Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/60180
Tipo: | Artigo de Evento |
Título : | Estimation of Very Large MIMO Channels Using Compressed Sensing |
Título en inglés: | Estimation of Very Large MIMO Channels Using Compressed Sensing |
Autor : | Araújo, Daniel Costa Almeida, André Lima Férrer de Mota, João César Moura Hui, Dennis |
Palabras clave : | Very-large MIMO channels;Compressed sensing;Sparsity;Channel estimation;Matching pursuit |
Fecha de publicación : | 2013 |
Editorial : | https://www.sbrt.org.br/sbrt2013 |
Citación : | ARAÚJO, Daniel Costa; ALMEIDA, André Lima Férrer de; MOTA, João Cesar Moura; HUI, Dennis. Estimation of very large MIMO channels using compressed sensing . In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT, XXXI., 01-04 dez. 2013, Fortaleza, CE. Anais[...], Fortaleza, CE., 2013. |
Resumen en portugués brasileño: | In this paper, we propose an efficient pilot-assisted technique for the estimation of very-large MIMO (multiple-input multiple-output) channels exploiting the inherent sparsity of the channel. We first obtain an appropriate sparse decomposition model from a virtual channel representation of the very-large MIMO channel. Based on this model, we capitalize on a fundamental result of the compressed sensing (CS) to show that the channel matrix can be accurately estimated from very short training sequences compared to the number of used transmit antennas. We compare the normalized mean square error (NMSE) obtained using the proposed CS-based channel estimator, the least-square (LS) estimator and the Cramer-Rao lower bound (CRLB). The simulation results show that the proposed estimator obtains good performance, being 5 dB from the CRLB. |
URI : | http://www.repositorio.ufc.br/handle/riufc/60180 |
Aparece en las colecciones: | DETE - Trabalhos apresentados em eventos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2013_eve_dcaraujo.pdf | 163,59 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.