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- A Deus e à minha famı́lia, em especial aos meus pais e minha esposa.

- Ao meu Orientador Professor Eduardo Teixeira, por ter sido um mestre,

um amigo e um exemplo.

- Ao programa de Pós-Graduação em Matemática da UFC, em especial
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RESUMO

Neste trabalho estabelecemos estimativas de regularidade local para soluções ”flat” de

equações eĺıpticas totalmente não-lineares não-cônvexas e estudamos equations do tipo

cavidade com coeficientes meramente mensuráveis.

Palavras-chave: Propriedades de regularidade de soluções. Estimativas ótimas. EDPs

eĺıpticas totalmente não-lineares. Equações do tipo cavidade. Fronteira livre.



ABSTRACT

In this work we establish local regularity estimates for flat solutions to non-convex fully

nonlinear elliptic equations and we study cavitation type equations modeled within coef-

ficients bounded and measurable.

Keywords: Smoothness properties of solutions. Optimal estimates. Fully nonlinear

elliptic PDEs. Cavitation type equations. Free boundary.
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1 INTRODUCTION

The theory of second order partial differential elliptic equations always had a central

importance in the study of classical mechanics and differential geometry. Through the

last fourty years pioneering works provided us striking results and methods in the theory

of PDE in the non-divergent form and in PDE applied in the free boundary problems.

This allowed a big advance in the understanding of the theory of fully nonlinear elliptic

equations which arise in differential games, optimal cost in a stochastic control problems

and in the problems of jet flows and cavity. In this work we provide original results in

the theories cited above.

In Chapter 2 we obtain optimal estimates for flat solutions to a class of non-

convex fully nonlinear elliptic equations of the form

F (X,D2u) = G (X, u,∇u). (1.1)

Under continuous differentiability with respect to the matrix variable and appropriate con-

tinuity assumptions on the coefficients and on the source function, we present a Schauder

type regularity result for flat solutions, namely for solutions with small enough norm,

|u| � 1.

The nonlinear operator F : B1 × Sym(n) → R is assumed to be uniformly

elliptic, namely, there exist constants 0 < λ ≤ Λ such that for any M,P ∈ Sym(n), with

P ≥ 0 and all X ∈ B1 ⊂ Rn there holds

λ‖P‖ ≤ F (X,M + P )− F (X,M) ≤ Λ‖P‖. (1.2)

Under such condition it follows as a consequence of Krylov-Safonov Harnack inequality

that solutions to the homogeneous, constant coefficient equations

F (D2h) = 0 (1.3)

are locally of class C1,α, for some 0 < α < 1. Under appropriate hypotheses on G : B1 ×
R × Rn → R, the same conclusion is obtained, i.e., viscosity solutions are of class C1,α.

Thus, insofar as the regularity theory for equation of the form (1.1) is concerned, one

can regard the right hand side G (X, u,∇u) as an α̃−Hölder continuous source, f(X).

Therefore, within this present work, we choose to look at the RHS G (X, u,∇u) simply as

a source term f(X), and equation (1.1) will be written as

F (X,D2u) = f(X). (1.4)
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Regularity theory for heterogeneous equations (1.4) has been a central target

of research for the past three decades. While a celebrated result due to Evans and Krylov

assures that solutions to convex equations are classical, i.e., C2,α for some α > 0, the

problem of establishing continuity of the Hessian of solutions to general equations of the

form (1.3) challenged the community for over twenty years. The problem has been settled

in the negative by Nadirashvili and Vladut, [23, 24], who exhibit solutions to uniform

elliptic equations whose Hessian blows-up.

In view of the impossibility of a general existence theory for classical solutions

to all fully nonlinear equations (1.3), it becomes a central topic of research the study of

reasonable conditions on F and on u as to assure the Hessian of the solution is continuous.

In such perspective the works [16] and [9] on interior C2,α estimates for a particular class

of non-convex equations are highlights. A decisive contribution towards Hessian estimates

of solutions to fully nonlinear elliptic equations was obtained by Savin in [27]. By means

of a robust approach, Savin shows in [27] that small solutions are classical, provided the

operator is of class C2 in all of its arguments.

Inspired by problems of the form (1.1), in the present work, we obtain regular-

ity estimates for flat solutions to heterogeneous equation (1.4), under continuity conditions

on the media. We show that if X 7→ (F (X, ·), f(X)) is α-Hölder continuous, then flat

solutions are locally C2,α. In the case α = 0, namely when the coefficients and the source

are known to be just continuous, we show that flat solutions are locally C1,Log-Lip.

The proofs of both results mentioned above, to be properly stated in Theorem

2.2 and Theorem 2.3 respectively, are based on a combination of geometric tangential

analysis and perturbation arguments inspired by compactness methods in the theory of

elliptic PDEs.

We conclude this introduction of Chapter 2 explaining the heuristics of the

geometric tangential analysis behind our proofs. Given a fully nonlinear elliptic operator

F , we look at the family of elliptic scalings

Fµ(M) :=
1

µ
F (µM), µ > 0.

This is a continuous family of operators preserving the ellipticity constants of the original

equation. If F is differentiable at the origin (recall, by normalization F (0) = 0), then

indeed

Fµ(M)→ ∂Mij
F (0)Mij, as µ→ 0.

In other words, the linear operator M 7→ ∂Mij
F (0)Mij is the tangential equation of Fµ as

µ → 0. Now, if u solves an equation involving the original operator F , then uµ := 1
µ
u
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is a solution to a related equation for Fµ. However, if in addition it is known that the

norm of u is at most µ, then it accounts into saying that uµ is a normalized solution to

the µ-related equation, and hence we can access the universal regularity theory available

for the (linear) tangential equation by compactness methods. In the sequel we transport

such good limiting estimates towards uµ, properly adjusted by the geometric tangential

path used to access the tangential linear elliptic regularity theory. Similar reasoning has

been recently employed in [31, 32, 33, 35].

Already in Chapter 3 given a Lipschitz bounded domain Ω ⊂ Rn, a bounded

measurable elliptic matrix aij(X), i.e. a symmetric matrix with varying coefficients sat-

isfying the (λ,Λ)-ellipticity condition

λId ≤ aij(X) ≤ ΛId, (1.5)

and a nonnegative boundary data ϕ ∈ L2(∂Ω), we are interested in studying local mini-

mizers u to the discontinuous functional

F (u) =

ˆ
Ω

{
1

2
〈aij(X)∇u,∇u〉+ χ{u>0}

}
dX → min, (1.6)

among all competing functions u ∈ H1
ϕ(Ω) := {u ∈ H1(Ω)

∣∣ Trace(u) = ϕ}.

The variational problem set in (1.6) appears in the mathematical formulation

of a great variety of models: jet flows, cavity problems, Bernoulli problems, free trans-

mission problems, optimal designs, just to cite few. Its mathematical treatment has been

extensively developed since the epic marking work of Alt and Caffarelli [1]. The pro-

gram for studying minimization problems for discontinuous functionals of the form (1.6)

is nowadays well established in the literature. Existence of minimizer follows by classical

considerations. Any minimum is nonnegative provided the boundary data is nonnegative.

Minimizers satisfy, in the distributional sense, the Euler-Lagrange equation

div(aij(X)∇u) = µ, (1.7)

where µ is a measure supported along the free boundary. In particular a minimum of the

functional F is a-harmonic within this positive set, i.e.,

div(aij(X)∇u) = 0, in {u > 0} ∩ Ω.

By pure energy considerations, one proves that minimizers grow linearly always from

their free boundaries. Finally, if aij are, say, Hölder continuous, then the free boundary

∂{u > 0} is of class C1,α up to a possible negligible singular set. In such a scenario, the
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free boundary condition

〈aij(ξ)∇u(ξ),∇u(ξ)〉 = Const.

then holds in the classical sense along the regular part of the free boundary, in particular

for all ξ ∈ ∂red{u > 0} ∩ Ω.

A decisive, key step though, required within any program for studying varia-

tional problems of the form (1.6), concerns Lipschitz estimates of minimizers. However, if

no further regularity assumptions upon the coefficients aij(X) is imposed, even a-harmonic

functions, div(aij(X)∇h) = 0, may fail to be Lipschitz continuous. That is, the universal

Hölder continuity exponent granted by DeGiorgi-Nash-Moser regularity theory may be

strictly less than 1, even for two-dimensional problems. Such a technical constrain makes

the study of local minima to (1.6) in discontinuous media rather difficult from a rigorous

mathematical viewpoint.

The above discussion brings us to the main goal in Chapter 3. Even though

it is hopeless to obtain gradient bounds for minimizers of functional (1.6) in Ω, we shall

prove that any minimum is universally Lipschitz continuous along its free boundary, ∂{u >
0} ∩ Ω. This estimate is strong enough to carry on a geometric-measure analysis near

the free boundary, which in particular implies that the non-coincidence set has uniform

positive density and that the free boundary has finite (n − ς)-Hausdorff measure, for a

dimensional number 0 < ς ≤ 1.

In this part of the work we shall carry a slightly more general analysis as to

contemplate singular approximations of the minimization problem (1.6). Let β ∈ L∞(R)

be a bounded function supported in the unit interval [0, 1]. For each ε > 0, we defined

the integral preserving, ε-perturbed potential:

βε(t) :=
1

ε
β

(
t

ε

)
, (1.8)

which is now supported in [0, ε]. Such a sequence of potentials converges in the distribu-

tional sense to
´
β times the Dirac measure δ0. Consider further

Bε(ξ) =

ˆ ξ

0

βε(t)dt→
(ˆ

β(s)ds

)
· χ{ξ>0}, (1.9)

in the distributional sense. We now look at local minimizers uε to the variational problem

Fε(u) =

ˆ
B1

{
1

2
〈aij(X)∇u,∇u〉+Bε(u)

}
dX → min, (1.10)

among all competing functions u ∈ H1
ϕ(Ω) := {u ∈ H1(Ω)

∣∣ Trace(u) = ϕ}. There
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is a large literature on such a class of singularly perturbed equations, see for instance

[4, 12, 13, 15, 25, 26, 30]. It is well established that the functional F defined in (1.6)

can be recovered by letting ε go to zero in (1.10). For each ε fixed though, minimizers

of the functional Fε is related to a number of other physical problems, such as high

energy activations and the theory of flame propagation. From the applied point of view,

it is more appealing to indeed study the whole family of functionals (Fε)0≤ε≤1. We also

mention that the study of minimization problem (1.10) with no continuity assumption on

the coefficients is also motivated by several applications, for instance if homogenization

theory, composite materials, etc.

We should also mention the connections this present work has with the theory

of free phase transmission problems. This class of problems appear, for instance, in the

system of equations modeling an ice that melts submerged in a heated inhomogeneous

medium. For problems modeled within an organized medium (say Hölder continuous

coefficients), monotonicity formula [6] yields Lipschitz estimates for solutions. However,

by physical interpretations of the model, it is natural to consider the problem within

discontinuous media. Under such an adversity (monotonicity formula is no longer avail-

able), Lipschitz estimate along the free boundary has been an important open problem

within that theory, see [2] for discussion. However, if we further assume in the model that

the temperature of the ice remains constant, which is reasonable in very low tempera-

tures, then free phase transmission problems fit into the mathematical formulation of this

present article; and a Lipschitz estimate becomes available by our main result.

We conclude this introduction by mentioning that the improved, sharp regu-

larity estimate we establish in this work holds true in much more generality. The proof

designed is purely nonlinear and uses only the Euler-Lagrange equation associated to the

minimization problem (1.10). Hence, it can be directly applied to degenerate discontinu-

ous functionals of the form

ˆ
F (X, u,∇u)dX → min.,

where F (X, u, ξ) ∼ |ξ|p−2A(X)ξ ·ξ+f(X) (u+)
m

+Q(X) ·χ{u>0}, where A(X) is bounded,

measurable elliptic matrix, f ∈ Lq(Ω), q > n, 1 ≤ m < p and Q is bounded away from

zero and infinity, see [18, 22]. Nonvariational cavitation problems, as well as parabolic

versions of such models can also be tackled by the methods designed here to establish

Lipschitz estimate along the free boundary.
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2 REGULARITY OF FLAT SOLUTIONS TO FULLY

NONLINEAR ELLIPTIC PROBLEMS

The chapter is organized as follows. In Section 2.1 we state all the hypotheses, mathemat-

ical set-up and notions to be used throughout the whole chapter. In this section we also

state properly the two main theorems proven in this thesis. In Section 2.2 we rigorously

develop the heuristics of the geometric tangential analysis explained in the introduction.

The proof of C2,α estimates, Theorem 2.2, will be given in Section 2.3. Two applications

of such a result will be discussed in Section 2.4. Theorem 2.3 will be proven in Section

2.5.

2.1 Hypotheses and main results

Let us begin by discussing the hypotheses, set-up and main notations used here. For B1

we denote the open unit ball in the Euclidean space Rn. The space of n × n symmetric

matrices will be denoted by Sym(n). By modulus of continuity we mean an increasing

function $ : [0,+∞)→ [0,+∞), with $(0+) = 0.

Hereafter we shall assume the following conditions on the operator F : B1 ×
Sym(n)→ R and f : B1 → R:

(H1) There exist constants 0 < λ ≤ Λ such that for any M,P ∈ Sym(n), with P ≥ 0 and

all X ∈ B1, there holds

λ‖P‖ ≤ F (X,M + P )− F (X,M) ≤ Λ‖P‖. (2.1)

(H2) F (X,M) is differentiable with respect to M and for a modulus of continuity ω, there

holds

‖DMF (X,M1)−DMF (X,M2)‖ ≤ ω(‖M1 −M2‖), (2.2)

for all (X,Mi) ∈ B1 × Sym(n).

(H3) For another modulus of continuity τ , there holds

|F (X,M)− F (Y,M)| ≤ τ(|X − Y |) · ‖M‖, (2.3)

|f(X)− f(Y )| ≤ τ(|X − Y |), (2.4)

for all X, Y ∈ B1 and M ∈ Sym(n). It will also be enforced hereafter the following

normalization conditions:

F (0, 0n×n) = f(0) = 0; (2.5)
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though such hypothesis is not restrictive, as one can always reduce the problem as to

verify that.

Condition (H1) concerns the notion of uniform ellipticity. Under such a struc-

tural condition, the theory of viscosity solutions provides an appropriate notion for weak

solutions to such equations.

Definition 2.1. A continuous function u ∈ C0(B1) is said to be a viscosity subsolution

to (1.4) in B1 if whenever one touches the graph of u from above by a smooth function ϕ

at X0 ∈ B1 (i.e. ϕ− u has a local minimum at X0), there holds

F (X0, D
2ϕ(X0)) ≥ f(X0).

Similarly, u is a viscosity supersolution to (1.4) if whenever one touches the graph of u

from below by a smooth function φ at Y0 ∈ B1, there holds

F (Y0, D
2φ(Y0)) ≤ f(Y0).

We say u is a viscosity solution to (1.4) if it is a subsolution and a supersolution of (1.4).

Condition (H2) fixes a modulus of continuity ω to the derivative of F . The

regularity estimates proven in this chapter depends upon ω. Condition (H3) sets the

continuity of the media. When τ(t) ≈ tα, 0 < α < 1, the coefficients and the source

function are said to be α-Hölder continuous. In such scenario we prove that flat solutions

are locally of class C2,α – a sharp Schauder type of estimate for non-convex fully nonlinear

equations.

Theorem 2.2 (C2,α regularity). Let u ∈ C0 (B1) be a viscosity solution to

F (X,D2u) = f(X) in B1,

where F and f satisfy (H1)–(H3) with τ(t) = Ctα for some 0 < α < 1. There exists a

δ > 0, depending only upon n, λ,Λ, ω, α, and τ(1), such that if

sup
B1

|u| ≤ δ

then u ∈ C2,α(B1/2) and

‖u‖C2,α(B1/2) ≤ C · δ,

where C depends only upon n, λ,Λ, ω, and (1− α).

We should emphasize that the Hölder exponent obtained in Theorem 2.2 is

sharp, as it is the same one from the Hölder continuity of the medium and the source
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function f . If f is merely continuous, then even for the classical Poisson equation

∆u = f(X),

solutions may fail to be of class C2. In connection to Theorem 5.1 in [32], in this chap-

ter we show that flat solutions in continuous media are locally of class C1,Log-Lip, which

corresponds to the optimal regularity estimate under such weaker conditions.

Theorem 2.3 (C1,Log-Lip estimates). Let u ∈ C0(B1) be a viscosity solution to

F (X,D2u) = f(X) in B1.

Assume (H1)–(H3). Then there exist a δ = δ(n, λ,Λ, ω, τ) such that if

sup
B1

‖u‖ ≤ δ,

then u ∈ C1,Log−Lip(B 1
2
) and

|u(X)− [u(Y ) +∇u(Y ) · (X − Y )]| ≤ −C.δ · |X − Y |2 log(|X − Y |),

for a constant C that depends only upon n, λ,Λ, ω, and (1− α).

2.2 Geometric tangential analysis

In this Section we provide a rigorous treatment of the heuristics involved in the geometric

tangential analysis explained in the introduction. The next lemmas are key tools for the

proof of both Theorem 2.2 and Theorem 2.3.

Lemma 2.4. Let F : B1×Sym(n)→ R satisfy conditions (H1) and (H2). Given 0 ≤ γ <

1, there exists η > 0, depending only on n, λ,Λ, ω, and γ, such that if u satisfies |u| ≤ 1

in B1 and solves µ−1F (X,µD2u) = f(X) in B1, for

0 < µ ≤ η, sup
M∈Sym(n)

|F (X,M)− F (0,M)|
‖M‖

≤ η and ‖f‖L∞(B1) ≤ η,

then one can find a number 0 < σ < 1, depending only on n, λ and Λ, and a quadratic

polynomial P satisfying

µ−1F (0, µD2P ) = 0, with ‖P‖L∞(B1) ≤ C(n, λ,Λ),

for a universal constant C(n, λ,Λ) > 0, such that

sup
Bσ

|u− P | ≤ σ2+γ.
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Proof. Let us suppose, for the purpose of contradiction, that the Lemma fails to hold.

If so, there would exist a sequence of elliptic operators, Fk(X,M), satisfying hypotheses

(H1) and (H2), a sequence 0 < µk = o(1) and sequences of functions

uk ∈ C(B1) and fk ∈ L∞(B1),

all linked through the equation

1

µk
Fk(X,µkD

2uk) = fk(X) in B1, (2.6)

in the viscosity sense, such that

‖uk‖∞ ≤ 1, µk ≤
1

k
, sup

M∈Sym(n)

|Fk(X,M)− Fk(0,M)|
‖M‖

≤ 1

k
and ‖fk‖∞ ≤

1

k
;

(2.7)

however for some 0 < σ0 < 1

sup
Bσ0

|uk − P | > σ2+γ
0 , (2.8)

for all quadratic polynomials P that satisfies

1

µk
Fk(0, µkD

2P ) = 0.

Passing to a subsequence if necessary, we can assume Fk(X,M)→ F∞(X,M) locally uni-

form in Sym(n). From uniform C1 estimate on Fk and the coefficient oscillation hypothesis

in (2.7), we deduce
1

µk
Fk(X,µkM)→ DMF∞(0, 0) ·M, (2.9)

locally uniform in Sym(n). In fact, we have that

Fk(Xk, µkM) = ‖µkM‖
Fk(Xk, µkM)− Fk(0, µkM)

‖µkM‖
+
d

dt

ˆ µk

0

Fk(0, tM)dt

thus

Fk(Xk, µkM) = ‖µkM‖
Fk(Xk, µkM)− Fk(0, µkM)

‖µkM‖
+

ˆ µk

0

DMFk(0, tM)Mdt

which, using (2.2), implies that
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Fk(Xk, µkM) ≥− ‖µkM‖
|Fk(Xk, µkM)− Fk(0, µkM)|

‖µkM‖
+ µkDMFk(0, 0)M − µkω(‖µkM‖)

Dividing the inequality by µk and making µk → 0 we obtain that

DMF∞(0, 0).M ≤ lim
µk→0

1

µk
Fk(X,µkM).

Repeating the argument we show that

DMF∞(0, 0).M ≥ lim
µk→0

1

µk
Fk(X,µkM)

what concludes the claim.

Also, by Krylov-Safonov C0,γ bounds for equation (2.6), up to a subsequence,

uk → u∞ locally uniform in B1. Thus, by stability of viscosity solutions, we conclude

DMF∞(0, 0) ·D2u∞ = 0, in B1. (2.10)

As u∞ solves a linear, constant coefficient elliptic equation, u∞ is smooth. Define

P := u∞(0) +Du∞(0) ·X +
1

2
X.D2u∞(0)X.

Since ‖u∞‖ ≤ 1, it follows from C3 estimates on u∞ that

sup
Br

|u∞ − P | ≤ Cr3,

for a constant C that depends only upon dimension n and ellipticity constants, λ and Λ.

Thus, if we select

σ :=
1−γ

√
1

2C
,

a choice that depends only on n, λ, Λ and γ, we readily have

sup
Bσ

|u∞ − P | ≤
1

2
σ2+γ,

Also, from equation (2.10), we obtain

DMF∞(0, 0) ·D2P = 0
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which implies that

|µ−1
k Fk(0, µkD

2P )| = o(1).

Now, since Fk is uniformly elliptic in B1 × Sym(n) and Fk(0, 0) = 0, it is possible to find

a sequence of real numbers (ak) ⊂ R with |ak| = o(1), for which the quadratic polynomial

Pk := P + ak|X|2

do satisfy

µ−1
k Fk(0, µkD

2Pk) = 0.

Finally we have, for any point in Bσ and k large enough,

sup
Bσ

|uk − Pk| ≤ |uk − u∞|+ |u∞ − P |+ |P − Pk|

≤ 1

5
σ2+γ +

1

2
σ2+γ + |ak|σ2

< σ2+γ,

which contradicts (2.8). Lemma 2.4 is proved.

In the sequel, we transfer the geometric tangential access towards a smallness

condition of the L∞ norm of the solution.

Lemma 2.5. Let F satisfy (H1) and (H2) and 0 ≤ α < 1 be given. There exist a small

positive constant δ > 0 depending on n, λ,Λ,and α, and a constant 0 < σ < 1 depending

only on n, λ,Λ and (1− α) such that if u is a solution to (1.4) and

‖u‖L∞(B1) ≤ δ, sup
M∈Sym(n)

|F (X,M)− F (0,M)|
‖M‖

≤ δ3/2 and ‖f‖L∞(B1) ≤ δ3/2,

then one can find a quadratic polynomial P satisfying

F (0, D2P ) = 0, with ‖P‖L∞(B1) ≤ δC(n, λ,Λ) (2.11)

for a universal constant C(n, λ,Λ) > 0, and

sup
Bσ

|u− P | ≤ δ · σ2+α

Proof. Define the normalized function v = δ−1u. We immediate check that

δ−1F (X, δD2v) =
f(X)

δ
.

If η is the number from Lemma 2.4, we choose δ = η2 and the Lemma follows.
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2.3 C2,α estimates in C0,α media

In this Section we show that if the coefficients and the source are α-Hölder continuous,

then flat solutions are locally of class C2,α, i.e. That is, herein we assume

τ(t) . Ctα, (2.12)

for some 0 < α < 1 and C > 0, where τ is the modulus of continuity of the coefficients

and the source function appearing in (2.3) and (2.4). Under such condition, we aim to

show that flat solutions are locally of class C2,α.

The idea of the proof is to employ Lemma 2.5 in an inductive process as to

establish the aimed C2,α estimate for flat solutions under an appropriate smallness regime

for the oscillation of the coefficients and the source function.

Lemma 2.6. Let F , f and u be under the hypotheses of Lemma 2.5. Then there exists a

δ = δ(n, λ,Λ, ω) > 0, such that if

sup
B1

|u| ≤ δ and τ(1) ≤ δ3/2,

then u ∈ C2,α at the origin and

|u− (u(0) +∇u(0) ·X +
1

2
X tD2u(0)X)| ≤ C · δ|X|2+α,

where C > 0 depends only upon n, λ,Λ, ω and (1− α).

Proof. The proof consists in iterating Lemma 2.5 as to produce a sequence of quadratic

polynomials

Pk =
1

2
X tAkX + bk ·X + ck with F (0, D2Pk) = 0, (2.13)

that approximates u in a C2,α fashion, i.e.,

sup
B
σk

|u(X)− Pk(X)| ≤ δσ(2+α)k. (2.14)

Furthermore, we aim to control the oscillation of the coefficients of Pk as
|Ak − Ak−1| ≤ Cδσα(k−1)

|bk − bk−1| ≤ Cδσ(1+α)(k−1)

|ck − ck−1| ≤ Cδσ(2+α)(k−1)

(2.15)

where C > 0 is universal and σ and δ are the parameters in Lemma 2.5. The proof of

the existence of the polynomials Pk verifying (2.13), (2.14) and (2.15) will be delivered

by induction. The case k = 1 is precisely the statement of Lemma 2.5. Suppose now we
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have verified the kth step of induction, i.e., that there exists a quadratic polynomial Pk

satisfying (2.13), (2.14) and (2.15). We define

ũ(X) :=
1

σ(2+α)k
(u(σkX)− Pk(σkX)); (2.16)

F̃ (X,M) :=
1

σkα
F (σkX, σkα ·M +D2Pk). (2.17)

Notice that∣∣∣DM F̃ (X,M)−DM F̃ (X,N)
∣∣∣ ≤ ω(σkα‖M −N‖) ≤ ω(‖M −N‖),

that is, F̃ fulfills (H2). It readily follows from (2.14) that ũ satisfies

|ũ|L∞(B1) ≤ δ.

Moreover, ũ solves

F̃ (X,D2ũ) =
1

σkα
f(σkX) =: f̃(X)

in the viscosity sense. From τ -continuity of f and the coefficients of F , together with the

smallness condition τ(1) ≤ δ3/2, we verify

‖f̃‖∞ ≤ δ3/2,

and likewise,

sup
M∈Sym(n)

|F̃ (X,M)− F̃ (0,M)|
‖M‖

≤ δ3/2.

Applying Lemma 2.5 to ũ gives a quadratic polynomial P̃ satisfying F̃ (0, D2P̃ ) = 0 for

which

|ũ(X)− P̃ (X)| ≤ δσ2+α, for |X| ≤ σ.

The (k + 1)th step of induction is verified if we define

Pk+1(X) := Pk(X) + σ(2+α)kP̃ (σ−kX).

To conclude the proof of this lemma, notice that (2.15) implies that

{Ak} ⊂ Sym(n), {bk} ⊂ Rn, and {ck} ⊂ R

are Cauchy sequences. Let us label the limiting quadratic polynomial

P∞(X) :=
1

2
X tA∞X + b∞X + c∞,
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where Ak → A∞, bk → b∞ and ck → c∞. It further follows from (2.15)

|Pk(X)− P∞(X)| ≤ Cδ(σαk|X|2 + σ(1+α)k|X|+ σ(2+α)k), (2.18)

whenever |X| ≤ σk. Finally, fixed X ∈ Bσ, take k ∈ N such that σk+1 < |X| ≤ σk and

conclude, by means of (2.14) and (2.18), that

|u(X)− P∞(X)| ≤ C1δσ
(2+α)k ≤ C1δ

σ2+α
|X|2+α,

as desired.

We conclude the proof of Theorem 2.2 by verifying that if τ(t) = τ(1)tα, the

smallness condition of Lemma 2.6, namely

τ(1) ≤ δ3/2,

is not restrictive. In fact, if u ∈ C0(B1) is a viscosity solution to

F (X,D2u) = f(X) in B1, (2.19)

the auxiliary function

v(X) :=
u(µX)

µ2
(2.20)

solves

Fµ(X,D2v) = fµ(X),

where

Fµ(X,M) := F (µX,M) and fµ(X) := f(µX).

Clearly the new operator Fµ satisfies the same assumptions (H1)–(H3) as F , with the

same universal parameters λ,Λ and ω. Note however that

max

{
|fµ(X)− fµ(Y )|, |Fµ(X,M)− Fµ(Y,M)|

‖M‖

}
≤ τ(1)µα|X − Y |α,

for M ∈ Sym(n). Thus if τµ is the modulus of continuity for fµ and Fµ,

τµ(1) = τ(1)µα.

Finally, we take

µ := min

{
1,

2α
√
δ3

α
√
τ(1)

}
,
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where δ is the universal number from Lemma 2.5. In conclusion, if u solves (2.19) and

satisfies the flatness condition

‖u‖L∞(B1) ≤ δ := δµ2,

then Lemma 2.6 applied to v gives C2,α estimates for v, which is then transported to u

according to (2.20).

2.4 Applications

Probably an erudite way to comprehend Theorem 2.2 is by saying that if u solves a fully

nonlinear elliptic equation with Cα coefficients and source, then if it is close enough to a

C2,α function, then indeed u is C2,α. This is particularly meaningful in problems involving

some a priori set data.

In this intermediary section, we comment on two applications of Theorem

2.2. The first one concerns an improvement of regularity for classical solutions in Hölder

continuous media.

Corollary 2.7 (C2 implies C2,α). Let u ∈ C2(B1) be a classical, pointwise solution to

F (X,D2u) = f(X)

where F (X, ·) ∈ C1(Sym(n)) satisfy (H1)–(H2). Assume further that condition (H3) holds

with τ(t) = Ctα for some 0 < α < 1. Then, u ∈ C2,α(B1/2), and

‖u‖C2,α(B1/2) ≤ C(n, λ,Λ, α, ω, τ(1), ‖u‖C2(B1)).

Proof. We shall proof that u is C2,α at the origin. To this end, define, for an r > 0 to be

chosen soon, v : B1 → R, by

v(X) :=
1

r2
u(rX)−

[
1

r2
u(0) +

1

r
∇u(0) ·X +

1

2
X tD2u(0)X

]
.

We clearly have

v(0) = |∇v(0)| = 0 and |D2v(0)| ≤ ς(r), (2.21)

where ς is the modulus of continuity for D2u. Now, we choose 0 < r � 1 so small that

ς(r) ≤ cnδ,

where cn is a dimensional constant and δ is the number appearing in Theorem 2.2. With

such choice, v is under the condition of Theorem 2.2, for F̃ (X,M) := F (rX,M +D2u(0))
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and f̃(X) = f(rX).

Remark 2.8. We remark that in the proof of Corollary 2.7, we can estimate the absolute

value of v using integral remainders of the Taylor expansion. Thus, the very same con-

clusion of the above corollary holds true if we just consider VMO condition on D2u. It is

also interesting to highlight that Corollary 2.7 implies that if u is a viscosity solution in

B1 of a non-convex, fully nonlinear equation under hypotheses (H1)–(H3). Then if u is

C2 at a point p ∈ B1, then indeed u is C2,α in a neighborhood of p.

The second application we explore here regards a mild extension of a recent

result due to Armstrong, Silvestre, and Smart [3], on partial regularity for solutions to

uniform elliptic PDEs.

Corollary 2.9 (Partial regularity). Let u ∈ C0(B1) be a viscosity solution to F (D2u) =

f(X) where F ∈ C1(Sym(n)) satisfy c ≤ DuiujF (M) ≤ c−1 for some constant c > 0 and

the source function f is Lipschitz continuous. Then, u ∈ C2,1−(B1 \ Σ) for a closed set

Σ ⊂ B1, with Hausdorff dimension at most (n− ε) for an ε > 0 universal.

Remark 2.10. Since we consider f Lipschitz continuous we have

P+
λ,Λ

(
D2(ue)

)
≥ −C and P−λ,Λ

(
D2(ue)

)
≤ C,

thus, by Lemma 7.8 in [8] and Lemma 5.1 in [3], we get

|{x ∈ B 1
2

: Ψ(u,B1)(X) > t}| ≤ C.t−ε.

for C > 0 universal and t > 0, where

Ψ(u,Ω)(X) = inf{A ≥ 0; there exist p ∈ Rn e M ∈Mn such that for all Y ∈ Ω,

‖u(Y )− u(X) + p(X − Y ) + (X − Y ).M(X − Y )‖ ≤ 1

6
A‖X − Y ‖3}.

To prove the partial regularity, first we use the Theorem 2.2 for establish a

relation between Ψ and the local C2,α regularity of u, after we use a covering argument.

We divide this process in two step as follows to simplify the exposure.

Lemma 2.11. Let u ∈ C0(B1) be a viscosity solution of

F (X,D2u) = f in B1,
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satisfies supB1
|u| ≤ 1 and 0 < α < 1. There is a universal constant δ(α) > 0, such that

for every Y ∈ B 1
2

and 0 < r < 1
16

, if

{Ψ(u,B1) ≤ r−1δ} ∩B(Y, r) 6= ∅

implies that

u ∈ C2,α(B(Y, r)).

Proof. Let 0 < r < 1
16

, Y ∈ B 1
2

and B(Y, r) such that

Ψ(u,B1) ≤ r−1δ

then there exist z ∈ B(Y, r), p ∈ Rn and M ∈Mn such that for any X ∈ B1

|u(X)− u(Z) + p.(Z −X) + (Z −X).M(Z −X)| ≤ 1

6
r−1δ|Z −X|3.

We may assume, without loss of generality, that M ∈ Sym(n). Define the function

v(X) =
1

16r2
(u(Z + 4rX)− u(Z) + 4rp.X + 16r2X.MX).

Thus |v| ≤ 1
3
δ. Define the operator

F̃ (X,N) = F (Z + 4rX,N −M)− F (Z + 4rX,−M),

observe that F̃ satisfies the conditions of the Theorem 2.2 and

F̃ (X,D2v) = f(Z + 4rX)− F (Z + 4rX,−M) = f̃(X) ∈ C0,α

Thus, pelo Theorem 2.2, v ∈ C2,α(B1/2) what implies that u ∈ C2,α(B(Y, r)).

Proof of Corollary 2.9. Suppose, without loss of generality, that supB1
|u| ≤ 1. Let

Σ = {X ∈ B 1
2

: u 6∈ C2,α(B(X, r))for any r > 0}.

For 0 < r < 1
16

, by the Vitalli covering Lemma, there exist {B(Xi, r)}mi=1 of disjoint balls,

with Xi ∈ Σ, such that
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Σ ⊂
m⋃
i=1

B(Xi, 3r).

By the Lemma 2.11 there is a universal constant δ(α) > 0 that

Ψ(u,B1)(Y ) > r−1δ(α) for every Y ∈
m
∪
i=1
B(Xi, r).

For the Remark 2.10 we have that

m|Br| ≤ |{X ∈ B 1
2

: Ψ(u,B1)(Y ) > r−1δ(α)}| ≤ Crε,

thus
m∑
i=1

|B(Xi, 3r)|n−ε ≤ C

where C and ε are universal.

2.5 Log-Lipschitz estimates in continuous media

In this section we prove Theorem 2.3. Initially we show that under continuity assumption

on the coefficients of F and on the source f , after a proper scaling, solutions are under

the smallness regime requested by Lemma 2.5, with α = 0. For that define

v(X) =
u(µX)

µ2
, Fµ(X,M) := F (µX,M) and fµ(X) := f(µX),

for a parameter µ to be determined. Equation

Fµ(X,D2v) = fµ(X),

is satisfied in the viscosity sense. Now we choose µ so small that

τ(µ) ≤ δ3/2,

where τ is the modulus of continuity of the media and δ > 0 is the number appearing in

Lemma 2.5 with α = 0. In the sequel, define

τµ(t) := τ(µt)

and note that

max

{
|fµ(X)− fµ(Y )|, |Fµ(X,M)− Fµ(Y,M)|

‖M‖

}
≤ τµ(|X − Y |).
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Thus,

sup
M∈Sym(n)

|Fµ(X,M)− Fµ(0,M)|
‖M‖

≤ δ3/2 and ‖fµ‖L∞(B1) ≤ δ3/2.

Now if we take

‖u‖L∞(B1) ≤ δ := δµ2

then

‖v‖L∞(B1) ≤ δ.

Estimates proven for v gives the desired ones for u.

The conclusion of the above reasoning is that we can start off the proof of

Theorem 2.3 out from Lemma 2.5. That is, the proof of the current Theorem begins with

the existence of a quadratic polynomial P1 satisfying F (0, D2P1) = 0 and a number σ > 0

for which the following estimate

sup
Bσ

|u− P1| ≤ σ2δ, (2.22)

holds, provided δ is small enough, depending only on universal parameters. As in Lemma

2.6, we shall prove by induction process the existence of a sequence of polynomials

Pk(X) =
1

2
X tAkX + bkX + ck

satisfying F (0, D2Pk) = 0 such that

|u(X)− Pk(X)| ≤ δσ2k for |X| ≤ σk. (2.23)

Moreover, we have the following estimates on the coefficients
|Ak − Ak−1| ≤ Cδ

|bk − bk−1| ≤ Cδσ(k−1)

|ck − ck−1| ≤ Cδσ2(k−1).

(2.24)

The case k = 1 is precisely the conclusion enclosed in (2.22). Assume we have verified

the kth step of induction. Define the scaled function and the scaled operator

ũ(X) :=
1

σ2k
(u(σkX)− Pk(σkX)) and F̃ (X,M) := F (σkX,M +D2Pk).

Easily one verifies that ũ is a viscosity solution to

F̃ (X,D2ũ) = f(σkX) := f̃(X).
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From the induction hypothesis, (2.23), ũ is flat, i.e., |ũ|L∞(B1) ≤ δ. Also, clearly

sup
M∈Sym(n)

|F̃ (X,M)− F̃ (0,M)|
‖M‖

≤ δ3/2 and ‖f̃‖L∞(B1) ≤ δ3/2.

And thus ũ is satisfies (2.22), namely there exists a quadratic polynomial P̃ with F̃ (0, D2P̃ ) =

0 and

|ũ(X)− P̃ (X)| ≤ δσ2k for |X| ≤ σ.

The (k + 1)th step of induction follows by defining

Pk+1(X) := Pk(X) + σ2kP̃ (σ−kX).

In view of the coefficient oscillation control (2.24), we conclude bk converges in Rn to a

vector b∞ and ck converges in R to a real number c∞. Also

|ck − c∞| ≤ Cδσ2k, (2.25)

|bk − b∞| ≤ Cδσk. (2.26)

The sequence of matrices Ak may diverge, however, we can at least estimate

‖Ak‖Sym(n) ≤ kCδ. (2.27)

In the sequel, we define the tangential affine function

`∞(X) := c∞ + b∞ ·X

and estimate, in view of (2.25), (2.26) and (2.27), for |X| ≤ σk,

|u(X)− `∞(X)| ≤ |u(X)− Pk(X)|+ |ck − c∞|+ |(bk − b∞)||X|+ |Ak||X|2

≤ δσ2k + 2Cδσ2k + kCδσ2k

≤ Cδ(kσ2k).

(2.28)

Finally, fixed X ∈ Bσ, take k ∈ N such that σk+1 < |X| ≤ σk. From (2.28), we find

|u(X)− `∞(X)| ≤ −(C1δ) · |X|2 log |X|,

as desired. The proof of Theorem 2.3 is concluded.



29

3 CAVITY PROBLEMS IN DISCONTINUOUS ME-

DIA

The chapter is organized as follows. In Section 3.1 we guarantee the existence of uniform

Hölder estimates and the linear growth close to the level set ∂{uε ≥ ε} for minimizers

to 1.10. In Section 3.2 we establish the main goal of this chapter that is the Lipschitz

regularity along the free boundary. In sequel we comment how the same results in the

Section 3.2 can be obtained for all minima for functional (1.6). To finish, in Section 3.4

we show consequences of our Lipschitz estimates.

3.1 Existence, Uniform Hölder regularity and Linear growth

In this Section we gather some results and tools available for the analysis of minimizers

to the functional (1.10). The results stated herein follow by methods and approaches

available in the literature.

Theorem 3.1 (Existence of minimizers). For each ε > 0 fixed, there exists at least one

minimizer uε ∈ H1
ϕ(Ω) to the function (1.10). Furthermore uε satisfies

div(aij(X)∇uε) = βε(uε), in Ω, (3.1)

in the distributional sense. Furthermore, each uε in a nonnegative function, provided the

boundary data ϕ is nonnegative.

Proof. Existence of minimizer as well as the Euler-Lagrange equation associated to the

functional follow by classical methods in the Calculus of Variations. Non-negativity of a

minimum is obtained as follows. Suppose, for the sake of contradiction, the set {uε < 0}
were not empty. Since ϕ ≥ 0 on ∂Ω, one sees that ∂{uε < 0} ⊂ {uε = 0} ∩ Ω. Since

βε is supported in [0, ε], from the equation we conclude that uε satisfies the homogeneous

equation div(aij(X)∇uε) = 0 in {uε < 0}. By the maximum principle we conclude uε ≡ 0

in such a set, which gives a contradiction.

Regarding higher regularity for minimizers, it is possible to show uniform-in-ε

L∞ bounds and also a uniform-in-ε C0,α estimate, for a universal exponent 0 < α < 1.

To this we use the follow energy estimate.

Lemma 3.2. Let u ∈ H1(BR(X0)) and h ∈ H1(BR(X0)) weak solution to

div(aij(X)∇h) = 0 in BR(X0),



30

then there exist a constant C(n, λ,Λ) > 0 such that for 0 < r < R holds

ˆ
Br(X0)

|∇u− (∇u)r|2dx ≤ C(λ,Λ, n)
( r
R

)n−2+2αλ,Λ
ˆ
BR(X0)

|∇u− (∇u)R|2dx

+

ˆ
BR(X0)

|∇u−∇h|2dx,

where αλ,Λ is the best exponent for the homogeneous equation.

Proof. See Lemma 4.2 in [2]

Theorem 3.3 (Uniform Hölder regularity of minimizers). Fixed a subdomain Ω′ b Ω,

there exists a constant C > 0, depending on dimension, ellipticity constants, ‖ϕ‖L2 and

Ω′, but independent of ε, such that

‖uε‖L∞(Ω′) + [uε]Cα(Ω′) < C,

where 0 < α < 1 is a universal number.

Proof. Fix X0 ∈ Ω, R > 0 such that R > dist(X0, ∂Ω) and take h a function such that

div(A(X)∇h) = 0 in BR(X0) and h− u ∈ H1
0 (BR(X0)).

Thus

ˆ
BR(X0)

1

2
(〈A(X)∇u,∇u〉 − 〈A(X)∇h,∇h〉)dx =

ˆ
BR(X0)

1

2
〈A(X)∇(u− h),∇(u− h)〉dx

and by ellipticity

ˆ
BR(X0)

1

2
〈A(X)∇(u− h),∇(u− h)〉dx ≥ λ

2

ˆ
BR(X0)

|∇u−∇h|2dx.

Now, using the minimality of u we obtain that

ˆ
BR(X0)

1

2
(〈A(X)∇u,∇u〉 − 〈A(X)∇h,∇h〉)dx ≤

ˆ
BR(X0)

(Bε(h)−Bε(u)).

Therefore, using the inequalities above together with the Lemma 3.2 we have



31

ˆ
Br(X0)

|∇u− (∇u)r|2dx ≤ C(λ,Λ, n)
( r
R

)n−2+2αλ,Λ
ˆ
BR(X0)

|∇u− (∇u)R|2dx

+ C(λ,Λ, n, ‖β‖L1)|BR|

≤ C
( r
R

)n−2+2αλ,Λ
ˆ
BR(X0)

|∇u− (∇u)R|2dx+ CRn.

So the theorem follows by Lemma 8.23 in [20] and the classical Morrey embedding The-

orem.

As a consequence of Theorem 3.3, up to a subsequence, uε converges locally

uniformly in Ω to a nonnegative function u0. By linear interpolation techniques, see for

instance [30, Theorem 5.4], one verifies that u0 is a minimizer for the functional (1.6).

The final result we state in this section gives the sharp lower bound for the

grow of uε away from ε-level surfaces.

Theorem 3.4 (Linear Growth). Let Ω′ b Ω be a given subdomain and X0 ∈ Ω′∩{uε ≥ ε}
then

uε(X0) ≥ c · dist(X0, ∂{uε ≥ ε}), (3.2)

where c is a constant that depends on dimension and ellipticity constants, but it is inde-

pendent of ε.

Proof. Denote d = d(X0, ∂{uε ≥ ε}), uε(X0) = αd and define

v(X) =
uε(X0 + dX)

d
.

So

div(aij(X0 + dX)∇v) = 0

and v(0) = α, therefore by Harnack inequality

cα ≤ v ≤ c̄α in B1/2

Now, consider a smooth function ψ, non-negative and radially symmetric such that

0 < ψ < 1, ψ = 0 in B1/8 and ψ = 1 in B1 \B1/2

and define
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g(X) =

{
min{v, c̄αψ} in B1/2

v in B1 \B1/2

Since uε is a minimum to (1.10) we have that

F(v) ≤ F(g)

where

F(u) =

ˆ
B1

{1

2
〈aij(X0 + dX)∇u,∇u〉+ Bε(du)}.

In the other terms

ˆ
B1

1

2
(〈aij(X0 + dX)∇g,∇g〉 − 〈aij(X0 + dX)∇v,∇v〉) ≥

ˆ
B1

Bε(dv)−
ˆ
B1

Bε(dg).

If on the one hand we have

ˆ

B1/2∩{c̄αψ≤v}

1

2

(
c̄2α2〈aij(X0 + dX)∇ψ,∇ψ〉 − 〈aij(X0 + dX)∇v,∇v〉

)
≤ α2CΛ‖∇ψ‖2

L2 ,

on the other hand, since that v ≥ g and Bε is non-decreasing we get that

ˆ
B1

(Bε(dv)−Bε(dg)) ≥
ˆ
B1/8

(Bε(dv)−Bε(dg))

≥
ˆ
B1/8

Bε(dv) ≥ Bε(cα)|B1/8| ≥ |B1/8|Bε(cε)

≥ B1(c) = c.

Thus

α ≥ C

which finishes the proof.
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3.2 Lipschitz regularity along the free boundary

This section is the heart of this part of the thesis, where we deliver a proof of the main, key

result of the chapter, namely that uniform limits of solutions to (3.1) are locally Lipschitz

continuous along their free boundaries.

Theorem 3.5 (Lipschitz regularity). Let u0 be a uniform limit point of solutions to

div(aij(X)∇uε) = βε(uε) in Ω

and assume that u0(ξ) = 0. Then there exists a universal constant C > 0, depending only

on dimension, ellipticity constants, dist(ξ, ∂Ω) and L∞ bounds of the family such that

|u0(X)| ≤ C|X − ξ|,

for all point X ∈ Ω.

Our strategy is based on a flatness improvement argument, within whom the

next lemma plays a decisive role.

Lemma 3.6. Fixed a ball Br(Y ) b Ω and given θ > 0, there exists a δ > 0, depending

only on Br(Y ), dimension, ellipticity constants and L∞ bounds for uε, such that if

div(aij(X)∇uε) = δ · βε(uε)

and

max{ε, inf
Br(Y )

uε} ≤ δ.

Then

sup
B r

2
(Y )

uε ≤ θ.

Proof. Let us suppose, for the sake of contradiction, that the Lemma fails to hold. There

would then exist a sequence of functions uεk satisfying

div(akij(X)∇uεk) = δkβεk(uεk)

with akij (λ,Λ)-elliptic, δk = o(1), and

max{εk, inf
Br(Y )

uεk} =: ηk = o(1),

but

sup
Br/2(Y )

uεk ≥ θ0 > 0, (3.3)
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for some θ0 > 0 fixed. Let Xk be the point where uεk attains its minimum in B̄r(Y ) and

denote σ := dist(Br(Y ), ∂Ω) > 0. Define the scaled function vk : Bσε−1
k
→ R, by

vk(X) :=
uεk(Xk + εkX)

ηk

One simply verifies that vk ≥ 0 and it solves, in the distributional sense,

div(akij(X)∇vk) = δk ·
(
εk
ηk
β1(ηk

εk
vk)
)

= o(1),

as k →∞, in the L∞-topology. Also, one easily checks that vk(0) ≤ 1. Hence, by Harnack

inequality, the sequence vk is uniform-in-k locally bounded in Bσε−1
k

(0). From De Giorgi,

Nash, Moser regularity theory, up to a subsequence, vk converges locally uniformly to

an entire v∞. In addition, by standard Caccioppoli energy estimates, the sequence vk

is locally bounded in H1, uniform in k. Also by classical truncation arguments, up to

a subsequence, ∇vk(X) → ∇v∞(X) a.e. (see [29] and [31] for similar arguments). By

ellipticity, passing to another subsequence, if necessary, aij converges weakly in L2
loc to a

(λ,Λ)-elliptic matrix bij. Summarizing we have the following convergences:

vk → v∞ locally uniformly in Bσε−1
k

(3.4)

vk ⇀ v∞ weakly in H1(Bσε−1
k

) (3.5)

∇vk(X)→ ∇v∞(X) almost everywhere in Bσε−1
k

(3.6)

akij(X) ⇀ bij weakly in L2(Bσε−1
k

) (3.7)

Passing to the limits, we conclude,

div(bij(X)∇v∞) = 0, in Rn.

Applying Liouville Theorem to v∞, we conclude that

v∞ ≡ Const. < +∞,

for a bounded constant, in the whole space. The corresponding limiting function u∞

obtained from uεk must therefore be identically zero. We now reach a contradiction with

(3.3) for k � 1. The Lemma is proven.

Before continuing, we remark that if uε is a solution to the original equation

(3.1) and a positive number δ̄ > 0 is given, then the zoomed-in function

ũε(X) = uε(
√
δ̄X)
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satisfies in the distributional sense the equation

div(aij(X)∇ũε) = δ̄βε(ũε)

We are in position to start delivering the proof of Theorem 3.5. Let uε be a

bounded sequence of distributional solutions to (3.1) and u0 a limit point in the uniform

convergence topology. We assume, with no loss, that ξ = 0, that is u0(0) = 0. Within the

statement of Lemma 3.6, select

θ =
1

2
.

Since uε(0)→ 0 as ε→ 0, Lemma 3.6 together with the above remark, gives the existence

of a positive, universal number δ? > 0, such that if 0 < ε ≤ ε0 � 1, for ũε(X) := uε(
√
δ?X)

we have

sup
B1/2

ũε(X) ≤ 1

2
.

Passing to the limit as ε→ 0, we obtain

sup
B√δ?

2

u0(X) ≤ 1

2
.

Define the rescaled function

v1(X) := 2uε(

√
δ?
2
X).

It is simple to verify that v1 satisfies

div(a1
ij(X)∇v1(X)) = δ?β2ε(v

1),

in the distributional sense, where a1
ij(X) = aij(

√
δ?/2X) is another (λ,Λ)-elliptic matrix.

Once more, v1(0)→ 0 as ε→ 0, hence, for ε ≤ ε1 < ε0 � 1, we can apply Lemma 3.6 to

v1 and deduce, after scaling the inequality back,

sup
B√δ?

4

u0(X) ≤ 1

4
.

Continuing this process inductively, we conclude that for any k ≥ 1, that holds

sup
B√δ?

2k

u0(X) ≤ 1

2k
. (3.8)

Finally, given X ∈ B1/2 let k ∈ N be such that

√
δ?

2k+1
< |X| ≤

√
δ?

2k
.
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We estimate from (3.8)

u0(X) ≤ sup
B√δ?

2k

u0(X)

≤ 1

2k

≤ 2√
δ?
|X|,

and the proof of Theorem 3.5 is concluded.

Definition 3.7. Given a large constant K > 0, we say that a uniform elliptic matrix

aij(X) satisfies (K-Lip) property if for any 0 < d < 1, h ∈ H1(Bd) solves

div (aij(X)∇h) = 0 in Bd

in the distributional sense, then

‖∇h‖L∞(Bd/2) ≤
K

d
· ‖h‖L∞(Bd).

It is classical that Dini continuity of the medium is enough to assure that aij

satisfies (K-Lip) property, for some K > 0 that depends only upon dimension, ellipticity

constants and the Dini-modulus of continuity of aij.

Our next Corollary says that uniform limits of singularly perturbed equation

(3.1) is Lipschitz continuous up to the free boundary provided aij satisfies (K-Lip) prop-

erty for someK > 0. The, not obvious, message being that when it comes to Lipschitz esti-

mates, the homogeneous equation and the free boundary problem div(aij(X)∇u) ∼ δ0(u)

require the same amount of organization of the medium.

Corollary 3.8. Under the assumptions of Theorem 3.5, assume further that aij(X) sat-

isfies (K-Lip) property for some K. Then, given a subdomain Ω′ b Ω,

|∇u0(X)| ≤ C,

for a constant that depends only on dimension, ellipticity constants, dist(∂Ω′, ∂Ω), L∞

bounds of the family and K.

Proof. It follows from Theorem 3.5 and property K that u0 is pointwise Lipschitz contin-

uous, i.e.,

|∇u0(ξ)| ≤ C(ξ).

We have to show that C(ξ) remains bounded as ξ goes to the free boundary. For that,

let ξ be a point near the free boundary ∂{u0 > 0} and denote by Y ∈ ∂{u0 > 0} a point
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such that

|Y − ξ| =: d = dist(ξ, ∂{u0 > 0}).

From Theorem 3.5, we can estimate

sup
Bd/2(ξ)

u0(ξ) ≤ sup
B2d(Y )

u0(ξ) ≤ C · 2d.

Applying (K-Lip) property to the ball Bd/2(ξ), we obtain

|∇u0(ξ)| ≤ 2K

d
· 2Cd = 4C ·K,

and the proof is concluded.

3.3 Lipschitz estimates for the minimization problem

Limiting functions u0 obtained as ε goes to zero from a sequence uε of minimizers of

functional (1.10) are minima of the discontinuous functional (1.6). Hence, limiting minima

are Lipschitz continuous along their free boundaries. Nonetheless, as previously advertised

in Theorem 3.5, the sharp Lipschitz regularity estimate holds indeed for any minima of

the functional (1.6), not necessarily for limiting functions.

In this intermediate section we shall comment on how one can deliver this

estimate directly from the analysis employed in the proof of Theorem 3.5. In fact, the

proof of Lipschitz estimate for minima of the functional (1.6) is simpler than the proof

delivered in previous section, which has been based solely on the singular equation satisfies.

Theorem 3.9. Let u0 ≥ 0 be a minimum to

F (u) =

ˆ
Ω

{
1

2
〈aij(X)∇u,∇u〉+ χ{u>0}

}
dX

and assume that u0(ξ) = 0. Then there exists a universal constant C > 0, depending only

on dimension, ellipticity constants, dist(ξ, ∂Ω) and its L∞ norm such that

u0(X) ≤ C|X − ξ|,

for all point X ∈ Ω.

The proof follows the lines designed in Section 3.2. We obtain the correspond-

ing flatness Lemma as follows:

Lemma 3.10. Fixed a ball Br(Y ) b Ω and given θ > 0, there exists a δ > 0, depending

only on Br(Y ), dimension, ellipticity constants and L∞ norm of u0, such that if u0 is
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nonnegative a minimum of

F δ(u) =

ˆ
Ω

{
1

2
〈aij(X)∇u,∇u〉+ δ · χ{u>0}

}
dX,

and u0(Y ) = 0, then

sup
B r

2
(Y )

u0 ≤ θ.

Proof. The proof follows by a similar tangential analysis of the proof of Lemma 3.6, but

in fact in a simpler fashion. The tangential functional, obtained as δ → 0, satisfies

minimum principle, hence the limiting function, from the contradiction argument, must

be identically zero.

Here are some more details: suppose, for the sake of contradiction, that the

Lemma fails to hold. It means, for a sequence (λ,Λ)-elliptic matrices, akij, and a sequence

of minimizers uk of

F k(u) =

ˆ
Ω

{
1

2
〈akij(X)∇u,∇u〉+ δk · χ{u>0}

}
dX,

with δk = o(1), and, say ‖uk‖∞ ≤ 1,

sup
Br/2(Y )

uk ≥ θ0 > 0, (3.9)

for some θ0 > 0 fixed. As in Lemma 3.6, by compactness, up to a subsequence, uk → u0.

Passing the limits we conclude u0 is a local minimum of

F∞(u) =

ˆ
1

2
〈bij(X)∇u0,∇u0〉dX.

Since, u0 ≥ 0 and u0(Y ) = 0, by the maximum principle, u0 ≡ 0. We now reach a

contradiction with (3.9) for k � 1. The Lemma is proven.

Once we have obtained Lemma 3.10, the proof of Theorem 3.9 follows exactly

as the final steps in the proof of Theorem 3.5.

3.4 Further consequences of Theorem 3.5

We start off this part by commenting that Theorem 3.5 as well as Theorem 3.9 hold for

two-phase problems, under the assumption that the negative values of u is universally

controlled by below:

inf
Ω
u ≥ −δ?, (3.10)
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for a universal value δ? > 0. Such a condition is realistic for models involving very

low temperatures, i.e., for physical problem near the absolute zero for thermodynamic

temperature scale (zero Kelvin).

Let us briefly comment on such generalization. Within the proof of Lemma

3.10, one includes condition (3.10) in the compactness argument. Here is the two-phase

version of Lemma 3.10:

Lemma 3.11. Fixed a ball Br(Y ) b Ω and given θ > 0, there exists a δ > 0, depending

only on Br(Y ), dimension, ellipticity constants and L∞ norm of u, such that if u is a

changing sign minimum of

F δ(u) =

ˆ
Ω

{
1

2
〈aij(X)∇u,∇u〉+ δ · χ{u>0}

}
dX,

with

u0(Y ) = 0 and inf
Ω
u ≥ −δ,

then

sup
B r

2
(Y )

|u| ≤ θ.

The proof of Lemma 3.11 follows the lines of Lemma 3.10, noticing that, by

letting δ = o(1) in the compactness approach, the tangential configuration is too a non-

negative minima of a functional which satisfies minimum principle.

In the sequel we show how the improved estimate given by Theorem 3.5 implies

some geometric estimates on the free boundary. Hereafter in this section, u0 will always

denote a limit point obtained from a sequence of minimizers of the functional (1.10). We

will denote by Ω0 the non coincidence set, Ω0 := {u0 > 0} ∩ Ω. Unless otherwise stated,

no continuity assumption is imposed upon the medium aij,

Theorem 3.12 (Nondegeneracy). Let Ω′ b Ω be a given subdomain and Y ∈ Ω′ ∩
{uε > 2ε} then

sup
Br(Y )

uε ≥ c · r.

for r < dist(Ω′, ∂Ω). Moreover, for Y ∈ Ω′ ∩ {u0 > 0} holds

sup
Br(Y )

u0 ≥ c · r.

Proof. First we going to prove that there exist a universal constant δ0 such that

sup
Bdε(X)(X)

uε ≥ (1 + δ0)uε(X)
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for X ∈ B1/2 ∩ {uε ≥ 2ε}, where dε(X) = dist(X, ∂uε ≥ ε). Suppose that the claim is not

true. Then there exist sequences uεk , Xk and δk → 0 for which

sup
Bdε(Xk)(Xk)

uεk < (1 + δk)uεk(Xk).

Thus, define

vk(X) =
1

uεk(Xk)
uεk(Xk + dε(Xk)X)

and observe that supB1
vk ≤ (1 + δk), vk(0) = 1 and vk > 0, moreover

div(aij(X0 + dεX)∇vk) = 0.

So, vk converges locally uniformly to a function v∞, and applying the Harnack inequality

to |X| < r < 1 we obtain

0 ≤ (1 + δk)− vk ≤ Cr(1 + δk − vk(0)) = Crδk,

and making k → ∞ we conclude that v∞ = 1. We take then Zk ∈ {uεk = εk} such that

|Zk −Xk| = dε(Xk) and define wk = Zk−Xk
dε(Xk)

note that vk(wk) → 1, in the other hand we

have

vk(wk) =
εk

uεk(Xk)
≤ 1

2
< 1

that lead us to a contradiction. Now, joining the claim above with Theorem 3.4 we can

construct a sequence of points {Xk} beginning with X0 such that

1. uε(Xk) ≥ (1 + δ0)kuε(X0)

2. |Xk −Xk−1| = dε(Xk−1)

3. uε(Xk)− uε(Xk−1) ≥ c|Xk −Xk−1|.

Therefore, since uε(Xk)→∞, we can find a last point Xk0 in Br and it satisfies

|Xk0 −X0| ≥ cr

where c is universal. Thus

sup
Br(X0)

uε ≥ uε(Xk0) ≥ uε(X0) + |Xk0 −X0| ≥ cr
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Since uε → u0 uniformly and c is independent of ε we can conclude the last claim of the

theorem to Y ∈ Ω′∩{u0 > 0}. For Y0 ∈ Ω′∩∂{u0 > 0} consider X ∈ ∂Br/4(Y0)∩{u0 > 0},
thus by the previous estimate

sup
Br(Y )

u0 ≥ sup
Br/4(X)

u0 ≥ c
r

4
.

Theorem 3.13. Given a subdomain Ω′ b Ω, there exists a constant θ > 0, such that if

X0 ∈ ∂Ω0 is a free boundary point then

L n(Ω0 ∩Br(X0)) ≥ θrn,

for all 0 < r < dist(∂Ω′, ∂Ω). Furthermore there is a universal constant 0 < ς ≤ 1 such

that

dimH(∂Ω0) ≤ n− ς,

where dimH(E) means the Hausdorff dimension to the set E.

Proof. It follows readily from non-degeneracy property, Theorem 3.12, there exists a point

ξr ∈ ∂Br(X0) such that

u0(ξr) ≥ cr,

for a constant c > 0 depending only on the data of the problem. Now, for 0 < µ � 1,

small enough, there holds

Bµr(ξr) ⊂ Ω0. (3.11)

Indeed, one simply verifies that if

Bµr(ξr) ∩ ∂{u0 > 0} 6= ∅,

then from Theorem 3.5 we can estimate

cr ≤ u0(ξr) ≤ sup
Bµr(ξr)

u0 ≤ Cµr

which is a lower bound for µ. Hence, if µ < c · C−1, (3.11) must hold. Now, with such

µ > 0 fixed, we estimate

L n (Br(X0) ∩ Ω0) ≥ L n (Br(X0) ∩Bµr(ξr)) ≥ θrn

and the uniform positive density is proven.

Let us turn our attention to the Hausdorff dimension estimate. Given σ = X0
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in ∂{u > 0}, we choose

σ′ = tξr + (1− t)X0,

with t close enough to 1 as to

B 1
2
µ·r(σ′) ⊂ Bµ(ξr) ∩Br(σ) ⊂ Br(σ) \ ∂{u > 0}.

We have verified ∂{u > 0} ∩ B1/2 is (µ/2)-porous, hence by a classical result, see for

instance [21, Theorem 2.1], its Hausdorff dimension is at most n−Cµn, for a dimensional

constant C > 0.

For problems modeled in a merely measurable medium, one should not expect

an improved Hausdorff estimate for the free boundary. When diffusion is governed by the

Laplace operator, then Alt-Caffarelli theory gives that ς = 1. A natural question is what

is the minimum organization of the medium as to obtain perimeter estimates of the free

boundary. Next Theorem gives an answer to that issue.

Theorem 3.14. Assume aij satisfy (K-Lip) property for some K > 0. Then the free

boundary has local finite perimeter. In particular dimH(∂Ω0) = n− 1.

Proof. The proof is divided in three steps. First, fix a free boundary point X0 ∈ ∂Ω0 and

given a small, positive number µ one checks that

ˆ

{0<u0<µ}∩Br(X0)

|∇u0|2 ≤ Cµrn−1. (3.12)

To see this, consider the following test function, for C1 > 0,

φ =

{
u0; if 0 ≤ uε < µ

µ; if u0 ≥ µ

then

0 ≤
ˆ
Br(X0)

div(aij∇u0))φdX.

Now using integration by parts we have that

ˆ
Br(X0)

div(aij∇u0))φdX =
1

r

ˆ
∂Br(X0)

aijφ∂iu0(X i −X i
0)dHn−1 −

ˆ
Br(X0)

aij∂iu0∂jφ

and, for the Lipschitz estimates of u0 and the uniform ellipticity, we obtain that

ˆ
{0<u0<µ}∩Br(X0)

aij∂iu0∂ju0dX ≤ Cµrn−1.
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For conclude it is enough observe that, by ellipticity,

ˆ
{0<u0<µ}∩Br(X0)

|∇u0|2dX ≤ C

ˆ
{0<u0<µ}∩Br(X0)

aij∂iu0∂ju0dX.

In the sequel, we compare the left hand side of (3.12) with |{0 < u0 < µ} ∩Br(X0)|. To

achieve this goal consider a finite converging, {Bj}, of ∂Ω0 by balls of radius proportional

to µ and centered on ∂Ω0 ∩ Br(X0). It’s enough to show that for a universal constant

c > 0 holds

 
Bj

|ū0 − [ū0]j |
2dX > cµ2, (3.13)

where ū0 = min{u0, µ} and [v]j :=
ffl
Bj
v. Indeed, by the Poincaré inequality,

cµ2 ≤
 
Bj

|ū0 − [ū0]j |
2dX ≤ Cµ2

 
Bj

|∇ū0|2dX,

so

ˆ
Bj∩{0<u0<µ}

|∇u0|2dX =

ˆ
Bj

|∇ū0|2dX ≥ c|Bj|.

Now, for µ� r, we have

Br(X0) ∩ {0 < u0 < µ} ⊂
⋃

2Bj ⊂ B4r(X0).

Finally, if we call A := {0 < u0 < µ}, the above gives

ˆ

B4r(X0)∩A

|∇u0|2dX ≥
ˆ

(
∪2Bj

)
∩A

|∇u0|2dX

≥ 1

m

∑ ˆ

2Bj∩A

|∇u0|2dX

≥ c
∑

L n(Bj)

≥ cL n(Br(X0) ∩ A),

(3.14)

where m is the total number of balls, which can be taken universal, by Heine-Borel’s

Theorem. Remains to prove the existence of the constant c in (3.13), for this we going to

show that for each Bj exist sub-balls B1
j and B2

j to which hold the following statements:

1. The radius of B1
j and B2

j are rj1 = K1µ and rj2 = K2µ, where K1 and K2 are

universal.

2. ū0 ≥ 3
4
µ in B1

j and ū0 ≤ 2
3
µ in B2

j .
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Observe that, by non-degeneracy, there is a point Xj
1 ∈ 1

4
Bj such that

u0(Xj
1) ≥ c

C?µ

4
.

Considering C? large, since µ can be taken small, so that

cC? > 4 and K := sup
N d′

8
(Ω′)

|∇u0| >
1

C?

and taking r1
j = 1

8K
µ and r2

j = 1
3K
µ then the sub-balls that we seek are

B1
j = Br1

j
(Xj

1) and B2
j = Br2

j
(X0).

Now suppose that there is sequences {Xn} ∈ B1
j and {Yn} ∈ B2

j such that

|ū0(Xn)− [ū0]j |
µ

≤ 1

n
and

|ū0(Yn)− [ū0]j |
µ

≤ 1

n

thus we have

|ū0(Xn)− ū0(Yn)|
µ

→ 0

which is a contradiction with the second statement that the sub-balls satisfy. Then we

can conclude that for one of the two sub-balls, for example B1
j , there is a constant c such

that

|ū0(X)− [ū0]j | ≥ cµ for X ∈ B1
j

which implies (3.13) and completes the proof. Therefore (3.14) with (3.12), gives

|L n({0 < u0 < µ} ∩Br(X0))| ≤ Cµrn−1,

To the third step denote

Nδ(E) := {X ∈ Rn; dist(X,E) < δ}.

As consequence of Theorem 3.13 we have, for a constant M

|Nµ(∂Ω0 ∩Br(X0))| ≤ 1

2nθ
|Nµ(∂Ω0 ∩Br(X0)) ∩ Ω0|+Mµrn−1.

By Lipschitz continuity to u0 there exist, Corollary 3.8, a constant C such that

Nµ(∂Ω0) ∩Br(X0) ∩ Ω0 ⊂ {{0 < u0 < µ} ∩Br(X0)}
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Thus

|Nµ(∂Ω0) ∩Br(X0) ∩ Ω0| ≤ Cµrn−1

So the desired Hausdorff estimate follows.
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CONCLUSION

The use of compactness associated with the method of tangent equations have been a

important toll in the study of regularity of solutions of partial differential equations. This

technique was applied in this thesis providing contributions for the PDE’s theory and

consequently for the problems that have as mathematical model the equations studied

here.

In the first part we obtain estimates C2,α for a class of fully non-linear equations

no necessarily convex. To the case of the flat solutions we prove C2,α regularity estimates

with α optimal. When we leave of the scenario flat, we show Cα estimates to D2u for u

classical solution, ensuring the maxima regularity for this case. Already when u is only

a viscosity solution we get estimates for the Hausdorff dimension of the set where the

hessiana of the solution blows-up.

In the study relative to the free boundary we treat equations that modelling

cavity problems in discontinuous media. The result obtained here guarantee that, al-

though the regularity of the solutions for this case is at most Cα, the regularity along

of the free boundary is C0,1. This allow us show geometric informations about the free

boundary.
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