Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/82741
Tipo: Tese
Título: Longitudinal geospatial frequency estimation under adaptive local differentially private model
Título em inglês: Longitudinal geospatial frequency estimation under adaptive local differentially private model
Autor(es): Duarte Neto, Eduardo Rodrigues
Orientador: Machado, Javam de Castro
Palavras-chave em português: Privacidade diferencial local;Privacidade diferencial;Dados de localização;Particionamento espacial
Palavras-chave em inglês: Local differential privacy;Differential privacy;Location data;Spatial partition
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Data do documento: 2025
Citação: DUARTE NETO, Eduardo Rodrigues. Longitudinal geospatial frequency estimation under adaptive local differentially private model. 2025. 113 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2025.
Resumo: A coleta de dados geoespaciais sob o modelo de Privacidade Diferencial Local (LDP) viabiliza análises espaciais valiosas sem comprometer a privacidade dos usuários. No entanto, os mecanismos LDP existentes baseiam-se em discretizações espaciais estáticas, como grades uniformes ou quadtrees de profundidade fixa, que são inadequadas para a natureza dinâmica e não uniforme dos dados de mobilidade do mundo real. Essas limitações se agravam em cenários longitudinais, nos quais os usuários reportam suas localizações repetidamente ao longo do tempo. Neste trabalho, propomos o ALOQ (Adaptive Longitudinal Quadtree), um novo framework para estimativa contínua de frequência de localização com preservação de privacidade sob LDP. O ALOQ introduz uma representação espacial dinâmica baseada em quadtree que evolui em resposta a distribuições de densidade de usuários ruidosas, melhorando a acurácia das estimativas sem comprometer as garantias de privacidade. O framework inclui uma Janela de Adaptação da Quadtree (GAW) para detectar mudanças temporais significativas, um mecanismo de alocação de orçamento de privacidade baseado em similaridade e uma estratégia de refinamento com limites que assegura controle sobre o acúmulo de perda de privacidade ao longo do tempo. Apresentamos uma análise teórica das garantias de privacidade do ALOQ e avaliamos seu desempenho em conjuntos de dados sintéticos e reais. Os resultados demonstram que o ALOQ supera consistentemente os principais métodos LDP da literatura em termos de utilidade e eficiência no uso do orçamento de privacidade, especialmente em cenários com distribuições espaciais assimétricas e padrões de mobilidade dinâmicos.
Abstract: The collection of geospatial data under Local Differential Privacy (LDP) enables valuable spatial analytics without compromising user privacy. However, existing LDP mechanisms rely on static spatial discretizations, such as uniform grids or fixed-depth quadtrees, that are ill-suited to the dynamic and non-uniform nature of real-world mobility data. These limitations are further amplified in longitudinal settings, where users report their locations repeatedly over time. In this work, we propose ALOQ (Adaptive Longitudinal Quadtree), a novel data collection model for continuous, privacy-preserving location frequency estimation under LDP. ALOQ introduces a dynamic quadtree-based spatial representation that evolves in response to noisy user density distributions, improving estimation accuracy while preserving strong privacy guarantees. The model includes a Quadtree Adaptation Window (QAW) to detect significant temporal changes, a similarity-aware privacy budget allocation mechanism, and a bounded refinement strategy that ensures the cumulative privacy loss remains under control. We provide a theoretical analysis of ALOQ’s privacy guarantees and evaluate its performance on both synthetic and real-world datasets. Our results show that ALOQ consistently outperforms state-of-the-art LDP baselines in terms of utility and budget efficiency, particularly in scenarios with skewed spatial distributions and evolving mobility patterns.
URI: http://repositorio.ufc.br/handle/riufc/82741
ORCID do(s) Autor(es): 0000-0003-1222-563X
Currículo Lattes do(s) Autor(es): https://lattes.cnpq.br/9088370074451475
Currículo Lattes do Orientador: http://lattes.cnpq.br/9884980518986225
Tipo de Acesso: Acesso Aberto
Aparece nas coleções:DCOMP - Teses defendidas na UFC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2025_tese_erduarteneto.pdf2,38 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.