Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/58916
Tipo: | Tese |
Título: | On channel modeling based on semi-deterministic and stochastic approaches for 5G and beyond |
Autor(es): | Pessoa, Alexandre Matos |
Orientador: | Cavalcanti, Francisco Rodrigo Porto |
Coorientador: | Guerreiro, Igor Moáco Silva, Carlos Filipe Moreira e |
Palavras-chave: | 5G;Modelagem de canal;SCRV;Mobilidade dual;Soma-de-senóides |
Data do documento: | 2021 |
Citação: | PESSOA, Alexandre Matos. On channel modeling based on semi-deterministic and stochastic approaches for 5G and beyond. 2021. 137 f. Tese (Doutorado em Engenharia de Teleinformática) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia de Teleinformática, Fortaleza, 2021. |
Resumo: | A evolução dos sistemas de comunicações móveis associada com a heterogeneidade das redes e o crescimento explosivo no número de dispositivos conectados transformaram a modelagem de canal de comunicação móvel em uma tarefa desafiadora tanto para a atual, bem como para as próximas gerações dos sistemas sem fio. Esse desafio consiste em desenvolver novas abordagens que permitam aos modelos de canal fornecerem simulações realistas em uma grande variedade de cenários enquanto se mantêm escaláveis com o aumento no número de nós e na área de cobertura das redes sem fio. Simulações realistas envolvendo canal sem fio estão associadas com a acurácia do modelo em descrever os efeitos de propagação que afetam as ondas eletromagnéticas, bem como com a capacidade do modelo em prover características de modelagem de quinta geração (5G), tais como antenas dualmente direcionais, MIMO (do inglês, multiple-input multiple-output) massivo, ondas milimétricas, bloqueadores e consistência espacial. Além disso a implementação de um modelo de canal precisa considerar limitações no tempo de execução (complexidade computacional) e memória (complexidade de armazenamento). Nesse contexto, essa tese foca no desenvolvimento e calibração de dois modelos de canal sem fio voltados para redes 5G, incluindo enlaces terrestres e aéreos com mobilidade simples e dual. Diferentes abordagens são consideradas para geração dos parâmetros de larga e pequena escala, em que cada abordagem envolve uma relação distinta de custo-benefício entre acurácia, complexidade e armazenamento. O primeiro modelo, denominado 5G-Remote é voltado para áreas rurais remotas e se beneficia das características semi-determinísticas dos espalhadores nesse ambiente ao considerar perfis fixos de potência-atraso e potência-ângulo. O modelo é de implementação relativamente simples e apresenta baixa complexidade. O segundo modelo, denominado 5G-StoRM (do inglês, 5G Stochastic Radio channel for dual Mobility), é um modelo de canal estocástico para redes 5G em geral e pode ser usado para realizar simulações sistêmicas e simulações ponto-a-ponto de forma acurada com suporte para vários cenários e casos de uso. Um conceito chave no 5G-StoRM é o uso de um método soma-de-senóides (SoS, do inglês, sum-of-sinusoids) que apresenta baixa complexidade computacional e de armazenamento. O método SoS permite gerar variáveis aleatórias espacialmente consistentes considerando mobilidade simples e dual em enlaces terrestres a partir de uma ACF (do inglês, autocorrelation function) predefinida. O método SoS é generalizado para o espaço n-dimensional e é rovado ser capaz de gerar qualquer processo Gaussiano estacionário no sentido amplo em Rn que seja caracterizado por um modelo de ACF positivo semi-definido. A generalização do método SoS para Rn permite estender o modelo 5G-StoRM de modo a suportar enlaces aéreo e aéreo-terrestres. Assim, devido à sua simplicidade, o modelo 5G-Remote é validado a partir da expressões analíticas de sua ACF, enquanto o modelo 5G-StoRM é extensivamente validado por simulação numérica em 6, 30, 60 e 70 GHz usando resultados reportados por diferentes companhias em enlaces terrestres e aéreo-terrestres, considerando ambientes indoor urbanos e rurais. Por fim, o consumo de memória do 5G-StoRM é demonstrado ser invariante com o número de estações rádio-base, sendo especialmente indicado para realizar simulações em redes 5G massivas. |
Abstract: | The evolution of mobile communication systems associated with the network heterogeneity and the explosive growth in the number of connected devices have transformed channel modeling in a challenging task for the current and future generation of wireless systems. This challenge consists in developing new approaches that allow the channel models to provide realistic simulations in a broad range of scenarios and still remain scalable with the number of nodes and coverage area in the network. A realistic channel simulation is associated with the accuracy of the model in describing the propagation effects that affect the electromagnetic waves as well as with the capability of the model on supporting fifth-generation (5G) features for channel modeling, such as double directional arrays, massive multiple-input multiple-output (MIMO), millimetre-wave (mmWave), blockage, and spatial consistency. Additionally, to be accurate, the practical implementation of a channel model needs to deal with limitations in execution time (or computational complexity) and storage (memory requirements). In this context, the focus of this thesis is on the development and calibration of two channel models for 5G networks, including terrestrial and aerial links considering both single mobility (SM) and dual mobility (DM). Different approaches for generating the large scale parameters (LSPs) and small scale parameters (SSPs) are investigated, which yield different trade-offs among accuracy, complexity, and storage. The first model, namely 5G-Remote, is devoted to remote rural areas and takes advantage of the semi-static characteristics of the scattering by considering fixed power delay profile (PDP) and power angular profile (PAP). It is relatively simple to implement and has low complexity. The second model, namely 5G Stochastic Radio channel for dual Mobility (5G-StoRM), is a stochastic channel model (SCM) for 5G networks in general and can be used to perform accurate system and link-level simulations with support for various 5G use case scenarios. A key concept in 5G-StoRM is the use of a low complexity (in terms of computations and storage) sum-of-sinusoids (SoS) method that allows generating spatially consistent random variables (SCRVs) with DM in terrestrial links from a predefined autocorrelation function (ACF). The SoS method is further generalized to the n-dimensional space and proved to be capable of generating any wide-sense stationary (WSS) Gaussian process (GP) in Rn characterized by a positive semi-definite (PSDe) ACF. The generalized SoS method is used to extend 5G-StoRM to also support air-to-ground (A2G) and air-to-air (A2A) links. Due to its simplicity, 5G-Remote is validated from a closed-form expression to its ACF while 5G-StoRM is extensively validated by numerical simulations at 6, 30, 60, and 70 GHz using the results reported by different sources in terrestrial and A2G links, considering indoor, urban, and rural environments. Finally, the memory consumption of 5G-StoRM is proved to be invariant with the number of base stations (BSs) deployed in the scenario, been especially useful to perform simulations in 5G massive wireless networks. |
URI: | http://www.repositorio.ufc.br/handle/riufc/58916 |
Aparece nas coleções: | DETE - Teses defendidas na UFC |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2021_tese_ampessoa.pdf | 2,23 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.