Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/3797
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorBarbosa, João Lucas Marques-
dc.contributor.authorLira, Jorge Herbert Soares de-
dc.contributor.authorOliker, Vladimir I.-
dc.date.accessioned2012-09-24T11:36:03Z-
dc.date.available2012-09-24T11:36:03Z-
dc.date.issued2007-
dc.identifier.citationBARBOSA, João Lucas Marques ; LIRA, Jorge Herbert Soares de ; OLIKER, Vladimir . Uniqueness of starshaped compact hypersurfaces with prescribed m-th mean curvature in hyperbolic space. Illinois Journal of Mathematics,Urbana, Ill., US, v. 51, p. 571-582, 2007.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/3797-
dc.description.abstractLet ψ be a given function defined on a Riemannian space. Under what conditions does there exist a compact starshaped hypersurface M for which ψ , when evaluated on M,coincides with the m-th elementary symmetric function of principal curvatures of M for a given m? The corresponding existence and uniqueness problems in Euclidean space have been investigated by several authors in the mid 1980s. Recently,conditions for existence were established in elliptic space and, most recently, for hyperbolic space. However, the uniqueness problem has remained open. In this paper we investigate the problem of uniqueness in hyperbolic space and show that uniqueness (up to a geometrically trivial transformation) holds under the same conditions under which existence was established.pt_BR
dc.language.isoenpt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectHipersuperfíciespt_BR
dc.subjectEspaços hiperbólicospt_BR
dc.titleUniqueness of starshaped compact hypersurfaces with prescribed m-th mean curvature in hyperbolic spacept_BR
dc.typeArtigo de Periódicopt_BR
Aparece nas coleções:DMAT - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2007_art_jlmbarbosa.pdf204,7 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.