and then allow 

the use of a flash calculation per time-step. The authors suggest two possible set of primary 

variables: nc+1 for the intensive state or nc+2 for the extensive state. The set for intensive 

variables are the oil pressure, the water number of moles per pore volume, and nc-1 overall 

compositions: {Po, wN , z1 , …, nc
z 1}; the set for the extensive state is the oil pressure and the 

total number of moles per pore volume of all components including water: {Po, wN , N1
, …, 

nc
N }. It is important to mention that at least one extensive parameter is necessary to be 

included in the extensive parameter set. The solution of the equations is performed in a 

sequential way. First, the pressure is computed implicitly from the total volume balance. 

Then, the overall mole fractions or the total moles for each component are evaluated. If the 

total moles are solved, then the overall compositions are calculated with them. Finally, an 
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isothermal flash calculation is performed using the pressure and overall compositions to 

determine the compositions and amounts of each phase. The saturations are computed using 

the densities and the phase mole fractions. The drawback of this formulation is the total fluid 

derivatives needed in the pressure equation. The evaluation of these derivatives is not an easy 

task and were described analytically only after the development of this formulation in two 

different ways by Subramanian et al. (1987) and by Wong et al. (1987). 

Watts (1986) combined the method of Ács et al. (1985) with the method of 

Spillette et al. (1973). The author combined the idea of a one iteration per time-step of Ács et 

al. (1985) with the sequential IMPSAT of Spillette et al. (1973), generating a new IMPSAT 

formulation. Watts (1986) mentions that inaccuracies can be obtained due to an inconsistency 

that is intrinsic of the formulation. However, he do not address this inconsistency. The Watts 

formulation uses the same pressure equation as does the Ács et al. formulation, but np-1 new 

equations are included to solve the saturations. The saturation equations are volume balance 

equations obtained using the same idea as that done for pressure. It is obviously that one of 

these equations is not solved because one of the saturations is always set as a dependent 

variable through the volume constraint. As the pressure is solved using transmissibilities 

completely explicit, the saturations then use a special form of velocity in order to obtain the 

same mass transferred after the calculation of the new saturations. This semi-implicit velocity 

is used to evaluate the total moles of the nc+1 components and water. Thus, a total of 

nc+np+1 is solved as primary variables. After this process the flash is performed and all other 

variables at the new time-step level are calculated. Watts (1986) considered only the 

advective terms into his formulation and has shown the model for both compositional and 

black-oil models. Although the author do not present any result he mention that this 

formulation was implemented and tested in the simulator presented by Kendall et al. (1983). 

Quandalle and Savary (1989) worked in the formulation proposed by Watts 

(1986) with the goal of identifying and solving the inconsistency issue of it. The authors 

pointed out the first inconsistency as the own semi-implicit nature of the solution. This 

inconsistency is the use of explicit transmissibilities for evaluating the pressure and then 

changing these transmissibilities during the calculation of the saturations. However, this 

inconsistency is not the critical one. The second inconsistency is mentioned by the authors to 

be the nc+2 using only nc+1 flow equations (material balance). The authors also mention that 

the problem for this is that the PVT packages usually considers the saturations of the 

hydrocarbon phases as secondary variables resulting from the phase equilibrium calculation, 

while they are very important in the implicit treatment to compute the relative permeability 
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and capillary pressure. To overcome this limitation, the authors included the solution of nc-2 

new variables into the material balance equations. The new variables can be compositions of 

the oil or gas phase and are related to the relative quantity of each phase. 

Collins et al. (1992) presented an adaptive implicit approach (AIM) for isothermal 

compositional formulation. The equations of this formulation are the nc+1 material balances 

and the volume constraint. The primary variables are the total number of moles per bulk 

volume of the nc components and water.  

Branco and Rodriguez (1996) proposed a new IMPSAT formulation based on the 

formulation of Coats (1980). The authors neglect some terms of the coupled Jacobian matrix 

and freeze the compositions for each iteration, solving each iteration only for pressure and 

saturations. After solving the pressure and saturations the compositions of the phases are 

updated and a new iteration is performed until convergence is achieved. The primary 

variables are the same of the Coats (1980) formulation. The authors validate their model with 

the steady-state solution provided by Chopra and Carter (1986) that considers that in some 

point of the reservoir the oil-gas mobility ratio is equal to the oil-gas mole ratio of the original 

fluid in place at the pressure and temperature of that point. 

Wang et al. (1997) proposed a new FI formulation. In this formulation the flow 

equations and the equilibrium constraints are all assembled into the Jacobian matrix; the size 

of each entry of the Jacobian matrix is equal to (nc(np-1)+1)( nc(np-1)+1). The variables 

solved in this formulation are: {P, 
wN , N1

, ..., nc
N , ln( )K1 , …, ln( )nc

K }. 

Haukas et al. (2004) improved the approach of Quandalle and Savary (1990) by 

changing the primary variables. In Haukas et al. (2005) a better interpretation of these 

parameters is given. The authors called the new parameters by isochoric parameters. A 

stability criterion it was also given in Haukas et al. (2005). 

Santos (2013) implemented and compared several formulations. It includes the FI 

and IMPSAT formulations of Coats (1980), Collins et al. (1990), Branco and Rodriguez 

(1996), and Wang et al. (1997) formulations and a new IMPES formulation. He pointed out 

that for cases investigated the Coats formulation was generally better in performance than the 

other formulations. The new IMPES formulation was based on the ideas of Branco and 

Rodriguez to reduce the equations to an equation for pressure only. 

As suggested by Cao (2002), most of the formulations presented were classified 

according to the nature of the pressure equation into two categories: material balance and 
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volume balance formulations. Table 1.2 summarizes the primary variables and some concepts 

of the formulations presented here. 

Table 1.2 – General concepts of the formulations for compositional reservoir simulation. 

Formulation Implicitness 

degree 

Classification Primary variables 

Fussel and Fussel 

(1979) 

IMPES None {P, gN , 
gx2 , …, n gc

x } or {P, 

oN , ox2 , …, n oc
x } 

Coats (1980) FI Material balance {Pg, oS , 
gS , 

gx3 , …, n gc
x } 

Nghiem et al. (1981) IMPES Volume balance {P, 
wN , 

TF , z1 , …, nc
z } or {P, 

wS , 
TF , z1 , …, nc

z } 

Young and 

Stephenson (1983) 

IMPES None {P, gN , 
gx2 , …, n gc

x } 

Chien et al. (1985) FI None {P, 
wN , z1 , …, nc

z 1} or {P, 
TF

, z1 , …, nc
z 1} 

Ács et al. (1985) IMPEC Volume balance {Po, wN , z1 , …, nc
z 1} or {Po, 

wN , N1
, …, nc

N } 

Watts (1986) IMPSAT Volume balance {Po, wS , 
gS , wN , N1 , …, nc

N } 

Quandalle and 

Savary (1989) 

IMPSAT Volume balance {P, wS , 
gS , ox2 , …, n oc

x 1 } or 

{P, wS , 
gS , 

gx2 , …, n gc
x 1 } 

Collins et al. (1992) AIM (FI and/or 

IMPEC) 

Volume balance {Po, wN , N1 , …, nc
N } 

Branco and 

Rodriguez (1996) 

IMPSAT Material balance {Po, wS , 
gS , ox1 , …, n oc

x 2 } 

Wang et al. (1997) FI Material balance {P, 
wN , N1

, ..., nc
N , ln( )K1 , 

…, ln( )nc
K } 

Haukas et al. (2004) IMPSAT Volume balance {P, wS , 
gS , 1 , …, n nc p

  } 
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Wong and Aziz (1989) present a detailed review of most of the formulations 

addressed in this text. 

The next subsection will provide a literature survey of another important topic in 

reservoir simulation: the gridding techniques. This is an important topic for this work because 

the formulations will be tested here for Cartesian and Unstructured grids. 

 

1.1.2 Gridding techniques 

 

The gridding techniques are the methods of spatial discretization and mapping. 

This subsection intends to show the development of these methods in compositional reservoir 

simulation focusing on the use of unstructured grids. 

Most of the formulations presented previously were based on Cartesian grids in 

conjunction with the Finite Volume Method (FVM). However, all the formulations can be 

implemented for any spatial discretization since their derivations are relatively independent of 

the grid. However, as Cartesian grid is the simplest way to discretize the domain, the 

complexity of the implementation of a given formulation for other type of grid will increase 

sharply. 

One of the most famous discretization used in reservoir simulation is the boundary 

fitted (BF) grids, commonly called corner point (CP) grids in the reservoir literature. 

Although the BF grids have the capability of computing the non-orthogonal portion of the 

flux, most simulators neglect it for the sake of computational cost. The use of BF grids is 

really old in reservoir simulation (Sheldon and Dougherty, 1961; Hirasaki and O’Dell, 1970; 

Wadsley, 1980). However the concept of non-orthogonal BF (NOBF) grids was presented by 

Chu (1971), but became famous only after Thompson et al. (1974). The great advantage of the 

NOBF is the possibility of distorting the grid without great losses in the physical quality of 

the results. Leventhal et al. (1985) chose grids with grid lines tangent to the streamlines of a 

single flow solution, what makes the mixed derivatives negligible. Cunha et al. (1994) solved 

the two-phase flow (water and oil) problem using NOBF for 2D reservoirs; they verified a 

great reduction in the grid orientation effects. Maliska et al. (1994) presented an extension of 

the work of Cunha et al. (1994) for three dimensions. Later, Maliska et al. (1997) presented 

their three dimensional NOBF for the three-phase flow in conjunction with the black-oil 

model using mass fractions and pressure as independent variables. Edwards (1998) used the 

two dimensional NOBF grid in conjunction with a two-phase flow and IMPES approach with 

a full permeability tensor and a high order scheme. Edwards (1998) also compared the results 
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of 9 point stencil (NOBF) with 5 point stencil (Cartesian grid); from this comparison, it was 

possible to see that the NOBF is able to reduce the grid orientation effect and increase the 

numerical accuracy. Coutinho (2002) implemented a NOBF using 2D grids for a fully implicit 

two-phase black-oil model using a mass fraction formulation that was later extended by 

Araújo (2005) for 3D reservoirs. Sarmento (2009) continued the work of Araújo by extending 

the model for three-phase flow. Marcondes et al. (2005) implemented the NOBF method in a 

FI, isothermal, compositional reservoir simulator called GPAS (General Purpose Adaptative 

Simulator) from the University of Texas at Austin. Marcondes et al. (2008) compared the 

effect of the cross derivatives; they figured out that the neglect of these terms have a great 

impact in compositional reservoir simulation since a portion of the flux is not being 

considered. 

The unstructured grids are more general in terms of modelling important features 

of the reservoirs. The unstructured grids are usually related to the concept of elements. 

However, during many years this concept was used only by the Finite Element Method 

(FEM) until the work of Baliga and Patankar (1980); they combined the conservative 

approach of the FVM with the idea of elements and shape functions of the FEM creating a 

new method that they named Control Volume Finite Element Method (CVFEM). Later, 

Maliska (2004) suggested that the CVFEM denomination is unsuitable, since the CVFEM 

gives a wrong idea that we have a finite element approach that is based on material balance. 

Maliska (2004) suggested calling this approach as Element based Finite-Volume Method 

(EbFVM). We strong feels that such denomination is much more adequate, since the approach 

presented by Baliga and Patankar (1980) borrows from finite element only the idea of 

elements and shape functions, but still performs a material balance in order to obtain the 

approximate equations. For this reason, in the rest of this text, we will always refer to this 

approach as EbFVM. 

The first use of unstructured grids in reservoir simulation was done by Heinemann 

and Brand (1988) and Heinemann et al. (1991) with the use of PEBI grids (Perpendicular 

Bisector). These grids are also called Voronoi grids. Although the PEBI grids are cell-vertex 

as the EbFVM method, the nature of the discretization is different. PEBI grids are tessellated 

in a way that the control volume interfaces are always perpendicular to the line jointing the 

two control volumes centers. By doing this the fluxes can be approximated using just two 

points. The first use of EbFVM in reservoir simulation was performed by Rozon (1989) that 

used it to solve a single-phase flow using quadrilateral elements. Rozon (1989) also presented 

a comparison of the truncation errors between the EbFVM and the Cartesian grids, showing 
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that for regular grids composed of quadrilateral elements the EbFVM method is more 

accurate. Fung et al. (1992) used PEBI grids based on triangular element in a thermal general 

purpose simulator. Cordazzo (2006) solved the two-phase flow (water and oil) in conjunction 

with the EbFVM using triangular and quadrilateral elements. Nogueira (2011) implemented 

the EbFVM for 2D reservoirs using a black-oil model based on the mass fractions formulation 

in conjunction with a fully implicit approach. Marcondes and Sepehrnoori (2010) used the 

EbFVM for the solution of an isothermal composition formulation using a FI approach in 

conjunction with triangular and quadrilateral elements. Recently, Marcondes et al. (2013) 

implemented the EbFVM for 3D reservoirs, and isothermal compositional simulation using 

four element types: hexahedron, tetrahedron, pyramid, and prism. 

Also, using the EbFVM approach, Fernandes et al. (2013) has investigated the use 

of several interpolation functions in conjunction with compositional reservoir simulation. 

They adapted the Darwish and Moukaled (2003) approach, for evaluating the successive slope 

ratio for using in TVD (Total Variation Diminishing), originally proposed for cell-centered, 

for the EbFVM approach. In addition to TVD scheme, they also investigated the original 

Mass Weighted Upwind scheme (MAW) (Masson et al., 1994; Saabas and Baliga, 1994a; 

Saabas and Baliga, 1994b) and modified version of MAW (Hurtado et al., 2007), a stream-

Line based Upwind scheme (SUCV) (Swaminathan and Voller, 1992a; Swaminathan and 

Voller, 1992b), and the TVD scheme using two flux limiters: MINMOD (Roe, 1986) and 

Koren (Koren, 1993). 

 

1.2 Layout of this work 

 

In this study, five new formulations were implemented into the UTCOMP 

simulator for both Cartesian and unstructured grids in conjunction with the EbFVM. The 

following formulations were implemented: three IMPSAT and two FI formulations. The three 

IMPSAT formulations are all based on the Watts (1986) formulation where one of them is the 

original Watts’ formulation and the other two formulations are suggested in this work. We 

implemented the FI formulation of Collins et al (1992) and extended the original IMPEC 

formulation of Ács et al. (1985) in a FI framework. To the best of our knowledge, this is the 

first time that the Ács et al. (1985) formulation has been implemented in a FI framework. We 

also like to stress that this is the first time that these IMPSAT formulations and the Ács et al. 

(1985) formulation in a FI framework have been implemented in conjunction with the 

EbFVM. 
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In chapter 2 we will present the mathematical model for the isothermal 

compositional approach, as well as the physical properties such as models used for compute 

viscosity and relative permeability used in this study, and the phase behavior calculation. 

Chapter 3 will present the approximate equations for both Cartesian and EbFVM. 

Chapter 4 will show the algorithm and implicitness level of all formulations 

implemented and tested in this study. 

In chapter 5, all results will be shown and discussed. 

Finally, chapter 6 comes up with the main conclusions and final remarks of this 

work, as well as the possible future study. 

  



37 
 

 

2 MATHEMATICAL MODEL 

 

The mathematical model used in reservoir simulation involves transport equations 

to describe the fluid flow, correlations to describe fluid properties, and thermodynamic 

equations to describe equilibrium relations. All the implementations of this thesis will be 

performed into UTCOMP simulator, as mentioned in the introduction. The UTCOMP 

simulator is an isothermal EOS based compositional reservoir simulator. In this work, the 

models will consider up to four phases that can be classified as water, oil, gas and a second 

liquid hydrocarbon phase which, in general, is basically composed of CO2. The mass transfer 

between the water phase and the hydrocarbon phases is not considered. All the 

implementations will be performed considering both two and three dimensions with the 

gravity and capillary pressure terms, but the physical dispersion is not taken into account. 

Additionally, the local equilibrium between hydrocarbon phases is considered. 

This section will be divides into three subsections: transport equations, 

thermodynamic relations, and fluid properties. 

 

2.1 Transport equations 

 

The petroleum reservoirs are complex pore media with a 

multicomponent/multiphase system. In a microscopic point of view, each phase is separated 

by an interface. The properties of a given phase are only continuous until the interface, where 

a great discontinuity between physical properties arises. It is worthwhile to mention that the 

phase interfaces are also very complex and hard to predict. The properties discontinuity, the 

complexity of the pore media and interfaces, and the very small pore size scale would make 

the simulation of this problem almost impossible. In order to avoid such difficulties, a 

continuum model is used. The continuum model is employed in order to reduce the properties 

discontinuity and simplify such issues as the complexity of the pore media and the phase 

interfaces. In order to obtain the continuum model equations, the microscopic equations and 

properties are averaged into a Representative Elementary Volume (REV). The REV is chosen 

such that a bit of each phase is presented in it. Figure 2.1 illustrates the REV. The 

development of the continuum model from the microscopic equations is really complex and 

will not be treated here. A brief review about this topic is presented by Wong and Aziz 

(1988). 
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Figure 2.1 – Illustration of the REV. 

 

As in compositional reservoir simulation several pseudo-components describe the 

fluid, some amount of each component will compose each phase. The mole balance equation 

for the k-th component is given as 

    ,          ,..., ,

n np p

k k
kj j j j kj c c

b bj j

N q
x U S J k n n

V t V
 

 


       

  
1 1

1
1 1 , (2.1) 

where Nk is the total moles of component k, Vb is the bulk volume, xkj is the molar fraction of 

component k in phase j, ξj is the mole density of phase j, 
jU  is the velocity vector of phase j, ϕ 

is the porosity, Sj is the saturation of phase j, 
kjJ  is the dispersion mole flux of component k in 

phase j, and kq  is the source/sink term of component k. 

Due to the complexity of the implementations in this work, the physical 

dispersion will not be considered here. The velocity vector in Eq. (2.1) is approximated 

through the modification of Darcy’s law for multiphase flow. According to Wong and Aziz 

(1988), the Darcy’s flux is the result of the averaging of the advective terms into a REV. The 

velocity is then written as 

         ,...,j j j p

j

U K j n


   
1

1 , (2.2) 

where jK  is the effective permeability tensor of phase j, μj is the viscosity of phase j, and Φj 

is the hydraulic potential of phase j defined as 

         ,...,j j j pP gD j n   1 , (2.3) 

where Pj is the pressure of phase j, g is the gravity acceleration, D is the depth which is 

positive in the downward direction, and ρj is the mass density of phase j. 
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The effective permeability tensor shown in Eq. (2.2) is usually written in terms of 

the absolute rock permeability as 

         ,...,j rj pK k K j n 1 , (2.4) 

where K  is the rock absolute permeability tensor and krj is the relative permeability of phase 

j. 

The phase pressures used in Eq. (2.3) are related to a reference phase through the 

capillary pressure relations. In this work, the oil phase is the reference phase; the pressure for 

the other phases are evaluated through the capillary pressure relations by 

         ,...,j r cjr pP P P j n  1 , (2.5) 

where Pr is the reference pressure, that will be referred from now on just by P, and Pcjr is the 

capillary pressure of the phase j related to the reference phase, which is zero when j is equal to 

r. It is worth to mention, that in this text, the phase subscripts 1 or w will refer to water phase, 

2 or o will refer to oil phase, 3 or g will refer to gas phase, and 4 or l will refer to a second 

liquid hydrocarbon phase.  

In this work, the water is not included into any phase equilibrium calculation, and 

therefore no mass transfer is considered between the water and the hydrocarbon phases. As a 

result, the mole balance equations (Eq. 2.1) can be written for any hydrocarbon components 

as 

,          ,...,

np

rjk k
kj j j c

b j bj

kN q
x K k n

V t V





 
        


2

1
1 , (2.6) 

and for water 

w rw w
w w

b w b

N k q
K

V t V




 
    

  

1
, (2.7) 

where the subscript w denotes the water component or phase. 

The molar phase compositions of each hydrocarbon phase must sum up to one 

which is given by,  

,          ,...,

nc

kj p

k

x j n



 
1

1 1 . (2.8) 

The same goes for the overall compositions, 
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nc

k

k

z




1

1 . (2.9) 

A saturation constraint is also considered as given by Eq. (1.2). Equation (1.2) is 

rewritten bellow as: 

np

j

j

S




1

1 . (2.10) 

The saturation constraint can be interpreted as one way to express the volume 

constraint. The volume constraint in porous media means that the amount of fluid (VT) must 

occupy the pore volume (Vp), which is expressed by 

p TdV dV . (2.11) 

As the total fluid volume for an isothermal system is function only of pressure and 

of the total number of moles of each component, the total volume derivative gives 

, ( )

nc

T T
T k

N k P Nk i i k

V V
dV dP dN

P N



 

   
    

    


1

1

. (2.12) 

The first derivative in Eq. (2.12) is the total fluid’s compressibility and the second 

derivative the total fluid’s partial molar volume and will be written here as 

, ( )

T
Tk

k P Ni i k

V
V

N


 
 

 

, (2.13) 

for simplicity. The subscript into the total fluid compressibility will also be omitted here for 

simplicity. 

On the other hand, the pore volume is considered to be function of only pressure. 

Therefore, the total derivative of pore volume can be written as 

p

p

V
dV dP

P





, (2.14) 

where the pore volume is defined as 

p bV V , (2.15) 

where Vb is the bulk volume and the porosity (ϕ) is computed as 

 f fC P P     
 

0 1 , (2.16) 
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where ϕ
0
 is the rock porosity evaluated at a reference pressure Pf, and Cf is the rock 

compressibility. After substituting Eq. (2.15) into Eq. (2.14) and deriving Eq. (2.16) respect to 

pressure, we obtain: 

p b fdV V C dP 0 . (2.17) 

Substituting Eqs. (2.12) and (2.17) into Eq. (2.11) and deriving with respect to 

time, dividing by the bulk volume and manipulating yields 

nc

kT
f Tk

b b k

NV P
C V

V P t V t






   
  

   


1

0

1

1 1
. (2.18) 

Substituting the molar rates from Eq. (2.6) into Eq. (2.18), the final form of the 

pressure equation is obtained. 

                                   + .

rwT
f Tw w w

b w

nn npc c

rj k
Tk kj j j Tk

j bk j k

kV P
C V K

V P t

k q
V x K V

V

 







  

    
      
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 
     

 
  

0

1

1 2 1

1

 (2.19) 

The saturation equation used by the Watts formulation is obtained using a similar 

procedure. The simple volume balance of a phase ℓ is given as 

 pd S V dV . (2.20) 

Deriving Eq. (2.20) with respect to time, we obtain 

p

p

VS V
V S

t t t

 
 

  
. (2.21) 

Applying Eq. (2.15) into Eq. (2.21) 

b b

S V
V S V

t t t




 
 

  
. (2.22) 

The total derivative of the phase volume can be written as  

, ( )

nc

k

N k P Nk i i k

V V
dV dP dN

P N



 

   
    
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

1

1

. (2.23) 

Deriving Eq. (2.23) with respect to time and substituting the result into Eq. (2.22), 

using a definition similar to that of Eq. (2.13) for the partial molar volume of phase ℓ, 

omitting the subscript of the phase volume compressibility yields 
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b b k
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Applying the chain rule for the porosity derivative and substituting Eq. (2.16) 

results in 

nc

k
b b f k

k

S V NP
V S V C V

t P t t
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1
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. (2.25) 

The Watts (1986) formulation uses a special treatment for the saturation 

equations. Therefore, we will develop the saturation equation in a way this treatment become 

clear. For this procedure, the molar rates used must have the phase velocities visible. 

Therefore, the molar rates in Eq. (2.25) are substituted using Eq. (2.1), neglecting the physical 

dispersion terms, and dividing the resulting equation by the bulk volume yields: 

   
nn npc c
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f w w w k kj j j k
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0

1 2 1

1 . (2.26) 

The phase velocities can be expressed in terms of the total fluid velocity. The total 

fluid velocity is given by 

np

T m

m

U U




1

. (2.27) 

The velocity of phase j can be rewritten using the concept of phase mobility 

(relative permeability divided by viscosity) as 

           ,...,j j cjr j pU K P P g D j n        1 . (2.28) 

Applying Eq. (2.28) into Eq. (2.27) gives 

 
n n np p p

T m m cmr m m

m m m

U K P K P K g D   
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         
1 1 1

, (2.29) 

where the first term in the right-hand side of Eq. (2.29) can be obtained from Eq. (2.28) as  

           ,...,
j

cjr j p

j

U
K P K P g D j n


        1 . (2.30) 

Performing some algebraic manipulations in Eq. (2.29), we obtain the first term of 

Eq. (2.30) in terms of total velocity as  
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Equating (2.30) and (2.31), we obtain the following equation to phase velocity in 

terms of total velocity as  
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where frj is the fractionary flow of the j-th phase which is defined as 

j

rj np
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. 
(2.33) 

Finally, the reservoir simulator usually considers thermodynamic equilibrium 

between the hydrocarbon phases. At the equilibrium condition the Gibbs free energy is 

minimum. The Gibbs free energy for a multiphase system is written as 

n np c

T

ij ij

j i

G n 
 


2 1

, (2.34) 

where nij is the moles of component i in phase j and ij  is the chemical potential of 

component i in phase j defined as 

ln ,     ,..., ,      ,...,
ij

ij ij c p

ij

f
RT i n j n

f
    0

0
1 2 , (2.35) 

where 
ij 0  and 

ijf 0  are the chemical potential and fugacity at a reference state, respectively. 

Considering that the reference state is such that the chemical potential is zero when the 

fugacity is the unity, the chemical potential expression is simplified to 

ln ,     ,..., ,      ,...,ij ij c pRT f i n j n   1 2 , (2.36) 

where fij is the fugacity of component i in phase j. 

Thus the minimization of the Gibbs free energy is obtained when 
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0 1 2 , (2.37) 
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where r is a reference phase, defined in UTCOMP as the oil phase. Notice that choosing any 

phase as dependent will yield the same result. 

Since the transport equations are determined, it is important to present the phase 

behavior procedures used into UTCOMP simulator, since these will determine the number of 

phases and the equilibrium phase compositions needed for the transport equations. 

 

2.2 Phase behavior 

 

The UTCOMP simulator has three EOS implemented. However, all the case 

studies in this work will be tested considering only the Peng and Robinson (1976) EOS 

(PREOS) which was originally implemented in the UTCOMP by Perschke (1988): 

   
RT a

P
v b v v b b v b

 
   

, (2.38) 

where a and b are the PREOS parameters defined for a pure substance as 

 c

a

c

RT
a

P


 

2

, (2.39) 

and 

c
b

c

RT
b

P
  , (2.40) 

where 

.a 0 45724 , (2.41) 

.b 0 0778 , (2.42) 

and 

.

c

Tm
T


        

    

2
0 5

1 1 , (2.43) 

with the parameter m is evaluated as suggested by Peng and Robinson (1978): 

. . .                                 if  .

. . . .    if  .
m

  

   

   
 

   

2

2 3

0 37464 1 54226 0 26992 0 49

0 379642 1 48503 0 164423 0 016666 0 49
, (2.44) 

The PREOS is written in function of the compressibility factor Z as 
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     Z B Z A B B Z AB B B        3 2 2 2 31 3 2 0 , (2.45) 

where 

 

aP
A

RT


2
, (2.46) 

and 

bP
B

RT
 . (2.47) 

For a multiphase, multicomponent system, Eqs. (2.38) and (2.45) become 

   
,          ,...,

j

p

j j j j j j j j

aRT
P j n

v b v v b b v b
  

   
2 , (2.48) 

and 

      ,          ,...,j j j j j j j j j j j pZ B Z A B B Z A B B B j n         3 2 2 2 31 3 2 0 2 , (2.49) 

where aj and bj are the PREOS parameters for a phase j and are obtained using the mixing 

rules as follows 

,          ,...,

n nc c

j ij kj ik p

i k

a x x a j n

 

 
1 1

2 , (2.50) 

where 

  
.

,          ,...,ik ik i k pa a a j n  
0 5

1 2 , (2.51) 

and 

,          ,...,

nc

j ij i p

i

b x b j n



 
1

2 , (2.52) 

where ai and bi are the PREOS parameters for a component i obtained from Eqs. (2.39) and 

(2.40), respectively; and κik is the binary iteration coefficient. The parameters Aj and Bj are 

computed following Eqs. (2.46) and (2.47), but considering the PREOS parameters defined as 

in Eqs. (2.50) and (2.52), respectively. 

Obviously, the solution of Eq. (2.49) can provide up to three real roots. If more 

than one real root is obtained, the real root that provides the lower Gibbs free energy is chosen 

for that phase, as mentioned by Perchke (1988). Additionally, the pressure considered in all 

the above calculations is the oil pressure. 
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The fugacity coefficient for the PREOS is computed as 

   

 
 

ln ln

    ln ,    ,..., ,       ,..., .

i
ij j j j

j

nc
j jj kj ik i

c p

j jj k j j

b
Z Z B

b

Z BA x a b
i n j n

a bB Z B





   

   
     

       


1

1

1 2
2 1 2

2 2 1 2

 (2.53) 

The phase mole densities are computed as follows: 

,       ,..., .j p

j

P
j n

Z RT
   2  (2.54) 

A volume-shift approach based on the work of Jhaveri and Youngren (1988) is 

also available for liquid density correction. 

The phase appearance and disappearance is treated using stability test 

calculations. Another way to treat the phase disappearance is considered when using the 

Watts (1986) formulation, but this approach will be discussed only in the next chapter. Two 

phase stability test algorithms are implemented in UTCOMP simulator: the stationary point 

location method (Michelsen, 1982) and the Gibbs free energy minimization algorithm that is 

similar to the Trangenstein (1987) method and was modified by Perschke (1988) to deal with 

the equilibrium of three hydrocarbon phases. In general, as commented by Perschke (1988) 

the stationary method is faster than Gibbs free energy minimization method. 

After the phase stability, a procedure to solve the mole fractions and amount of 

each hydrocarbon phase using the fugacity constraint equations is performed. This calculation 

is usually named flash calculation. The flash calculation used in UTCOMP is a combination 

of the Accelerated Successive Substitution (ACSS) method (Mehra et al., 1983) with the 

modified version of the Gibbs free energy minimization method (Perschke, 1988). At the 

beginning of the flash procedure, we use the ACSS method in order to provide a reasonable 

initial estimation, and then we switch to the Gibbs free energy minimization method in order 

to accelerate the convergence. The switching criteria to change from one method to another is 

given by Chang (1990) as 

max ln ln ,       ,..., ,     ,..., ( )ij ir swi c pf f i n j n j r    1 2  (2.55) 

where r is a reference phase, generally assumed as oil. The switching criteria (swi) suggested 

by Chang (1990) is equal to 0.01.  
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2.3 Physical properties 

 

After the flash calculation, it is possible to evaluate the physical properties. Some 

properties depend on the EOS and others depend on correlations. We now describe the 

equations used to compute the densities, saturations, relative permeabilities, capillary 

pressures, viscosities and the volume derivatives. 

The hydrocarbon mole densities are evaluated by Eq. (2.54), while the water mole 

density is assumed to be slightly compressible and given by 

 w w w wC P P     
0 1 , (2.56) 

where  0
1  is a reference molar density evaluated at a Pw pressure and Cw is the water 

compressibility. The mass density of water is evaluated as 

w w wMW  , (2.57) 

where MWw is the molar mass of water. The mass density of the hydrocarbon phases are 

evaluated in a similar way. 

,     ,...,

nc

j j ij i p

i

x MW j n 


 
1

2 . (2.58) 

The water saturation is computed as the volume of water over the porous volume 

w w
w

p

N v
S

V
 , 

where vw is molar volume of the water phase. 

(2.59) 

The saturation of the hydrocarbon phases are evaluated as 

  ,             ,...,
j j

j w pnp

m m

m

L
S S j n

L






   


2

1 2 1 , 
(2.60) 

where the last saturation is always computed through the saturation constraint, Eq. (2.10). 

The relative permeabilities are considered to be function of saturations only and 

the effect of hysteresis is not considered. Although several models are implemented in 

UTCOMP simulator, only two of them will be used in this work: the modified Stone II model 

(Stone, 1973), and the Corey model (Corey, 1986). 

For a two-phase system, e.g. water and oil, the relative permeabilities are written 

as 
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ew

w wr
rw rw

wr or

S S
k k

S S

 
  

  

0

1
, (2.61) 

and 

eo

o or
ro ro

wr or

S S
k k

S S

 
  

  

0

1
, (2.62) 

where rk0  refers to the end-point permeability, e is an exponent, and Swr and Sor are the 

residual saturations of water and oil, respectively. 

For a three-phase system (water, oil and gas), the Stone II model is written as 

ew

w wr
rw rw

wr orw

S S
k k

S S

 
  

  

0

1
, (2.63) 

eg

g gr

rg rg

gr wr org

S S
k k

S S S

 
      

0

1
, (2.64) 

and 

 rogrow
ro row rw rg rw rg

row row

kk
k k k k k k

k k

   
       

   

0

0 0
, (2.65) 

where Sorw is the residual saturation of oil in water, Sorg is the residual saturation of oil in gas, 

rowk0  is the end-point relative permeability of oil in water, and krow and krog are the relative 

permeabilities of oil in water and oil in gas, respectively; and are given as 

eow

w orw
row row

wr orw

S S
k k

S S

  
  

  

0 1

1
, (2.66) 

and 

eog

g wr org

rog rog

wr gr org

S S S
k k

S S S

   
      

0
1

1
, (2.67) 

where 
rogk0  is the end-point relative permeability of oil in gas, eow is the exponent of oil in 

water, and eog is the exponent of oil in gas. 

Finally, the Stone II model, for the four-phase system, computes the relative 

permeabilities of water and gas in the same way as shown for the three-phase system and the 

relative permeabilities of oil, and the second liquid hydrocarbon phase is given by 
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 rogo row
ro row rw rg rw rg

o l row row

kS k
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   
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and 

 rogl row
rl row rw rg rw rg

o l row row

kS k
k k k k k k

S S k k

   
       
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0

0 0
. (2.69) 

The Corey model for a three-system is written as 

ew

w wr
rw rw

wr orw gr

S S
k k

S S S

 
      
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, (2.70) 

eo
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S S S
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and 

eg

g gr
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k k

S S S
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, (2.72) 

where 
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. (2.73) 

The Corey model for a four-phase system is given by the following equations: 
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and 
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l lr
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wr orw gr lr

S S
k k

S S S S
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0

1
, (2.77) 

where rlk0 , Slr and el are the end-point relative permeability, residual saturation, and exponent 

of the second liquid hydrocarbon phase. 
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The capillary pressure is considered function of the saturations and IFT 

(interfacial tension). For a three-phase system (water, oil and gas), the capillary pressures are 

 
Epc

cwo pc wo w

y

P C S
k


  1 , (2.78) 

and 

Epc

w
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y o g

S
P C

k S S




 
     

, (2.79) 

where Cpc and Epc are parameters adjusted experimentally, σwo is the IFT for water-oil, σog is 

the IFT for oil-gas, and S  denotes the normalized saturation defined for the Corey model as 

w wr
w

wr orw gr

S S
S

S S S


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, (2.80) 

o or
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, (2.81) 

and 

g gr

g

wr orw gr

S S
S

S S S



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. (2.82) 

The Macleod-Sugden (Macleod, 1923; Sugden, 1924) correlation, as presented by 

Polling et al. (2001), is used to compute the IFT for each pair of phase as 

 . . ,     ,..., ,       ,...,

nc

ij k i ki j kj p p

k

x x i n j n   


   0 25

1

0 016018 1 1 , (2.83) 

where   is the parachor parameter. 

The UTCOMP simulator has implemented four viscosity models. Only the 

Lohrenz et al. (1964) model will be used in this work. As the water viscosity is considered 

constant, this model is used only for the hydrocarbon phases. The first step in computing the 

viscosities is evaluating the pure-component viscosities at low pressure using the Stiel and 

Thodos (1961) correlation. 
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, (2.84) 



51 
 

 

where 
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/ /
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5 44
1 . (2.85) 

The viscosity of the mixture at low pressure is found for each phase using the 

equation given by Herning and Zipperer (1936). 
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Finally, the viscosity of each phase at the pressure P is computed through the 

correlation of Jossi et al (1962). 
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where the phase reduced density (ξjr) is computed as 

,     ,...,
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jr j ij ci p

i
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 
1

1 , (2.88) 

where vci is the critical molar volume of each component. The parameters j and j are given 

by 
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. . . . . ,     ,...,j jr jr jr jr pj n         2 3 41 023 0 23364 0 58533 0 40758 0 093324 1 . (2.90) 

Finally, we need to compute the volume derivatives which are necessary for the 

Ács et al. (1985), the Watts (1986) and the new FI formulations. In UTCOMP, these 

derivatives were originally computed analytically only for the total fluid volume as suggested 

by Chang (1990). However, for the Watts formulation it is also necessary to evaluate the 
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derivatives of each phase volume. Therefore we will show the equations for each phase, and 

then sum them up to evaluate the derivate of total fluid volume. The analytical procedure for 

developing these derivatives were originally proposed by Subramanian et al. (1987) and by 

Wong et al. (1987) as previously mentioned. 

The derivative with relation to the number of moles of water is given by 

w
ww

w w w

N
V

N  

 
  
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1
. (2.91) 

The procedure to evaluate the derivatives with relation to the hydrocarbon phases 

is much more complicated. The derivation starts from 

 
,     ,..., ,   ,...,

j j

jk c p

k

n v
V k n j n

N


  


1 2 , (2.92) 

where nj is the number of moles of phase j and is given by 
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Evaluating the derivatives of Eq. (2.92), we obtain  
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where the second derivative can be evaluated through the chain rule as 
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The first term on the right hand-side of Eq. (2.95) is eliminated since the 

derivative is taken at constant pressure (see Eq. (2.13)), thus the derivative of P with respect 

to Nk will be zero. Substituting Eq. (2.103) into Eq. (2.102) yields 
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where 

,     ,..., ,   ,...,
j j j

c p

ij ij ij

v Z RT ZRT
k n j n

n n P P n

  
    

   
1 2 , (2.97) 

where the derivative of the compressibility factor can be obtained from the PREOS. 
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Therefore, the only unknown to obtain the volume derivatives are 
ij

k

n

N




. To obtain 

these derivatives, we consider the fugacity constraints (Eq. 2.37): 

ln lnij irf f . (2.98) 

We first show the process for the two-phase equilibrium system. In this case, the 

subscripts j and r in Eq. (2.98) can assume the o and g for the oil-gas system; o and l for the 

oil-second liquid system; or g and l for the gas-second liquid system. 

Deriving Eq. (2.98) with respect to Nk yields 
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where, through the chain rule, 
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and 
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where once again the derivative of pressure with respect to Nk will be zero. For this reason, 
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where 
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and 

,          ,..., ;      ,...,
sjs sr

sk c c

k k k

nN n
s n k n

N N N


 
    

  
1 1 , (2.104) 

and 
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   

 
1 1 , (2.105) 

where δsk is 1 for s=k and 0 for s≠k. 

Substituting Eq. (2.105) into Eq. (2.102) and making some algebraic manipulation 

yields 
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ln lnln
,         ,..., ;       ,...,

nc

ij ijir sr
c c

sr sj k kjs

f ff n
i n k n

n n N n


   
         


1

1 1 . (2.106) 

Observe that Eq. (2.106) contains nc derivatives of moles of phase r with respect 

to the total number of moles of component k (Nk) and is obtained using only the fugacity of 

the i-th component. For determining these derivatives, the expressions for the remaining 

fugacities are written such that the following linear system is assembled: 

ln ln lnln ln

,       

ln ln ln ln ln

j j jr r r

r j n r n j kjc c k

n r n j n r n j n r n jc c c c c c

r j n r n j k kjc c

f f ff f n

n n n n nN

k

f f f f n f

n n n n N n

        
             

    
     

    
         

              

1 1 11 1 1

1 1

1 1

1,..., cn . (2.107) 

Notice that Eq. (2.107) must be solved nc times for each component. Additionally, 

the coefficients matrix is independent of the Nk for which we are solving. Therefore, the same 

coefficients matrix is shared for all nc systems of equations. Once the derivatives for phase r 

are computed, the derivatives for phase j can be obtained from Eq. (2.105). 

For the three-phase system (oil-gas-second liquid), we have  

lnln
,         ,..., ;       ,...,

igio
c c

k k

ff
i n k n

N N


  

 
1 1 , (2.108) 

and 

ln ln
,         ,..., ;       ,...,

ig il
c c

k k

f f
i n k n

N N

 
  

 
1 1 , (2.109) 

Applying the chain rule to the above equations, we obtain 

lnln
,         ,..., ;       ,...,

n nc c

ig sgio so
c c

so k sg ks s

f nf n
i n k n

n N n N
 

  
  

    
1 1

1 1 , (2.110) 

and 

ln ln
,         ,..., ;       ,...,

n nc c

ig sg il sl
c c

sg k sl ks s

f n f n
i n k n

n N n N
 

   
  

    
1 1

1 1 . (2.111) 

where 

,          ,...,s so sg sl cN n n n s n   1 , (2.112) 

and 
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,          ,..., ;      ,...,
sgs so sl

sk c c

k k k k

nN n n
s n k n

N N N N


  
     

   
1 1 , (2.113) 

Choosing the gas phase as dependent, one obtains 

,          ,..., ;      ,...,
sg so sl

sk c c

k k k

n n n
s n k n

N N N


  
    

  
1 1 . (2.114) 

Substituting Eq. (2.114) into Eq. (2.110) and Eq. (2.114) into Eq. (2.111), and 

performing the algebraic manipulating, we obtain 

ln ln lnln
,     ,..., ;      ,...,

n nc c

ig ig igio so sl
c c

so sg k sg k kgs s

f f ff n n
i n k n

n n N n N n
 

     
            

 
1 1

1 1 . (2.115) 

ln ln lnln
,      ,..., ;     ,...,

n nc c

ig ig igso il sl
c c

sg k sg sl k kgs s

f f fn f n
i n k n

n N n n N n
 

     
            

 
1 1

1 1 . (2.116) 

From Eqs. (2.115) through and (2.116) we can see that now nc systems of 

equations with 2nc unknowns will be solved. These equations can be restated in matrix form 

as 

ln ln lnln

; ;
ln ln lnln

, ,..., ; ,..., ,

ig ig igio

so sg sg kg

is ik

ig ig igil

sg sg sl kg

so

k

sk c c

sl

k

f f ff

n n n n
A B

f f ff

n n n n

n

N
X i n k n

n

N

     
   

   
   

    
     

         

 
 
   
 

 
  

1 1

 (2.117) 

or 

,       ,...,

n k kc

c

n n n n k n kc c c c c

A A X B

k n

A A X B

     
     
      
     
     
     

11 1 1 1

1

1 . (2.118) 

Once again the coefficients matrix is the same for all nc linear systems. 

Solving these derivatives, the Eq. (2.96) can be solved. The total volume 

derivative will be evaluated as 

,     ,...,

np

Tk jk c

j

V V k n



 
1

1 . (2.119) 
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The derivatives of the volume with the respect to pressure are the only variables 

left now. The derivative of the water volume with respect to pressure is given by 

w w w w

w

V N C

P






 



0

2
. (2.120) 

Once again, the derivatives of the hydrocarbon phase volumes will be much more 

complex than for water. For a phase j this derivative is given by 

 
,     ,...,

j jj j j

j j p

n vV v n
n v j n

P P P P

  
   

   
2 . (2.121) 

Applying the chain rule to the mole volume derivative we obtain 

,     ,...,

nc

j j j ij

p

iji

v v v nP
j n

P P P n P


   
  

    
1

2 . (2.122) 

Substituting result into Eq. (2.121), yields 

,     ,...,

nc

j j ij j

j j j p

iji

V v n v
n v n j n

P P P n


    
         


1

2 , (2.123) 

where 

,     ,...,
j j j j

p

v Z RT Z ZRT
j n

P P P P P P

    
      

     
2 . (2.124) 

From Eq. (2.123), we can infer that is necessary to compute the derivatives of the 

number of moles with respect to pressure. In order to compute it, we use a similar approach to 

that shown for the derivatives with respect to the total number of moles of each component. 

We show the procedure for a two-phase system first. Deriving Eq. (2.98) with respect to 

pressure and applying the chain rule, yields 

ln lnln ln
,   ,...,

n nc c

ij sj ijir sr ir
c

sr sjs s

f n ff n f
i n

n P P n P P
 

    
   

      
1 1

1 , (2.125) 

where 

,          ,...,s sr sj cN n n s n  1 , (2.126) 

and 

,          ,...,
sjs sr

c

nN n
s n

P P P

 
   

  
0 1 , (2.127) 

thus 
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,          ,...,
sj sr

c

n n
s n

P P

 
  

 
1 . (2.128) 

Substituting Eq. (2.128) into Eq. (2.125) and doing some algebraic manipulation 

yields 

ln lnln ln
,   ,...,

nc

ij ijir sr ir
c

sr sjs

f ff n f
i n

n n P P P


    
          


1

1  (2.129) 

The nc Eqs. (2.129) results in a linear system with the same coefficient matrix as 

shown in Eq. (2.107), which it is presented below. 

ln lnln ln ln ln

ln ln ln ln ln ln

j jr r
jr r

r j n r n jc c

n r n j n r n j n r n j n rc c c c c c c

r j n r n jc c

f ff f fn f
n n n n P P P

f f f f n f f

n n n n P P P

                         
          
    
                          

1 11 1 11 1

1 1

1 1





. (2.130) 

For the three-phase system, we can derive the fugacity constraints with respect to 

pressure, to obtain 

lnln
,         ,...,

igio
c

ff
i n

P P


 

 
1 , (2.131) 

and 

ln ln
,         ,...,

ig il
c

f f
i n

P P

 
 

 
1 . (2.132) 

Applying the chain rule to the above the equations, we obtain 

ln lnln ln
,   ,...,

n nc c

ig sg igio so io
c

so sgs s

f n ff n f
i n

n P P n P P
 

    
   

      
1 1

1 , (2.133) 

and 

ln ln ln ln
,   ,...,

n nc c

ig sg ig il sl il
c

sg sls s

f n f f n f
i n

n P P n P P
 

     
   

      
1 1

1 , (2.134) 

where 

,          ,...,s so sg sl cN n n n s n   1 , (2.135) 

and 
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,          ,...,
sgs so sl

c

nN n n
s n

P P P P

  
    

   
0 1 , (2.136) 

Once again, setting the gas as a dependent phase, we obtain 

,          ,...,
sg so sl

c

n n n
s n

P P P

  
   

  
1 . (2.137) 

Substituting Eq. (2.137) into Eq. (2.133), and Eq. (2.137) into Eq. (2.134), and 

doing some algebraic manipulation, we obtain  

ln ln lnln ln
,   ,...,

n nc c

ig ig igio so sl io
c

so sg sgs s

f f ff n n f
i n

n n P n P P P
 

      
             

 
1 1

1 . (2.138) 

ln ln lnln ln
,   ,...,

n nc c

ig ig igso il sl il
c

sg sg sls s

f f fn f n f
i n

n P n n P P P
 

      
             

 
1 1

1 , (2.139) 

The nc Eqs. (2.138) and (2.139) forms a linear set of equations with 2nc 

unknowns. Once again, the coefficients matrix is the same as that obtained for the moles 

derivatives, given by Eqs. (2.117) and (2.118). The linear system can be written as 

ln lnln ln ln

; ;
lnln ln lnln

, ,..., ,

ig igio ig io

so sg sg

is i
l

igig ig ili

sg sg sl

so

s c

sl

f ff f f
n n n P P

A B
ff f ff

P Pn n n

n

P
X i n

n

P

                                

 
 
  
 
 
 

1

 
(2.140) 

or in a form 

  

nc

n n n n nc c c c c

A A X B

A A X B

     
     
     
     
     
     

11 1 1 1

1

. (2.141) 

Finally, the total volume derivative with respect to pressure will be given as 

np

jT

j

VV

P P





 
1

. (2.142) 

Finally, we present the treatment of the wells included in the mole balance 

equations. Three operational conditions are treated in this work: constant surface volumetric 
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rate injection, constant bottom hole pressure (BHP) for injection and producer wells. If the 

first option is considered, then the molar rate of each component is computed at surface 

conditions, which must be the same that will be included directly into the mole balance 

equations. If multiple layers are considered, then this rate must be distributed through each 

segment as follows: 

,

, ,

,

,         ,..., ,        ,...,

np

s j s

j

k s k T s cnn pL

l j l

l j

WI

q q s n k n

WI







 

  



 

1

1 1

1 1  (2.143) 

where ns is the number of segments of the well and WIs is the Well Index (WI) of each 

segment s of the well. The WI is computed through the Peaceman model (Peaceman, 1978; 

Peaceman, 1983) for Cartesian grids and through the Fung et al. (1992) model for 

unstructured grids. The volumetric rate of each segment of the well can be computed as 

 , , , , ,         ,..., ,        ,...,j s j s s s cjr s wf s s pQ WI P P P s n j n    1 1  (2.144) 

where P is the block pressure that has a well and Pwf,s is the wellbore pressure at segment s. 

For producer wells operating at constant BHP, the mole rate of a given 

hydrocarbon component and water are respectively, computed as 

, , , , ,         ,..., ,        ,...,

np

k s kj s j s j s s c

j

q x Q s n k n


  
2

1 1  (2.145) 

, , , ,         ,...,w s w s w s sq Q s n 1  (2.146) 

For injector wells operating at constant BHP, the mole rate of the hydrocarbon 

components and water are respectively given as 

 
, , ,

,

,         ,..., ,        ,...,

np

F

k s k inj j s s c

T inj j

W
q z Q s n k n

v



  

1

1
1 1  (2.147) 

, , ,

,

,         ,..., ,

np

F
w s w inj j s s

T inj j

W
q z Q s n

v


 
1

1  (2.148) 

 where WF is the fraction of water being injected, zk,inj is the mole fraction of component k into 

the injection fluid and vT,inj is the total molar volume of fluid  injected. 
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3 APPROXIMATE EQUATIONS 

 

In this chapter, we present the discretization of the mathematical mode. First, the 

spatial discretization of the equations is presented. Second, the upwind scheme used in this 

work is presented. Finally, we present the criteria for the selection of the time-steps. 

 

3.1 Spatial discretization 

 

The discretization of the flow equations shown in chapter 2 will be presented. The 

Finite Volume Method (FVM) will be considered in this work. First, we show the 

discretization of the pressure equation used for all formulations, except for the Collins et al. 

(1992) formulation, and the saturation equations for the IMPSAT formulations along with the 

mole balance equations for an arbitrary control volume. Then, the mole and the volume 

balances are discretized for the Cartesian grids. Finally, the same process is performed for the 

EbFVM approach for 2D and 3D reservoirs. 

Integrating Eq. (2.18) in time and for an arbitrary volume P, we obtain 

   ,

, , , ,

,

ncn

T P n n n n n k
b P P f P P T P p P Tk P

bk V t

V N
V C P P V V V dVdt

P V t








  
     

  
 

1

0 1

1

1
, (3.1) 

where the first term in parenthesis on the right-hand side is the volume discrepancy term. This 

term comes from a special time discretization suggested by Ács et al. (1985). The volume 

discrepancy acts as an error control parameter that allows the formulation to perform only one 

flash calculation per time-step. In order to not making the derivation of the approximate 

equations confusing, we do not show this treatment. The reader may follow the procedure 

presented by Ács et al. (1985) and Watts (1986) in order to see how this term arises. The 

integration of the molar rate after applying the Green-Gauss theorem for the hydrocarbon 

components and water are respectively, given by 

   

,

, ,

,                                                                                     ,     ,..., ,

k

b
V t

np m

rjn n m m n m m

k P k P kj j cjr jm

jj A

m

k P c

N
dVdt

V t

k
N N t x K P P gD dA

tq k n

 


 








 
        

 

  




1 1

2

1

1

 
(3.2) 
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   

,

, ,

,                                                                                     

w

b
V t

m
n n m n m mrw
w P w P w cwr wm

w
A

m

w P

N
dVdt

V t

k
N N t K P P gD dA

tq

 


 






 
       

 

 




1 1

1

, (3.3) 

In Eqs. (3.1), (3.2) and (3.3) the superscript n and n+1 denote properties evaluated 

at the previous and current time-step, respectively; and m is equal to n when the physical 

properties are evaluated at the previous time-step or equal to n+1 when the physical 

properties are evaluated at the current time-step. The selection of the implicitness degree will 

be discussed later. 

The integration of Eq. (3.1) for either Cartesian or unstructured grids will provide 

the final form of the pressure equation. 

The same approach can be performed for the saturation equation (Eq. 2.25): 

 ,

, , ,

,

,       ,...,

ncn

Pn n n n n n k
b P P P P k P p

bk V t

V N
V S V P P V dVdt n

P V t




  



 
    

  
1

1 1 1

1

1
1 . (3.4) 

The mole rate in Eq. (3.4) is treated in a special way when using the Watts 

formulation, which is presented bellow for the hydrocarbon components and water, 

respectively as 

  ,

,

,     ,...,

np

n n n nk
kj j j k P c

b jV t A

N
dVdt t x U dA tq k n

V t
 




    

  
1

2

1
1 , (3.5) 

  ,

,

n n nw
w w w P

b
V t A

N
dVdt t U dA tq

V t
 

   
 

11
, (3.6) 

The velocities, in Eqs. (3.5) and (3.6), are computed using Eq. (2.32), which are 

show bellow. 

              

n n n

j rj T

n np p

n n n n n n n

rj s csr cjr s s j

s s
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 
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 

1 1 1
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1 1
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(3.7) 

where the expressions for total velocity, fractional flow, and phase mobility are respectively, 

given by 
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(3.9) 

n
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j n

j

k






 

1

1 . (3.10) 

Notice that as the viscosity is not function of the saturation, it is always treated 

explicitly for the IMPSAT formulations. 

The well terms treatment are not explained by Watts (1986) neither by authors 

that tried to extend his work (Quandalle and Savary, 1989; Haukas et al., 2004; Haukas, 

2005). We know from experience (Fernandes et al.; 2014a), that the well treatment is a key 

parameter for the Watts formulation and therefore for all IMPSAT formulations that will be 

presented here. The wells rates need to be evaluated in a way that the total volumetric rates 

are conserved. The procedure shown here will be important for wells operating under 

prescribed BHP, since for wells operating under constant volumetric rates no additional 

procedure is required to conserve the volumetric rates. By summing up the volumetric rates 

for all phases (Eq. 2.144) and manipulating them in a similar way as it was performed for 

velocity, we obtain that the volumetric rate of a given phase can be written as 

 
np

n n n n n n

j rj T s cjr csr

s

Q f Q WI P P     



 
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1 1 1 1 1 1
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, (3.11) 

where 

 
np

n n n n n

T j cjr w

j

Q WI P P P 



  1 1

1

. (3.12) 

The degree of implicitness of each of these equations will be specified in the next 

chapter, where the flowchart of each formulation will be presented. 
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3.1.1 Cartesian grid discretization 

 

For the Cartesian grids, the equations are integrated into a Cartesian volume as 

shown in Figure 3.1. 

Figure 3.1 – Cartesian control volume. a) three dimensional view; b) x-y plane view. 

 

(a) 

 

(b) 

The properties are considered uniform in each control surface, and therefore Eq. 

(3.2) can be written as 

   , ,

,                                                                                     ,     ,..., ,

n np f m
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 
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1 1

2 1

1
 

(3.13) 

where nf is the number of faces of the control volume P (six for the 3D control volume shown 

in Fig. 3.1), 
lA  is the normal area of face l which is  always oriented outward of the control-

volume faces. These faces are shown in Figure 3.1 as w, e, s, n, b, f. 

The inner products of the permeability tensor, potential gradient, and area of Eq. 

(3.13) is given by 

,

,

,

                       

                       ,

m m m

j j jm

j xx xy xz x l
l

l

m m m

j j j

yx yy yz y l

l

m m m

j j j

zx zy zz z l

l

K A K K K A
x y z

K K K A
x y z

K K K A
x y z

   
            

   
       

   
       

 (3.14) 

If l is equal to e, for instance, we can evaluate the gradient at this interface, as 
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, (3.15) 

where 

, ,,

, , ,

, , , ,

m m

p P p En n m m

j e j P j Em m m m

p P p E p P p E

V V

V V V V
    

 

1 . (3.16) 

For Cartesian grids, the normal vectors to the faces are always aligned to one of 

the Cartesian coordinates. Therefore, for the faces e and w, which are aligned to the x 

direction, the normal vector hasn’t any component in y and z directions. Additionally, the 

cross derivatives, such as a derivative of the potential with respect to y in a face e or w is 

neglected, because in general a diagonal tensor is used for Cartesian grids. Therefore, for the 

face e, Eq. (3.14) is simplified to 

,

m

jm

j xx x e
e

e

K A K A
x

 
         

, (3.17) 

where 

,x e P PA y z   . (3.18) 

In computational fluid dynamics is common to define transmissibilities which 

takes into account geometrical and conductivity parameters. For the face e, the 

transmissibility is given as 

,

,

x e

e xx e

E P

A
T K

x x


 

2
. (3.19) 

The transmissibilities are convenient since it accounts only for the geometrical 

and the permeability terms, which will be constant for the whole simulation and will simplify 

the writing of the equations. The transmissibilities for the other faces are obtained in a similar 

way of Eq. (3.19). 

With all these assumptions, Eq. (3.13) becomes 

    , , , ,

,                                                                                    ,     ,..., ,

n np f

n n m m m n m m

k P k P kj j j l l cjr l j l ll

j l
m

k P c

N N t x T P P g D

tq k n

   

 

        

 

1 1
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1

 (3.20) 

where the operator Δ is defined for a face l such that 

l L PP P P   , (3.21) 
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and the subscript L refers to the neighborhood control volume that shares the face l with the 

control volume P. 

For the Cartesian mesh, all physical properties are evaluated at the center of each 

control volume. However, as we can see in Eq. (3.20) it is necessary to extrapolate physical 

properties like molar density, mole fraction, relative permeability, and viscosity from the 

center of the control volume to the control volume interfaces. For all approaches investigated 

in this work, we use the upwind scheme for both Cartesian and EbFVM. The upwind scheme 

considering the mobility, for instance, at the east interface of control volume P shown in 

Figure 3.1, is computed as 

,

,

           

           

m m

j P j e
m

j e m m

j E j e

if F

if F







 


 
 


0

0

. (3.22) 

A similar approach is performed for the EbFVM that will be shown later in this 

chapter. 

The pressure equation is finally written for Cartesian grids as 
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1

0 1 1
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. (3.23) 

The same process can be performed for the saturation equation, Eq. (3.5). 

However, the expression for the mole rate will be computed in a different way. This 

expression is obtained from Eq. (3.5) for the control volume P shown in Figure 3.1 as 
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or 
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where 
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, (3.26) 

and 
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, ,

n n

T l T l lF U A  1 1
. (3.27) 

A similar procedure is performed to obtain the net molar flow of water. 

 

3.1.2 EbFVM grid discretization 

 

In the EbFVM approach, the domain is discretized by elements, and each element 

is divided into sub-elements according to the number of vertices. Next, the conservative 

equations are integrated for each one of these sub-elements. These sub-elements are called 

sub-control volumes (SCV). After the conservative equations are integrated to each one of 

these sub-control volumes, we assemble the control volume (CV) equations by obtaining the 

contributions of all sub-control volumes that shares the same vertex of the grid. This feature is 

called dual mesh and gives rise to a cell-vertex approach. The great advantage of this 

approach is that all calculations are based on the elements of the grid. An illustration of the 

dual mesh is shown in Figure 3.2. As presented in Figure 3.2, the blue labels represent the 

elements and the black labels represent the control volumes. The control volume associated 

with vertex 5 of the grid shown in Fig. 3.2 is given by green area. 

Figure 3.2 – Illustration of a dual mesh for the EbFVM approach. 

 

Shape functions are used to interpolate any property inside an element, including 

the gradient. Figure 3.3 shows the triangle and quadrilateral elements in the physical and 

computational planes that are used for 2D calculations. All the integrations are performed at 

the computational planes. In this way, the calculations are identically, no matter an element 

can be distorted in the physical plane. The shape functions are written, for an arbitrary 

property (including physical coordinates) ϕ inside an element, so that  

   , , , ,

nv

i i

i

N      


 
1

, (3.28) 
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where Φ is the value of the property evaluated at the nodes, ξ, η and γ are the local plane 

coordinates, and N is the shape function. For 2D elements, triangles and quadrilaterals, the 

shape functions are respectively, given by 

     , ;   , ;   ,N N N             1 2 31 , (3.29) 
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4 4

1 1
1 1 1 1

4 4

, (3.30) 

Figure 3.3 – 2D elements in the physical and computational planes. a) Triangle element; b) 

quadrilateral element. 

 

(a) 

 

(b) 

For 3D discretization four types of elements (Fig. 3.4) can be used: hexahedron, 

tetrahedron, prism, and pyramid. In general, prism and pyramid are considered transition 

elements because they allow the use of mixed grids combining in the same grid hexahedron 

and tetrahedron elements. Since prism and pyramid match the triangular areas of tetrahedron 

and quadrangular areas of the hexahedron these elements are used between hexahedron and 

tetrahedron elements. Once hexahedron has more vertices, it should be used in most parts of 

the reservoir. However, the tetrahedron is more indicated to perform local grid refinement, 
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specially around wells, fractures, and discrete fractures. The shape functions for the 

hexahedron, tetrahedron, prism, and pyramid elements are respectively, given by 

           
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 (3.31) 
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(3.34) 
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Figure 3.4 – 3D elements into the physical plane and computational local plane. a) 

Hexahedron element; b) tetrahedron element; c) prism element; d) pyramid element. 

  

(a) (b) 

 

 

 

(c) (d) 

The gradient inside any element are evaluated using the shape functions as 

;   ;   
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The derivatives of the shape functions with respect to x, y and z are obtained for 

3D elements as 
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                   

. (3.37) 

For 2D elements a similar expression is obtained: 

   
;   

det det

i i i i i i

t t

N N N N N Ny y x x

x J y J       

            
      

            

1 1
, (3.38) 

where 

 det t

x y x y
J

   

    
  

    
. (3.39) 

The interfaces for 3D elements are computed as 

ˆˆ ˆy z y z x z x z x y x y
dA dmdni dmdnj dmdnk

m n n m n m m n m n n m

                
          

                
, (3.40) 

where m and n are any of the coordinates ξ, η or γ. For 2D elements, the area of each 

interface, reading a counterclockwise, is given by 

 ˆ ˆdA h dyi dxj  , (3.41) 

where h is the thickness of the reservoir. Further details of the above expressions can be found 

in (Maliska, 2004; Marcondes and Sepehrnoori, 2010). 

For the EbFVM approach, the integral of each term for a control volume can be 

performed for each SCV. Therefore, the calculations are performed in each SCV and then 

summed up in order to obtain the closure of the balance equations for each CV. These 

calculations are computed in an element level. For the mole balance equations, for instance, 

the integration in space and time, for the sub-control volumes of each element of the grid, can 

be written as 

,     ,..., ;      ,...,
N N Nk k k
cc adv i c vi i

A F S k n i n     0 1 1 1 , (3.42) 

where nv is the number of vertices of the element; 
,cck i

A  denotes the accumulation term of 

component k into SCV i; 
,advk i

F  denotes the advective net flux of component k across the SCV 

i faces; and 
,k iS  denotes the source/sink (wells) term of component k into SCV i. These terms 

for the hydrocarbon components and water are given bellow, where nc+1 denotes the water 

component. 
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, ,

,

,     ,..., ;      ,...,

n n

k i k iNk
cc scv c vi i

b i

N N
A V k n i n

V

 
     
 

1

1 1 1 , (3.43) 

  ,     ,..., ;   ,...,

np m

rjN m m n m mk
adv kj j cjr j i c vmi

jj Ai

k
F t x K P P gD dA k n i n 







 
         

 


1

2

1 1 , (3.44) 

  ,   ,...,
m

Nn m n m mrwc
cc w cwr w i vmi

w
Ai

k
F t K P P gD dA i n 



  
       

 
1 1 1 , (3.45) 

and 

,

,

,     ,..., ;      ,...,
SCVN ik

i k i c v

b i

V
S t q k n i n

V
    1 1 1 , (3.46) 

where 
SCVi

V  is the volume of SCV i. 

The integration of the advective terms (Eq. (3.43) and (3.44)) can be 

approximated by the summation over the SCV faces, which are usually named integration 

points (IP). For Eq. (3.43), it can be written as 

  ,   

                                                                                     
                                  

n np ip m

rjN m m n m mk
adv kj j cjr jmi

jj l l

k
F t x K P P gD dA 





 

  
        

   
 1

2 1

                                                     ,..., ;   ,..., ,c vk n i n 1 1
 

(3.47) 

where nip is the number of integration points of SCV i. For 2D elements (triangles and 

quadrilaterals), the number of integration points is always two. For 3D elements, the number 

of integration points of a given SCV is usually three, except for the sub-control volume 

associated with the apex of the pyramid, which has four integration points, please see Fig. 

3.4d. 

Approximating the gradients in Eq. (3.47) with the expressions of Eq. (3.35) 

yields 

 , , ,   

                                                                                     
                   

n n np ip m v

rjN m m m m mk
adv kj j h h cjr h j elem hmi

jj l h
l

k
F t x K N P P gD dA 


  

  
        
    

 
2 1 1

                                                                    ,..., ;   ,..., ,c vk n i n 1 1
 

(3.48) 

where N in Eq. (3.48) stands for the shape function at integration point l and elem denotes the 

element where the calculations are performed. The mass density of the element that is 

necessary to compute the gravity term is evaluated as the volumetric mean of the densities of 
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all vertices of the element. Only nodes where the phase exists are considered into this 

calculation. This calculation option was selected after testing several approaches. 

Although, the transmissibility concept is valid when the flux is evaluated using 

only two vertices, it is possible to define a pseudo-transmissibility for the EbFVM as  

,ihl l h l lT K N dA   , (3.49) 

where Tihl is the transmissibility of integration point l related to SCV i which is multiplied by 

the property of vertex h. Therefore, Eq. (3.48) is written as 

 , , ,   

                                                                                     
                         

n n np ip m v

rjN m m m m mk
adv kj j ihl h cjr h j elem hmi

jj l h
l

k
F t x T P P gD 


  

  
     
    

 
2 1 1

                                                              ,..., ;   ,..., .c vk n i n 1 1
 

(3.50) 

For the pressure equation (Eq. (3.1)), the accumulation, advection, and well terms 

are respectively, written as 

   ,

, ,

, ,

,      ,...,

n
scv scvT iP n n n ni i

cc scv elem f i i T i p i vi i
b i b i

V VV
A V C P P V V i n

V P V
 

 
      

  

0 1 1 , (3.51) 

 
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, , ,        ,    
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l
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F tV T P P gD

k
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

 


 

   

  
     
    
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1 2 1 1

                                                                       
                                                                                                       ,..., ,vi n 1

 
(3.52) 

, ,

,

,        ,..., .

nc
SCVP n mi

i Tk i k i v

b ik

V
S t V q i n

V





  
1

1

1  (3.53) 

Performing a similar process, we obtain the saturation equation as 

 ,

, ,

, ,

,      ,...,

n
scv scvT iS n n n n ni i

cc scv elem i i i i vi i
b i b i

V VV
A V S P P V i n

V P V
   


    



1 1 1 1 , (3.54) 

   , , , , ,    

                                                                                     
                           

n n nnip p ipc

S n n n n n n n

adv w i w w i k i kj j j ii

l k j ll l

F tV F t V x F  

   

      
     1 1

1 1 2 1

                                                                            ,..., ,vi n1
 

(3.55) 
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, ,

,

,        ,...,

nc
SCVS n ni

i k i k i v

b ik

V
S t V q i n

V





  
1

1

1 ; (3.56) 

where  

   

, , ,

, , , , , .

n n n

j il rj l T il

n nn np pv v

n n n n n n n

rj l s ivl csr v cjr v s s elem j elem ivl v

s v s v
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F f F

f T P P g T D   

  

    

   



 
    
 
 
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1 1 1
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1 1 1 1

 

(3.57) 

 

3.2 Time-step size selection 

 

In UTCOMP, four time-step selection criterion are available. These criterions are 

used to control the increasing or decreasing of the time-step during the simulation. The four 

criterions are pressure variation, saturations variation, total mole variation and total volume 

error. Each of these criterions are given as 

lim

max

n

p

P
t t

P


  


, (3.58) 

lim

max

n

s

S
t t

S


  


, (3.59) 

lim

max

n

n

N
t t

N


  


, (3.60) 

and 

lim

max

n

v

V
t t

V


  


, (3.61) 

where  

max
max( ),           ,..., bi

P P i n   1 , (3.62) 

max
max( ),           ,..., ,     ,...,b pij

S S i n j n    1 1 , (3.63) 

max
max( ),           ,..., ,     ,...,b cik

N N i n k n     1 1 1 , (3.64) 

and 
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max
max( ),           ,..., bi

V V i n   1 , (3.65) 

and the variation for each grid-block is computed as 

,           ,...,

n n

i i

bni
i

P P
P i n

P






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1

1
1 , (3.66) 

, , ,           ,..., ,     ,...,n n

j i j i b pij
S S S i n j n    1 1 1 , (3.67) 

, ,
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,        ,..., ,     ,...,

n n

k i k i

b cnik
k i

N N
N i n k n

N






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1
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1 1 1 , (3.68) 

and 

, ,

,

,           ,...,

n n

T i p i

bni
p i

V V
V i n

V

 




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1 1

1
1 . (3.69) 

Finally, the new time-step size is computed as 

 min , , ,n

p s n vt t t t t     1
. (3.70) 

The parameters ΔPlim, ΔSlim, ΔNlim, and ΔVlim are adjusted empirically to obtain the 

best stable time-step sizes for each simulation. 
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4 FORMULATIONS 

 

This chapter will present the algorithms for each formulation implemented in this 

work. Six formulations will be presented here. The first one presented is the original IMPEC 

formulation of Ács et al. (1985) originally implemented in the UTCOMP simulator for 

Cartesian grids by Chang (1990) and later extended for 2D EbFVM by Fernandes (2011) and 

Fernandes et al. (2012); and for 3D EbFVM by Araújo et al. (2013). The other formulations 

were implemented as a contribution of this work for Cartesian and unstructured grids in 

conjunction with the EbFVM. 

 

4.1 Ács et al. (IMPEC) 

 

The flow equations needed by the Ács et al. (1985) formulation are the pressure 

equation and the nc+1 mole balance equations. This is an IMPEC formulation, hence only 

pressure is computed implicitly by setting all m parameters to n. The degree of implicitness of 

each equation can be clearly seen bellow. Notice that only time integration was performed for 

the equations of pressure, total number of moles of each hydrocarbon component, and number 

of moles of water that are respectively shown below: 

 
 

 

 

n nn
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nn p nc n
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w cwr wn
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1
1 . (4.3) 
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This formulation uses a discretized form of Eq. (4.1) to solve pressure, and then 

uses this new pressure to compute the moles of each component at the new time-step level 

through integrated forms of Eqs. (4.2) and (4.3). As the integration process was already 

explained, it will no longer be discussed here. Equation (4.1) will generate a linear set of 

equations. We use the PETSC package’s solver (Balay et al., 1997; Balay et al., 2013; Balay 

et al., 2014) for solving the linear systems arising from all formulations and discretization 

presented in this work. 

The flowchart of the IMPEC formulation is presented in Figure 4.1. 

Figure 4.1 – Flowchart of the IMPEC formulation for a time-step. 

 

Notice that in this formulation, the saturations at the new time-step level are 

computed only after the flash calculation through Eqs. (2.59) and (2.60). This formulation 

will be called in this work by just IMPEC. 

 

4.2 Watts (IMPSAT-0) 

 

In this formulation, the pressure is solved in the same way as the Ács et al. (1985) 

formulation, (Eq. 4.1). Therefore, pressure is solved considering explicit relative 

permeabilities and capillary pressures. Since these properties are function of the saturation, 

they may drastically change when a new saturation is computed, which would provide a 

different volumetric flux from that used to solve pressure. To avoid it, a semi-implicit total 

velocity (or flux) is used to write the saturation equation. The saturation equation written in 

terms of the total velocity is given by  
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Where the phase velocity, phase mobility and total velocity are respectively, given by 

              

n n n

j rj T

n np p

n n n n n n n

rj m cmr cjr m m j

m m

U f U

f K P P gK D   

  

    

 



 
       
 
 
 

1 1 1

1 1 1 1 1

1 1

, 

(4.6) 

n

rjn

j n

j

k






 

1

1 , (4.7) 

 
np

n n n n n

T m cmr m

m

U K P P g D  



     1 1

1

, (4.8) 

and 

n

rjn

j n

j

k



 , (4.9) 

Equations (4.5) through (4.9) are solved together using the Newton-Raphson 

method. 

The total number of moles at the new time-step level is then solved by using the 

same velocities that were used for the saturations: 
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and 

 
n n n

n nw w w
w w

b b

N N q
t U

V V


 
 
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 

1 1
1 . (4.11) 

After obtaining the number of moles, the flash calculation is performed, but this 

time the saturations are not recalculated. 

Figure 4.2 shows the flowchart of this formulation; we will name IMPSAT-0. 
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Figure 4.2 – Flowchart of the IMPSAT-0 formulation for a time-step. 

 

 

4.3 Modified Watts (IMPSAT-1) 

 

The IMPSAT-0 formulation has presented some inaccuracies for some cases as 

gas and water-alternating-gas (WAG) injection. Another form of this formulation was 

proposed and tested and the inaccuracies were greatly reduced. We suggested using the 

Buckley-Leverett velocity form only for the solution of the saturation equations. In this way, 

the mole balance equations are solved in the traditional form for the hydrocarbon components 

and water. These equations are shown below: 



79 
 

 

     ,...,

np nn n n
rjn n n n nk k k

kj j cjr j cn

b j bj

kN N q
t x K P P gD k n

V V
 




 



    
          

   


11
1 1

2

1 , (4.12) 

and 
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The algorithm is very similar to one presented in Figure 4.2 and it is shown in 

Figure 4.3. 

Figure 4.3 – Flowchart of the IMPSAT-1 formulation for a time-step. 

 

This formulation will be referred to as IMPSAT-1. 
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4.4 Iterative IMPSAT (IMPSAT-2) 

 

To avoid the problem of computing pressure, saturations and moles using 

different mole fluxes, we have implemented an iterative IMPSAT approach. After each 

calculation of the saturations, the pressure is recomputed using the correct relative 

permeabilities and capillary pressure. The new semi-implicit total velocity is then updated 

with pressure, relative permeabilities and capillary pressure and the saturations are 

recalculated. This procedure is done until convergence of pressure and saturations is reached.. 

The result of this approach is that the pressure and saturations are solved using the same mole 

fluxes. Therefore, no inconsistency in this aspect is observed. The pressure equation is given 

by 
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and 
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The algorithm of this approach is shown in Figure 4.4. 
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Figure 4.4 – Flowchart of the IMPSAT-2 formulation for a time-step. 

 

This formulation will be referred to as IMPSAT-2. 
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4.5 Collins et al. (FI-0) 

 

One of FI considered in this work is one proposed by Collins et al. (1992). In this 

formulation, the number of moles of each component are computed using the same model as 

that of the previous formulations. However, the pressure equation is obtained by just equating 

the pore volume and the total fluid volume of a given grid-block at the new time-step level. 

All variables m are treated implicitly at (n+1) time level, then a non-linear set of equations is 

formed. To solve this non-linear system of equations, we write these equations in the residual 

form for pressure, number of moles of hydrocarbon components, respectively as 
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Each residue equation must be zero when the solution is reached. For solving Eqs. 

(4.14) to (4.16), the Newton-Raphson method is used so the following set of equations must 

be solved per Newton’s iteration. 
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where nb is the number of grid-blocks of the grid, and 
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In order to obtain the derivatives of the residual equations is necessary to evaluate 

the derivative of each secondary variables with respect to the primary variables. These 

derivatives are given bellow as 
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Some of the derivatives of the above expressions were already shown in Chapter 2 

and the others are evaluated through the EOS. 

The derivatives of relative permeability and capillary pressure with respect to 

saturations are computed numerically as 
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and 
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The viscosity derivatives with respect to its phase moles of each component and 

pressure is obtained numerically as well, 

   ..., , , ,..., ..., , , ,...,
,  

                                                                                             ,..., ,  ,..., ,

j k j kj k j j k j kj k jkjj

kj kj

p c

n n n P n n n Pn

n n

j n k n

      


 

 

1 1 1 1

2 1

 (4.49) 

and 

   ..., , , ,..., ..., , , ,...,
,  ,..., .

j k j kj k j j k j kj k jj

p

nkj

n n n P P n n n P
j n

P P

       
  

  

1 1 1 1
2  (4.50) 

For all derivatives that are evaluated numerically we use the following variation 

for pressure and saturations: 10
-3

P and 10
-5

S. 

Figure 4.5 presents the flowchart for a time-step calculation of the Collins et al. 

(1992) formulation; we will this approach FI-0 formulation. 
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Figure 4.5 – Flowchart for performing one time-step FI-0 formulation. 

 

 

4.6 New FI approach (FI-1) 

 

The original approach of UTCOMP is the Ács et al. (1985) formulation. In order 

to preserve the nature of this formulation in the UTCOMP simulator, but using large time-

steps we are proposing the use of the Ács et al. (1985) formulation in a fully implicit 

framework.  We like to stress the main difference of this formulation and the Collins et al. 

(1992) formulation. In the pressure equation of the Collins et al. (1992) formulation the only 

terms that show up at the Jacobian matrix are in the diagonal block.  On the other hand, in the 

pressure equation used in the current approach, non-zero derivatives will result for the 

diagonal and off-diagonal terms of each control volume.  Therefore, we expect that that this 
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feature will have a large impact on the computational time. We name this approach FI-1 

formulation. The new pressure equation is written as 
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We use the same mole balance equations of the FI-0 formulation: Eqs. (4.17) and 

(4.18). Figure 4.6 presents the flowchart of this approach.  

Figure 4.6 – Flowchart for performing one time-step for the FI-1 formulation. 
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5 RESULTS AND DISCUSSION 

 

In this chapter, four case studies for testing and verification of all the formulations 

implemented in this work in conjunction with Cartesian and unstructured grids are presented. 

The results will be compared in terms of oil and gas production rates; time-stepping profiles; 

phase saturations and/or CO2 overall composition fields; and overall CPU time. We validate 

all the new formulations with the original IMPEC formulation of UTCOMP, since it was 

severely tested and compared with several commercial simulators (Li, 2012). The field 

profiles are visualized using the ESSS Kraken
®

 post-processor. The unstructured grids are 

generated using the ANSYS ICEM
®

 and an in-house grid generator. 

The following four case studies are used: a three component, three-phase CO2 

flooding; a six components, three-phase gas flooding; and two different seven components, 

four-phase CO2 flooding cases. 

All results for the IMPEC and IMPSAT approaches presented here were obtained 

for the maximum allowable time-step control parameters, that is, parameters that provide 

solutions without spurious oscillations.  

 

5.1 Case study 1 

 

Case study 1 consists of a heavy oil characterized by three components: CO2, C1 

and nC16. The reservoir initially contains only water and oil phases. A fluid rich in CO2 is 

injected which originates a new phase into reservoir. The reservoir investigated here is a 

quarter-of-five-spot configuration. Only immobile water exists in the reservoir during the 

whole simulation. Table 5.1 presents the reservoir data for this case. 
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Table 5.1 – Reservoir data for Case 1. 

Property Value 

Length, width, and thickness 243.83 m, 243.83 m, and 60.96 m 

Porosity 0.30 

Initial Water Saturation 0.25 

Initial Pressure 20.65 MPa 

Permeability in x, y, and z directions 1.97×10
-13

 m
2
, 1.97×10

-13
 m

2
, and 1.97×10

-14
 m

2
 

Formation Temperature 299.82 K 

Gas Injection Rate 5.66×10
5
 m

3
/d 

Producer’s Bottom Hole Pressure 20.65 MPa 

 

The five-spot configuration is a common production layout used in petroleum 

engineering, which is basically constituted of 5 wells: one injector and four producer wells. 

Figure 5.1 shows the layout of this configuration. Due to symmetry just one quarter of this 

configuration is, in general, investigated.  

Figure 5.1 – Five-spot layout (quarter of five-spot filled). 

 

 

The original in place composition and the injected fluid composition for this case 

is shown in Table 5.2. 

Table 5.2 – Fluid composition data for Case 1. 

Component Initial Reservoir Composition Injection Fluid Composition 

CO2 0.0100 0.9500 

C1 0.1900 0.0500 

nC16 0.8000 - 

 

The components properties are displayed in Table 5.3. 
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Table 5.3 – Component data for Case 1. 

Component Pc (MPa) Tc (K) vc (m
3
/kmol) 

MW 

(kg/kmol) 

Acentric 

Factor (ω) 

CO2 7.39 304.21 9.40×10
-2

 44.01 0.225 

C1 4.60 190.60 9.99×10
-2

 16.04 0.022 

nC16 1.74 734.68 8.17×10
-1

 222.00 0.684 

 

The binary interaction coefficients and the relative permeabilities parameters are 

given in Tables 5.4 and 5.5, respectively. 

Table 5.4 – Binary interaction coefficients for Case 1. 

Component CO2 C1 nC16 

CO2 - 0.12 0.12 

C1 0.12 - - 

nC16 0.12 - - 

 

Table 5.5 – Relative permeability data for Case 1. 

Parameter Value 

Model Modified Stone II 

End point relative permeabilities (
rwk0 , 

rowk0 , 
rogk0  and 

rgk0 ) 1.00, 1.00, 1.00 and 1.00 

Residual saturations (Swr, Sorw, Sorg and Sgr) 0.25, 10
-6

, 10
-6

 and 0 

Exponents (ew, eow, eog and eg) 1.00, 1.00, 1.00 and 1.00 

 

Two and three dimensional reservoirs in conjunction with Cartesian and 

unstructured grids will be considered for this case study. 
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5.1.1 Case study 1: 2D Cartesian grid 

 

Three grid refinements are used for this test: 20x20, 40x40 and 80x80. The 

purpose of using three different grids is to verify the performance of each formulation with 

the increase in the number of grid points. The grids are presented in Figure 5.2. For all 

reservoirs investigated, the blue arrows denote the injector wells, while the red arrows denote 

the producer wells. 

Figure 5.2 – 2D Cartesian grids - Case 1. Injectors in blue and producers in red. 

 

(a) 
 

(b) 

 

(c) 

The time-step control parameters for the IMPEC and IMPSAT formulations are 

chosen in such way that no spurious oscillations are produced. The instability of the IMPEC 

and IMPSAT approaches can be noted as oscillations in the production curves. We want to 

avoid these oscillations by controlling the time-step as presented in chapter 3. Although the FI 
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approaches do not present this drawback, the use of large time-steps can lead to loss of 

numerical accuracy. Therefore, a time refinement needs to be performed in order to ensure 

that a time independent solution is obtained. For this study, the production rates using large 

time-steps for the FI approaches are denoted by (*). The time-step control parameters for all 

cases presented in this chapter can be found in Appendix A. 

Comparisons of the oil and gas production rates with the IMPEC formulation are 

presented in Figures 5.3 through 5.5 for the IMPSAT-0, IMPSAT-1, and IMPSAT-2 

formulations. From these figures, one can observe a good agreement between the production 

curves for each grid. Figures 5.6 and 5.7 compare the production rates of the FI-0 and FI-1 

using large time-steps (*) with the IMPEC, respectively. From these figures, one can observe 

that the FI solutions are completely different from the IMPEC solution obtained for each 

mesh. In order to see if this difference is caused by the loss of accuracy due to using large 

time-steps, a time refinement will be performed for the FI approaches. The largest time-step, 

for each mesh, for the FI approaches is the one that provides the same production curves as 

the IMPEC. The curves obtained with this process are shown in Figures 5.8 and 5.9 for the FI-

0 and FI-1 formulations, respectively. Now, we can observe a good agreement between the 

IMPEC and FI solutions for both approaches. From now on, all the results that will be 

presented for the FI approaches will be the ones that considered a time-step refinement. 

As in this study we are interested only in the performance of the formulations, we 

do not carried out any grid refinement study. Results of grid refinement study using the 

UTCOMP simulator can be found in Fernandes et al. (2013) and Fernandes et al. (2014b). 

The time-step profiles used by all grids and formulations are shown in Fig. 5.10. 

From this figure, it is possible to verify that FI approaches can handle large time-steps than 

the other approaches. 

The gas saturation field at 500 days for all formulations are presented in Figures 

5.11, 5.12, and 5.13 for the 20x20, 40x40, and 80x80 grids, respectively. From these figures, 

it is possible to see that the solutions are in very good agreement with the IMPEC 

formulation. 
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Figure 5.3 – Production rates comparison between IMPEC and IMPSAT-0 – Case 1. a) oil; 

and b) gas. 

 

(a) 

 

(b) 

Figure 5.4 – Production rates comparison between IMPEC and IMPSAT-1 – Case 1. a) oil; 

and b) gas. 

 

 

(a) 

 

(b) 
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Figure 5.5 – Production rates comparison between IMPEC and IMPSAT-2 – Case 1. a) oil; 

and b) gas. 

 

(a) 

 

(b) 

 

Figure 5.6 – Production rates comparison between IMPEC and FI-0* – Case 1. a) oil; and b) 

gas. 

 

(a) 

 

(b) 
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Figure 5.7 – Production rates comparison between IMPEC and FI-1* – Case 1. a) oil; and b) 

gas. 

 

(a) 

 

(b) 

 

Figure 5.8 – Production rates comparison between IMPEC and FI-0 – Case 1. a) oil; and b) 

gas. 

 

(a) 

 

(b) 
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Figure 5.9 – Production rates comparison between IMPEC and FI-1 Case 1. a) oil; and b) gas. 

 

(a) 

 

(b) 
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Figure 5.10 – Time-stepping profiles for all formulations – Case 1. a) 20x20; b) 40x40; and c) 

80x80. 

 

(a) 

 

(b) 

 

(c) 
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Figure 5.11 – Gas saturation fields at 500 days for all formulations - Case 1 using a 20x20 

Cartesian grid. a) IMPEC; b) IMPSAT-0; c) IMPSAT-1; d) IMPSAT-2; e) FI-0; and f) FI-1 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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Figure 5.12 – Gas saturation fields at 500 days for all formulations - Case 1 using a 40x40 

Cartesian grid. a) IMPEC; b) IMPSAT-0; c) IMPSAT-1; d) IMPSAT-2; e) FI-0; and f) FI-1 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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Figure 5.13 – Gas saturation fields at 500 days for all formulations - Case 1 using a 80x80 

Cartesian grid. a) IMPEC; b) IMPSAT-0; c) IMPSAT-1; d) IMPSAT-2; e) FI-0; and f) FI-1 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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The CPU time for each of the formulations and grids is presented in Table 5.6. As 

it can be observed, the IMPEC formulation is one of the faster formulations for the coarser 

grid (20x20). However, when the grid is refined, the performance of the IMPEC and 

IMPSAT-2 formulations reduces and the other formulations increase. For the finest grid, the 

FI approaches performance sharply increase. This happens because as the other formulations 

decrease their time-step sizes due to numerical stability, while the FI approaches can use the 

maximum time.  

Table 5.6 – CPU time (s) for all simulations - Case 1 using 2D Cartesian grids. 

Formulation 20x20 40x40 80x80 

IMPEC 3.96 67.98 1030.19 

IMPSAT-0 3.76 38.11 630.84 

IMPSAT-1 3.73 38.18 638.84 

IMPSAT-2 4.94 40.56 953.99 

FI-0 7.91 72.16 415.87 

FI-1 7.86 69.70 408.59 
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5.1.2 Case study 1: 3D Cartesian grid 

 

In order to see the effect of variation in z direction, we run the 2D problem stated 

in section 5.1.1 as a 3D problem. 

For the 3D Cartesian analysis of Case 1 we consider three grids: 20x20x5, 

40x40x10, and 80x80x15. The grids are shown in Figure 5.14. The time-step control 

parameters are presented in Appendix A. 

Figure 5.14 – 3D Cartesian grids - Case 1. a) 20x20x5; b) 40x40x10; and c) 60x60x15. 

 

(a) 

 

(b) 

 

(c) 

As the solutions for the IMPSAT formulations are very similar for this case, we 

present only the results for the IMPSAT-0, considering the finest grid. For the same reason 

we present only the results for the FI-0. The oil and gas rates are presented in Figure 5.15 and 

5.16. From these figures, it is possible to see that all the formulations are in good agreement. 
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Figure 5.15 – Production rates comparison for 3D Cartesian 60x60x15 between IMPEC and 

IMPSAT-0 - Case 1. a) oil; and b) gas. 

 

(a) 

 

(b) 

 

Figure 5.16 – Production rates comparison for 3D Cartesian 60x60x15 between IMPEC and 

FI-0 for Case 1. a) oil; and b) gas. 

 

(a) 

 

(b) 

 

The time-step profiles for the 60x60x15 grid are presented in Figure 5.17. From 

this figure, it is possible to see that the IMPEC reached the lowest values of time-step size. 

Also, the maximum time-step for the FI approaches are about 20 times larger than the ones 

used by the IMPSAT approaches. 
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Figure 5.17 – Time-stepping profiles for all formulations – Case 1 using 3D Cartesian grids. 

 

Figure 5.18 presents the gas saturation fields for the 60x60x15 grid at 700 days, 

for all formulations. Once again, it is possible to infer a good agreement between all the 

formulations. One can observe that the gas flows faster at the bottom of the 3D reservoir. 

Such behaviour cannot be obtained with the 2D discretization. 

The CPU times for 3D Cartesian grids are presented in Table 5.7. From this table, 

once again, it is possible to observe that the performance of the FI approaches increase with 

the grid refinement. 

Table 5.7 – CPU time (s) of all simulations - Case 1 using 3D Cartesian grids. 

Formulation 20x20x5 40x40x10 60x60x15 

IMPEC 22.2 772.8 5663.3 

IMPSAT-0 22.7 512.7 4727.2 

IMPSAT-1 21.8 552.7 6704.9 

IMPSAT-2 31.6 824.1 8599.0 

FI-0 34 520.1 3667.8 

FI-1 32.3 520 3693.8 
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Figure 5.18 – Gas saturation fields at 700 days for all formulations - Case 1 using a 60x60x15 

Cartesian grid. a) IMPEC; b) IMPSAT-0; c) IMPSAT-1; d) IMPSAT-2; e) FI-0; and f) FI-1 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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5.1.3 Case study 1: 2D EbFVM 

 

Using unstructured grids, it is important to see if the grid uniformity has any 

impact in the performance of the formulations. Since unstructured grids are used to map 

complex geometries, it is not possible to use uniform grids for these cases. Therefore, a 

convenient feature of the formulations is that the results must be independently of the grid 

distortion. In order to test this characteristic, the formulations are first run for three regular 

grids of quadrilateral elements (Figure 5.19), and then run for non-uniform grids of 

quadrilateral (Figure 5.20) and triangular (Figure 5.21) elements. 

Figure 5.19 – 2D regular quadrilateral element grids - Case 1. a) 20x20; b) 40x40; and c) 

60x60. 

 
(a) 

 
(b) 

 
(c) 
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Figure 5.20 – 2D unstructured quadrilateral grids - Case 1. a) 1199 vertices (1134 elements); 

b) 2661 vertices (2568 elements); and c) 3387 vertices (3282 elements). 

 
(a) 

 
(b) 

 
(c) 

Figure 5.21 – 2D unstructured triangular grids - Case 1. a) 1220 vertices (2310 elements); b) 

2330 vertices (4482 elements); and c) 3329 vertices (6444 elements). 

 
(a) 

 
(b) 

 
(c) 
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For the same reasons described above, Figures 5.22 and 5.23 present the 

comparison of the oil and gas rates using the 60x60 regular quadrilateral grid only for the 

IMPSAT-0 and FI-0 approaches with the IMPEC approach, respectively. 

Figure 5.22 – Production rates comparison between IMPEC and IMPSAT-0 - Case 1, using 

2D regular quadrilateral grids. a) oil; and b) gas. 

 

(a) 

 

(b) 

 

Figure 5.23 – Production rates comparison between IMPEC and FI-0 - Case 1, using 2D 

regular quadrilateral grids. a) oil; and b) gas. 

 

(a) 

 

(b) 

 

Figures 5.24 and 5.25 present the comparison between the IMPEC and the 

IMPSAT-0 and FI-0, respectively, for unstructured quadrilateral grid with 3387 vertices. 
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Figure 5.24 – Production rates comparison between IMPEC and IMPSAT-0 - Case 1 for 2D 

unstructured quadrilateral grid. a) oil; and b) gas. 

 

(a) 

 

(b) 

 

Figure 5.25 – Production rates comparison between IMPEC and FI-0 - Case 1 for 2D 

unstructured quadrilateral grid. a) oil; and b) gas. 

 

(a) 

 

(b) 

 

Finally, the comparison between the IMPEC and the IMPSAT-0 and FI-0 using a 

2D unstructured triangular grid with 3329 vertices are presented in Figures 5.26 and 5.27, 

respectively. 
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Figure 5.26 – Production rates comparison between IMPEC and IMPSAT-0 - Case 1 for 2D 

unstructured triangular grid. a) oil; and b) gas. 

 

(a) 

 

(b) 

 

Figure 5.27 – Production rates comparison between IMPEC and FI-0 - Case 1 for 2D 

unstructured triangular grid. a) oil; and b) gas. 

 

(a) 

 

(b) 

 

The gas saturation fields at 500 days are presented in Figure 5.28 for the finest 

grids investigated. A good agreement between the saturation field obtained with all 

formulations and grids is observed in this figure. 
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Figure 5.28 – Gas saturation field at 500 days for 2D EbFVM - Case 1. a) quadrilateral 60x60 

IMPEC; b) quadrilateral 60x60 IMPSAT-0; c) quadrilateral 60x60 FI-0; d) quadrilateral 3387 

vertices IMPEC; e) quadrilateral 3387 vertices IMPSAT-0; f) quadrilateral 3387 vertices FI-0; 

g) triangle 3329 vertices IMPEC; h) triangle 3329 vertices IMPSAT-0; and i) triangle 3329 

vertices FI-0;. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

The CPU time for all formulations using the regular quadrilateral grids is 

presented in Table 5.8. The same information is presented for unstructured quadrilateral grids 
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in Table 5.9, and for unstructured triangular grids in Table 5.10. Once again, the same 

perform pattern verified for the Cartesian is verified for the EbFVM formulation. It is 

worthwhile to mention that the 60x60 regular grid has 3721 vertices, which is larger than the 

number of vertices of the finest unstructured grids used for quadrilateral and triangular 

elements. For this reason, the CPU time for the 60x60 grid will be larger than the CPU times 

for the finest grids shown in Tables 5.9 and 5.10. 

 

Table 5.8 – CPU time (s) of all simulations - Case 1 using 2D regular quadrilateral grids. 

Formulation 20x20 40x40 60x60 

IMPEC 15.2 272.6 1540.7 

IMPSAT-0 10.3 171.2 997.5 

IMPSAT-1 10.8 176.5 966.0 

IMPSAT-2 14.3 224 1192.6 

FI-0 18.6 179.3 797.4 

FI-1 18.7 184.6 732.5 

 

Table 5.9 – CPU time (s) of all simulations - Case 1 using 2D unstructured quadrilateral grids. 

Formulation 1199 vertices 2661 vertices 3387 vertices 

IMPEC 113.8 699.2 954.6 

IMPSAT-0 71.6 458.3 588 

IMPSAT-1 75.3 478.3 629.2 

IMPSAT-2 106 564.7 779.7 

FI-0 110 470.3 463.3 

FI-1 108.6 402.5 420.1 

 

Table 5.10 – CPU time (s) of all simulations - Case 1 using 2D unstructured triangular grids. 

Formulation 1220 vertices 2330 vertices 3329 vertices 

IMPEC 109.6 649.2 1354.4 

IMPSAT-0 97.3 445.4 1002.5 

IMPSAT-1 101.3 500.4 1128.2 

IMPSAT-2 128.7 653.5 1502.5 

FI-0 89.1 301.2 582.8 

FI-1 85.9 269.6 566 
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5.1.4 Case study 1: 3D EbFVM 

 

Four sets of 3D unstructured grids were used for each element type in this 

analysis. These sets are presented in Figures 5.29, 5.30, 5.31 and 5.32 for hexahedrons, 

tetrahedrons, prisms and pyramids, respectively. 

Figure 5.29 – 3D hexahedron element grids - Case 1. a) 1024 vertices; b) 6480 vertices; and 

c) 11767 vertices. 

 

(a) 

 

(b) 

 

(c) 
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Figure 5.30 – 3D tetrahedron element grids - Case 1. a) 1024 vertices; b) 4056 vertices; and c) 

16810 vertices. 

 

(a) 

 

(b) 

 

(c) 

Figure 5.31 – 3D prism element grids - Case 1. a) 1024 vertices; b) 4056 vertices; and c) 

13448 vertices. 

 

(a) 

 

(b) 

 

(c) 
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Figure 5.32 – 3D pyramid element grids - Case 1. a) 1699 vertices; b) 7181 vertices; and c) 

24648 vertices. 

 

(a) 

 

(b) 

 

(c) 

Figures 5.33 and 5.34 present the comparison of the oil and gas rates using the 

hexahedron grid with 11767 vertices for the IMPSAT-0 and FI-0 approaches with the IMPEC 

approach, respectively. Figures 5.35 and 5.36 present the same study for tetrahedron grids as 

well as Figures 5.37 and 5.38 for prisms, and Figures 5.39 and 5.40 for pyramids. From these 

figures, it is possible to verify a good agreement between the formulations for all grid 

configurations investigated. 
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Figure 5.33 – Production rates comparison between IMPEC and IMPSAT-0 - Case 1 for 3D 

unstructured hexahedron grid. a) oil; and b) gas. 

 

(a) 

 

(b) 

 

Figure 5.34 – Production rates comparison between IMPEC and FI-0 - Case 1 for 3D 

unstructured hexahedron grid. a) oil; and b) gas. 

 

(a) 

 

(b) 
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Figure 5.35 – Production rates comparison between IMPEC and IMPSAT-0 - Case 1 for 3D 

unstructured tetrahedron grid. a) oil; and b) gas. 

 

(a) 

 

(b) 

 

Figure 5.36 – Production rates comparison between IMPEC and FI-0 - Case 1 for 3D 

unstructured tetrahedron grid. a) oil; and b) gas. 

 

(a) 

 

(b) 
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Figure 5.37 – Production rates comparison between IMPEC and IMPSAT-0 - Case 1 for 3D 

unstructured prism grid. a) oil; and b) gas. 

 

(a) 

 

(b) 

 

Figure 5.38 – Production rates comparison between IMPEC and FI-0 - Case 1 for 3D 

unstructured prism grid. a) oil; and b) gas. 

 

(a) 

 

(b) 
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Figure 5.39 – Production rates comparison between IMPEC and IMPSAT-0 - Case 1 for 3D 

unstructured pyramid grid. a) oil; and b) gas. 

 

(a) 

 

(b) 

 

Figure 5.40 – Production rates comparison between IMPEC and FI-0 - Case 1 for 3D 

unstructured pyramid grid. a) oil; and b) gas. 

 

(a) 

 

(b) 

 

The gas saturation fields at 700 days of production are shown in Figures 5.41, 

5.42, 5.43 and 5.44 for hexahedron, tetrahedron, prism, and pyramid grids, respectively. From 

these figures, it is possible to infer that the results between the formulations are in good 

agreement.  
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Figure 5.41 – Gas saturation field at 700 days for 3D hexahedron EbFVM with 11767 vertices 

- Case 1. a) IMPEC; b) IMPSAT-0; and c) FI-0. 

 

(a) 

 

(b) 

 

(c) 

 

Figure 5.42 – Gas saturation field at 700 days for 3D tetrahedron EbFVM with 16810 vertices 

- Case 1. a) IMPEC; b) IMPSAT-0; and c) FI-0. 

 

(a) 

 

(b) 

 

(c) 

 

Figure 5.43 – Gas saturation field at 700 days for 3D prism EbFVM with 13448 vertices - 

Case 1. a) IMPEC; b) IMPSAT-0; and c) FI-0. 

 

(a) 

 

(b) 

 

(c) 
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Figure 5.44 – Gas saturation field at 700 days for 3D pyramid EbFVM with 24648 vertices - 

Case 1. a) IMPEC; b) IMPSAT-0; and c) FI-0. 

 

(a) 

 

(b) 

 

(c) 

 

The CPU times for each formulation for the hexahedron, tetrahedron, prism, and 

pyramid grids are presented in Tables 5.11, 5.12, 5.13 and 5.14, respectively. Once again, 

from these tables, it is possible to observe that the FI approaches are better as the grid refines, 

as observed previously. However, all IMPSAT formulations were worse in performance than 

the IMPEC and FI approaches for all grids, unlike the previous simulations.  

Table 5.11 – CPU time (s) of all simulations - Case 1 using 3D hexahedron grids. 

Formulation 1024 vertices 6480 vertices 11767 vertices 

IMPEC 36.1 1325.7 3590.8 

IMPSAT-0 37.1 1504.9 3326.2 

IMPSAT-1 39.7 1569.3 3343.3 

IMPSAT-2 59.4 2233.3 4585.0 

FI-0 170.4 1525.5 3191.2 

FI-1 179.9 1335.7 3188.6 

 

Table 5.12 – CPU time (s) of all simulations - Case 1 using 3D tetrahedron grids. 

Formulation 1024 vertices 4056 vertices 16810 vertices 

IMPEC 57.4 769.6 6395.2 

IMPSAT-0 89.0 1072.5 9627.7 

IMPSAT-1 94.9 1334.9 12242.2 

IMPSAT-2 141.2 1738.5 14931.5 

FI-0 115.7 532.5 2915.7 

FI-1 114.7 504.3 3025.1 
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Table 5.13 – CPU time (s) of all simulations - Case 1 using 3D prism grids. 

Formulation 1024 vertices 4056 vertices 13448 vertices 

IMPEC 32.4 437.5 3762.6 

IMPSAT-0 38.4 451.0 4483.9 

IMPSAT-1 41.5 486.4 5314.3 

IMPSAT-2 63.6 686.4 6770.1 

FI-0 65.1 359.7 2071.3 

FI-1 65.7 391.4 2395.0 

 

Table 5.14 – CPU time (s) of all simulations – Case 1 using 3D pyramid grids. 

Formulation 1699 vertices 7181 vertices 24648 vertices 

IMPEC 98.5 1796.2 20546.0 

IMPSAT-0 145.0 2333.6 14619.5 

IMPSAT-1 156.7 2231.0 16129.9 

IMPSAT-2 243.4 3165.1 26068.5 

FI-0 149.0 1169.9 5839.4 

FI-1 153.9 1224.4 6137.3 
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5.2 Case study 2: 2D EbFVM 

 

Case study 2 is a gas flooding process in a 2D irregular reservoir using the 

EbFVM. The fluid in place is characterized by the following hydrocarbon components: C1, 

C3, C6, C10, C15, and C20. The reservoir initially contains oil, gas, and immobile water. The 

reservoir data used for this case is shown in Table 5.15. 

Table 5.15 – Reservoir data for Case 2. 

Property Value 

Superficial reservoir area and thickness 1134826.24 m
2
, 30.48 m 

Porosity at reference pressure 0.35 

Initial water saturation 0.17 

Initial pressure 10.34 MPa 

Permeability in X, Y, and Z directions 1.97×10
-14

 m
2
, 1.97×10

-14
 m

2
, and 1.97×10

-14
 m

2
 

Formation temperature 344.26 K 

Gas injection rate 2.83×10
5
 m

3
/d 

Producer’s bottom hole pressure 8.96 MPa 

 

The original in place composition and the injected fluid composition for this case 

is shown in Table 5.16. 

Table 5.16 – Fluid composition data for Case 2. 

Component Initial Reservoir Composition Injection Fluid Composition 

C1 0.050 0.770 

C3 0.030 0.200 

C6 0.070 0.010 

C10 0.200 0.010 

C15 0.150 0.005 

C20 0.050 0.005 

 

The components properties are displayed in Table 5.17. 
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Table 5.17 – Component data for Case 2. 

Component Pc (MPa) Tc (K) vc (m
3
/kmol) 

MW 

(kg/kmol) 

Acentric 

Factor (ω) 

C1 4.60 190.56 9.98×10
-2

 16.0 0.013 

C3 4.25 369.83 2.00×10
-1

 44.1 0.152 

C6 3.01 507.44 3.70×10
-1

 86.2 0.301 

C10 2.10 617.67 6.30×10
-1

 142.3 0.488 

C15 1.38 705.56 1.04 206.0 0.650 

C20 1.12 766.67 1.34 282.0 0.850 

 

The binary interaction coefficients and the relative permeabilities parameters are 

given in Tables 5.18 and 5.19, respectively. 

Table 5.18 – Binary interaction coefficients for Case 2. 

Component C1 C3 C6 C10 C15 C20 

C1 - - - - 0.05 0.05 

C3 - - - - 0.005 0.005 

C6 - - - - - - 

C10 - - - - - - 

C15 0.05 0.005 - - - - 

C20 0.05 0.005 - - - - 

 

Table 5.19 – Relative permeability data for Case 2. 

Parameter Value 

Model Modified Stone II 

End point relative permeabilities (
rwk0 , 

rowk0 , 
rogk0  and 

rgk0 ) 0.4, 0.9, 0.9 and 0 

Residual saturations (Swr, Sorw, Sorg and Sgr) 0.3, 0.1, 0.1 and 0 

Exponents (ew, eow, eog and eg) 3, 2, 2 and 2 

 

The grid used for this case is shown in Figure 5.45. The reservoir in Figure 5.45 is 

an hypothetic reservoir and has the shape of Ceará State. Two injector and six producers wells 

are considered for this case. All injectors are operated under constant gas injection and the 

producers under constant bottom hole pressure. In order to reduce the grid orientation effect, a 

radial mesh is used around all the wells.  



126 
 

 

Figure 5.45 – Hybrid grid: 20298 vertices; 3254 triangle elements and 18195 quadrilateral 

elements - Case 2.  

 

Figures 5.46 and 5.47 present the comparison of the production rates of the 

IMPEC formulation with the IMPSAT-0 and FI-0, respectively. From these figures, it is 

possible to observe a good agreement of the production rates for all the formulations. 

Figure 5.46 – Production rates comparison between IMPEC and IMPSAT-0 - Case 2. a) oil; 

and b) gas. 

 

(a) 

 

(b) 
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Figure 5.47 – Production rates comparison between IMPEC and FI-0 - Case 2. a) oil; and b) 

gas. 

 

(a) 

 

(b) 

 

The gas saturation fields at 6000 days of simulation for the IMPEC, IMPSAT-0, 

and FI-0 formulations are presented in Figure 5.48. From this figure, one can observe a good 

agreement between the formulations results. 

Figure 5.48 – Gas saturation fields at 6000 days of simulation - Case 2. a) IMPEC; b) 

IMPSAT-0; and c) FI-0. 

 
(a) 

 
(b) 

 
(c) 

 

The CPU time for all formulations are presented in Table 5.20. It can be observed 

that the IMPEC formulation was faster than the IMPSAT-1 and IMPSAT-2. The fastest 

formulation for this case was the FI-0, followed by the FI-1 and IMPSAT-0. 
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Table 5.20 – CPU time (s) of all simulations – Case 2. 

Formulation CPU TIME 

IMPEC 6450.64 

IMPSAT-0 5913.98 

IMPSAT-1 6953.31 

IMPSAT-2 7487.51 

FI-0 4234.84 

FI-1 4566.00 
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5.3 Case study 3 

 

Case study 3 is a CO2 injection process in a 2D reservoir. The fluid in place is 

characterized by the following components: CO2, C1, C2-3, C4-6, C7-15, C16-27, and C28. The 

reservoir initially contains only oil and immobile water. As CO2 is injected, gas and a second 

liquid hydrocarbon phases are formed. One injector and one producer wells are considered, 

both operating at constant bottom hole pressure (BHP). Table 5.21 presents the reservoir data 

used for this case. 

Table 5.21 – Reservoir data for Case 3. 

Property Value 

Length, width, and thickness 152.4 m, 304.8 m, and 6.09 m 

Porosity at reference pressure 0.25 

Initial water sSaturation 0.25 

Initial pressure 7.58 MPa 

Formation temperature 313.71 K 

Injector’s bottom hole pressure 8.62 MPa 

Producer’s bottom hole pressure 7.58 MPa 

 

The original in place composition and the injected fluid composition for this case 

is shown in Table 5.22. 

Table 5.22 – Fluid composition data for Case 3. 

Component Initial Reservoir Composition Injection Fluid Composition 

CO2 0.0337 0.95 

C1 0.0861 0.04999 

C2-3 0.1503 0.000002 

C4-6 0.1671 0.000002 

C7-15 0.3304 0.000002 

C16-27 0.1611 0.000002 

C28 0.0713 0.000002 

 

The components properties are displayed in Table 5.23. 
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Table 5.23 – Component data for Case 3. 

Component Pc (MPa) Tc (K) vc (m
3
/kmol) 

MW 

(kg/kmol) 

Acentric 

Factor (ω) 

CO2 7.37 304.2 9.40×10
-2

 44.01 0.2250 

C1 4.60 190.6 9.90×10
-2

 16.04 0.0080 

C2-3 4.49 344.2 1.81×10
-1

 37.2 0.1305 

C4-6 3.39 463.2 3.07×10
-1

 69.5 0.2404 

C7-15 2.17 605.7 5.99×10
-1

 140.96 0.6177 

C16-27 1.65 751.0 1.13 280.99 0.9566 

C28 1.64 942.5 2.09 519.62 1.2683 

 

The binary interaction coefficients and the relative permeabilities parameters are 

given in Tables 5.24 and 5.25, respectively. 

Table 5.24 – Binary interaction coefficients for Case 3. 

Component CO2 C1 C2-3 C4-6 C7-15 C16-27 C28 

CO2 - 0.055 0.055 0.055 0.105 0.105 0.105 

C1 0.055 - - - - - - 

C2-3 0.055 - - - - - - 

C4-6 0.055 - - - - - - 

C7-15 0.105 - - - - - - 

C16-27 0.105 - - - - - - 

C28 0.105 - - - - - - 

 

Table 5.25 – Relative permeability data for Case 3. 

Parameter Value 

Model Corey 

End point relative permeabilities (
rwk0 , 

rok0 , 
rgk0  and 

rlk0 ) 0.21, 0.7, 0.35, and 0.35 

Residual saturations (Swr, Sorw, Sorg, Sgr, Slrw, and Slrg) 0.25, 0.2, 0.2, 0.05, 0.2, and 0.2 

Exponents (ew, eow, eog, eg, elw, and elg) 1.5, 2.5, 2.5, 2.5, 2.5, and 2.5 

 

This case is run for both Cartesian and unstructured grids. 
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5.3.1 Case study 3: 2D Cartesian grid 

 

Figure 5.49 shows the regular 40x80 grid used for this case. An isotropic but 

heterogeneous permeability field in x and y directions is used for this investigation. The 

absolute permeability field is presented in Figure 5.50. In order to better visualize the whole 

variation of the permeability field, Fig. 5.50b,c show two different zooms of the whole scale 

presented in Fig. 5.50a. 

Figure 5.49 – 2D 40x80 Cartesian grid - Case 3. 

 

 

Figure 5.50 – Heterogeneous absolute permeability in X and Y directions field - Case 3. 

 

(a) 

 

(b) 

 

(c) 
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The oil and gas production rates obtained with the IMPEC and IMPSAT-0, and 

IMPEC and FI-0 are presented in Figures 5.51 and 5.52, respectively. From these figures, it is 

possible to observe that the production curves are in a good agreement. 

Figure 5.51 – Production rates comparison between IMPEC and IMPSAT-0 - Case 3 for the 

Cartesian grid. a) oil; and b) gas. 

 

(a) 

 

(b) 

 

Figure 5.52 – Production rates comparison between IMPEC and FI-0 - Case 3 for the 

Cartesian grid. a) oil; and b) gas. 

 

(a) 

 

(b) 

 

The gas saturation and the second hydrocarbon liquid fields at 3000 days for the 

IMPEC, IMPSAT-0, and FI-0 are presented in Figure 5.53 and 5.54, respectively. From these 
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figures, it can be seen a good agreement between each one of two saturation fields for all 

formulations investigated. 

Figure 5.53 – Gas saturation field at 3000 days for 2D Cartesian grid - Case 3. a) IMPEC; b) 

IMPSAT-0; and c) FI-0. 

 
(a) 

 
(b) 

 
(c) 

 

Figure 5.54 – Second hydrocarbon liquid saturation field at 3000 days for 2D Cartesian grid - 

Case 3. a) IMPEC; b) IMPSAT-0; and c) FI-0. 

 
(a) 

 
(b) 

 
(c) 

 

 

The best time-step profiles obtained for the IMPEC, IMPSAT-0, and FI-0 

formulations are presented in Figure 5.55. The IMPEC formulation had many difficult to run 

this case without any spurious oscillation. Several runs were performed in order to find 
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feasible time-step control parameters. In fact, the parameters used for the IMPEC were the 

only ones that allowed the simulation to run the whole case without spurious oscillation or 

crash. The run was much easier to be carried out for the IMPSAT formulations, and little 

effort had to be performed to obtain a good time-step control parameters. The FI approaches 

allowed the use of large time-steps; however when production curves were compared, it was 

verified that time refinement were necessary. Therefore, for this case we used the same 

maximum time-steps for both FI and IMPSAT approaches. 

Figure 5.55 – Time-stepping profiles for the IMPEC, IMPSAT-0 and FI-0 formulations – 

Case 3 using Cartesian grid. 

 

 

The CPU time for all formulations are presented in Table 5.26. It can be observed 

that the IMPEC required the largest CPU time. In fact, it is unfeasible to use the IMPEC 

formulation alone to solve this problem, since several runs were necessary to achieve the 

time-step control parameters that allowed to obtain a solution without numerical oscillation. 

For this case, the IMPSAT formulations were the best choice, showing robustness and small 

CPU time. 
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Table 5.26 – CPU time (s) for all simulations - Case 3 using a 40x80 2D Cartesian grid. 

Formulation CPU TIME 

IMPEC 3917.38 

IMPSAT-0 1061.22 

IMPSAT-1 1119.99 

IMPSAT-2 1425.03 

FI-0 3165.60 

FI-1 2951.34 
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5.3.2 Case study 3: 2D EbFVM 

 

The same reservoir and fluid shown in section 5.3.1 are used to test the 

formulations in conjunction with 2D EbFVM. In order to reduce the grid orientation effect a 

radial grid is used around the wells. The hybrid grid used for this investigation is shown in 

Figure 5.56. The heterogeneous absolute permeability in X and Y directions from Fig. 5.50 

converted to the grid configuration of Fig. 5.56 is presented in Fig. 5.57. 

Figure 5.56 – 2D 3016 vertices grid with 818 triangular and 2490 quadrilateral elements - 

Case 3. 

 

 

Figure 5.57 – Heterogeneous absolute permeability in X and Y directions field for 2D 

EbFVM - Case 3. 

 

(a) 

 

(b) 

 

(c) 
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For this case, it was not found any time-step control parameters that allowed the 

IMPEC formulation to be carried out the whole run without either spurious oscillations or 

crash. Therefore, only the results of the IMPSAT-0 and FI-0 approaches will be compared. 

This comparison is shown in Figure 5.58. From this figure, it is possible to observe a good 

agreement between the oil and gas production curves obtained with the two approaches. 

Figure 5.58 – Production rates comparison between IMPSAT-0 and FI-0 - Case 3 for 2D 

EbFVM. a) oil; and b) gas. 

 

(a) 

 

(b) 

 

The gas saturation and the second liquid phase fields at 3500 days for the 

IMPSAT-0 and FI-0 are presented in Figures 5.59 and 5.60, respectively. Once again, from 

these figures, it is possible to see a good agreement in the two saturation fields obtained with 

the two approaches. 
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Figure 5.59 – Gas saturation field at 3500 days for 2D EbFVM - Case 3. a) IMPSAT-0; and b) 

FI-0. 

 

(a) 

 

(b) 

 

Figure 5.60 – Second liquid hydrocarbon phase saturation field at 3500 days for 2D EbFVM- 

Case 3. a) IMPSAT-0; and b) FI-0. 

 

(a) 

 

(b) 

 

The time-step profiles for the IMPSAT-0 and FI-0 are presented in Figure 5.61. 

For this case, the FI approaches were able to reach larger time-step sizes without great penalty 

in the accuracy. 
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Figure 5.61 – Time-stepping profiles for the IMPSAT-0 and FI-0 formulations – Case 3 using 

the element grid. 

 

 

The CPU Times for all formulations are presented in Table 5.27. From this table, 

we can infer that both classes of formulations have approximately the same performance. 

Table 5.27 – CPU time (s) for all simulations - Case 3 using a hybrid grid with 3016 vertices. 

Formulation CPU TIME 

IMPEC FAILED 

IMPSAT-0 2956.91 

IMPSAT-1 3173.69 

IMPSAT-2 3673.88 

FI-0 3212.71 

FI-1 2455.11 
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5.4 Case study 4: 3D Cartesian 

 

The last case study investigated in this work is a CO2 injection process in a 3D 

isotropic heterogeneous reservoir in x and y directions. Differently from the previous cases 

investigated, water is mobile during the whole simulation, and the fluid is characterized with 

seven components. Only water, oil and gas phases are considered. Table 5.28 presents 

thereservoir data for this case. The in place original composition and the injected fluid 

composition for this case are shown in Table 5.29. The components and pseudo-components 

properties are presented in Table 5.30. The binary interaction coefficients and relative 

permeability parameters are presented in Tables 5.31 and 5.32, respectively. 

Table 5.28 – Reservoir data for Case 4. 

Property Value 

Length, width, and thickness 146.3 m, 146.3 m, and 19.05 m 

Porosity at reference pressure 0.163 

Initial water saturation 0.65 

Initial pressure 9.65 MPa 

Permeability in z direction 1.576×10
-14

 m
2
 

Formation temperature 333.15 K 

Injector’s bottom hole pressure 10.0 MPa 

Producer’s bottom hole pressure 6.89 MPa 

 

Table 5.29 – Fluid composition data for Case 4. 

Component Initial Reservoir Composition Injection Fluid Composition 

CO2 0.0077 1.0 

C1 0.2025 - 

C2-3 0.1180 - 

C4-6 0.1484 - 

C7-14 0.2863 - 

C15-24 0.1490 - 

C25+ 0.0881 - 
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Table 5.30 – Component data for Case 4. 

Component Pc (MPa) Tc (K) vc (m
3
/kmol) MW (kg/kmol) 

Acentric 

Factor (ω) 

CO2 7.39 304.21 2.60×10
-2

 44.01 0.225 

C1 4.60 190.60 1.00×10
-1

 16.043 0.008 

C2-3 4.50 343.64 1.81×10
-1

 38.3985 0.1301 

C4-6 3.35 466.41 3.13×10
-1

 72.824 0.2436 

C7-14 2.42 603.07 5.55×10
-1

 135.8191 0.6 

C15-24 1.80 733.79 1.01 257.7499 0.903 

C25+ 1.73 923.20 1.25 479.9548 1.229 

 

Table 5.31 – Binary interaction coefficients for Case 4. 

Component CO2 C1 C2-3 C4-6 C7-15 C16-27 C28 

CO2 - 0.12 0.12 0.12 0.09 0.09 0.09 

C1 0.12 - - - - - - 

C2-3 0.12 - - - - - - 

C4-6 0.12 - - - - - - 

C7-15 0.09 - - - - - - 

C16-27 0.09 - - - - - - 

C28 0.09 - - - - - - 

 

Table 5.32 – Relative permeability data for Case 4. 

Parameter Value 

Model Stone II 

End point relative permeabilities (
rwk0 , 

rok0 , and, 
rgk0 ) 0.21, 0.71, and 1.0 

Residual saturations (Swr, Sorw, Sorg, and, Sgr) 0.49, 0.25, 0.25, and 0.05 

Exponents (ew, eow, eog, and eg) 2.0, 2.7, 2.7, and 2.5 

 

The reservoir and grid used for this case is presented in Figure 5.62, while the 

absolute permeability in x and y directions is presented in Figure 5.63. 
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Figure 5.62 – 40x40x5 Cartesian grid - Case 4. 

 

 

Figure 5.63 – Heterogeneous absolute permeability in x and y directions field - Case 4. 

 

 

Figure 5.64 presents the comparison in terms of oil and gas production rates 

between the IMPEC and IMPSAT-0 formulations. As it can be observed from this figure, the 

gas breakthrough was delayed for the IMPSAT-0 formulation. This inaccuracy was observed 

to be reduced when the time-step sizes were decreased. The production rates comparison for 

the IMPSAT-1 and IMPSAT-2 with IMPEC are shown in Figures 5.65 and 5.66, which show 

a good agreement of the production curves. It is important to mention that both the IMPSAT-

1 and IMPSAT-2 did not require time-step reduction in order to obtain the production curves 

shown in Figs. 5.65 and 5.66. This result suggests that the IMPSAT-0 formulation is less 

accurate in terms of time than the other two approaches, and it can be not well suitable for 

cases where the solution strongly changes during the simulation. The production rate curves 

for the FI-0, FI-1 formulations are compared with the IMPEC formulation in Figures 5.67 and 

5.68, respectively. Once again, a good agreement of the production curves can be observed 

from these figures. 

The gas saturation fields for all formulations at 250 days are presented in Figure 

5.69. From this figure, we can observe a good agreement of the field obtained for all 
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formulations, except for the IMPSAT-0 formulation where a little difference can be observed 

near the producer well. 

Figure 5.64 – Production rates comparison between IMPEC and IMPSAT-0 - Case 4. a) oil; 

and b) gas. 

 

(a) 

 

(b) 

 

Figure 5.65 – Production rates comparison between IMPEC and IMPSAT-1 - Case 4. a) oil; 

and b) gas. 

 

(a) 

 

(b) 
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Figure 5.66 – Production rates comparison between IMPEC and IMPSAT-2 - Case 4. a) oil; 

and b) gas. 

 

(a) 

 

(b) 

 

Figure 5.67 – Production rates comparison between IMPEC and FI-0 - Case 4. a) oil; and b) 

gas. 

 

(a) 

 

(b) 
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Figure 5.68 – Production rates comparison between IMPEC and FI-1 - Case 4. a) oil; and b) 

gas. 

 

(a) 

 

(b) 

 

Figure 5.69 – Gas saturation field at 250 days - Case 4. a) IMPEC; b) IMPSAT-0; c) 

IMPSAT-1; d) IMPSAT-2; e) FI-0; and f) FI-1. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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The time-step profile for all formulations is presented in Figure 5.70 and the CPU 

times are presented in Table 5.33. The IMPSAT-0 was the fastest formulation for this case. 

However, as the accuracy of this formulation was not good as the other formulations it cannot 

be considered. Further test using smaller time-step  for the IMPSAT-0 that produced the 

correct answer, gives rise to a CPU time of 2769 seconds, which is much large than the CPU 

time of the other formulations. Therefore, the best formulation for this case was the IMPSAT-

1. The FI approaches could not use greater time-steps for keeping the solution accuracy and 

were not that fast one. 

Figure 5.70 – Time-stepping profiles – Case 4. a) IMPEC and IMPSAT formulations; and b) 

IMPEC and FI formulations. 

 

(a) 

 

(b) 

 

Table 5.33 – CPU time (s) of all simulations – Case 4. 

Formulation CPU TIME 

IMPEC 1821.71 

IMPSAT-0 1233.36 

IMPSAT-1 1249.47 

IMPSAT-2 1430.35 

FI-0 2131.27 

FI-1 2199.48 
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6 CONCLUSIONS AND FUTURE WORK 

 

This thesis presented the implementation of several numerical formulations in an 

in-house compositional reservoir simulator called UTCOMP. UTCOMP was developed at the 

Center for Petroleum and Geosystems Engineering at The University of Texas at Austin for 

the simulation of enhanced recovery processes. UTCOMP is a multiphase/multi-component 

compositional equation of state simulator which can handle the simulation of several 

enhanced oil recovery processes. The original formulation of this simulator was based in an 

IMPEC approach proposed by Ács et al. (1985). As a contribution of this work, the original 

IMPSAT formulation of Watts (1986) and a fully implicit (FI) of Collins et al. (1992) were 

successfully implemented in this study. These two approaches were called IMPSAT-0 and FI-

0, respectively. Additionally, two modifications of the IMPSAT of Watts (1986) were 

implemented: IMPSAT-1 and IMPSAT-2. The IMPSAT-1 tries to correct the explicit terms 

of the saturation when evaluating the total number of moles of each component, and the 

IMPSAT-2 evaluates pressure and saturations in an iterative procedure. In addition to these 

formulations, another FI formulation was implemented (FI-1). This new FI formulation is an 

extension of the IMPEC of Ács et al. (1985) approach. All the implementations were 

performed for 2D and 3D reservoirs using Cartesian and unstructured grids in conjunction 

with the EbFVM (Element based Finite-Volume Method). Four case studies were designed to 

test and to analyze the performance of the formulations. All cases were related to gas injection 

processes. 

From the several tests performed in this work, it was observed that the FI 

approaches were slower than the other formulations for coarse grids, and faster for fine grids. 

On the other hand, the IMPSAT formulations were faster for intermediate grids, we mean, 

neither coarse nor refined grids. The iterative IMPSAT (IMPSAT-2) was unable to achieve 

large time-step than the original Watts’ formulation (IMPSAT-0), showing that in general, 

original level of implicitness of the Watts’ formulation is enough for this formulation to 

overcome the CPU time of the IMPEC approach. 

It was observed that the FI approaches cannot have a good performance for cases 

that are very sensible to time variation, such as cases 3 and 4. Since the investigated FI 

approaches could not provide good solutions for large time-steps, the IMPSAT formulations 

showed much better performance for these case studies. 
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On the other hand, the original Watts’formulation, IMPSAT-0, was inaccurate for 

the last case study four, where water, oil and gas flow into an 3D heterogeneous reservoir. It 

was found that the modification done in this formulation, IMPSAT-1, was very effective to 

keep the numerical accuracy obtained by the IMPSAT-2. Also, the iterative IMPSAT, 

IMPSAT-2, was able to handle this case properly, but with an increase in the total CPU time 

due to the large computational time per time-step when compared to the IMPSAT-1. 

 

6.1 Future work 

 

Several new features can complement the implementations of the present work. 

First, for completing the formulations implemented in this work, it is needed to implement the 

dispersion terms for each one of the formulations.  

Second, an approximated CFL criteria could be used for control of the time-step 

selection, which could help the simulator to achieve better CPU times, since the time-step size 

is controlled in the UTCOMP simulator only by variation of physical properties.  

Third, the use of parallel processing can reduce the CPU time of all formulations 

and is an important feature already in use by many commercial simulators. To verify the 

behavior of each formulation when using parallel processing is an important issue for this 

study.  

Fourth, the use of high-order schemes is known to reduce the stability of explicit 

formulations. Verify the performance of each formulation when using high-order schemes is 

important since these schemes can sharply reduce grid refinement and therefore reduce the 

efforts used to carry out the simulation of real fields.  

Finally, the implementation of an adaptive implicit method could be used to select 

the regions where the material balance equations could be solved by the IMPEC approach, 

and the regions where due to numerical instabilities the conservative equations should be 

solved by FI approach. This Adaptive Implicit Method is already in use in the literature and it 

is known to get the best of the IMPEC and FI formulations. It is important to mention that a 

stability criterion is an important key parameter when these two formulations are combined.  
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APPENDIX A 

TIME-STEPPING CONTROL PARAMETERS 

 

Table A.1. Time-stepping control parameters for Case 1 using 2D Cartesian grids. 

Formulation Δtmax (d) Δtmin (d) ΔPlim ΔSlim ΔVlim ΔNlim 

IMPEC – 20x20 0.9 10
-4

 0.1 0.1 0.1 0.25 

IMPSAT-0 – 20x20 2.4 10
-4

 0.1 0.1 0.1 0.25 

IMPSAT-1 – 20x20 2.4 10
-4

 0.1 0.1 0.1 0.25 

IMPSAT-2 – 20x20 2.4 10
-4

 0.1 0.1 0.1 0.25 

FI-0* – 20x20 25 10
-4

 1 1 1 10 

FI-1* – 20x20 25 10
-4

 1 1 1 10 

FI-0 – 20x20 3 10
-4

 0.1 0.1 0.1 0.25 

FI-1 – 20x20 3 10
-4

 0.1 0.1 0.1 0.25 

IMPEC – 40x40 0.2 10
-4

 0.1 0.1 0.1 0.25 

IMPSAT-0 – 40x40 0.7 10
-4

 0.1 0.1 0.1 0.25 

IMPSAT-1 – 40x40 0.7 10
-4

 0.1 0.1 0.1 0.25 

IMPSAT-2 – 40x40 0.7 10
-4

 0.1 0.1 0.1 0.25 

FI-0* – 40x40 25 10
-4

 1 1 1 10 

FI-1* – 40x40 25 10
-4

 1 1 1 10 

FI-0 – 40x40 1 10
-4

 1 1 1 0.25 

FI-1 – 40x40 1 10
-4

 1 1 1 0.25 

IMPEC – 80x80 0.06 10
-4

 0.1 0.1 0.1 0.25 

IMPSAT-0 – 80x80 0.17 10
-4

 0.1 0.1 0.1 0.25 

IMPSAT-1 – 80x80 0.17 10
-4

 0.1 0.1 0.1 0.25 

IMPSAT-2 – 80x80 0.17 10
-4

 0.1 0.1 0.1 0.25 

FI-0* – 80x80 25 10
-4

 1 1 1 10 

FI-1* – 80x80 25 10
-4

 1 1 1 10 

FI-0 – 80x80 1 10
-4

 1 1 1 0.25 

FI-1 – 80x80 1 10
-4

 1 1 1 0.25 
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Table A.2. Time-stepping control parameters for Case 1 using 3D Cartesian grids. 

Formulation Δtmax (d) Δtmin (d) ΔPlim ΔSlim ΔVlim ΔNlim 

IMPEC – 20x20x5 0.8 10
-4

 0.1 0.1 0.1 0.25 

IMPSAT-0 – 20x20x5 2.4 10
-4

 0.1 0.1 0.1 0.25 

IMPSAT-1 – 20x20x5 2.4 10
-4

 0.1 0.1 0.1 0.25 

IMPSAT-2 – 20x20x5 2.4 10
-4

 0.1 0.1 0.1 0.25 

FI-0 – 20x20x5 3 10
-4

 1 1 1 10 

FI-1 – 20x20x4 3 10
-4

 1 1 1 10 

IMPEC – 40x40x10 0.2 10
-4

 0.1 0.1 0.1 0.25 

IMPSAT-0 – 40x40x10 0.7 10
-4

 0.1 0.1 0.1 0.25 

IMPSAT-1 – 40x40x10 0.7 10
-4

 0.1 0.1 0.1 0.25 

IMPSAT-2 – 40x40x10 0.7 10
-4

 0.1 0.1 0.1 0.25 

FI-0 – 40x40x10 2 10
-4

 1 1 1 10 

FI-1 – 40x40x10 2 10
-4

 1 1 1 10 

IMPEC – 60x60x15 0.15 10
-4

 0.1 0.05 0.1 0.05 

IMPSAT-0 – 60x60x15 0.3 10
-4

 0.1 0.05 0.1 0.4 

IMPSAT-1 – 60x60x15 0.3 10
-4

 0.1 0.05 0.1 0.4 

IMPSAT-2 – 60x60x15 0.3 10
-4

 0.1 0.05 0.1 0.4 

FI-0 – 60x60x15 1 10
-4

 1 1 1 10 

FI-1 – 60x60x15 1 10
-4

 1 1 1 10 
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Table A.3. Time-step control parameters - Case 1 using 2D uniform  quadrilateral grids. 

Formulation Δtmax (d) Δtmin (d) ΔPlim ΔSlim ΔVlim ΔNlim 

IMPEC – 20x20 0.25 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-0 – 20x20 0.7 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-1 – 20x20 0.7 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-2 – 20x20 0.7 10
-4

 0.05 0.01 0.05 0.4 

FI-0 – 20x20 1 10
-4

 1 1 1 10 

FI-1 – 20x20 1 10
-4

 1 1 1 10 

IMPEC – 40x40 0.065 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-0 – 40x40 0.18 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-1 – 40x40 0.18 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-2 – 40x40 0.18 10
-4

 0.1 0.1 0.1 0.25 

FI-0 – 40x40 1 10
-4

 1 1 1 10 

FI-1 – 40x40 1 10
-4

 1 1 1 10 

IMPEC – 60x60 0.025 10
-4

 0.05 0.01 0.05 0.1 

IMPSAT-0 – 60x60 0.075 10
-4

 0.05 0.01 0.05 0.1 

IMPSAT-1 – 60x60 0.075 10
-4

 0.05 0.01 0.05 0.1 

IMPSAT-2 – 60x60 0.075 10
-4

 0.05 0.01 0.05 0.1 

FI-0 – 60x60 1 10
-4

 1 1 1 10 

FI-1 – 60x60 1 10
-4

 1 1 1 10 
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Table A.4. Time-step control parameters for Case 1 using 2D unstructured quadrilateral grids. 

Formulation Δtmax (d) Δtmin (d) ΔPlim ΔSlim ΔVlim ΔNlim 

IMPEC – 1199 vertices 0.1 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-0 – 1199 vertices 0.3 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-1 – 1199 vertices 0.3 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-2 – 1199 vertices 0.3 10
-4

 0.05 0.01 0.05 0.4 

FI-0 – 1199 vertices 1 10
-4

 1 1 1 10 

FI-1 – 1199 vertices 1 10
-4

 1 1 1 10 

IMPEC – 2661 vertices 0.04 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-0 – 2661 vertices 0.12 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-1 – 2661 vertices 0.12 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-2 – 2661 vertices 0.12 10
-4

 0.1 0.1 0.1 0.25 

FI-0 – 2661 vertices 1 10
-4

 1 1 1 10 

FI-1 – 2661 vertices 1 10
-4

 1 1 1 10 

IMPEC – 3387 vertices 0.035 10
-4

 0.05 0.01 0.05 0.1 

IMPSAT-0 – 3387 vertices 0.1 10
-4

 0.05 0.01 0.05 0.1 

IMPSAT-1 – 3387 vertices 0.1 10
-4

 0.05 0.01 0.05 0.1 

IMPSAT-2 – 3387 vertices 0.1 10
-4

 0.05 0.01 0.05 0.1 

FI-0 – 3387 vertices 1 10
-4

 1 1 1 10 

FI-1 – 3387 vertices 1 10
-4

 1 1 1 10 
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Table A.5. Time-step control parameters for Case 1 using 2D unstructured triangular grids. 

Formulation Δtmax (d) Δtmin (d) ΔPlim ΔSlim ΔVlim ΔNlim 

IMPEC – 1220 vertices 0.1 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-0 – 1220 vertices 0.21 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-1 – 1220 vertices 0.21 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-2 – 1220 vertices 0.21 10
-4

 0.05 0.01 0.05 0.4 

FI-0 – 1220 vertices 1 10
-4

 1 1 1 10 

FI-1 – 1220 vertices 1 10
-4

 1 1 1 10 

IMPEC – 2330 vertices 0.035 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-0 – 2330 vertices 0.09 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-1 – 2330 vertices 0. 09 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-2 – 2330 vertices 0. 09 10
-4

 0.1 0.1 0.1 0.25 

FI-0 – 2330 vertices 1 10
-4

 1 1 1 10 

FI-1 – 2330 vertices 1 10
-4

 1 1 1 10 

IMPEC – 3329 vertices 0.025 10
-4

 0.05 0.01 0.05 0.1 

IMPSAT-0 – 3329 vertices 0.06 10
-4

 0.05 0.01 0.05 0.1 

IMPSAT-1 – 3329 vertices 0.06 10
-4

 0.05 0.01 0.05 0.1 

IMPSAT-2 – 3329 vertices 0.06 10
-4

 0.05 0.01 0.05 0.1 

FI-0 – 3329 vertices 1 10
-4

 1 1 1 10 

FI-1 – 3329 vertices 1 10
-4

 1 1 1 10 
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Table A.6. Time-step control parameters for Case 1 using 3D unstructured hexahedron grids. 

Formulation Δtmax (d) Δtmin (d) ΔPlim ΔSlim ΔVlim ΔNlim 

IMPEC – 1024 vertices 0.35 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-0 – 1024 vertices 1.0 10
-4

 0.1 0.1 0.1 0.4 

IMPSAT-1 – 1024 vertices 1.0 10
-4

 0.1 0.1 0.1 0.4 

IMPSAT-2 – 1024 vertices 1.0 10
-4

 0.1 0.1 0.1 0.4 

FI-0 – 1024 vertices 1 10
-4

 1 1 1 10 

FI-1 – 1024 vertices 1 10
-4

 1 1 1 10 

IMPEC – 6480 vertices 0.07 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-0 – 6480 vertices 0.2 10
-4

 0.1 0.1 0.1 0.4 

IMPSAT-1 – 6480 vertices 0.2 10
-4

 0.1 0.1 0.1 0.4 

IMPSAT-2 – 6480 vertices 0.2 10
-4

 0.1 0.1 0.1 0.4 

FI-0 – 6480 vertices 1 10
-4

 1 1 1 10 

FI-1 – 6480 vertices 1 10
-4

 1 1 1 10 

IMPEC – 11767 vertices 0.05 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-0 – 11767 vertices 0.2 10
-4

 0.1 0.1 0.1 0.4 

IMPSAT-1 – 11767 vertices 0.2 10
-4

 0.1 0.1 0.1 0.4 

IMPSAT-2 – 11767 vertices 0.2 10
-4

 0.1 0.1 0.1 0.4 

FI-0 – 11767 vertices 1 10
-4

 1 1 1 10 

FI-1 – 11767 vertices 1 10
-4

 1 1 1 10 
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Table A.7. Time-step control parameters for Case 1 using 3D unstructured tetrahedron grids. 

Formulation Δtmax (d) Δtmin (d) ΔPlim ΔSlim ΔVlim ΔNlim 

IMPEC – 1024 vertices 0.4 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-0 – 1024 vertices 1.1 10
-4

 0.05 0.1 0.05 0.4 

IMPSAT-1 – 1024 vertices 1.1 10
-4

 0.05 0.1 0.05 0.4 

IMPSAT-2 – 1024 vertices 1.1 10
-4

 0.05 0.1 0.05 0.4 

FI-0 – 1024 vertices 2 10
-4

 1 1 1 10 

FI-1 – 1024 vertices 2 10
-4

 1 1 1 10 

IMPEC – 4056 vertices 0.15 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-0 – 4056 vertices 0.35 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-1 – 4056 vertices 0.35 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-2 – 4056 vertices 0.35 10
-4

 0.05 0.01 0.05 0.4 

FI-0 – 4056 vertices 3 10
-4

 1 1 1 10 

FI-1 – 4056 vertices 3 10
-4

 1 1 1 10 

IMPEC – 16810 vertices 0.07 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-0 – 16810 vertices 0.2 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-1 – 16810 vertices 0.2 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-2 – 16810 vertices 0.2 10
-4

 0.05 0.01 0.05 0.4 

FI-0 – 16810 vertices 3 10
-4

 1 1 1 10 

FI-1 – 16810 vertices 3 10
-4

 1 1 1 10 
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Table A.8. Time-step control parameters for Case 1 using 3D unstructured prism grids. 

Formulation Δtmax (d) Δtmin (d) ΔPlim ΔSlim ΔVlim ΔNlim 

IMPEC – 1024 vertices 0.5 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-0 – 1024 vertices 1.4 10
-4

 0.05 0.1 0.05 0.4 

IMPSAT-1 – 1024 vertices 1.4 10
-4

 0.05 0.1 0.05 0.4 

IMPSAT-2 – 1024 vertices 1.4 10
-4

 0.05 0.1 0.05 0.4 

FI-0 – 1024 vertices 3 10
-4

 1 1 1 10 

FI-1 – 1024 vertices 3 10
-4

 1 1 1 10 

IMPEC – 4056 vertices 0.15 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-0 – 4056 vertices 0.45 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-1 – 4056 vertices 0.45 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-2 – 4056 vertices 0.45 10
-4

 0.05 0.01 0.05 0.4 

FI-0 – 4056 vertices 3 10
-4

 1 1 1 10 

FI-1 – 4056 vertices 3 10
-4

 1 1 1 10 

IMPEC – 13448 vertices 0.07 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-0 – 13448 vertices 0.17 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-1 – 13448 vertices 0.17 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-2 – 13448 vertices 0.17 10
-4

 0.05 0.01 0.05 0.4 

FI-0 – 13448 vertices 3 10
-4

 1 1 1 10 

FI-1 – 13448 vertices 3 10
-4

 1 1 1 10 
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Table A.9. Time-step control parameters for Case 1 using 3D unstructured pyramid grids. 

Formulation Δtmax (d) Δtmin (d) ΔPlim ΔSlim ΔVlim ΔNlim 

IMPEC – 1699 vertices 0.35 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-0 – 1699 vertices 0.9 10
-4

 0.05 0.1 0.05 0.4 

IMPSAT-1 – 1699 vertices 0.9 10
-4

 0.05 0.1 0.05 0.4 

IMPSAT-2 – 1699 vertices 0.9 10
-4

 0.05 0.1 0.05 0.4 

FI-0 – 1699 vertices 3 10
-4

 1 1 1 10 

FI-1 – 1699 vertices 3 10
-4

 1 1 1 10 

IMPEC – 7181 vertices 0.1 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-0 – 7181 vertices 0.28 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-1 – 7181 vertices 0.28 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-2 – 7181 vertices 0.28 10
-4

 0.05 0.01 0.05 0.4 

FI-0 – 7181 vertices 3 10
-4

 1 1 1 10 

FI-1 – 7181 vertices 3 10
-4

 1 1 1 10 

IMPEC – 24648 vertices 0.04 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-0 – 24648 vertices 0.14 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-1 – 24648 vertices 0.14 10
-4

 0.05 0.01 0.05 0.4 

IMPSAT-2 – 24648 vertices 0.14 10
-4

 0.05 0.01 0.05 0.4 

FI-0 – 24648 vertices 3 10
-4

 1 1 1 10 

FI-1 – 24648 vertices 3 10
-4

 1 1 1 10 

 

Table A.10. Time-step control parameters for Case 2. 

Formulation Δtmax (d) Δtmin (d) ΔPlim ΔSlim ΔVlim ΔNlim 

IMPEC 0.5 10
-4

 0.1 0.1 0.1 0.1 

IMPSAT-0 1.05 10
-4

 0.1 0.1 0.1 0.1 

IMPSAT-1 1.05 10
-4

 0.1 0.1 0.1 0.1 

IMPSAT-2 1.05 10
-4

 0.1 0.1 0.1 0.1 

FI-0 10 10
-4

 0.1 0.1 0.1 0.1 

FI-1 10 10
-4

 0.1 0.1 0.1 0.1 

 

 

 

 



166 
 

 

Table A.11. Time-step control parameters for Case 3 using Cartesian grid. 

Formulation Δtmax (d) Δtmin (d) ΔPlim ΔSlim ΔVlim ΔNlim 

IMPEC 0.15 10
-3

 0.05 0.005 0.05 0.02 

IMPSAT-0 4.5 10
-4

 0.1 0.1 0.05 0.045 

IMPSAT-1 4.5 10
-4

 0.1 0.1 0.05 0.045 

IMPSAT-2 4.5 10
-4

 0.1 0.1 0.05 0.045 

FI-0 from 0 to 2700 days 4.8 10
-4

 1 1 1 0.04 

FI-0 from 2700 to 3000 days 1.0 10
-1

 1 1 1 0.1 

FI-1 from 0 to 2700 days 4.8 10
-4

 1 1 1 0.04 

FI-1 from 2700 to 3000 days 1.0 10
-1

 1 1 1 0.1 

 

Table A.12. Time-step control parameters for Case 3 using the element grid. 

Formulation Δtmax (d) Δtmin (d) ΔPlim ΔSlim ΔVlim ΔNlim 

IMPEC 2 10
-3

 0.05 0.1 0.05 0.005 

IMPSAT-0 2 10
-3

 0.05 0.01 0.05 0.015 

IMPSAT-1 2 10
-3

 0.05 0.01 0.05 0.015 

IMPSAT-2 2 10
-3

 0.05 0.01 0.05 0.015 

FI-0 5 10
-3

 0.05 0.01 0.05 0.080 

FI-1 5 10
-3

 0.05 0.01 0.05 0.080 
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Table A.13. Time-step control parameters for Case 4. 

Formulation Δtmax (d) Δtmin (d) ΔPlim ΔSlim ΔVlim ΔNlim 

IMPEC from 0 to 100 2.2 10
-5

 0.05 0.05 0.03 0.1 

IMPEC from 100 to 200 2.2 10
-5

 0.001 0.01 0.01 0.1 

IMPEC from 200 to 280 2.2 10
-5

 0.001 0.01 0.001 0.012 

IMPSAT-0 from 0 to 100 0.3 10
-4

 0.1 0.1 0.1 0.38 

IMPSAT-0 from 100 to 200 0.6 10
-3

 0.05 0.07 0.07 0.20 

IMPSAT-0 from 200 to 280 1 10
-3

 0.05 0.01 0.001 0.015 

IMPSAT-1 from 0 to 100 0.3 10
-4

 0.1 0.1 0.1 0.38 

IMPSAT-1 from 100 to 200 0.6 10
-3

 0.05 0.07 0.07 0.20 

IMPSAT-1 from 200 to 280 1 10
-3

 0.05 0.01 0.001 0.015 

IMPSAT-2 from 0 to 100 0.3 10
-4

 0.1 0.1 0.1 0.38 

IMPSAT-2 from 100 to 200 0.6 10
-3

 0.05 0.07 0.07 0.20 

IMPSAT-2 from 200 to 280 1 10
-3

 0.05 0.01 0.001 0.015 

FI-0 from 0 to 100 0.3 10
-4

 0.1 0.1 0.1 0.2 

FI-0 from 100 to 200 0.6 10
-2

 0.05 0.07 0.07 0.18 

FI-0 from 200 to 280 1 10
-3

 0.05 0.01 0.001 0.15 

FI-1 from 0 to 100 0.3 10
-4

 0.1 0.1 0.1 0.2 

FI-1 from 100 to 200 0.6 10
-2

 0.05 0.07 0.07 0.18 

FI-1 from 200 to 280 1 10
-3

 0.05 0.01 0.001 0.15 

 


