Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/78659
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorBrito, Edy Sousa de-
dc.contributor.authorPaiva, Evanice Medeiros de-
dc.date.accessioned2024-10-25T14:14:12Z-
dc.date.available2024-10-25T14:14:12Z-
dc.date.issued2024-
dc.identifier.citationPAIVA, Evanice Medeiros de. Beyond an agroindustrial residue: valorizing cashew nutshell through circular economy strategies for producing bioenergy, biobased chemicals, and particleboards. 2024. 190 f. Tese (Doutorado em Engenharia Química) - Centro de Tecnologia, Universidade Federal do Ceará. Fortaleza,2024.pt_BR
dc.identifier.urihttp://repositorio.ufc.br/handle/riufc/78659-
dc.description.abstractThis study was motivated by the large annual amount of cashew nutshells produced globally, which has raised environmental concerns about their proper disposal. Two technological routes have been proposed for the valorization of this lignocellulosic residue. The first one consisted of using physical-chemical characterization techniques, multicomponent kinetic analysis, thermodynamic study, and volatile product analysis to evaluate the potential of raw (RCNS) and pressed (PCNS) cashew nutshells in pyrolysis reactions. For this purpose, a thermogravimetric analyzer and an analytical pyrolyzer coupled with gas chromatography-mass spectrometry (Py-GC/MS) were used to perform the pyrolysis reactions. The pyrolysis behavior of RCNS and PCNS was accurately modeled using the Asym2sig deconvolution function, which identified five and four parallel devolatilization events, respectively. The average activation energies for the pyrolysis of RCNS and PCNS fell within the ranges of 63.8−249.3 and 91.1−167.4 kJ mol−1, respectively, as determined by four isoconversional methods (Friedman, Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose, and Starink). Pre-exponential factors ranging from 4.2×108 to 6.9×1016 min−1 and from 4.8×108 to 3.2×1011 min−1 were estimated from the kinetic compensation effect for the pyrolysis of RCNS and PCNS, respectively. The method of master plots revealed that the most probable reaction models involved in the pyrolysis of RCNS and PCNS belong to the nucleation growth and nth-order reaction mechanisms. Analysis of the volatile products revealed that aliphatic hydrocarbons were the dominant components for condensable volatile products at 650 °C, while reaction temperatures of 450 and 550 °C favored the production of oxygenated compounds. The thermodynamic study confirmed the technical feasibility of converting both cashew nutshell residues into bioenergy and renewable chemicals due to the low energy barrier to overcome. The second technological route involved the production of sustainable particleboards using PCNS and eco-friendly phenolic resin obtained from the reaction of cashew nutshell liquid (CNSL) with formaldehyde at mass ratios of CNSL to formaldehyde of 1:0.25, 1:0.5, and 1:0.75 under acidic conditions and at 105 °C. The resin was characterized using techniques such as Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR), High-Performance Liquid Chromatography (HPLC), and Nuclear Magnetic Resonance (NMR). The particleboards were subjected to tensile and flexural tests, and water absorption tests. Formaldehyde emission and biodegradability content of the particleboards were also evaluated. Among the tested conditions, the use of adhesive with CNSL/formaldehyde ratios of 1:0.25 and 1:0.50 resulted in E1 grade particleboards (with less than 8 mg/100 g of dry panel) in terms of formaldehyde emissions and significant improvements in mechanical properties. The biodegradability of PB25, PB50, and PB75 panels was 30%, 21%, and 20%, respectively, in 30 days. These results demonstrate the potential of cashew nutshell biomass and eco-friendly resin as adhesives in the particleboard industry. Both proposed technological routes show promise in valorizing cashew nutshell residues in the production of bioenergy, bio-based chemicals, and sustainable medium-density fiberboards. Furthermore, this study is aligned with the Sustainable Development Goals (SDGs) and can serve as a foundation for future large-scale implementation. This has the potential to generate jobs and promote a circular economy in the nut processing industry.pt_BR
dc.language.isopt_BRpt_BR
dc.rightsAcesso Abertopt_BR
dc.titleAlém de um resíduo agroindustrial: valorizando a casca da castanha de caju por meio de estratégias de economia circular para produção de bioenergia, bioquímicos e painéis de partículaspt_BR
dc.typeTesept_BR
dc.contributor.co-advisorAlves, José Luiz Francisco-
dc.description.abstract-ptbrEste estudo foi motivado pela grande quantidade anual de cascas de castanha de caju produzidas globalmente, o que tem levantado preocupações ambientais quanto ao seu descarte adequado. Duas rotas tecnológicas foram propostas para a valorização desse resíduo lignocelulósico. A primeira consistiu no uso de técnicas de caracterização físico-química, análise cinética multicomponente, estudo termodinâmico e análise de produtos voláteis para avaliar o potencial das cascas de castanha de caju cruas (RCNS) e prensadas (PCNS) em reações de pirólise. Para isso, um analisador termogravimétrico e um pirolisador analítico acoplado a cromatografia gasosa-espectrometria de massa (Py-GC/MS) foram utilizados para realizar as reações de pirólise. O comportamento de pirólise de RCNS e PCNS foi modelado com precisão usando a função de deconvolução Asym2sig, que identificou cinco e quatro eventos de devolatilização paralelos, respectivamente. As energias de ativação médias para a pirólise de RCNS e PCNS situaram-se dentro das faixas de 63,8 a 249,3 e 91,1 a 167,4 kJ mol-1, respectivamente, conforme determinado por quatro métodos isoconversionais (Friedman, Flynn-Wall-Ozawa, Kissinger-Akahira-Sunose e Starink). Fatores pré-exponenciais variando de 4,2×108 a 6,9×1016 min-1 e de 4,8×108 a 3,2×1011 min-1 foram estimados a partir do efeito de compensação cinética para a pirólise de RCNS e PCNS, respectivamente. O método de gráficos mestres na forma integral revelou que os modelos de reação mais prováveis envolvidos na pirólise de RCNS e PCNS pertencem aos mecanismos de crescimento por nucleação e reação de ordem n. A análise dos produtos voláteis revelou que os hidrocarbonetos alifáticos foram os componentes dominantes dos produtos voláteis condensáveis a 650 °C, enquanto as temperaturas de reação de 450 e 550 °C favoreceram a produção de compostos oxigenados. O estudo termodinâmico confirmou a viabilidade técnica de converter ambos os resíduos de casca de castanha de caju em bioenergia e produtos químicos renováveis devido à baixa barreira energética a ser superada. A segunda rota tecnológica envolveu a fabricação de painéis de partículas sustentáveis utilizando PCNS e resina fenólica ecologicamente correta obtida a partir da reação do líquido da casca de caju (LCC) residual com formaldeído em proporções mássica de LCC/formaldeído de 1:0,25, 1:0,5 e 1:0,75 em condições ácidas e a 105 °C. A resina foi caracterizada utilizando técnicas como Calorimetria Exploratória Diferencial (DSC), Espectroscopia no Infravermelho por Transformada de Fourier (FTIR), Cromatografia Líquida de Alta Eficiência (HPLC) e Ressonância Magnética Nuclear (NMR). Os painéis de partículas foram submetidos a testes de tração e flexão e testes de absorção de água. Também foram avaliadas a emissão de formaldeído e o teor de biodegradabilidade dos painéis aglomerados. Entre as condições testadas, a utilização de adesivo com proporções de LCC/formaldeído de 1:0,25 e 1:0,50 resultou em painéis aglomerados de classe E1 (com menos de 8 mg/100 g de painel seco) em termos de emissões de formaldeído e melhorias significativas nas propriedades mecânicas. A biodegradabilidade dos painéis PB25, PB50 e PB75 foi de 30%, 21% e 20%, respectivamente, em 30 dias. Esses resultados demonstram o potencial da biomassa da casca de caju e da resina ambientalmente correta como adesivos na indústria de painéis de partículas. Ambas as rotas tecnológicas propostas se mostraram promissoras na valorização dos resíduos de casca de caju na produção de bioenergia, produtos químicos de base biológica e painéis de fibras de média densidade sustentáveis. Além disso, este estudo está alinhado com os Objetivos de Desenvolvimento Sustentável (ODS) e pode servir como base para futura implementação em larga escala. Isso tem o potencial de gerar empregos e promover a economia circular na indústria de beneficiamento de castanhas.pt_BR
dc.title.enBeyond an agroindustrial residue: valorizing cashew nutshell through circular economy strategies for producing bioenergy, biobased chemicals, and particleboardspt_BR
dc.subject.ptbrResíduos de casca de cajupt_BR
dc.subject.ptbrPirólisept_BR
dc.subject.ptbrResina fenólicapt_BR
dc.subject.ptbrResíduos demissão de formaldeídopt_BR
dc.subject.ptbrbiodegradabilidadept_BR
dc.subject.enCashew nutshell residuespt_BR
dc.subject.enPyrolysispt_BR
dc.subject.enPhenolic resinpt_BR
dc.subject.enFormaldehyde emissionpt_BR
dc.subject.enBiodegradabilitypt_BR
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA QUIMICApt_BR
local.author.latteshttp://lattes.cnpq.br/1225569013346207pt_BR
local.advisor.latteshttp://lattes.cnpq.br/5168806776816009pt_BR
local.co-advisor.latteshttp://lattes.cnpq.br/5701667636756731pt_BR
local.date.available2024-
Aparece nas coleções:DEQ - Teses defendidas na UFC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2024_tese_empaiva.pdf3,61 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.