Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/78847
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorTavares, Wladimir Araújo-
dc.contributor.authorRodrigues, Daniel Vitor Pereira-
dc.date.accessioned2024-11-11T18:12:12Z-
dc.date.available2024-11-11T18:12:12Z-
dc.date.issued2024-
dc.identifier.citationRODRIGUES, Daniel Vitor Pereira. Algoritmos Gale-Shapley e Irving para o problema do casamento estável com custo igualitário. 2024. 43 f. Trabalho de Conclusão de Curso (graduação) – Universidade Federal do Ceará, Campus de Quixadá, Curso de Engenharia de Software, Quixadá, 2024.pt_BR
dc.identifier.urihttp://repositorio.ufc.br/handle/riufc/78847-
dc.description.abstractThe paper proposes a comparative analysis between two stable matching algorithms: the GaleShapley Algorithm and the Irving Algorithm. The context is grounded in graph theory, where bipartite graphs are essential in representing relationships between sets of entities. The Stable Marriage Problem is a mathematical representation of pairing allocation between men and women with preferences, finding applications in economics, computing, and game theory. The Gale-Shapley Algorithm, introduced in 1962, establishes stable marriages without incentives for participant-initiated changes. However, subsequent studies suggest that this algorithm might disproportionately favor one gender, leading to the need for a more equitable criterion. The Irving Algorithm, from 1987, aims to maximize the average "satisfaction"of all involved individuals. The objective of the study is to implement and compare these algorithms, conducting a comprehensive bibliographic review of both to understand their logic and functionality. Furthermore, it aims to develop algorithm implementations and compare them based on solution quality metrics and execution time. The analysis focuses on comprehending how these algorithms behave concerning different sets of preferences and conditions, exploring metrics such as equalitarian solutions.pt_BR
dc.language.isopt_BRpt_BR
dc.rightsAcesso Abertopt_BR
dc.titleAlgoritmos Gale-Shapley e Irving para o problema do casamento estável com custo igualitáriopt_BR
dc.typeTCCpt_BR
dc.description.abstract-ptbrO trabalho propõe uma análise comparativa entre dois algoritmos de casamento estável: o Algoritmo Gale-Shapley e o Algoritmo de Irving. O contexto se baseia na teoria dos grafos, onde grafos bipartidos são fundamentais para representar relações entre conjuntos de entidades. O Problema do Casamento Estável é uma representação matemática de alocação de pares entre homens e mulheres com preferências, tendo aplicações em economia, computação e teoria dos jogos. O Algoritmo de Gale-Shapley, proposto em 1962, estabelece casamentos estáveis sem incentivos para mudanças por parte dos participantes. No entanto, estudos posteriores indicam que esse algoritmo pode favorecer desproporcionalmente um dos gêneros, surgindo a necessidade de um critério mais equitativo. O Algoritmo de Irving, de 1987, busca maximizar a "satisfação"média de todas as pessoas envolvidas. O trabalho tem como objetivo implementar e comparar esses algoritmos, realizando uma revisão bibliográfica detalhada sobre ambos, compreendendo sua lógica e funcionamento. Além disso, visa desenvolver implementações dos algoritmos e compará-los com base em métricas de qualidade da solução e tempo de execução. A análise se concentra em entender como esses algoritmos se comportam diante de diferentes conjuntos de preferências e condições, explorando métricas como a solução igualitária.pt_BR
dc.subject.ptbralgoritmospt_BR
dc.subject.ptbrcasamento estávelpt_BR
dc.subject.ptbrotimizaçãopt_BR
dc.subject.ptbrgrafospt_BR
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA: CIENCIA DA COMPUTACAO: METODOLOGIA E TECNICAS DA COMPUTACAO: ENGENHARIA DE SOFTWAREpt_BR
local.advisor.latteshttp://lattes.cnpq.br/0272775036482643pt_BR
Aparece nas coleções:ENGENHARIA DE SOFTWARE - QUIXADÁ - TCC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2024_tcc_dvprodrigues.pdf701,76 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.