Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/73293
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Silva, Francisco Eduardo Mendes da | - |
dc.contributor.author | Oliveira, Lincoln Moura de | - |
dc.contributor.author | Antunes, Fernando Luiz Marcelo | - |
dc.contributor.author | Sá Junior, Edilson Mineiro | - |
dc.date.accessioned | 2023-07-03T14:23:45Z | - |
dc.date.available | 2023-07-03T14:23:45Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | SILVA, Francisco Eduardo Mendes da; OLIVEIRA, Lincoln Moura de; ANTUNES, Fernando Luiz Marcelo; SÁ JUNIOR, Edilson Mineiro. Previsão de geração de energia elétrica renovável em curto prazo no estado do Ceará utilizando modelo de regressão prophet. Research, Society and Development, [s.l.], v. 11 , n. 7, 2022. | pt_BR |
dc.identifier.issn | 2525-3409 | - |
dc.identifier.other | DOI: http://dx.doi.org/10.33448/rsd-v11i7.29579 | - |
dc.identifier.uri | http://www.repositorio.ufc.br/handle/riufc/73293 | - |
dc.description.abstract | Brazil went through a period of energy crisis in the last year of 2021, due to low rivers that supply hydroelectric plants, being forced to activate thermal plants to supply electricity to the Brazilian population. This energy crisis brings several negative aspects, which can be avoided or partially avoided with the use of forecasts that can help in the decision making by the Electric Energy System Operators. Within this perspective, this work has as main objective to predict the generation of renewable electricity in the state of Ceará (CE) in a period of three days ahead, through the Prophet prediction model, an algorithm used on a large scale by the social network Facebook, using electricity generation data extracted from the website of the National System Operator (ONS). Data were collected from November 1, 2018 to March 1, 2021, totaling 852 measurements considering daily intervals. The forecasts were evaluated by the model evaluation metrics: RMSE, MSE and MAPE. The data was divided into 75% training data and 25% testing data. As a result, it was observed that the model obtained an error of 5.5% taking into account the MAPE metric | pt_BR |
dc.language.iso | pt_BR | pt_BR |
dc.publisher | Research, Society and Development | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.subject | Geração de energia elétrica | pt_BR |
dc.subject | Energia renovável | pt_BR |
dc.subject | Modelos de previsão | pt_BR |
dc.subject | Electric power generation | pt_BR |
dc.subject | Renewable energy | pt_BR |
dc.subject | Forecast models | pt_BR |
dc.subject | Generación de electricidad | pt_BR |
dc.subject | Energías renovables | pt_BR |
dc.subject | Modelos de pronóstico | pt_BR |
dc.title | Previsão de geração de energia elétrica renovável em curto prazo no estado do Ceará utilizando modelo de regressão prophet | pt_BR |
dc.title.alternative | Pronóstico generación de energia eléctrica renovable a corto plazo en el estado de Ceará mediante modelo de regresión prophet | pt_BR |
dc.type | Artigo de Evento | pt_BR |
dc.description.abstract-ptbr | O Brasil passou por um período de crise energética no último ano de 2021, devido às baixas dos rios que abastecem as hidrelétricas, sendo obrigado a acionar as usinas térmicas para o abastecimento de energia elétrica da população brasileira. Essa crise energética trás vários aspectos negativos, que podem ser evitados ou parcialmente evitados com a utilização de previsões que podem ajudar na tomada de decisões por parte dos Operadores do Sistema de Energia Elétrica. Dentro desta perspectiva este trabalho tem como objetivo principal prever a geração de energia elétrica renovável do estado do Ceará (CE) em um período de três dias à frente, através do modelo de previsão Prophet, algoritmo utilizado em grande escala pela rede social Facebook, utilizando dados de geração de energia elétrica extraído do site do Operador Nacional do Sistema (ONS). Os dados foram coletados de 01 de novembro de 2018 a 01 de março de 2021, totalizando 852 medições considerando intervalos diários. As previsões foram avaliadas pelas métricas de avaliação de modelos: RMSE, MSE e MAPE. Os dados foram divididos em 75% de dados de treinamento e 25% em dados de testes. Como resultado, observou se que o modelo obteve um erro 5,5% levando em consideração a métrica MAPE | pt_BR |
dc.description.abstract-es | Brasil atravesó un período de crisis energética en el último año de 2021, debido al bajo nivel de los ríos que abastecen a las centrales hidroeléctricas, viéndose obligado a activar centrales térmicas para abastecer de electricidad a la población brasileña. Esta crisis energética trae varios aspectos negativos, que pueden ser evitados o evitados parcialmente con el uso de pronósticos que pueden ayudar en la toma de decisiones por parte de los Operadores del Sistema de Energía Eléctrica. En esa perspectiva, este trabajo tiene como principal objetivo predecir la generación de energía eléctrica renovable en el estado de Ceará (CE) en un plazo de tres días, a través del modelo de predicción Prophet, un algoritmo utilizado a gran escala por la red social Facebook, utilizando datos de generación eléctrica extraídos del sitio web del Operador Nacional del Sistema (ONS). Los datos fueron recolectados del 1 de noviembre de 2018 al 1 de marzo de 2021, totalizando 852 mediciones considerando intervalos diarios. Los pronósticos fueron evaluados por las métricas de evaluación del modelo: RMSE, MSE y MAPE. Los datos se dividieron en un 75 % de datos de entrenamiento y un 25 % de datos de prueba. Como resultado se observó que el modelo obtuvo un error del 5,5% teniendo en cuenta la métrica MAPE. | pt_BR |
dc.title.en | Short-term renewable electric energy generation forecast in the state of Ceará using prophet regression | pt_BR |
Aparece nas coleções: | DEEL - Artigos publicados em revista científica |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2022_art_femsilva.pdf | 332,11 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.