Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/77578
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorSouza, Marcelo Marques Simões de-
dc.contributor.authorRibeiro, Samuel Gomes-
dc.date.accessioned2024-08-07T19:02:20Z-
dc.date.available2024-08-07T19:02:20Z-
dc.date.issued2023-
dc.identifier.citationRIBEIRO, Samuel Gomes. Segmentação semântica de inundações em imagens de satélite por meio de redes neurais totalmente convolucionais. 2023. 46 f. TCC (Graduação em Engenharia de Computação) – Campus de Sobral, Universidade Federal do Ceará, Sobral, 2023.pt_BR
dc.identifier.urihttp://repositorio.ufc.br/handle/riufc/77578-
dc.description.abstractNatural disasters pose a global challenge, causing significant damage across various countries. Floods are extreme events leading to loss of lives, infrastructure damage, and substantial economic losses. Remote sensing through radar offers valuable insight into identifying flooded areas due to its sensitivity to water presence. Artificial neural networks have successfully been used to detect floods in radar images, thanks to their ability to learn complex patterns within these images. This study proposes the development of a neural network utilizing U-Net and U-Net++ architectures to semantically segment flooded areas in radar images. To optimize segmentation accuracy, various loss functions such as Binary Cross-Entropy, Dice, and Tversky (α = β = 1) were explored. The experiments indicated that U-Net++ with Binary Cross-Entropy stood out when analyzing the predictive results of the models.pt_BR
dc.language.isopt_BRpt_BR
dc.rightsAcesso Abertopt_BR
dc.titleSegmentação semântica de inundações em imagens de satélite por meio de redes neurais totalmente convolucionaispt_BR
dc.typeTCCpt_BR
dc.description.abstract-ptbrOs desastres naturais representam um desafio global, acarretando danos significativos em diversos países. Especificamente, as inundações são eventos extremos que geram perdas de vidas, danos à infraestrutura e prejuízos econômicos substanciais. O sensoriamento remoto via radar oferece uma perspectiva valiosa para identificar áreas inundadas, devido à sua sensibilidade à presença de água. As Redes Neurais Artificiais (RNA) têm sido utilizadas com sucesso para detectar inundações em imagens de radar, graças à capacidade de aprender padrões complexos presentes nessas imagens. Este estudo propõe o desenvolvimento de uma rede neural utilizando as arquiteturas U-Net e U-Net++ para segmentar semanticamente áreas inundadas em imagens de radar. Foram exploradas diferentes funções de perda, como Binary Cross-Entropy, Dice e Tversky (α = β = 1), visando otimizar a precisão da segmentação. Os experimentos indicaram que a U-Net++ com Binary Cross-Entropy se destacou ao analisar os resultados preditivos dos modelos.pt_BR
dc.subject.ptbrRedes neuraispt_BR
dc.subject.ptbrSegmentação semânticapt_BR
dc.subject.ptbrRadar de abertura sintéticapt_BR
dc.subject.ptbrInundaçãopt_BR
dc.subject.ptbrFunções de perdapt_BR
dc.subject.enNeural networkspt_BR
dc.subject.enSemantic segmentationpt_BR
dc.subject.enSynthetic aperture radarpt_BR
dc.subject.enFloodpt_BR
dc.subject.enLoss functionspt_BR
dc.subject.cnpqCNPQ::ENGENHARIASpt_BR
local.author.latteshttp://lattes.cnpq.br/0423222458761808pt_BR
local.advisor.orcidhttps://orcid.org/0000-0002-7590-9898pt_BR
local.advisor.latteshttp://lattes.cnpq.br/1617071773481762pt_BR
local.date.available2023-
Aparece nas coleções:ENGENHARIA DE COMPUTAÇÃO-SOBRAL - Monografias

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2023_tcc_sgribeiro.pdf21,3 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.