Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/63676
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Espíndola, Aline Calheiros | - |
dc.contributor.author | Nobre Júnior, Ernesto Ferreira | - |
dc.contributor.author | Silva Júnior, Elias Teodoro da | - |
dc.date.accessioned | 2022-01-25T14:28:45Z | - |
dc.date.available | 2022-01-25T14:28:45Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | ESPÍNDOLA, Aline Calheiros; NOBRE JÚNIOR, Ernesto Ferreira; SILVA JÚNIOR, Elias Teodoro da. Pavement surface type classification based on deep learning to the automatic pavement evaluation system. In: JOINT IBERO-LATIN-AMERICAN CONGRESS ON COMPUTATIONAL METHODS IN ENGINEERING-CILAMCE, XLII.; PAN-AMERICAN CONGRESS ON COMPUTATIONAL MECHANICS-PANACM, ABMEC-IACM, III., 9-12nov. 2021., Rio de Janeiro, Brazil. Proceedings[...], Rio de Janeiro, Brazil, 2021. | pt_BR |
dc.identifier.issn | 2675-6269 | - |
dc.identifier.uri | http://www.repositorio.ufc.br/handle/riufc/63676 | - |
dc.description.abstract | . Computer vision techniques, image processing, and machine learning became incorporated into an automatic pavement evaluation system with technological advances. However, in most research, the models developed to identify defects in the pavement assume that all the segments evaluated are paved and with one specific pavement surface type. Nevertheless, there is a wide variety of road surface types, especially in urban areas. The present work developed models based on a deep convolutional neural network to identify the pavement surface types considering five classes: asphalt, concrete, interlocking, cobblestone, and unpaved. Models based on ResNet50 architectures were developed; also, the Learning Rate (LR) optimization “one-cycle” training technique was applied. The models were trained using almost 50 thousand images from Brazil’s states highway dataset. model results are excellent, highlighting the model based on ResNet50, in which it obtained accuracy, precision, and recall values of almost 100%. | pt_BR |
dc.language.iso | pt_BR | pt_BR |
dc.publisher | https://cilamce.com.br/anais/index.php?ano=2021 | pt_BR |
dc.subject | Pavement surface | pt_BR |
dc.subject | Image processing | pt_BR |
dc.subject | Convolutional neural networks | pt_BR |
dc.title | Pavement Surface Type Classification Based on Deep Learning to the Automatic Pavement Evaluation System | pt_BR |
dc.type | Artigo de Evento | pt_BR |
dc.title.en | Pavement Surface Type Classification Based on Deep Learning to the Automatic Pavement Evaluation System | pt_BR |
Aparece nas coleções: | DET - Trabalhos apresentados em eventos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2021_eve_acespindola.pdf | 503,34 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.