Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/69500
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Zanini, Paolo | - |
dc.contributor.author | Said, Salem | - |
dc.contributor.author | Cavalcante, Charles Casimiro | - |
dc.contributor.author | Berthoumieu, Yannick | - |
dc.date.accessioned | 2022-11-25T14:16:21Z | - |
dc.date.available | 2022-11-25T14:16:21Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | CAVALCANTE, C. C. et al. Stochastic EM algorithm for mixture estimation on manifolds. In: INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, 7., 2017, Curaçao. Anais... Curaçao: IEEE, 2017. p. 1-5. | pt_BR |
dc.identifier.uri | http://www.repositorio.ufc.br/handle/riufc/69500 | - |
dc.description.abstract | This paper presents a novel algorithm for estimating parameters of a mixture of Gaussian laws when data lie in a Riemannian manifold. We consider the stochastic variant of the well-known Expectation-Maximization (EM) algorithm in the case of Riemannian geometry. The Riemannian mixture is devoted, here, to the case of Riemannian manifold of Symmetric Positive Definite (SPD) matrices. With a slight modification, the stochastic EM algorithm developed originally for Euclidean case can also be derived for SPD manifold. We provide some Monte- Carlo numerical simulations in order to analyse, in details, the proposed algorithm in comparison with the conventional EM one. | pt_BR |
dc.language.iso | en | pt_BR |
dc.publisher | International Workshop on Computational Advances in Multi-Sensor Adaptive Processing | pt_BR |
dc.title | Stochastic EM algorithm for mixture estimation on manifolds | pt_BR |
dc.type | Artigo de Evento | pt_BR |
Aparece nas coleções: | DETE - Trabalhos apresentados em eventos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2017_eve_cccavalcante.pdf | 149,86 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.