Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/73457
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Chouhan, Vikash | - |
dc.contributor.author | Singh, Sanjay Kumar | - |
dc.contributor.author | Khamparia, Aditya | - |
dc.contributor.author | Gupta, Deepak | - |
dc.contributor.author | Tiwari, Prayag | - |
dc.contributor.author | Moreira, Catarina | - |
dc.contributor.author | Damaševičius, Robertas | - |
dc.contributor.author | Albuquerque, Victor Hugo Costa de | - |
dc.date.accessioned | 2023-07-11T17:45:47Z | - |
dc.date.available | 2023-07-11T17:45:47Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Chouhan, Vikash; SINGH, Sanjay Kumar; KHAMPARIA, Aditya; GUPTA, Deepak; TIWARI, Prayag; MOREIRA, Catarina; DAMAŠEVIČIUS, Robertas; ALBUQUERQUE, Victor Hugo Costa de. A Novel transfer learning based approach for pneumonia detection in chest x-ray images. Applied Sciences, [s.l.], v. 10, n. 2, p. 559, 2020. | pt_BR |
dc.identifier.issn | 2076-3417 | - |
dc.identifier.other | DOI: https://doi.org/10.3390/app10020559 | - |
dc.identifier.uri | http://www.repositorio.ufc.br/handle/riufc/73457 | - |
dc.description.abstract | Pneumonia is among the top diseases which cause most of the deaths all over the world. Virus, bacteria and fungi can all cause pneumonia. However, it is difficult to judge the pneumonia just by looking at chest X-rays. The aim of this study is to simplify the pneumonia detection process for experts as well as for novices. We suggest a novel deep learning framework for the detection of pneumonia using the concept of transfer learning. In this approach, features from images are extracted using different neural network models pretrained on ImageNet, which then are fed into a classifier for prediction. We prepared five different models and analyzed their performance. Thereafter, we proposed an ensemble model that combines outputs from all pretrained models, which outperformed individual models, reaching the state-of-the-art performance in pneumonia recognition. Our ensemble model reached an accuracy of 96.4% with a recall of 99.62% on unseen data from the Guangzhou Women and Children’s Medical Center dataset. | pt_BR |
dc.language.iso | en | pt_BR |
dc.publisher | Applied Sciences | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.subject | Deep learning | pt_BR |
dc.subject | Transfer learning | pt_BR |
dc.subject | Medical image processing | pt_BR |
dc.subject | Computer-aided diagnosis | pt_BR |
dc.subject | Aprendizado profundo | pt_BR |
dc.subject | Aprendizagem de transferência | pt_BR |
dc.subject | Processamento de imagens médicas | pt_BR |
dc.subject | Diagnóstico assistido por computador | pt_BR |
dc.title | A Novel transfer learning based approach for pneumonia detection in chest x-ray images | pt_BR |
dc.type | Artigo de Periódico | pt_BR |
Aparece nas coleções: | DEEL - Artigos publicados em revista científica |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2020_art_vchouhan.pdf | 4,6 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.