Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/58395
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorKlug, Jeferson Leandro-
dc.contributor.authorBarbosa, Robério Lima-
dc.date.accessioned2021-05-14T19:24:25Z-
dc.date.available2021-05-14T19:24:25Z-
dc.date.issued2021-
dc.identifier.citationBARBOSA, Robério Lima. Aplicação da termodinâmica computacional para o desenvolvimento de pós fluxantes sem flúor para aços peritéticos. 2021. 56 f. Monografia (Graduação em Engenharia Metalúrgica) - Universidade Federal do Ceará, Fortaleza, 2021.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/58395-
dc.description.abstractDuring continuous casting, the steel starts to solidify forming a strand shell from contact with the copper mold. Once the mold flux is released on the liquid steel in the mold and melts on the steel surface, the slag infiltrates between the mold and the strand shell and is exposed to different cooling conditions, which can favor or prevent its crystallization. In mold fluxes, fluorides can reduce the melting temperature and slag viscosity, in addition to being important for the precipitation of the phase called cuspidine (Ca4Si2O7F2) which is vital for controlling the heat transfer between the liquid steel and the mold. However, fluorides will react with SiO2 to form a low melting point compound (SiF2) that will evaporate into the atmosphere during steel casting and will also form the HF gas compound which is one of the major villains of the process by be terribly toxic. In addition to the environmental concern, the fluorides generated by these reactions will also cause corrosion problems in the continuous casting equipment. Therefore, there is an urgent need to develop fluorine-free slags. Considering the development of fluorine-free mold fluxes for the casting of peritetic steel plates, control of crystallization is essential. The main problem is to effectively control the heat transfer between the steel shell and the mold. The objective of the present work is to analyze the effects of the components of a new fluorine-free flowing powder for the continuous casting of peritetic steel plates, replacing the CaO-SiO2-CaF2 system by the CaOSiO2- TiO2 system, considering the relationship between temperature, composition and precipitation of crystals capable of imparting properties similar to the properties of fluorinebased mold fluxes. With the aid of computational thermodynamics the present work started from the basic system CaO – SiO2 – Al2O3 at a temperature of 1200 ° C, it was noticed that the addition of Na2O, MgO and B2O3 is very effective in decreasing the liquidus temperature of the flux slag. Subsequently, the relationship of these components was evaluated with the addition of 5 wt% of TiO2 in the precipitation of the perovskite phase (CaTiO3), which acts in a similar way to cuspidine in the control of crystallization, allowing the new system to replace the old one. Finally, the proportion of the different crystals precipitated during cooling from 1200 ° C to 900 ° C was analyzed, which allowed us to perceive that the new mold flux presents excellent perspectives as a substitute for the traditional fluorine based flux powders.pt_BR
dc.language.isopt_BRpt_BR
dc.subjectEscóriapt_BR
dc.subjectPó fluxante sem flúorpt_BR
dc.subjectPerovskitapt_BR
dc.subjectTítulopt_BR
dc.titleAplicação da termodinâmica computacional para o desenvolvimento de pós fluxantes sem flúor para aços peritéticos.pt_BR
dc.typeTCCpt_BR
dc.contributor.co-advisorHeck, Nestor Cezar-
dc.description.abstract-ptbrDurante o lingotamento contínuo, o aço inicia a solidificação formando uma casca sólida a partir do contato com o molde de cobre. Uma vez que o pó fluxante é lançado sobre o aço líquido no molde e funde sobre a superfície do aço, a escória se infiltra entre o molde e a casca de aço sendo exposta a diferentes condições de resfriamento, que podem favorecer ou impedir a sua cristalização. Nos pós fluxantes, os fluoretos podem reduzir a temperatura de fusão e a viscosidade da escória, além de serem importantes para a precipitação da fase chamada de cuspidina (Ca4Si2O7F2) que é vital para o controle da transferência de calor entre o aço líquido e o molde. No entanto, os fluoretos irão reagir com o SiO2 formando um composto de baixo ponto de fusão (SiF2) que irá evaporar para a atmosfera durante o lingotamento do aço e também irão formar o composto HF gasoso o qual é um dos grandes vilões do processo por ser terrivelmente tóxico. Além da preocupação ambiental, os fluoretos gerados por essas reações também causarão problemas de corrosão nos equipamentos de lingotamento contínuo. Portanto, é urgente o desenvolvimento de escórias fluxantes livres de flúor. Considerando o desenvolvimento de pós fluxantes sem flúor para o lingotamento de placas de aço peritético, o controle da cristalização é essencial. O principal problema é efetivamente controlar a transferência de calor entre a casca de aço e o molde. O objetivo do presente trabalho é analisar os efeitos dos componentes de um novo pó fluxante sem flúor para o lingotamento contínuo de placas de aços peritéticos, substituindo o sistema CaO-SiO2- CaF2 pelo sistema CaO-SiO2-TiO2, considerando a relação entre temperatura, composição e a precipitação de cristais capazes de conferir propriedades semelhantes às propriedades de pós fluxantes à base de flúor. Com o auxílio da termodinâmica computacional o presente trabalho partiu do sistema básico CaO–SiO2–Al2O3 na temperatura de 1200°C, percebeu-se que a adição de Na2O, MgO e B2O3 é muito eficaz na diminuição da temperatura liquidus da escória fluxante. Posteriormente avaliou-se a relação desses componentes com a adição de 5 wt% de TiO2 na precipitação da fase perovskita (CaTiO3), que atua de forma semelhante à cuspidina no controle da cristalização, permitindo que o novo sistema possa substituir o antigo. Por fim, foi analisada a proporção dos diferentes cristais precipitados durante um resfriamento partindo de 1200°C até 900°C o que permitiu perceber que o novo pó fluxante apresenta excelentes perpectivas como substituto dos tradicionais pós fluxantes à base de flúor.pt_BR
dc.title.enApplication of computational thermodynamics for the development of fluoride-free flux powders for steels experts.pt_BR
Aparece nas coleções:ENGENHARIA METALÚRGICA - Monografias

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2021_tcc_rlbarbosa.pdf1,89 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.