Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/69733
Tipo: | Artigo de Evento |
Título: | Adaptive modulation and coding based on reinforcement learning for 5G networks |
Autor(es): | Mota, Mateus Pontes Araújo, Daniel Costa Costa Neto, Francisco Hugo Almeida, André Lima Férrer de Cavalcanti, Francisco Rodrigo Porto |
Palavras-chave: | Reinforcement learning;Adaptive modulation and coding;Link adaptation;Machine learning;Q-Learning;Inteligência artificial |
Data do documento: | 2019 |
Instituição/Editor/Publicador: | Globecom Workshops |
Citação: | CAVALCANTI, F. R. P. et al. Adaptive modulation and coding based on reinforcement learning for 5G networks. In: GLOBECOM WORKSHOPS, 2019, Waikoloa. Anais... Waikoloa: IEEE, 2019. p. 1-6. |
Abstract: | We design a self-exploratory reinforcement learning (RL) framework, based on the Q-learning algorithm, that enables the base station (BS) to choose a suitable modulation and coding scheme (MCS) that maximizes the spectral efficiency while maintaining a low block error rate (BLER). In this framework, the BS chooses the MCS based on the channel quality indicator (CQI) reported by the user equipment (UE). A transmission is made with the chosen MCS and the results of this transmission are converted by the BS into rewards that the BS uses to learn the suitable mapping from CQI to MCS. Comparing with a conventional fixed look-up table and the outer loop link adaptation, the proposed framework achieves superior performance in terms of spectral efficiency and BLER. |
URI: | http://www.repositorio.ufc.br/handle/riufc/69733 |
Aparece nas coleções: | DETE - Trabalhos apresentados em eventos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2019_eve_frpcavalcanti.pdf | 181,36 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.