Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/59252
Tipo: Artigo de Periódico
Título: A semi-objective circulation pattern classification scheme for the semi-arid Northeast Brazil
Título em inglês: A semi-objective circulation pattern classification scheme for the semi-arid Northeast Brazil
Autor(es): Laux, Patrick
Boker, Brian
Martins, Eduardo Sávio Passos Rodrigues
Vasconcelos Junior, Francisco das Chagas
Moron, Vicent
Portele, Tanja
Lorenz, Christof
Philipp, Andreas
Kunstmann, Harald
Palavras-chave: Circulação;Patente;Precipitação
Data do documento: 2020
Instituição/Editor/Publicador: International Journal Of Climatology
Citação: LAUX, Patrick; BÖKER, Brian; MARTINS, Eduardo Sávio Passos Rodrigues; VASCONCELOS JUNIOR, Francisco das Chagas; MORON, Vincent ; PORTELE, Tanja; LORENZ, Chistof; PHILIPP, Andreas; KUNSTMAN, Harald. A semi-objective circulation pattern classification scheme for the semi-arid Northeast Brazil. International Journal Of Climatology, United Kingdom, v. 1, p. 1-22, 2020.
Abstract: The semi-arid Northeast Brazil (NEB) is just recovering from a very severe water crisis induced by a multiyear drought. With this crisis, the question of water resources management has entered the national political agenda, creating an opportunity to better prepare the country to deal with future droughts. In order to improve climate predictions, and thus preparedness in NEB, a circulation pattern (CP) classification algorithm offers various options. Therefore, the main objective of this study was to develop a computer aided CP classification based on the Simulated ANnealing and Diversified RAndomization clustering (SANDRA) algorithm. First, suitable predictor variables and cluster domain setting are evaluated using ERA-Interim reanalyses. It is found that near surface variables such as geopotential at 1,000 hPa (GP1,000) or mean sea level pressure (MSLP) should be combined with horizontal wind speed at the upper 700 hPa level (UWND700). A 11-cluster solution is favoured due to the trade-offs between interpretability of the cluster centroids and the explained variances of the predictors. Second, occurrence and transition probabilities of this 11-cluster solution of GP1,000 and UWND700 are analysed, and typical CPs, which are linked to dry and wet conditions in the region are identified. The suitability of the new classification to be potentially applied for statistical downscaling or CP-conditional bias correction approach is analysed. The CP-conditional cumulative density functions (CDFs) exhibit discriminative power to separate between wet and dry conditions, indicating a good performance of the CP approach
URI: http://www.repositorio.ufc.br/handle/riufc/59252
ISSN: 1097-0088
Aparece nas coleções:LABOMAR - Artigos publicados em revistas científicas

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2020_art_plaux.pdf38,32 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.