Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/67658
Tipo: Artigo de Periódico
Título: Structural disorder of ball-milled, nanosized, Fe-doped SnO2: X-ray diffraction and Mössbauer spectroscopy characterization
Autor(es): Ribeiro, Thiago Soares
Sasaki, José Marcos
Vasconcelos, Igor Frota de
Palavras-chave: Milling;SnO2;Average particle size;Quadrupole splitting;Milling time
Data do documento: 2012
Instituição/Editor/Publicador: Journal of Materials Science
Citação: RIBEIRO, Thiago Soares; SASAKI, José Marcos; VASCONCELOS, Igor Frota de. Structural disorder of ball-milled, nanosized, Fe-doped SnO2: X-ray diffraction and Mössbauer spectroscopy characterization. Journal of Materials Science, [s. l.], v. 47, p. 2630-2636, 2012.
Abstract: Structural characterization of nanosized Fe-doped semiconducting oxide SnO2 is reported. Samples of Sn1−x Fe x O2−y (with x ranging from 0.11 to 0.33) were processed in a planetary ball mill, subsequently HCl-washed to eliminate metallic iron impurities introduced by the milling tools, and characterized by X-ray diffraction and Mössbauer spectroscopy. Results showed that Fe enters the host matrix randomly replacing Sn in octahedral sites regardless of iron concentration. It has been found the presence of oxygen deficient iron sites attributed to the stoichiometric unbalance of precursor materials used in the milling process. It is known that structural features like particle size and residual microstrain are highly affected by the milling process. Values of average particle sizes as calculated by Scherrer’s method alone decreased with increasing Fe concentration. This result was shown, by means of the Williamson-Hall correction method, to be misleading as a large degree of microstrain is expected for mechanically milled powders. In fact, corrected values of average particle sizes turned out to be reasonably homogeneous regardless of iron content and milling time with no consistent trend. Residual microstrain, on the other hand, was found to increase with iron content giving way to the conclusion that broadening of diffraction peaks are mostly due to increasing microstrain as a function of iron doping and milling time. Williamson-Hall analysis also showed a large degree of particle size inhomogeneity. Milling of undoped SnO2 showed that this inhomogeneity is due mostly to doping as opposed to milling.
URI: http://www.repositorio.ufc.br/handle/riufc/67658
ISSN: 1573-4803
Aparece nas coleções:DEMM - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2012_art_tsribeiro.pdf2,22 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.