Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/70721
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorBarros, Ana Luiza Bessa de Paula-
dc.contributor.authorBarreto, Guilherme de Alencar-
dc.date.accessioned2023-02-09T17:16:35Z-
dc.date.available2023-02-09T17:16:35Z-
dc.date.issued2013-
dc.identifier.citationBARROS, A. L. B. P.; BARRETO, G. A. Improving the classification performance of optimal linear associative memory in the presence of outliers. In: INTERNATIONAL WORK-CONFERENCE ON ARTIFICIAL NEURAL NETWORKS, 12., 2013, Tenerife. Anais... Tenerife: Springer, 2013. p. 1-11.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/70721-
dc.description.abstractThe optimal linear associative memory (OLAM) proposed by Kohonen and Ruohonen [16] is a classic neural network model widely used as a standalone pattern classifier or as a fundamental component of multilayer nonlinear classification approaches, such as the extreme learning machine (ELM) [10] and the echo-state network (ESN) [6]. In this paper, we develop an extension of OLAM which is robust to labeling errors (outliers) in the data set. The proposed model is robust to label noise not only near the class boundaries, but also far from the class boundaries which can result from mistakes in labelling or gross errors in measuring the input features. To deal with this problem, we propose the use of M -estimators, a parameter estimation framework widely used in robust regression, to compute the weight matrix operator, instead of using the ordinary least squares solution. We show the usefulness of the proposed classification approach through simulation results using synthetic and real-world data.pt_BR
dc.language.isoenpt_BR
dc.publisherInternational Work-Conference on Artificial Neural Networkspt_BR
dc.subjectLinear associative memorypt_BR
dc.subjectMoore-Penrose generalized inversept_BR
dc.subjectPattern classificationpt_BR
dc.subjectOutlierspt_BR
dc.subjectM-estimationpt_BR
dc.titleImproving the classification performance of optimal linear associative memory in the presence of outlierspt_BR
dc.typeArtigo de Eventopt_BR
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2013_eve_gabarreto.pdf156,27 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.