Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/65097
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorMoura, Elineudo Pinho de-
dc.contributor.authorBraga, Fabrício Damasceno-
dc.date.accessioned2022-04-18T12:55:39Z-
dc.date.available2022-04-18T12:55:39Z-
dc.date.issued2022-
dc.identifier.citationBRAGA, Fabricio Damasceno. Técnicas computacionais aplicadas à previsão de propriedades do sínter metalúrgico. 2022. 117 f. Dissertação (Mestrado em Engenharia e Ciência de Materiais) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia e Ciência de Materiais, Fortaleza, 2022.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/65097-
dc.description.abstractBoth the need to produce metallurgical sinter with better and more stable properties, regardless of variations in the quality of the inputs used, such as iron ore and coke, as well as the need to ensure competitiveness in steel production in the face of a scenario of constant global economic crises, are motivating factors for the development of forecast models applied to the steel industry. This work proposes the development of computational tools to estimate metallurgical sinter quality indexes from their chemical characteristics and sintering process variables. The investigated indexes are Shatter Resistance Index (SI), Reducibility Index (RI), Degradation Under Reduction Index (RDI), and Average Particle Size (MPS). Investigating the inĆuence of input variables on the considered quality indicators, evaluating the quality of the estimating models developed and comparing them with results available in the scientiĄc literature, as well verifying the possibility of using a new hyperparametric optimization technique are other objectives of this work. Different algorithms were used to obtain the best prediction model for each of the studied responses, including multiple linear regression (MLR), stepwise regression (SR), multiple perceptron neural network with gradient descent with momentum learning algorithm (MLP-GDM), and multiple perceptron neural network with LevenbergŰMarquardt learning algorithm (MLP-LM).pt_BR
dc.language.isopt_BRpt_BR
dc.subjectSinterizaçãopt_BR
dc.subjectPropriedades do Sínterpt_BR
dc.subjectTécnicas computacionais de previsãopt_BR
dc.titleTécnicas computacionais aplicadas à previsão de propriedades do sínter metalúrgicopt_BR
dc.typeDissertaçãopt_BR
dc.description.abstract-ptbrTanto a necessidade de produzir sínter metalúrgico com propriedades melhores e mais estáveis, independente das variações da qualidade dos insumos utilizados, tais como minério de ferro e coque, como a de garantir a competitividade na produção do aço diante de um cenário de constantes crises econômicas mundiais, são fatores motivadores para o desenvolvimento de modelos de previsão aplicados para indústria siderúrgica. O presente trabalho propõe o desenvolvimento de ferramentas computacionais para estimar índices de qualidade do sínter metalúrgico a partir de suas características químicas e das variáveis do processo de sinterização. Os indicadores investigados são: Índice de Resistência Shatter (SI), Índice de Redutibilidade (RI), Índice de Degradação Sob Redução (RDI) e Tamanho Médio de Partícula (MPS). Investigar a inĆuência das variáveis de entrada nos índices de qualidade considerados, avaliar a qualidade dos modelos estimadores desenvolvidos e compará-los com resultados disponíveis na literatura cientíĄca, além de veriĄcar a possibilidade de utilização de uma nova técnica de otimização hiperparamétrica são outros objetivos desse trabalho. Algoritmos distintos foram utilizados a Ąm de se obter o melhor modelo de predição para cada uma das respostas estudadas, são eles: Regressão Linear Múltipla (MLR), Regressão Stepwise (SR), Rede Neural P ercéptrons Múltiplos com algoritmo de aprendizagem do tipo gradiente descendente com momentum (MLP-GDM) e Rede Neural Percéptrons Múltiplos com algoritmo de aprendizagem do tipo LevenbergŰMarquardt (MLP-LM).pt_BR
dc.title.enComputational techniques applied to the prediction of metallurgical sinter propertiespt_BR
Aparece nas coleções:DEMM - Dissertações defendidas na UFC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2022_dis_fdbraga.pdf5,4 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.