Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/69733
Tipo: Artigo de Evento
Título: Adaptive modulation and coding based on reinforcement learning for 5G networks
Autor(es): Mota, Mateus Pontes
Araújo, Daniel Costa
Costa Neto, Francisco Hugo
Almeida, André Lima Férrer de
Cavalcanti, Francisco Rodrigo Porto
Palavras-chave: Reinforcement learning;Adaptive modulation and coding;Link adaptation;Machine learning;Q-Learning;Inteligência artificial
Data do documento: 2019
Instituição/Editor/Publicador: Globecom Workshops
Citação: CAVALCANTI, F. R. P. et al. Adaptive modulation and coding based on reinforcement learning for 5G networks. In: GLOBECOM WORKSHOPS, 2019, Waikoloa. Anais... Waikoloa: IEEE, 2019. p. 1-6.
Abstract: We design a self-exploratory reinforcement learning (RL) framework, based on the Q-learning algorithm, that enables the base station (BS) to choose a suitable modulation and coding scheme (MCS) that maximizes the spectral efficiency while maintaining a low block error rate (BLER). In this framework, the BS chooses the MCS based on the channel quality indicator (CQI) reported by the user equipment (UE). A transmission is made with the chosen MCS and the results of this transmission are converted by the BS into rewards that the BS uses to learn the suitable mapping from CQI to MCS. Comparing with a conventional fixed look-up table and the outer loop link adaptation, the proposed framework achieves superior performance in terms of spectral efficiency and BLER.
URI: http://www.repositorio.ufc.br/handle/riufc/69733
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2019_eve_frpcavalcanti.pdf181,36 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.