Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/4167
Tipo: | Artigo de Evento |
Título: | Polynomial expansion of the probability density function about gaussian mixtures |
Autor(es): | Cavalcante, Charles Casimiro Mota, João César Moura Romano, João Marcos Travassos |
Palavras-chave: | Teleinformática |
Data do documento: | 2004 |
Instituição/Editor/Publicador: | Workshop on Machine Learning for Signal Processing |
Citação: | CAVALCANTE, C. C. ; MOTA, J. C. M. ; ROMANO, J. M. T. Polynomial expansion of the probability density function about gaussian mixtures. In: WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 14., 2004, São Luiz. Anais... São Luiz: IEEE, 2004. p. 163-172 |
Abstract: | A polynomial expansion to probability density function (pdf) approximation about Gaussian mixture densities is proposed in this paper. Using known polynomial series expansions we apply the Pareen estimator to derive an orthonormal basis that is able to represent the characteristics of probability distributions that are not concentrated in the vicinity of the mean point such as the Gaussian pdf. The blind source separation problem is used to illustrate the applicability of the proposal in practical analysis of the dynamics of the recovered data pdf estimation. Simulations are carried out to illustrate the analysis. |
URI: | http://www.repositorio.ufc.br/handle/riufc/4167 |
Aparece nas coleções: | DETE - Trabalhos apresentados em eventos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2004_eve_cccavalcante.pdf | 289,48 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.