Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/69522
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorAraújo, Daniel Costa-
dc.contributor.authorAlmeida, André Lima Férrer de-
dc.date.accessioned2022-11-25T14:21:41Z-
dc.date.available2022-11-25T14:21:41Z-
dc.date.issued2017-
dc.identifier.citationARAÚJO, D. C.; ALMEIDA, A. L. F. Tensor-based compressed estimation of frequency-selective mmWave MIMO channels. In: INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, 7., 2017, Curaçao. Anais... Curaçao: IEEE, 2017. p. 1-5.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/69522-
dc.language.isoenpt_BR
dc.publisherInternational Workshop on Computational Advances in Multi-Sensor Adaptive Processingpt_BR
dc.subjectTeleinformáticapt_BR
dc.titleTensor-based compressed estimation of frequency-selective mmWave MIMO channelspt_BR
dc.typeArtigo de Eventopt_BR
dc.description.abstract-ptbrThis paper develops a novel channel estimation technique for frequency-selective mmWave MIMO channels using a hybrid analog-digital architecture. By adopting a tensor formalism to model the effective channel, we link the channel estimation problem to the theory of multi-way compressive sensing of sparse tensors via Parallel Factors (PARAFAC) analysis. By leveraging on this link, a joint estimation of the compressed channel bases (spatial transmit, spatial receive and delay) can be obtained by means of an alternating least squares algorithm. Once these bases are estimated, the channel parameters are extracted by solving a simpler compressive sensing (CS) problem for each basis. Some useful bounds on the minimum number of beams and pilot sequence length can be derived from Kruskal’s uniqueness conditions for sparse PARAFAC models. Remarkable channel estimation performance is obtained with short pilot sequences and very few beams, as shown in our simulation results.pt_BR
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2017_eve_alfalmeida.pdf127,63 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.