Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/60226
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorSena, Emanuel Dário Rodrigues-
dc.contributor.authorAlmeida, André Lima Férrer de-
dc.date.accessioned2021-09-02T16:21:29Z-
dc.date.available2021-09-02T16:21:29Z-
dc.date.issued2013-
dc.identifier.citationSENA, Emanuel Dário Rodrigues; ALMEIDA, André Lima Férrer de. Reconhecimento facial usando Wavelets de Gabor via álgebra multilinear. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT, XXXI., 01-04 dez. 2013, Fortaleza, CE. Anais[...], Fortaleza, CE., 2013.pt_BR
dc.identifier.otherDOI: 10.14209/sbrt.2013.93-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/60226-
dc.description.abstractIn this work, we propose a facial recognition system that exploits the multilinear nature of images. The feature extraction occurs in two stages. First, Gabor wavelets are used for feature selection. Then, the higher order singular value decomposition (HOSVD) is applied to separate the multimodal factors of the images. Two approaches based on Euclidean and Mahalanobis distances are proposed, respectively, for the classification of the set of feature vectors. The proposed facial recognition approach exhibits higher average success rates than competing methods. By analyzing the results for various training settings, the proposed approach demonstrates stability when there is deficiency in the amount of training images.pt_BR
dc.language.isopt_BRpt_BR
dc.publisherhttps://www.sbrt.org.br/sbrt2013pt_BR
dc.subjectMultilinear Algebrapt_BR
dc.subjectGabor Waveletspt_BR
dc.subjectTensor decompositionspt_BR
dc.subjectMultimodal imagespt_BR
dc.subjectFace recognitionpt_BR
dc.titleReconhecimento Facial usando Wavelets de Gabor via Álgebra Multilinearpt_BR
dc.typeArtigo de Eventopt_BR
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2013_eve_edrsena.pdf484,09 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.