Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/67324
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorOliveira, Laís Marques de-
dc.contributor.authorSilva, Samiria Maria Oliveira da-
dc.contributor.authorSouza Filho, Francisco de Assis de-
dc.contributor.authorCarvalho, Taís Maria Nunes-
dc.contributor.authorFrota, Renata Locarno-
dc.date.accessioned2022-07-21T14:53:44Z-
dc.date.available2022-07-21T14:53:44Z-
dc.date.issued2020-
dc.identifier.citationSOUZA FILHO, F. A. et al. Forecasting urban water demand using cellular automata. Water, vol. 12, n. 7, p.2038-2052, 2020. DOI: https://doi.org/10.3390/w12072038pt_BR
dc.identifier.issn2073-4441-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/67324-
dc.description.abstractAssociating the dynamic spatial modeling based on the theory of cellular automata with remote sensing and geoprocessing technologies, this article analyzes what would be the per capita consumption behavior of Fortaleza-CE, located in the Northeast of Brazil, in 2017, had there not been a period of water scarcity between 2013 and 2017, and estimates the future urban water demand for the years 2021 and 2025. The weight of evidence method was applied to produce a transition probability map, that shows which areas will be more subject to consumption class change. For that, micro-measured water consumption data from 2009 and 2013 were used. The model was validated by the evaluation of diffuse similarity indices. A high level of similarity was found between the simulated and observed data (0.99). Future scenarios indicated an increase in water demand of 6.45% and 10.16% for 2021 and 2025, respectively, compared to 2017. The simulated annual growth rate was 1.27%. The expected results of urban water consumption for the years 2021 and 2025 are essential for local water resources management professionals and scientists, because, based on our results, these professionals will be able to outline future water resource management strategies.pt_BR
dc.language.isoenpt_BR
dc.publisherWaterpt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectWater demandpt_BR
dc.subjectCellular automatapt_BR
dc.subjectDynamic modelingpt_BR
dc.titleForecasting urban water demand using cellular automatapt_BR
dc.typeArtigo de Periódicopt_BR
Aparece nas coleções:DEHA - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2020_art_fassfilho.PDF5,89 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.