Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/69500
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorZanini, Paolo-
dc.contributor.authorSaid, Salem-
dc.contributor.authorCavalcante, Charles Casimiro-
dc.contributor.authorBerthoumieu, Yannick-
dc.date.accessioned2022-11-25T14:16:21Z-
dc.date.available2022-11-25T14:16:21Z-
dc.date.issued2017-
dc.identifier.citationCAVALCANTE, C. C. et al. Stochastic EM algorithm for mixture estimation on manifolds. In: INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, 7., 2017, Curaçao. Anais... Curaçao: IEEE, 2017. p. 1-5.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/69500-
dc.description.abstractThis paper presents a novel algorithm for estimating parameters of a mixture of Gaussian laws when data lie in a Riemannian manifold. We consider the stochastic variant of the well-known Expectation-Maximization (EM) algorithm in the case of Riemannian geometry. The Riemannian mixture is devoted, here, to the case of Riemannian manifold of Symmetric Positive Definite (SPD) matrices. With a slight modification, the stochastic EM algorithm developed originally for Euclidean case can also be derived for SPD manifold. We provide some Monte- Carlo numerical simulations in order to analyse, in details, the proposed algorithm in comparison with the conventional EM one.pt_BR
dc.language.isoenpt_BR
dc.publisherInternational Workshop on Computational Advances in Multi-Sensor Adaptive Processingpt_BR
dc.titleStochastic EM algorithm for mixture estimation on manifoldspt_BR
dc.typeArtigo de Eventopt_BR
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2017_eve_cccavalcante.pdf149,86 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.