Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/64665
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorCosta, Thiago Azevedo Campos-
dc.contributor.authorMagalhães Filho, Claudio César Martins-
dc.contributor.authorGomes, Allan Costa-
dc.contributor.authorForte, Marcus Davi do Nascimento-
dc.contributor.authorLima, Thiago Alves-
dc.contributor.authorFerreira, Vinicius dos Reis Alves-
dc.contributor.authorCorreia, Wilkley Bezerra-
dc.contributor.authorBraga, Arthur Plínio de Souza-
dc.date.accessioned2022-03-29T16:53:45Z-
dc.date.available2022-03-29T16:53:45Z-
dc.date.issued2018-
dc.identifier.citationCOSTA, Thiago Azevedo Campos; MAGALHAES FILHO, Claudio Cesar Martins; GOMES, Allan Costa; FORTE, Marcus Davi do Nascimento; LIMA, Thiago Alves; FERREIRA, Vinicius dos Reis Alves; CORREIA, Wilkley Bezerra; BRAGA, Arthur Plínio de Souza. Path planning of mobile robot with growing neural gas andant colony optimization.In: CONGRESSO BRASILEIRO DE AUTOMÁTICA, XXII., 9 a 12 set., 2018, João Pessoa - PB - Brasil. Anais[…], Campinas, Galoá, v.1, n. 1 (2019): CBA2018.pt_BR
dc.identifier.issn2525-8311-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/64665-
dc.description.abstractThis paper presents a new path planning strategy obtained from the combination between Growing Neural Gas (GNG) and Ant Colony Optimization (ACO) algorithms. The proposed strategy was tested in a real mobile robot for two di erent scenarios and compared with the APF approach. Positive and negative points of the proposed strategy are highlighted throughout the text. As one positive point, the proposed path planning strategy presented a better end positioning of the robot in comparison with APF in the performed tests - an aspect of great interest for practical applications in industry and medical area.pt_BR
dc.language.isopt_BRpt_BR
dc.publisherSociedade Brasileira de Automática – SBA - https://www.sba.org.br/pt_BR
dc.subjectSelf-Organizing Mapspt_BR
dc.subjectMetaheuristicspt_BR
dc.subjectArtificial intelligencept_BR
dc.subjectPath planningpt_BR
dc.subjectMobile robotpt_BR
dc.titlePath planning of mobile robot with growing neural gas andant colony optimizationpt_BR
dc.typeArtigo de Eventopt_BR
dc.title.enPath planning of mobile robot with growing neural gas andant colony optimizationpt_BR
Aparece nas coleções:DEEL - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2018_eve_tazevedo.pdf4,74 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.