Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/62006
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorJesus, Karla de-
dc.contributor.authorAyala, Helon V. H-
dc.contributor.authorJesus, Kelly de-
dc.contributor.authorCoelho, Leandro dos S-
dc.contributor.authorMedeiros, Alexandre I.A.-
dc.contributor.authorAbraldes, José Arturo-
dc.contributor.authorVaz, Mário A. P.-
dc.contributor.authorFernandes, Ricardo J-
dc.contributor.authorBoas, João Paulo Vilas-
dc.date.accessioned2021-11-12T13:19:04Z-
dc.date.available2021-11-12T13:19:04Z-
dc.date.issued2018-
dc.identifier.citationJESUS, Karla de et al. Modelling and Predicting Backstroke Start Performance Using Non-Linear And Linear Models. Journal of Human Kinetics, [s. l.], v. 61, n. 1, p. 29-38, 2018pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/62006-
dc.description.abstractOur aim was to compare non-linear and linear mathematical model responses for backstroke start performance prediction. Ten swimmers randomly completed eight 15 m backstroke starts with feet over the wedge, four with hands on the highest horizontal and four on the vertical handgrip. Swimmers were videotaped using a dual media camera setup, with the starts being performed over an instrumented block with four force plates. Artificial neural networks were applied to predict 5 m start time using kinematic and kinetic variables and to determine the accuracy of the mean absolute percentage error. Artificial neural networks predicted start time more robustly than the linear model with respect to changing training to the validation dataset for the vertical handgrip (3.95 ± 1.67 vs. 5.92 ± 3.27%). Artificial neural networks obtained a smaller mean absolute percentage error than the linear model in the horizontal (0.43 ± 0.19 vs. 0.98 ± 0.19%) and vertical handgrip (0.45 ± 0.19 vs. 1.38 ± 0.30%) using all input data. The best artificial neural network validation revealed a smaller mean absolute error than the linear model for the horizontal (0.007 vs. 0.04 s) and vertical handgrip (0.01 vs. 0.03 s). Artificial neural networks should be used for backstroke 5 m start time prediction due to the quite small differences among the elite level performances.pt_BR
dc.language.isopt_BRpt_BR
dc.publisherJournal of Human Kineticspt_BR
dc.subjectArtificial neural networkspt_BR
dc.subjectLinear mathematical modept_BR
dc.subjectKinematicspt_BR
dc.subjectCompetitive swimmingpt_BR
dc.subjectStart timept_BR
dc.subjectkinetics-
dc.titleModelling and Predicting Backstroke Start Performance Using Non-Linear And Linear Modelspt_BR
dc.typeArtigo de Periódicopt_BR
Aparece nas coleções:IEFES - Artigos publicados em revistas científicas

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2018_art_kjesus.pdf361,86 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.