Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/61740Registro completo de metadatos
| Campo DC | Valor | Lengua/Idioma |
|---|---|---|
| dc.contributor.author | Maia, Marina Alves | - |
| dc.contributor.author | Ribeiro, Leonardo Gonçalves | - |
| dc.contributor.author | Parente Junior, Evandro | - |
| dc.contributor.author | Melo, Antônio Macário Cartaxo de | - |
| dc.date.accessioned | 2021-11-03T14:49:45Z | - |
| dc.date.available | 2021-11-03T14:49:45Z | - |
| dc.date.issued | 2019 | - |
| dc.identifier.citation | MAIA, Marina Alves; RIBEIRO, Leonardo Gonçalves; PARENTE JÚNIOR, Evandro; MELO, Antônio Macário Cartaxo de. Sequential approximate optimization using kriging and radial basis functions. In: IBERO-LATIN-AMERICAN CONGRESS ON COMPUTATIONAL METHODS IN ENGINEERING, CILAMCE- ABMEC, XL., 11-14 nov. 2019, Natal/RN, Brazil. Proceedings[…], Natal/RN, Brazil, 2019. | pt_BR |
| dc.identifier.issn | 2675-6269 | - |
| dc.identifier.uri | http://www.repositorio.ufc.br/handle/riufc/61740 | - |
| dc.description.abstract | Despite steady advance in computing power, the number of function evaluations in global optimization problems is often limited due to time-consuming analyses. In structural optimization problems, for instance, these analyses are typically carried out using the Finite Elements Method (FEM). This issue is especially critical when dealing with bio-inspired algorithms, where a high number of trial designs are usually required. Therefore, surrogate models are a valuable alternative to help reduce computational cost. With that in mind, present work proposes three Sequential Approximate Optimization (SAO) techniques. For that purpose, two surrogate models were chosen: the Radial Basis Functions (RBF) and Kriging. As for the infill criteria, three methodologies were investigated: the Expected Improvement, the Density Function and the addition of the global best. Two bio-inspired meta-heuristics were used in different stages of the optimization, namely Particle Swarm Optimization and Genetic Algorithm. To validate the proposed methodologies, a set of benchmarks functions were selected from the literature. Results showed a significant reduction in the number of high-fidelity evaluations. In terms of accuracy, efficiency, and robustness, Kriging excelled in most categories for all problems. Finally, these techniques were applied to the solution of a laminated composite plate, which demands a more complex analysis using FEM. | pt_BR |
| dc.language.iso | pt_BR | pt_BR |
| dc.publisher | http://www.abmec.org.br/congressos-e-outros-eventos/ | pt_BR |
| dc.subject | Optimization | pt_BR |
| dc.subject | Sequential approximate optimization | pt_BR |
| dc.subject | RBF | pt_BR |
| dc.subject | Kriging | pt_BR |
| dc.title | Sequential approximate optimization using kriging and radial basis functions | pt_BR |
| dc.type | Artigo de Evento | pt_BR |
| Aparece en las colecciones: | DECC - Trabalhos apresentados em eventos | |
Ficheros en este ítem:
| Fichero | Descripción | Tamaño | Formato | |
|---|---|---|---|---|
| 2019_eve_mamaia.pdf | 1,47 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.