Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/61232
Tipo: Tese
Título: CO2 post-combustion capture from a coal-fired power plant: assessment of commercial and synthesized zeolites and moving bed simulations
Autor(es): Morales Ospino, Rafael Augusto
Orientador: Azevedo, Diana Cristina Silva de
Coorientador: Bastos Neto, Moisés
Vilarrasa-García, Enrique
Palavras-chave: Adsorption;CO2 capture;Moving bed;Zeolites;Fly ash;Process simulation
Data do documento: 2021
Citação: MORALES OSPINO, Rafael Augusto. Co2 Post-Combustion capture from a coal-fired power plant: assessment of commercial and synthesized zeolites and moving bed simulations. 2021. 133f. Tese (Doutorado em Engenharia Quimica) - Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Química, Fortaleza, 2021.
Resumo: A necessidade incessante de suprir a demanda energética global tem levado à queima generalizada de combustíveis fósseis, provocando a liberação de gases de efeito estufa. O efeito de retenção de calor devido às concentrações alarmantes de gases de efeito estufa como o CO2 está causando danos à camada de ozônio e, portanto, contribuindo para o aquecimento global. Além disso, os processos de Captura e Armazenamento de Carbono (CCS) estão atualmente sendo investigados para mitigar as crescentes emissões de CO2 na atmosfera. Em usinas de energia que utilizam carvão como combustível, além da problemática das emissões de CO2, o acúmulo de cinzas volantes derivados da queima do carvão tornou-se uma grande preocupação. Na tentativa de fornecer uma solução conjugada para as emissões de CO2 e descarte de cinzas volantes, materiais adsorventes, como zeólitas sintetizadas a partir de cinzas volantes de duas usinas termoelétricas brasileiras foram avaliados como materiais potenciais para capturar CO2. As zeólitas à base de cinzas volantes (uma tipo X e outra tipo A) foram comparadas com zeólitas comerciais de referência usados para separação de CO2 /N2 como zeólita 13X e 4A por meio de caracterização de adsorção de gás (N2 em 77 K e CO2 em isotermas de 273 K) e métricas de adsorção. Testes de equilíbrio foram realizados para obter isotermas de adsorção de CO2, N2 e vapor d'água em diferentes temperaturas com o auxílio de uma balança de suspensão magnética. Além disso, uma unidade de adsorção de oscilação de temperatura em leito móvel (MBTSA) para capturar CO2 com zeólita comercial 13X de uma corrente de gás de combustão contendo apenas N2 (85% vol.) e CO2 (15% vol.) foi simulada por meio de um modelo com balanços apropriados de fenômenos de transporte. Considerou-se que o gás de combustão foi submetido a uma operação de secagem cuja penalidade energética foi considerada no item de consumo energético da unidade. O modelo consistia em três seções que abrangiam todo o sistema MBTSA: seções de adsorção, regeneração e resfriamento. Cada seção do MBTSA foi modelada individualmente, mas interconectada por meio de um modelo composto que simulou a unidade toda. Devido ao grande número de variáveis e parâmetros envolvidos no sistema MBTSA que podem ser organizados em diversos conjuntos de dados de entrada, efetuou-se um estudo paramétrico analisando o efeito de diferentes variáveis de processo nos principais parâmetros de desempenho (ou seja, recuperação e pureza de CO2 no corrente produto, consumo de energia e produtividade da unidade). Os resultados de caracterização e equilíbrio indicaram que os materiais sintetizados a partir de cinzas volantes podem ser considerados como adsorventes promissores de baixo custo para captura de CO2. As amostras sintetizadas exibiram características, capacidade de adsorção de CO2 e seletividades semelhantes como suas contrapartes comerciais. As isotermas experimentais de adsorção água pura e binária água/CO2 indicaram a necessidade de secar os gases de combustão antes de sua utilização no processo de captura de carbono, dada a alta afinidade das zeólitas em adsorver umidade sobre o CO2. Por outro lado, os resultados da simulação sugeriram que, nas condições estudadas, poderiam ser alcançados valores de até 99% e 91% de recuperação e pureza de CO2, respectivamente. Os valores da demanda de energia específica, incluindo a penalidade de remoção de água, foram considerados comparáveis aos valores relatados para a absorção de amina líquida, indicando que o processo MBTSA pode ser um candidato potencial para captura de CO2 em cenário pós-combustão em grande escala.
Abstract: The incessant necessity to supply the global energy demand has led to the widespread burning of fossil fuels provoking the release of greenhouse gases. The heat-trapping effect due to the alarming concentrations of greenhouse gases like CO2 is causing damages to the ozone layer and thus, contributing to global warming. On top of this, Carbon Capture & Storage processes (CCS) are currently being subjected of investigation to mitigate the increasing CO2 emissions into the atmosphere. In power plants employing coal as fuel, besides the CO2 emissions problematic, fly ash accumulation derived from the coal burning has become a major concern. In attempt to provide a conjugated solution to both the CO2 emissions and fly ash discarding, adsorbent materials such as zeolites synthesized from fly ash of two Brazilian coal-fired power plants were evaluated as potential materials to capture CO2. Fly ash-based zeolites (one type X and other type A) were compared to benchmark commercial zeolites used for CO2/N2 separation like zeolite 13X and 4A by means of gas adsorption characterization (N2 at 77 K and CO2 at 273 K isotherms) and adsorption metrics. Equilibrium experiments were performed in all the samples to obtain CO2, N2 and water vapor adsorption isotherms at different temperatures with the aid of a magnetic suspension balance. Furthermore, a Moving Bed Temperature Swing Adsorption (MBTSA) unit to capture CO2 with commercial zeolite 13X from a flue gas stream only containing N2 (85 % vol.) and CO2 (15 %.vol.) was simulated through a model with appropriate transport phenomena balances. The flue gas was assumed to undergo a drying operation whose energy penalty was taken into account within the energetic consumption item of the unit. The model consisted of three sections that comprised the whole MBTSA system: adsorption, regeneration and cooling sections. Every section of the MBTSA was individually modeled but interconnected by means of a composite model that simulated the entire unit. Due to the large number of variables and parameters involved in the MBTSA system that can be arranged in diverse input datasets, a parametric study analyzing the effect of different process variables on key performance parameters of the process (i.e., CO2 recovery and purity of the product stream, energy consumption and productivity) was carried out. The characterization and equilibrium results indicated that the synthesized materials from fly ash can be considered as low cost promising CO2 adsorbents. The synthesized samples exhibited similar characteristics, CO2 adsorption capacities and selectivities as their commercial counterparts. The pure water and binary water/CO2 experimental adsorption isotherms indicated the necessity to dry the flue prior to its use in a carbon capture process given the high affinity of zeolites to adsorb moisture over CO2. On the other hand, the simulation results suggested that, under the studied conditions, values up to 99% and 91% of CO2 recovery and purity could be achieved, respectively. Values of the specific energy demand, including the water removal penalty, were found to be comparable to reported values for amine liquid absorption indicating that MBTSA process might be a potential candidate process for large-scale post-combustion CO2 capture.
URI: http://www.repositorio.ufc.br/handle/riufc/61232
Aparece nas coleções:DEQ - Teses defendidas na UFC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2021_tese_ramospino.pdf2,99 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.