Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/72115
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorRocha, Paulo Alexandre Costa-
dc.contributor.authorModolo, Angelo Bezerra-
dc.contributor.authorPontes Lima, Ricardo José-
dc.contributor.authorSilva, Maria Eugênia Vieira da-
dc.contributor.authorBezerra, Carlos André Dias-
dc.contributor.authorFernandes, Jefferson Lemos-
dc.date.accessioned2023-05-08T16:14:44Z-
dc.date.available2023-05-08T16:14:44Z-
dc.date.issued2019-
dc.identifier.citationROCHA, Paulo Alexandre Costa; MODOLO, Ângelo Bezerra; PONTES LIMA, Ricardo José; SILVA, Maria Eugenia Vieira da; BEZERRA, Carlos André Dias; FERNANDES, Jefferson Lemos. Estimation of daily, weekly and monthly global solar radiation using ANNs and a long data set: a case study of Fortaleza, in brazilian northeast region. International Journal of Energy and Environmental Engineering, [s.l.], v. 10, p. 319-334, 2019.pt_BR
dc.identifier.issn2251-6832-
dc.identifier.otherdoi: https://doi.org/10.1007/s40095-019-0313-0-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/72115-
dc.description.abstractA 14-year-long data set containing daily values of meteorological variables was used to train three artificial neural networks (ANNs) for daily, weekly averaged and monthly averaged global solar radiation prediction for Fortaleza, in the Brazilian Northeast region. Local climate is semiarid coastal. Day of the year, maximum temperature, minimum temperature, irradiance, precipitation, cloudiness, extraterrestrial radiation, relative humidity, evaporation and wind speed were adopted as predictors. The ANNs were developed by an in-house code and trained with the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. Besides the lack of explicit predictors able to model El Niño and La Niña phenomena, which have strong influence on local weather, the accuracy of the predictions was considered excellent according to its values of normalized root-mean-square error (nRMSE) and good relative to mean absolute percentage error (MAPE) values. Both error metrics presented the smallest values for the monthly case studypt_BR
dc.language.isoenpt_BR
dc.publisherInternational Journal of Energy and Environmental Engineeringpt_BR
dc.subjectSolar energy predictionpt_BR
dc.subjectArtificial neural networkspt_BR
dc.subjectBroyden–Fletcher–Goldfarb–Shanno (BFGS) algorithmpt_BR
dc.subjectSemiarid coastal regionpt_BR
dc.subjectPrevisão de energia solarpt_BR
dc.subjectRedes neurais artificiaispt_BR
dc.subjectLitoral Semiáridopt_BR
dc.titleEstimation of daily, weekly and monthly global solar radiation using ANNs and a long data set: a case study of Fortaleza, in brazilian northeast regionpt_BR
dc.typeArtigo de Periódicopt_BR
Aparece nas coleções:DEME - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2019_art_mevsilva.pdf1,78 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.