Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/60226Registro completo de metadatos
| Campo DC | Valor | Lengua/Idioma |
|---|---|---|
| dc.contributor.author | Sena, Emanuel Dário Rodrigues | - |
| dc.contributor.author | Almeida, André Lima Férrer de | - |
| dc.date.accessioned | 2021-09-02T16:21:29Z | - |
| dc.date.available | 2021-09-02T16:21:29Z | - |
| dc.date.issued | 2013 | - |
| dc.identifier.citation | SENA, Emanuel Dário Rodrigues; ALMEIDA, André Lima Férrer de. Reconhecimento facial usando Wavelets de Gabor via álgebra multilinear. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT, XXXI., 01-04 dez. 2013, Fortaleza, CE. Anais[...], Fortaleza, CE., 2013. | pt_BR |
| dc.identifier.other | DOI: 10.14209/sbrt.2013.93 | - |
| dc.identifier.uri | http://www.repositorio.ufc.br/handle/riufc/60226 | - |
| dc.description.abstract | In this work, we propose a facial recognition system that exploits the multilinear nature of images. The feature extraction occurs in two stages. First, Gabor wavelets are used for feature selection. Then, the higher order singular value decomposition (HOSVD) is applied to separate the multimodal factors of the images. Two approaches based on Euclidean and Mahalanobis distances are proposed, respectively, for the classification of the set of feature vectors. The proposed facial recognition approach exhibits higher average success rates than competing methods. By analyzing the results for various training settings, the proposed approach demonstrates stability when there is deficiency in the amount of training images. | pt_BR |
| dc.language.iso | pt_BR | pt_BR |
| dc.publisher | https://www.sbrt.org.br/sbrt2013 | pt_BR |
| dc.subject | Multilinear Algebra | pt_BR |
| dc.subject | Gabor Wavelets | pt_BR |
| dc.subject | Tensor decompositions | pt_BR |
| dc.subject | Multimodal images | pt_BR |
| dc.subject | Face recognition | pt_BR |
| dc.title | Reconhecimento Facial usando Wavelets de Gabor via Álgebra Multilinear | pt_BR |
| dc.type | Artigo de Evento | pt_BR |
| Aparece en las colecciones: | DETE - Trabalhos apresentados em eventos | |
Ficheros en este ítem:
| Fichero | Descripción | Tamaño | Formato | |
|---|---|---|---|---|
| 2013_eve_edrsena.pdf | 484,09 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.