Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/78424
Tipo: Dissertação
Título: Investigação soro-epidemiológica de fatores preditivos associados ao perfil de resposta imune humoral da COVID-19 em doadores de sangue de Fortaleza
Título em inglês: Serological and epidemiological investigation of predictive factors associated with the humoral response profile of COVID-19 in blood donors from Fortaleza
Autor(es): Aksenen, Cleber Furtado
Orientador: Miyajima, Fábio
Palavras-chave em português: Teste Sorológico para COVID-19;Vigilância em Saúde Pública;Testes Sorológicos;Aprendizado de Máquina Supervisionado
Palavras-chave em inglês: COVID-19 Serological Testing;Public Health Surveillance;Serologic Tests;Supervised Machine Learning
CNPq: CNPQ::CIENCIAS BIOLOGICAS
Data do documento: 2024
Citação: AKSENEN, Cleber Furtado. Investigação soro-epidemiológica de fatores preditivos associados ao perfil de resposta imune humoral da COVID-19 em doadores de sangue de Fortaleza. 2024. Dissertação (Mestrado em Farmacologia) – Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, 2024. Disponível em: http://www.repositorio.ufc.br/handle/riufc/78424. Acesso em: 08 out. 2024.
Resumo: A constante evolução do Coronavírus da Síndrome Respiratória Aguda Grave 2 (SARSCoV-2) tem resultado na emergência de variantes cada vez mais adaptadas ao cenário epidemiológico, além de variações do número de casos e óbitos pela doença (COVID-19) em momentos cruciais da pandemia. Múltiplas campanhas de vacinação em diferentes combinações de tecnologias, juntamente com sucessivas reinfecções/exposições ao vírus, culminaram em variação dos perfis soroepidemiológicos individuais, dando destaque ao caráter multivariado dos mecanismos de defesa do sistema imunológico. Assim, a investigação de anticorpos específicos anti-SARS-CoV-2 se torna relevante para avaliação do nível de resposta humoral e soroconversão decorrentes de sucessivas exposições e ciclos de imunização populacional. Nesse contexto, o estudo foi conduzido com 17.904 doadores durante o período de 2020 a 2024 em Fortaleza, somado a um recrutamento ativo de um subgrupo de participantes. Uma comparação de dados sociodemográficos, temporais e imunológicos, incluindo respostas autodeclaradas, exames hematológicos, bioquímicos e sorológicos para um subgrupo prospectivo foi realizada. Foram conduzidas análises estatísticas das variáveis de forma independente, através dos testes de Mann-Whitney para 2 grupos e Kruskal-Wallis para mais de dois grupos, somado a análises de post hoc, com correções de Bonferroni e cálculo do tamanho do efeito. Uma investigação multivariada foi inclusa, utilizando três modelos de aprendizagem supervisionada: Support Vector Machine (SVM), Regressão logística (RL) e Gradient Boosting (GB), com o intuito de prever a estratificação dos perfis individuais em diferentes resultados. Os participantes avaliados foram representativos para as 12 regionais de Fortaleza, sendo mais abrangente para o território próximo ao hemocentro. Em sua maioria, apresentaram idade entre 16 e 29 anos, predomínio do sexo masculino, ser pardo e ter ensino médio completo. Houve associação estatística entre a titulação de anticorpos quando comparada a diferentes períodos e doses da vacina, além de múltiplas correlações entre as variáveis sociodemográficas. O modelo de GB apresentou melhor desempenho para previsão dos resultados para a base de dados (2020 a 2024). Destacouse primariamente a vacinação e a fabricante Pfizer como características de impacto para os modelos. Este trabalho destaca a relevância de se utilizar uma base de dados com alta granularidade para a seleção racional de candidatos, visando uma melhor compreensão da variabilidade soroepidemiológica da população em relação à COVID-19.
Abstract: The evolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to the emergence of increasingly adapted variants to the epidemiological landscape, in addition to fluctuations in the number of cases and deaths from the disease (COVID19) during critical moments of the pandemic. Multiple vaccination campaigns with different combinations of technologies, along with successive reinfections/exposures to the virus, have resulted in variations in individual seroepidemiological profiles, highlighting the multivariate nature of the immune system's defense mechanisms. Therefore, the investigation of specific anti-SARS-CoV-2 antibodies becomes relevant for assessing the level of humoral response and seroconversion resulting from successive exposures and cycles of population immunization. In this context, the study was conducted with 17,904 donors between 2020 and 2024 in Fortaleza, along with active recruitment of a subgroup of participants. A comparison of sociodemographic, temporal, and immunological data, including self-reported responses, hematological, biochemical, and serological tests for a prospective subgroup, was performed. Independent statistical analyses of the variables were conducted using Mann-Whitney tests for two groups and Kruskal-Wallis tests for more than two groups, along with post-hoc analyses with Bonferroni corrections and effect size calculations. A multivariate investigation was included, using three supervised learning models: Support Vector Machine (SVM), Logistic Regression (LR), and Gradient Boosting (GB), to predict the stratification of individual profiles into different outcomes. The evaluated participants were representative of the 12 regions of Fortaleza, with broader coverage of the area near the blood center. The majority were aged between 16 and 29 years, predominantly male, of mixed race, and with completed high school education. There was a statistical association between antibody titers when compared across different periods and vaccine doses, as well as multiple correlations between sociodemographic variables. The GB model showed the best performance in predicting outcomes for the dataset (2020 to 2024). Vaccination, primarily with the Pfizer vaccine, stood out as a key feature for the models. This work emphasizes the importance of using a high-granularity dataset to select candidates, aiming for a better understanding of the seroepidemiological variability in relation to COVID-19.
URI: http://repositorio.ufc.br/handle/riufc/78424
Currículo Lattes do(s) Autor(es): http://lattes.cnpq.br/8053662536050751
Currículo Lattes do Orientador: http://lattes.cnpq.br/0998235420634887
Tipo de Acesso: Acesso Aberto
Aparece nas coleções:PPGF - Dissertações defendidas na UFC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2024_dis_cfaksenen.pdf7,89 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.