Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/6226
Tipo: | Dissertação |
Título : | Avaliando o Forecast content dos modelos auto-regressivos para a arrecadação de ICMS do setor elétrico no Estado do Ceará |
Autor : | Moraes, Francisco Ozanan Bezerra de |
Tutor: | Linhares, Fabrício Carneiro |
Palabras clave : | Arrecadação;Energia Elétrica |
Fecha de publicación : | 2011 |
Citación : | MORAES, Francisco Ozanan Bezerra de. Avaliando o forecast content dos modelos auto-regressivos para a arrecadação de ICMS do setor elétrico no Estado do Ceará. 2011. 36f. Dissertação (mestrado profissional em economia do setor público) -Programa de Pós Graduação em Economia, CAEN, Universidade Federal do Ceará, Fortaleza, CE, 2011. |
Resumen en portugués brasileño: | Neste ensaio investiga-se a perda de conteúdo dos modelos de previsão autoregressivos, na medida em que se alarga o horizonte temporal no qual a variável é estimada. O conteúdo é medido pela redução relativa do erro quadrado médio que o modelo proporciona em comparação ao processo simplificado de utilizar a média incondicional da série temporal. A variável estudada é a arrecadação mensal do Imposto sobre Circulação de Mercadorias e Serviços (ICMS) proveniente do segmento de energia elétrica, no Estado do Ceará, no período de janeiro de 1999 a setembro de 2010. Utiliza-se o método e o modelo computacional formulados por Galbraith (2003), analisando-se a forecast content function, na qual o conteúdo depende do número de períodos estimados. Os resultados confirmam que, para a série temporal explorada, quando se eleva o alcance da previsão o conteúdo decai rapidamente, podendo atingir valor inferior a 10% quando o horizonte da previsão chega a 5 meses. Verificou-se, ademais, que o uso de sub-amostras via descarte de períodos mais antigos agrava a perda de conteúdo. |
Abstract: | In this essay we investigate the loss of content in autoregressive forecast models, as it is increased the horizon of time in which the variable is estimated. The content is measured as the proportionate reduction in medium squared error (MSE) that the model gives, comparing to the simple process by using the unconditional mean of time series. The variable is the monthly collection of ICMS from electric power sector, in Ceará state, in the period from January 1999 to September 2010. We use the method and computational model formulated by Galbraith (2003), analyzing the forecast content function, in which the content depends on the number of estimated periods. The results confirm that, when it increases the range of forecast the content decays quickly, reaching less than 10% when the forecast horizons reaches 5 months. It was found further that the use of subsamples by discarding oldest periods increases the loss of content. |
URI : | http://www.repositorio.ufc.br/handle/riufc/6226 |
Aparece en las colecciones: | CAEN - Dissertações defendidas na UFC |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2011_dissert_fobmoraes.pdf | 230,92 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.