Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/73496
Tipo: Dissertação
Título: Contributions to the k-color shortest path problem
Autor(es): Castelo, Emanuel Elias Silva
Orientador: Andrade, Rafael Castro de
Coorientador: Saraiva, Rommel Dias
Palavras-chave: Combinatorial optimization;k-color shortest path;Valid inequalities
Data do documento: 2023
Citação: CASTELO, Emanuel Elias Silva. Contributions to the k-color shortest path problem. 2023. 54 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2023.
Resumo: Dado um digrafo D = (V,A), onde todos os arcos (i, j) ∈ A possuem um custo associado d(i, j) ∈ R+ e uma cor c(i, j), um inteiro positivo k, uma fonte s, e um destino t, o Problema do Caminho Mínimo k-Rotulado é um problema NP-Difícil que consiste em encontrar um (s,t)-caminho de custo mínimo em D usando no máximo k cores distintas. Propomos desigualdades válidas que fortalecem a relaxação linear de uma formulação existente na literatura de Programação Linear Inteira. Propomos ainda uma nova formulação exponencial, que pode ser resolvida por meio de um algoritmo de branch-and-cut. Introduzimos instâncias mais desafiadoras para o problema e apresentamos experimentos numéricos para as benchmark e as novas instâncias. Finalmente, avaliamos diferentes combinações das desigualdades válidas. Resultados computacionais para as ideias propostas e para as abordagens existentes para o problema mostram a eficiência das novas desigualdades em lidar com as novas instâncias ambos em termos de tempo de execução e em proporcionar melhoria nas soluções relaxadas.
Abstract: Given a digraph D = (V,A), where all arcs (i, j) ∈ A have an associated cost d(i, j) ∈ R+ and a color c(i, j), a positive integer k, a source s, and a destination t, the k-Color Shortest Path Problem is an NP-Hard problem that consists in finding the shortest (s,t)-path in D while using at most k distinct colors. We propose valid inequalities for the problem that proved to strengthen the linear relaxation of an existing Integer Linear Programming formulation. An exponential set of valid inequalities defines a new formulation for the problem and is solved by using a branch-and-cut algorithm. We introduce more challenging instances of the problem and present numerical experiments for both benchmark and the new instances. Finally, we evaluate the individual and the collective use of the valid inequalities. Computational results for the proposed ideas and for existing solution approaches for the problem showed the effectiveness of the new inequalities in handling the new instances both in terms of execution times and improving their linear relaxed solutions.
URI: http://www.repositorio.ufc.br/handle/riufc/73496
Aparece nas coleções:DCOMP - Dissertações defendidas na UFC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2023_dis_eescastelo.pdf1,68 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.