Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/80326
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorPaula Júnior, Iális Cavalcante de-
dc.contributor.authorMartins Filho, Francisco Evandro Ribeiro-
dc.date.accessioned2025-04-08T12:38:29Z-
dc.date.available2025-04-08T12:38:29Z-
dc.date.issued2025-
dc.identifier.citationMARTINS FILHO, Francisco Evandro Ribeiro. Indicadores de desempenho escolar: uma abordagem baseada em visualização de dados. 2025. 63 f. Trabalho de Conclusão de Curso (Graduação em Engenharia de Computação) – Campus de Sobral, Universidade Federal do Ceará, Sobral, 2025.pt_BR
dc.identifier.urihttp://repositorio.ufc.br/handle/riufc/80326-
dc.description.abstractThe pursuit of improvements in the quality of basic education in Brazil has been a constant challenge, particularly regarding the evaluation process, both in internal and external exams. The recent digitalization of schools has facilitated the collection of this information. After undergoing an Extraction, Transformation, and Load (ETL) process, these data enable the identification of relevant patterns, which are useful for decision-making. The use of Dashboards makes visualization more intuitive, facilitating interpretation by managers. By analyzing historical data from the institution itself, it is possible to identify evidence of below-expected performance in certain subjects, enabling the creation of new strategies to address these issues. In this context, this study aims to contribute to the improvement of public elementary education through Educational Data Mining and Learning Analytics, using interactive data visualization as a tool to support educational management in pedagogical meetings. The data source was the Integrated School Management System (SIGE) of a partner school, considering academic records of 9th-grade classes from 2013 to 2022. The analysis was conducted using the Python programming language and open-source libraries such as Pandas, Plotly, and Dash for data manipulation, transformation, and visualization. As a result of this work, interactive dashboards were developed for historical analysis, allowing the visualization of annual and bimonthly performance, the identification of seasonal patterns, and the extraction of relevant insights for the pedagogical coordination.pt_BR
dc.language.isopt_BRpt_BR
dc.rightsAcesso Abertopt_BR
dc.titleIndicadores de desempenho escolar: uma abordagem baseada em visualização de dadospt_BR
dc.typeTCCpt_BR
dc.description.abstract-ptbrA busca por melhorias na qualidade do ensino básico no Brasil tem sido um desafio constante, especialmente no que se refere ao processo avaliativo, tanto em exames internos quanto externos. A recente informatização das escolas tem facilitado a coleta dessas informações. Após passarem por um processo de Extração, Transformação e Carga (ETL), esses dados permitem a identificação de padrões relevantes, sendo úteis à tomada de decisão. O uso de Dashboards torna a visualização mais intuitiva, facilitando a interpretação pelos gestores. A partir da análise de informações históricas da própria instituição, é possível encontrar evidências de desempenhos abaixo do esperado em determinadas disciplinas, possibilitando que novas estratégias sejam criadas para abordar essas questões. Neste contexto, este trabalho busca contribuir para a melhoria da educação pública do ensino fundamental por meio de Mineração de Dados Educacionais e Learning Analytics, utilizando a visualização interativa de dados como ferramenta de apoio à gestão educacional em reuniões pedagógicas. A fonte dos dados foi o Sistema Integrado de Gestão Escolar (SIGE) de uma escola colaboradora, considerando boletins acadêmicos das turmas de 9º ano no período de 2013 a 2022. A análise foi realizada utilizando a linguagem Python e bibliotecas de código aberto, como Pandas, Plotly e Dash, para manipulação, transformação e visualização dos dados. Como resultado do trabalho, foram desenvolvidos Dashboards interativos para análise histórica, permitindo a visualização do desempenho anual e bimestral, a identificação de padrões sazonais e a extração de insights relevantes para a coordenação pedagógica.pt_BR
dc.subject.ptbrEducação básicapt_BR
dc.subject.ptbrMineração de dados educacionaispt_BR
dc.subject.ptbrTomada de decisão baseada em dadospt_BR
dc.subject.ptbrVisualização de dadospt_BR
dc.subject.ptbrDashboards interativospt_BR
dc.subject.enBasic educationpt_BR
dc.subject.enEducational data miningpt_BR
dc.subject.enLearning Analyticspt_BR
dc.subject.enData visualizationpt_BR
dc.subject.enInteractive dashboardspt_BR
dc.subject.enData-driven decision makingpt_BR
dc.subject.cnpqCNPQ::ENGENHARIASpt_BR
local.author.orcidhttps://orcid.org/0009-0003-8328-5434pt_BR
local.author.latteshttp://lattes.cnpq.br/8102896509230771pt_BR
local.advisor.orcidhttps://orcid.org/0000-0002-2374-4817pt_BR
local.advisor.latteshttp://lattes.cnpq.br/5022453748409432pt_BR
local.date.available2025-03-17-
Aparece nas coleções:ENGENHARIA DE COMPUTAÇÃO-SOBRAL - Monografias

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2025_tcc_fermartinsfilho.pdf4,38 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.