Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/61787
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorAmorim Neto, Juarez Pompeu de-
dc.contributor.authorRocha, Paulo Alexandre Costa-
dc.contributor.authorMarinho, Felipe Pinto-
dc.contributor.authorLima, Ricardo José Pontes-
dc.contributor.authorPortela, Lino Wagner Castelo Branco-
dc.contributor.authorSilva, Maria Eugênia Vieira da-
dc.date.accessioned2021-11-04T15:34:22Z-
dc.date.available2021-11-04T15:34:22Z-
dc.date.issued2019-
dc.identifier.citationAMORIM NETO, Juarez Pompeu de; ROCHA, Paulo Alexandre Costa; MARINHO, Felipe Pinto; LIMA, Ricardo José Pontes; PORTELA, Lino Wagner Castelo Branco; SILVA, Maria Eugênia Vieira da. Analysis and comparison between regression models for temperature estimation of solar collectors operating with nanofuids. In: IBERO-LATIN-AMERICAN CONGRESS ON COMPUTATIONAL METHODS IN ENGINEERING, CILAMCE- ABMEC, XL., 11-14 nov. 2019, Natal/RN, Brazil. Proceedings […], Natal/RN, Brazil, 2019.pt_BR
dc.identifier.issn2675-6269-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/61787-
dc.description.abstractThe objective of this work is to verify the application of polynomial regression methods, Ridge and Lasso regression in the nowcasting of the fluid temperature and energy gain of a solar collector operating with nanofluids. The collector has temperature and global/direct solar radiation sensors for data logging. In addition the R programming language was used for the statistical analysis of R2, MAE (Mean Absolute Error) and RMSE (Root Mean Squared Error). The models were applied in three different data sets, which regarded to the data for water temperature prediction and TiO2 nanofluids with a concentration of 25 ppm and 75 ppm, where each method applied seven predictors for the fluid temperature nowcasting. The best Root Mean Squared error found in the test sets was 2.281°C for a degree 3 polynomial regression, whereas the Ridge presented an RMSE of 3.190°C. The Ridge and the Lasso usually improve least squares methods but they did not perform well in this data set, the Ridge regression considered a model with all the predictors and got a high test error, as far as the Lasso excluded some predictors and got an improved result. A cross-validation was performed to know the degree of the most effective polynomial for the analysis of these data and the polynomial regression of degree 3 obtained the best result, confirming that the fluid temperature does not follow a linear trend mainly during the hours from 5:30 to 21:30.pt_BR
dc.language.isopt_BRpt_BR
dc.publisherhttp://www.abmec.org.br/congressos-e-outros-eventospt_BR
dc.subjectSolar energypt_BR
dc.subjectRenewable energypt_BR
dc.subjectMachine learningpt_BR
dc.subjectRidge regressionpt_BR
dc.subjectLASSOpt_BR
dc.titleAnalysis and comparison between regression models for temperature estimation of solar collectors operating with nanofuidspt_BR
dc.typeArtigo de Eventopt_BR
Aparece nas coleções:DEME - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2019_eve_jpdeamorimneto.pdf497,7 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.