Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/73555
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorRocha, Valder Adriano Gomes de Matos-
dc.contributor.authorAraújo, John Kenedy de-
dc.contributor.authorCastro, Marco Aurélio Holanda de-
dc.contributor.authorCosta, Magno Gonçalves da-
dc.contributor.authorCosta, Luis Henrique Magalhães-
dc.date.accessioned2023-07-17T14:22:50Z-
dc.date.available2023-07-17T14:22:50Z-
dc.date.issued2013-
dc.identifier.citationROCHA, Valder Adriano Gomes de Matos; ARAÚJO, John Kenedy de; CASTRO, Marco Aurélio Holanda de; COSTA, Magno Gonçalves da; COSTA, Luis Henrique Magalhães. Análise comparativa entre RNA, AG e Migha na determinação de rugosidades através de calibração de redes hidráulicas. RBRH - Revista Brasileira de Recursos Hídricos, [S. l.], v. 18 n. 1, p. 125-134, 2013.pt_BR
dc.identifier.issn2318-0331-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/73555-
dc.description.abstractThis paper performs a comparative analysis between three methods to estimate roughness of water supply networks by calibration of hydraulics networks. In the first method, the artificial neural network (ANN) optimization tool was adopted, while hydraulic balance is achieved through the dynamic library of EPANET. The second, known as iterative alternative hydraulic gradient (MIGHA), initially developed to calibrate hydrodynamic parameters was adapted in this work. The third tool is the widely used optimization GA. The correct procedure would be to acquire, for the field measurements, data from the temporal variation of hydraulic head and, use them to solve the inverse problem through a comparison between the observed and estimated hydraulic loads. The estimation methodology uses data acquired by means of a hypothetical network.pt_BR
dc.language.isopt_BRpt_BR
dc.publisherRevista Brasileira de Recursos Hídricospt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectCalibração de rugosidadespt_BR
dc.subjectRedes Neurais Artificiais (RNA)pt_BR
dc.subjectMIGHApt_BR
dc.subjectAlgoritmo Genético (AG)pt_BR
dc.subjectEPA- NETpt_BR
dc.titleAnálise comparativa entre RNA, AG e Migha na determinação de rugosidades através de calibração de redes hidráulicaspt_BR
dc.typeArtigo de Periódicopt_BR
dc.description.abstract-ptbrEste trabalho realiza uma analise comparativa entre três métodos de estimativa de rugosidades de redes de abastecimento de água mediante a calibração de redes hidráulicas. No primeiro método, a rede neural artificial (RNA) foi a ferramenta de otimização adotada, enquanto o balanceamento hidráulico é obtido por meio de biblioteca dinâmica do EPANET. O segundo, conhecido como método iterativo de gradiente hidráulico alternativo (MIGHA), inicialmente desenvolvido para estimar parâmetros hidrodinâmicos, foi adaptado neste trabalho. A terceira ferramenta de otimização é o já consagrado algoritmo genético. O procedimento correto seria adquirir, por medições de campo, dados de variação temporal da carga de pressão e, utilizando-os, resolver o problema inverso por intermédio de um confronto entre as cargas de pressão observadas e estimadas. A metodologia de estimação utilizará dados adquiridos por meio de uma rede hipotética.pt_BR
dc.title.enComparative analysis between Ann, GA And Migha in determining roughness by calibration of hydraulics networkspt_BR
Aparece nas coleções:DEHA - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2013_art_vagmrocha1.pdf255,46 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.