Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/63676
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorEspíndola, Aline Calheiros-
dc.contributor.authorNobre Júnior, Ernesto Ferreira-
dc.contributor.authorSilva Júnior, Elias Teodoro da-
dc.date.accessioned2022-01-25T14:28:45Z-
dc.date.available2022-01-25T14:28:45Z-
dc.date.issued2021-
dc.identifier.citationESPÍNDOLA, Aline Calheiros; NOBRE JÚNIOR, Ernesto Ferreira; SILVA JÚNIOR, Elias Teodoro da. Pavement surface type classification based on deep learning to the automatic pavement evaluation system. In: JOINT IBERO-LATIN-AMERICAN CONGRESS ON COMPUTATIONAL METHODS IN ENGINEERING-CILAMCE, XLII.; PAN-AMERICAN CONGRESS ON COMPUTATIONAL MECHANICS-PANACM, ABMEC-IACM, III., 9-12nov. 2021., Rio de Janeiro, Brazil. Proceedings[...], Rio de Janeiro, Brazil, 2021.pt_BR
dc.identifier.issn2675-6269-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/63676-
dc.description.abstract. Computer vision techniques, image processing, and machine learning became incorporated into an automatic pavement evaluation system with technological advances. However, in most research, the models developed to identify defects in the pavement assume that all the segments evaluated are paved and with one specific pavement surface type. Nevertheless, there is a wide variety of road surface types, especially in urban areas. The present work developed models based on a deep convolutional neural network to identify the pavement surface types considering five classes: asphalt, concrete, interlocking, cobblestone, and unpaved. Models based on ResNet50 architectures were developed; also, the Learning Rate (LR) optimization “one-cycle” training technique was applied. The models were trained using almost 50 thousand images from Brazil’s states highway dataset. model results are excellent, highlighting the model based on ResNet50, in which it obtained accuracy, precision, and recall values of almost 100%.pt_BR
dc.language.isopt_BRpt_BR
dc.publisherhttps://cilamce.com.br/anais/index.php?ano=2021pt_BR
dc.subjectPavement surfacept_BR
dc.subjectImage processingpt_BR
dc.subjectConvolutional neural networkspt_BR
dc.titlePavement Surface Type Classification Based on Deep Learning to the Automatic Pavement Evaluation Systempt_BR
dc.typeArtigo de Eventopt_BR
dc.title.enPavement Surface Type Classification Based on Deep Learning to the Automatic Pavement Evaluation Systempt_BR
Aparece nas coleções:DET - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2021_eve_acespindola.pdf503,34 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.