Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/82755| Tipo: | Tese |
| Título: | Development of a magnetic nanobiocatalyst for fatty acid esterification |
| Autor(es): | Melo, Rafael Leandro Fernandes |
| Orientador: | Fechine, Pierre Basílio Almeida |
| Coorientador: | Soares, João Maria |
| Palavras-chave em português: | Biocatalisadores Magnéticas;Agentes de imobilização de enzimas;Esterificação de AGLs;Simulação (Computadores);Esterificação (Quimica) |
| Palavras-chave em inglês: | Magnetic Biocatalysts;Enzyme immobilizing agents;FFA Esterification;Simulation, Computer;Esterification (Chemistry) |
| CNPq: | CNPQ::ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA |
| Data do documento: | 2025 |
| Citação: | MELO, Rafael Leandro Fernandes. Development of a magnetic nanobiocatalyst for fatty acid esterification. 2025. 174 f. Tese (Doutorado em Engenharia e Ciência de Materiais) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2025. |
| Resumo: | Biocatalisadores magnéticos unem as propriedades magnéticas com a atividade catalítica de enzimas, oferecendo vantagens como fácil recuperação e reutilização. Nesse sentido, esta tese foi estruturada em três capítulos principais. No primeiro momento, foi realizada uma análise cienciométrica de 34.949 artigos, sendo refinados para 450. Catalogou-se periódicos, países, instituições, autores e artigos mais citados, identificando os hotspots. Palavras-chaves revelaram cinco clusters, sendo o mais proeminente relacionado à produção de biocombustíveis a partir de óleos vegetais sustentáveis. No segundo momento, desenvolveu-se um nanobiocatalisador magnético funcionalizado com polietilenimina (PEI) e grupos epóxi, utilizado para imobilizar a lipase Eversa® Transform 2.0 (EVS), formando Fe3O4-PEI- DGEBA@EVS. A otimização aconteceu via planejamento Taguchi, alcançando um rendimento de 95,04 ± 0,79% sob as condições: 15 horas, 95 mM, 5 mg/g de carga proteica e 25 °C. O suporte e o nanobiocatalisador foram caracterizados por FRX, MEV, MET, DRX, FTIR, TGA e VSM. A capacidade máxima de carga foi de 25 mg/g, com estabilidade superior a 60 dias, apresentando apenas 9,53% de perda de atividade. O nanobiocatalisador manteve 28% de sua atividade a 70 °C, superando a enzima livre. Foi possível esterificar ácidos graxos livres (AGL) do óleo de babaçu, com eficiência de até 97,91% e reutilização de 10 ciclos com rendimento superior a 50%. A esterificação foi confirmada por RMN. E a viscosidade cinemática e densidade a 40 °C foram de 6,052 mm2/s e 0,832 g/cm3. Estudos in silico demonstraram uma afinidade de ligação de -5,8 kcal/mol entre a EVS e o ácido oleico, sugerindo uma interação estável substrato-enzima. No terceiro momento, o mesmo suporte foi utilizado para imobilizar a lipase B de Candida antarctica (CALB), formando o nanobiocatalisador Fe3O4-PEI- DGEBA@CALB. A imobilização foi confirmada pelas mesmas técnicas. A enzima imobilizada apresentou desempenho catalítico de 97% de rendimento e estabilidade operacional de 80% da atividade após 120 dias. O biocatalisador esterificou AGL do óleo de tilápia, com a reação confirmada por RMN e FTIR. Estudos teóricos destacaram que a imobilização promove seletividade da enzima para ácidos graxos saturados de cadeia longa, através de interações hidrofóbicas com resíduos-chave do sítio ativo, como Leu140, Ala141 e Val154. |
| Abstract: | Magnetic biocatalysts combine magnetic properties with the catalytic activity of enzymes, offering advantages such as easy recovery and reuse. In this context, this thesis was structured into three main chapters. Initially, a scientometric analysis of 34,949 articles was conducted and refined to 450. Journals, countries, institutions, authors, and the most cited articles were cataloged, identifying research hotspots. Keyword analysis revealed five clusters, with the most prominent related to the production of biofuels from sustainable vegetable oils. In the second stage, a magnetic nanobiocatalyst functionalized with polyethyleneimine (PEI) and epoxy groups was developed to immobilize the lipase Eversa®Transform 2.0 (EVS), forming Fe₃O₄-PEI-DGEBA@EVS. Optimization was carried out using Taguchi design, achieving a yield of 95.04 ± 0.79% under the following conditions: 15 hours, 95 mM, 5 mg/g protein loading, and 25 °C. The support and nanobiocatalyst were characterized by XRF, SEM, TEM, XRD, FTIR, TGA, and VSM. The maximum loading capacity was 25 mg/g, with stability exceeding 60 days and only 9.53% activity loss. The nanobiocatalyst retained 28% of its activity at 70 °C, surpassing the performance of the free enzyme. It was able to esterify free fatty acids (FFAs) from babassu oil with an efficiency of up to 97.91%, maintaining yields above 50% after 10 reuse cycles. Esterification was confirmed by NMR, and the kinematic viscosity and density at 40 °C were 6.052 mm²/s and 0.832 g/cm³, respectively. In silico studies demonstrated a binding affinity of -5.8 kcal/mol between EVS and oleic acid, suggesting a stable substrate-enzyme interaction. In the third stage, the same support was used to immobilize Candida antarctica lipase B (CALB), forming the nanobiocatalyst Fe₃O₄-PEI-DGEBA@CALB. Immobilization was confirmed by the same techniques. The immobilized enzyme exhibited a catalytic performance with 97% yield and operational stability of 80% of its activity after 120 days. The biocatalyst esterified FFAs from tilapia oil, with the reaction confirmed by NMR and FTIR. Theoretical studies highlighted that immobilization promotes enzyme selectivity toward long-chain saturated fatty acids through hydrophobic interactions with key active-site residues such as Leu140, Ala141, and Val154. |
| Descrição: | Este documento está disponível online com base na Portaria no 348, de 08 de dezembro de 2022, disponível em: https://biblioteca.ufc.br/wp-content/uploads/2022/12/portaria348-2022.pdf, que autoriza a digitalização e a disponibilização no Repositório Institucional (RI) da coleção retrospectiva de TCC, dissertações e teses da UFC, sem o termo de anuência prévia dos autores. Em caso de trabalhos com pedidos de patente e/ou de embargo, cabe, exclusivamente, ao autor(a) solicitar a restrição de acesso ou retirada de seu trabalho do RI, mediante apresentação de documento comprobatório à Direção do Sistema de Bibliotecas. |
| URI: | http://repositorio.ufc.br/handle/riufc/82755 |
| ORCID do(s) Autor(es): | https://orcid.org/0000-0003-4422-2206 |
| Currículo Lattes do(s) Autor(es): | http://lattes.cnpq.br/4735142071260833 |
| ORCID do Orientador: | https://orcid.org/0000-0002-7822-2354 |
| Currículo Lattes do Orientador: | http://lattes.cnpq.br/1184349463710551 |
| ORCID do Coorientador: | https://orcid.org/0000-0002-0053-0971 |
| Currículo Lattes do Coorientador: | http://lattes.cnpq.br/2108722656012583 |
| Tipo de Acesso: | Acesso Aberto |
| Aparece nas coleções: | DEMM - Teses defendidas na UFC |
Arquivos associados a este item:
| Arquivo | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| 2025_tese_rlfmelo.pdf | Trabalho corrigido (primeira correção) | 19,7 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.