Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/66805
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorIvo, Roberto Fernandes-
dc.contributor.authorRodrigues, Douglas de Araújo-
dc.contributor.authorBezerra, Gabriel Maia-
dc.contributor.authorFreitas, Francisco Nélio Costa-
dc.contributor.authorAbreu, Hamilton Ferreira Gomes de-
dc.contributor.authorRebouças Filho, Pedro Pedrosa-
dc.date.accessioned2022-06-30T10:58:55Z-
dc.date.available2022-06-30T10:58:55Z-
dc.date.issued2020-
dc.identifier.citationIVO, Roberto F. et al. Non-grain oriented electrical steel photomicrograph classification using transfer learning. Journal of Materials Research and Technology, [s.l.], v. 9, n. 4, p. 8580-8591, 2020.pt_BR
dc.identifier.issn2238-7854-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/66805-
dc.description.abstractAmong the many factors that contribute to achieving a sustainable and efficient economy is the raw material of machinery and equipment of strategic sectors. Non-grain oriented (NGO) electrical steel is used in the manufacturing of electric motors. Therefore, it is directly related to the electromagnetic efficiency of engines both in industry and in homes. This work aims to develop an intelligent 1.26% Si NGO electrical steel photomicrograph classification system to assist in the identification of better energy-efficient steel. The concept of Transfer Learning was used to apply Convolutional Neural Network architectures as feature extractors. Traditional machine learning classifiers are applied for coherent categorization of material efficiency. From the results, it is noted that the combination of the InceptionV3 architecture with the k-nearest neighbors classifier reached 100% accuracy and F1-Score. The average extraction time and test time were approximately 15 and 0.920 s, respectively. Given these results, the literature on this application is surpassed. The best extractor-classifier combination is available in an Internet of Things (IoT) system. Therefore, a professional can freely make use of the proposed approach to assist them in identifying low magnetic loss electrical steel.pt_BR
dc.language.isoenpt_BR
dc.publisherJournal of Materials Research and Technologypt_BR
dc.subjectNon-grain oriented electrical steelpt_BR
dc.subjectPhotomicrographpt_BR
dc.subjectTransfer learningpt_BR
dc.subjectMachine learningpt_BR
dc.titleNon-grain oriented electrical steel photomicrograph classification using transfer learningpt_BR
dc.typeArtigo de Periódicopt_BR
Aparece nas coleções:DEMM - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2020_art_rfivo.pdf3,63 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.