Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/44373
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorReis, Saulo Davi Soares e-
dc.contributor.authorMoreira, André Auto-
dc.contributor.authorHavlin, Shlomo-
dc.contributor.authorStanley, Harry Eugene-
dc.contributor.authorAndrade Júnior, José Soares de-
dc.date.accessioned2019-08-01T13:43:00Z-
dc.date.available2019-08-01T13:43:00Z-
dc.date.issued2013-
dc.identifier.citationREIS, S. D. S.; MOREIRA, A. A.; HAVLIN, S.; STANLEY, H. E.; ANDRADE JÚNIOR, J. S. Optimal transport exponent in spatially embedded networks. Physical Review E, v. 87, n. 4, p. 1-8, 2013.pt_BR
dc.identifier.issn15393755 (impresso)-
dc.identifier.issn15502376 (online)-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/44373-
dc.description.abstractThe imposition of a cost constraint for constructing the optimal navigation structure surely represents a crucial ingredient in the design and development of any realistic navigation network. Previous works have focused on optimal transport in small-world networks built from two-dimensional lattices by adding long-range connections with Manhattan length rij taken from the distribution Pij ∼ r −α ij , where α is a variable exponent. It has been shown that, by introducing a cost constraint on the total length of the additional links, regardless of the strategy used by the traveler (independent of whether it is based on local or global knowledge of the network structure), the best transportation condition is obtained with an exponent α = d + 1, where d is the dimension of the underlying lattice. Here we present further support, through a high-performance real-time algorithm, on the validity of this conjecture in three-dimensional regular as well as in two-dimensional critical percolation clusters. Our results clearly indicate that cost constraint in the navigation problem provides a proper theoretical framework to justify the evolving topologies of real complex network structures, as recently demonstrated for the networks of the US airports and the human brain activity.pt_BR
dc.language.isoenpt_BR
dc.publisherPhysical Review Ept_BR
dc.rightsAcesso Abertopt_BR
dc.subjectRedes complexaspt_BR
dc.subjectGrafo aleatóriopt_BR
dc.subjectModelo de Kleinbergpt_BR
dc.titleOptimal transport exponent in spatially embedded networkspt_BR
dc.typeArtigo de Periódicopt_BR
Aparece nas coleções:DFI - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2013_art_gli.pdf371,44 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.