Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/69588
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorMoreira, Darlan Cavalcante-
dc.contributor.authorGuerreiro, Igor Moáco-
dc.contributor.authorSun, Wanlu-
dc.contributor.authorCavalcante, Charles Casimiro-
dc.contributor.authorSousa, Diego Aguiar-
dc.date.accessioned2022-11-29T13:35:59Z-
dc.date.available2022-11-29T13:35:59Z-
dc.date.issued2020-
dc.identifier.citationCAVALCANTE, C. C. et al. QoS predictability in V2X communication with machine learning. In: VEHICULAR TECHNOLOGY CONFERENCE, 91., 2020, Antuérpia. Anais... Antuérpia: IEEE, 2020. p. 1-5.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/69588-
dc.description.abstractAn important use case in fifth generation systems are vehicular applications, where, reliability and low latency are the main requirements. In order to determine if a vehicular application can be used one can apply machine learning (ML) tools to determine if these constraints are met, which open questions such as “which data is available”, “which features to use”, “the quality of this prediction”, etc. In this paper we address some aspects of predicting quality-of-service (QoS) in a cellular vehicular-to-everything scenario, where we employ supervised learning as well as the autoregressive integrated moving average filter to predict if a packet can be delivered within a desired latency window. Particularly, we are interested in the reliability of this prediction, including predicting if a packet generated some time ahead will be delivered in time. Such information is essential when asserting that a vehicular application can indeed be employed safely. We show via simulation results that ML can be used as a prediction tool in vehicular applications. For instance, QoS levels can be predicted two seconds ahead with 85 % reliability.pt_BR
dc.language.isoenpt_BR
dc.publisherVehicular Technology Conferencept_BR
dc.subjectC-V2Xpt_BR
dc.subjectQoS predictionpt_BR
dc.subjectMachine learningpt_BR
dc.titleQoS predictability in V2X communication with machine learningpt_BR
dc.typeArtigo de Eventopt_BR
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2020_eve_cccavalcante.pdf253,61 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.